An optimized Kernel Extreme Learning Machine for the classification of the autism spectrum disorder by using gaze tracking images

Autism spectrum disorder (ASD) is a lifelong neurological condition that affects how a person interacts and learns. The early and accurate diagnosis of ASD is vital to developing a comprehensive rehabilitation plan that improves the quality of life and the integration of the ASD person in the social...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 120; p. 108654
Main Authors Gaspar, Angel, Oliva, Diego, Hinojosa, Salvador, Aranguren, Itzel, Zaldivar, Daniel
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autism spectrum disorder (ASD) is a lifelong neurological condition that affects how a person interacts and learns. The early and accurate diagnosis of ASD is vital to developing a comprehensive rehabilitation plan that improves the quality of life and the integration of the ASD person in the social, family, and work environment. However, the accurate diagnosis of ASD is usually affected since it is linked to the judgment of an expert, which produces biases related to the lack of objectivity. In consequence, several works have been dedicated to developing early detection techniques for ASD based on Machine Learning (ML) technologies and eye-tracking tools. The present work aims to introduce a new methodology for ASD classification, which uses Kernel Extreme Learning Machine (KELM), an objective dataset based on gaze tracking, feature extraction techniques, and data augmentation for training the model. In turn, to enhance the accuracy in ASD classification, the KELM model is optimized through the Giza Pyramids Construction (GPC) algorithm. The proposed approach includes pipeline data augmentation, dimensionality reduction, and a posterior normalization to classify ASD subjects accurately. Statistical tests and analyses were performed to validate the performance of the proposed methodology, resulting in an average accuracy of 98.8% in ASD classification. •A machine learning tools is proposed for autism spectrum disorder classification.•The kernel extreme learning machine is used for autism disorder classification.•It is proposed an optimized version of kernel extreme learning machine.•Giza pyramids construction algorithm is applied to optimize the KELM.•The classification is performed with a high degree of accuracy.
AbstractList Autism spectrum disorder (ASD) is a lifelong neurological condition that affects how a person interacts and learns. The early and accurate diagnosis of ASD is vital to developing a comprehensive rehabilitation plan that improves the quality of life and the integration of the ASD person in the social, family, and work environment. However, the accurate diagnosis of ASD is usually affected since it is linked to the judgment of an expert, which produces biases related to the lack of objectivity. In consequence, several works have been dedicated to developing early detection techniques for ASD based on Machine Learning (ML) technologies and eye-tracking tools. The present work aims to introduce a new methodology for ASD classification, which uses Kernel Extreme Learning Machine (KELM), an objective dataset based on gaze tracking, feature extraction techniques, and data augmentation for training the model. In turn, to enhance the accuracy in ASD classification, the KELM model is optimized through the Giza Pyramids Construction (GPC) algorithm. The proposed approach includes pipeline data augmentation, dimensionality reduction, and a posterior normalization to classify ASD subjects accurately. Statistical tests and analyses were performed to validate the performance of the proposed methodology, resulting in an average accuracy of 98.8% in ASD classification. •A machine learning tools is proposed for autism spectrum disorder classification.•The kernel extreme learning machine is used for autism disorder classification.•It is proposed an optimized version of kernel extreme learning machine.•Giza pyramids construction algorithm is applied to optimize the KELM.•The classification is performed with a high degree of accuracy.
ArticleNumber 108654
Author Gaspar, Angel
Aranguren, Itzel
Oliva, Diego
Hinojosa, Salvador
Zaldivar, Daniel
Author_xml – sequence: 1
  givenname: Angel
  orcidid: 0000-0002-3913-4546
  surname: Gaspar
  fullname: Gaspar, Angel
  email: angel.gaspar@alumnos.udg.mx
  organization: División de Tecnologías para la Integración Ciber-Humana, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico
– sequence: 2
  givenname: Diego
  orcidid: 0000-0001-8781-7993
  surname: Oliva
  fullname: Oliva, Diego
  email: diego.oliva@cucei.udg.mx
  organization: División de Tecnologías para la Integración Ciber-Humana, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico
– sequence: 3
  givenname: Salvador
  surname: Hinojosa
  fullname: Hinojosa, Salvador
  email: salvador.hinojosa@tec.mx
  organization: School of Engineering and Sciences, Tecnólogico de Monterrey, Zapopan, Mexico
– sequence: 4
  givenname: Itzel
  surname: Aranguren
  fullname: Aranguren, Itzel
  email: itzel.aranguren@academicos.udg.mx
  organization: División de Tecnologías para la Integración Ciber-Humana, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico
– sequence: 5
  givenname: Daniel
  surname: Zaldivar
  fullname: Zaldivar, Daniel
  email: daniel.zaldivar@cucei.udg.mx
  organization: División de Tecnologías para la Integración Ciber-Humana, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico
BookMark eNp9kM1OAjEURhuDiYC-gKu-wGBbmE6buCEEfyLGDfum07mFIjND2mKEnW9uB1y5YNXbm5wv9zsD1GvaBhC6p2RECeUPm5EOrRkxwlhaCJ5PrlCfioJlkgvaS3PORTaRE36DBiFsSIIkE330M21wu4uudkeo8Bv4BrZ4_h091IAXoH3jmhV-12btGsC29TiuAZutDsFZZ3R0bQqwp63eRxdqHHZgot_XuHKh9RV4XB7wPnQ5K30EHL02n93P1XoF4RZdW70NcPf3DtHyab6cvWSLj-fX2XSRmTHnMZOysCJnlhpWSsNtyYQmEzJmspDEalqIIq8oy2nJdMFLUZYFI4ZLwnNLxno8ROwca3wbggerdj4d4A-KEtU5VBvVOVSdQ3V2mCDxDzIunjqnEm57GX08o5A6fTnwKhgHjYHK-eRHVa27hP8COr6Q8g
CitedBy_id crossref_primary_10_3390_electronics12153356
crossref_primary_10_1016_j_asoc_2024_112184
crossref_primary_10_1016_j_engappai_2024_109437
crossref_primary_10_1007_s12652_023_04641_6
crossref_primary_10_1016_j_jocs_2024_102447
crossref_primary_10_3390_e26080699
crossref_primary_10_3390_info14090494
crossref_primary_10_1002_aur_3083
crossref_primary_10_1155_2022_6140796
crossref_primary_10_3390_diagnostics13182948
crossref_primary_10_1007_s10586_024_04441_3
crossref_primary_10_1371_journal_pone_0282818
crossref_primary_10_1016_j_jretconser_2023_103471
crossref_primary_10_1016_j_ibmed_2025_100226
crossref_primary_10_1177_09287329241301678
crossref_primary_10_1615_CritRevBiomedEng_v51_i1_10
crossref_primary_10_1049_cvi2_12271
crossref_primary_10_1016_j_compbiomed_2024_108075
crossref_primary_10_1007_s11760_024_03638_8
crossref_primary_10_1016_j_asoc_2022_109914
crossref_primary_10_1155_2022_2340856
crossref_primary_10_1155_hbe2_1496105
crossref_primary_10_1016_j_health_2023_100293
crossref_primary_10_1016_j_jneumeth_2024_110319
crossref_primary_10_1007_s40996_024_01438_1
crossref_primary_10_1088_1361_6501_ad0f08
crossref_primary_10_4103_ijnpnd_ijnpnd_113_24
crossref_primary_10_1016_j_bspc_2023_104914
crossref_primary_10_1016_j_engappai_2024_109475
crossref_primary_10_1038_s41598_024_81779_z
crossref_primary_10_1007_s13042_022_01740_2
crossref_primary_10_3390_su15129588
Cites_doi 10.1016/j.nurpra.2019.04.001
10.1016/j.procs.2020.01.079
10.1016/j.catena.2016.06.004
10.1007/s10898-007-9149-x
10.1016/j.bspc.2021.103015
10.1002/mpr.1846
10.1016/j.asoc.2020.106476
10.1016/j.jocn.2018.06.049
10.1016/j.asoc.2020.106917
10.1109/ACCESS.2021.3056407
10.1016/j.asoc.2018.08.046
10.1016/j.ijdevneu.2018.08.010
10.1016/j.knosys.2020.105648
10.1109/ACCESS.2018.2841987
10.1186/s12864-019-6413-7
10.1007/s00521-011-0572-z
10.1016/j.compag.2020.105842
10.1007/s10462-018-09676-2
10.1016/j.advengsoft.2015.01.010
10.1016/j.engappai.2020.103980
10.1109/ACCESS.2021.3061455
10.1176/appi.books.9780890425596
10.1016/j.future.2019.02.028
10.1023/A:1016374617369
10.1016/j.compbiomed.2020.103722
10.1016/j.image.2021.116184
10.1007/s00521-013-1522-8
10.1016/j.asoc.2019.105884
10.1002/aur.239
10.1016/j.jbi.2021.103797
10.1038/tp.2012.10
10.1109/TSMCB.2011.2168604
10.1007/s13042-018-0833-6
10.1016/j.compbiomed.2021.104375
10.1038/mp.2012.126
10.1145/3459664
10.1016/j.bpsgos.2021.04.007
10.1016/j.ifacol.2019.06.052
10.1007/s10732-008-9080-4
10.1016/j.neucom.2021.03.004
10.1016/j.eswa.2019.07.031
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.108654
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_108654
S1568494622001314
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-997f852f1c2b9c6fb28a040329790fa17875d1251b2a76b8bb720c69065f03a3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 01:50:14 EDT 2025
Fri Feb 23 02:41:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kernel Extreme Learning Machine (KELM)
Autism Spectrum Disorder (ASD)
Machine Learning
Eye tracking
Metaheuristic algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-997f852f1c2b9c6fb28a040329790fa17875d1251b2a76b8bb720c69065f03a3
ORCID 0000-0002-3913-4546
0000-0001-8781-7993
ParticipantIDs crossref_primary_10_1016_j_asoc_2022_108654
crossref_citationtrail_10_1016_j_asoc_2022_108654
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Altay, Ulas (b7) 2018
Kennedy, Eberhart (b36) 1995
Webb, Keogh, Miikkulainen (b41) 2010
Negin, Ozyer, Agahian, Kacdioglu, Ozyer (b14) 2021; 446
Pelphrey, Sasson, Reznick, Paul, Goldman, Piven (b15) 2002; 32
Mirjalili (b38) 2015; 83
World Health Organization, Autism spectrum disorders, URL
Yang (b39) 2010; vol. 284
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b40) 2019; 97
Yang (b28) 2010
Karaboga, Basturk (b37) 2007; 39
Ejlskov, Wulff, Kalkbrenner, Ladd-Acosta, Fallin, Agerbo, Mortensen, Lee, Schendel (b5) 2021
Kang, Han, Song, Niu, Li (b17) 2020; 120
Tsangaratos, Ilia (b42) 2016; 145
Monshi, Poon, Chung, Monshi (b56) 2021; 133
Velliangiri, Alagumuthukrishnan (b59) 2019; 165
Mazumdar, Arru, Battisti (b18) 2021; 94
Agrawal, Abutarboush, Ganesh, Mohamed (b45) 2021; 9
Li, Chen, Huang, Zhao, Cai, Tong, Liu, Tian (b55) 2017; 2017
Deepa, Arunadevi (b52) 2013
Sarovic, Hadjikhani, Schneiderman, Lundström, Gillberg (b12) 2020; 29
Harifi, Mohammadzadeh, Khalilian, Ebrahimnejad (b35) 2020
Pagnozzi, Conti, Calderoni, Fripp, Rose (b48) 2018; 71
American Psychiatric Association, Association (b1) 2013
Johnson (b49) 2004
Chicco, Jurman (b61) 2020; 21
Ahmad, Basheri, Iqbal, Rahim (b21) 2018; 6
.
Kang, Zhou, Han, Li (b10) 2018; 56
American Psychiatric Association, American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fffth ed., Arlington, ISBN: 089042554X, 2013, p. 991, URL.
Jennings Dunlap (b47) 2019; 15
Harifi, Khalilian, Mohammadzadeh, Ebrahimnejad (b50) 2020
Zhu, Zhang, Wang, Xu, He (b54) 2019; 52
Liang, Sabri, Alnajjar, Loo (b9) 2021; 9
Eshtay, Faris, Obeid (b30) 2019; 10
Huang, Zhou, Ding, Zhang (b24) 2012; 42
Elsabbagh, Divan, Koh, Kim, Kauchali, Marcín, Montiel-Nava, Patel, Paula, Wang (b2) 2012; 5
Fausto, Reyna-Orta, Cuevas, Andrade, Perez-Cisneros (b29) 2020; 53
Wall, Kosmicki, Deluca, Harstad, Fusaro (b6) 2012; 2
Lv, Wang, Zhang, Liu (b34) 2020; 195
Tripathi, Edla, Kuppili, Bablani (b33) 2020; 96
Ding, Xu, Nie (b23) 2014; 25
Ramchoun, Idrissi, Ghanou, Ettaouil (b43) 2016; 4
Karpagachelvi, Arthanari, Sivakumar (b19) 2012; 21
Chen, Zhang, Luo, Xu, Zhang (b31) 2020; 86
Startsev, Dorr (b16) 2019
Cao, Yang, Qin, Zhu, Chen, Wang, Liu (b13) 2021; 70
Romero-García, Martínez-Tomás, Pozo, de la Paz, Sarriá (b8) 2021; 118
García, Molina, Lozano, Herrera (b62) 2008; 15
Yang, Zhang, Yuan, Sun, Li, Ranjan, Sun (b26) 2019; 74
Carette, Elbattah, Dequen, Guerin, Cilia (b44) 2018
Bucurica, Dogaru, Dogaru (b20) 2015
Mirjalili, Dong, Lewis (b60) 2019
Xiao, Shao, Jin, Wu (b25) 2021; 99
Rubio-Solis, Martinez-Hernandez, Nava-Balanzar, Garcia-Valdovinos, Rodriguez-Olivares, Orozco-Muñiz, Salgado-Jimenez (b27) 2021
Skafidas, Testa, Zantomio, Chana, Everall, Pantelis (b11) 2014; 19
Wang, Lu, Wang, Zhang (b22) 2021
Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew (b51) 2004
Kusrini, Suputa, Setyanto, Agastya, Priantoro, Chandramouli, Izquierdo (b57) 2020; 179
Wen (b32) 2020; 94
Cai, Gu, Luo, Zhang, Chen, Pan, Li, Li (b53) 2019; 138
Talbi (b46) 2021; 54
A.S. Nsang, A.M. Bello, H. Shamsudeen, Image Reduction Using Assorted Dimensionality Reduction Techniques, in: MAICS, 2015, p. 8.
10.1016/j.asoc.2022.108654_b4
Ding (10.1016/j.asoc.2022.108654_b23) 2014; 25
10.1016/j.asoc.2022.108654_b3
Wen (10.1016/j.asoc.2022.108654_b32) 2020; 94
Pagnozzi (10.1016/j.asoc.2022.108654_b48) 2018; 71
Guang-Bin Huang (10.1016/j.asoc.2022.108654_b51) 2004
Cai (10.1016/j.asoc.2022.108654_b53) 2019; 138
Wang (10.1016/j.asoc.2022.108654_b22) 2021
Wall (10.1016/j.asoc.2022.108654_b6) 2012; 2
Karaboga (10.1016/j.asoc.2022.108654_b37) 2007; 39
Mirjalili (10.1016/j.asoc.2022.108654_b60) 2019
Ejlskov (10.1016/j.asoc.2022.108654_b5) 2021
Yang (10.1016/j.asoc.2022.108654_b28) 2010
Johnson (10.1016/j.asoc.2022.108654_b49) 2004
Tripathi (10.1016/j.asoc.2022.108654_b33) 2020; 96
Ramchoun (10.1016/j.asoc.2022.108654_b43) 2016; 4
Cao (10.1016/j.asoc.2022.108654_b13) 2021; 70
Xiao (10.1016/j.asoc.2022.108654_b25) 2021; 99
Rubio-Solis (10.1016/j.asoc.2022.108654_b27) 2021
Kang (10.1016/j.asoc.2022.108654_b17) 2020; 120
Elsabbagh (10.1016/j.asoc.2022.108654_b2) 2012; 5
Sarovic (10.1016/j.asoc.2022.108654_b12) 2020; 29
Agrawal (10.1016/j.asoc.2022.108654_b45) 2021; 9
Talbi (10.1016/j.asoc.2022.108654_b46) 2021; 54
Harifi (10.1016/j.asoc.2022.108654_b50) 2020
Romero-García (10.1016/j.asoc.2022.108654_b8) 2021; 118
Karpagachelvi (10.1016/j.asoc.2022.108654_b19) 2012; 21
Li (10.1016/j.asoc.2022.108654_b55) 2017; 2017
Bucurica (10.1016/j.asoc.2022.108654_b20) 2015
Jennings Dunlap (10.1016/j.asoc.2022.108654_b47) 2019; 15
Zhu (10.1016/j.asoc.2022.108654_b54) 2019; 52
10.1016/j.asoc.2022.108654_b58
Heidari (10.1016/j.asoc.2022.108654_b40) 2019; 97
Chen (10.1016/j.asoc.2022.108654_b31) 2020; 86
American Psychiatric Association (10.1016/j.asoc.2022.108654_b1) 2013
Liang (10.1016/j.asoc.2022.108654_b9) 2021; 9
Tsangaratos (10.1016/j.asoc.2022.108654_b42) 2016; 145
Webb (10.1016/j.asoc.2022.108654_b41) 2010
García (10.1016/j.asoc.2022.108654_b62) 2008; 15
Eshtay (10.1016/j.asoc.2022.108654_b30) 2019; 10
Chicco (10.1016/j.asoc.2022.108654_b61) 2020; 21
Startsev (10.1016/j.asoc.2022.108654_b16) 2019
Kusrini (10.1016/j.asoc.2022.108654_b57) 2020; 179
Carette (10.1016/j.asoc.2022.108654_b44) 2018
Skafidas (10.1016/j.asoc.2022.108654_b11) 2014; 19
Lv (10.1016/j.asoc.2022.108654_b34) 2020; 195
Velliangiri (10.1016/j.asoc.2022.108654_b59) 2019; 165
Negin (10.1016/j.asoc.2022.108654_b14) 2021; 446
Harifi (10.1016/j.asoc.2022.108654_b35) 2020
Yang (10.1016/j.asoc.2022.108654_b39) 2010; vol. 284
Kennedy (10.1016/j.asoc.2022.108654_b36) 1995
Altay (10.1016/j.asoc.2022.108654_b7) 2018
Pelphrey (10.1016/j.asoc.2022.108654_b15) 2002; 32
Mirjalili (10.1016/j.asoc.2022.108654_b38) 2015; 83
Monshi (10.1016/j.asoc.2022.108654_b56) 2021; 133
Fausto (10.1016/j.asoc.2022.108654_b29) 2020; 53
Deepa (10.1016/j.asoc.2022.108654_b52) 2013
Yang (10.1016/j.asoc.2022.108654_b26) 2019; 74
Kang (10.1016/j.asoc.2022.108654_b10) 2018; 56
Huang (10.1016/j.asoc.2022.108654_b24) 2012; 42
Mazumdar (10.1016/j.asoc.2022.108654_b18) 2021; 94
Ahmad (10.1016/j.asoc.2022.108654_b21) 2018; 6
References_xml – volume: 4
  start-page: 26
  year: 2016
  end-page: 30
  ident: b43
  article-title: Multilayer perceptron: Architecture optimization and training
  publication-title: Int. J. Interact. Multim. Artif. Intell.
– volume: 94
  year: 2021
  ident: b18
  article-title: Early detection of children with autism spectrum disorder based on visual exploration of images
  publication-title: Signal Process., Image Commun.
– volume: 25
  start-page: 549
  year: 2014
  end-page: 556
  ident: b23
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. Appl.
– year: 2013
  ident: b1
  article-title: Diagnostic and Statistical Manual of Mental Disorders: DSM-5, Vol. 10
– volume: 133
  year: 2021
  ident: b56
  article-title: CovidXrayNet: optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR
  publication-title: Comput. Biol. Med.
– volume: 15
  start-page: 617
  year: 2008
  ident: b62
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter optimization
  publication-title: J. Heuristics
– year: 2010
  ident: b28
  article-title: Engineering Optimization: An Introduction with Metaheuristic Applications
– volume: 165
  start-page: 104
  year: 2019
  end-page: 111
  ident: b59
  article-title: A review of dimensionality reduction techniques for efficient computation
  publication-title: Procedia Comput. Sci.
– volume: 2
  start-page: e100
  year: 2012
  ident: b6
  article-title: Use of machine learning to shorten observation-based screening and diagnosis of autism
  publication-title: Transl. Psychiatry
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b37
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– volume: 21
  start-page: 1331
  year: 2012
  end-page: 1339
  ident: b19
  article-title: Classification of electrocardiogram signals with support vector machines and extreme learning machine
  publication-title: Neural Comput. Appl.
– start-page: 713
  year: 2010
  end-page: 714
  ident: b41
  article-title: Naïve Bayes
  publication-title: Encyclopedia of Machine Learning, Vol. 15
– start-page: 985
  year: 2004
  end-page: 990
  ident: b51
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
  publication-title: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Vol. 2
– volume: 118
  year: 2021
  ident: b8
  article-title: Q-CHAT-NAO: A robotic approach to autism screening in toddlers
  publication-title: J. Biomed. Inform.
– volume: 5
  start-page: 160
  year: 2012
  end-page: 179
  ident: b2
  article-title: Global prevalence of autism and other pervasive developmental disorders
  publication-title: Autism Res.
– reference: . World Health Organization, Autism spectrum disorders, URL
– volume: 56
  start-page: 101
  year: 2018
  end-page: 107
  ident: b10
  article-title: Eeg-based multi-feature fusion assessment for autism
  publication-title: J. Clin. Neurosci.
– volume: 6
  start-page: 33789
  year: 2018
  end-page: 33795
  ident: b21
  article-title: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection
  publication-title: IEEE Access
– volume: 54
  start-page: 1
  year: 2021
  end-page: 32
  ident: b46
  article-title: Machine learning into metaheuristics: A survey and taxonomy
  publication-title: ACM Comput. Surv.
– volume: 9
  start-page: 26766
  year: 2021
  end-page: 26791
  ident: b45
  article-title: Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019)
  publication-title: IEEE Access
– volume: 120
  year: 2020
  ident: b17
  article-title: The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data
  publication-title: Comput. Biol. Med.
– year: 2021
  ident: b5
  article-title: Prediction of autism risk from family medical history data using machine learning: a national cohort study from Denmark
  publication-title: Biol. Psychiatry Glob. Open Sci.
– volume: 86
  year: 2020
  ident: b31
  article-title: An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine
  publication-title: Appl. Soft Comput.
– reference: A.S. Nsang, A.M. Bello, H. Shamsudeen, Image Reduction Using Assorted Dimensionality Reduction Techniques, in: MAICS, 2015, p. 8.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 15
  ident: b55
  article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis
  publication-title: Comput. Math. Methods Med.
– volume: 9
  start-page: 34264
  year: 2021
  end-page: 34275
  ident: b9
  article-title: Autism spectrum self-stimulatory behaviors classification using explainable temporal coherency deep features and SVM classifier
  publication-title: IEEE Access
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: b24
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 71
  start-page: 68
  year: 2018
  end-page: 82
  ident: b48
  article-title: A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective
  publication-title: Int. J. Dev. Neurosci.
– volume: 145
  start-page: 164
  year: 2016
  end-page: 179
  ident: b42
  article-title: Comparison of a logistic regression and naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size
  publication-title: Catena
– volume: 19
  start-page: 504
  year: 2014
  end-page: 510
  ident: b11
  article-title: Predicting the diagnosis of autism spectrum disorder using gene pathway analysis
  publication-title: Mol. Psychiatry
– year: 2021
  ident: b27
  article-title: Online interval type-2 fuzzy extreme learning machine applied to 3D path following for remotely operated underwater vehicles
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 496
  year: 2019
  end-page: 501
  ident: b47
  article-title: Autism spectrum disorder screening and early action
  publication-title: J. Nurse Practitioners
– volume: 179
  year: 2020
  ident: b57
  article-title: Data augmentation for automated pest classification in Mango farms
  publication-title: Comput. Electron. Agric.
– start-page: 471
  year: 2015
  end-page: 474
  ident: b20
  article-title: A comparison of extreme learning machine and support vector machine classifiers
  publication-title: 2015 IEEE International Conference on Intelligent Computer Communication and Processing
– start-page: 256
  year: 2020
  end-page: 261
  ident: b50
  article-title: New generation of metaheuristics by inspiration from ancient
  publication-title: 2020 10th International Conference on Computer and Knowledge Engineering
– year: 2019
  ident: b60
  article-title: Nature-Inspired Optimizers: Theories, Literature Reviews and Applications, Vol. 811
– reference: American Psychiatric Association, American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fffth ed., Arlington, ISBN: 089042554X, 2013, p. 991, URL.
– start-page: 1
  year: 2021
  end-page: 50
  ident: b22
  article-title: A review on extreme learning machine
  publication-title: Multimedia Tools Appl.
– start-page: 11
  year: 2013
  ident: b52
  article-title: Extreme learning machine for classification of brain TU- mor in 3D mr images elm za klasifikaciju tumora mozga kod 3d mr snimaka
  publication-title: Informatologia
– volume: 446
  start-page: 145
  year: 2021
  end-page: 155
  ident: b14
  article-title: Vision-assisted recognition of stereotype behaviors for early diagnosis of autism spectrum disorders
  publication-title: Neurocomputing
– volume: 10
  start-page: 1543
  year: 2019
  end-page: 1561
  ident: b30
  article-title: Metaheuristic-based extreme learning machines: a review of design formulations and applications
  publication-title: Int. J. Mach. Learn. Cybern.
– start-page: 85
  year: 2004
  end-page: 123
  ident: b49
  article-title: Early clinical characteristics of children with autism
  publication-title: Autistic Spectrum Disorders in Children
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b36
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4
– volume: 29
  start-page: 1
  year: 2020
  end-page: 18
  ident: b12
  article-title: Autism classified by magnetic resonance imaging: A pilot study of a potential diagnostic tool
  publication-title: Int. J. Methods Psychiatric Res.
– volume: 96
  year: 2020
  ident: b33
  article-title: Evolutionary extreme learning machine with novel activation function for credit scoring
  publication-title: Eng. Appl. Artif. Intell.
– volume: 94
  year: 2020
  ident: b32
  article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine
  publication-title: Appl. Soft Comput.
– volume: 195
  year: 2020
  ident: b34
  article-title: A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b35
  article-title: Giza pyramids construction: An ancient-inspired metaheuristic algorithm for optimization
  publication-title: Evol. Intell.
– volume: 70
  year: 2021
  ident: b13
  article-title: Using deepGCN to identify the autism spectrum disorder from multi-site resting-state data
  publication-title: Biomed. Signal Process. Control
– volume: vol. 284
  start-page: 65
  year: 2010
  end-page: 74
  ident: b39
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature Inspired Cooperative Strategies for Optimization
– start-page: 1
  year: 2018
  end-page: 4
  ident: b7
  article-title: Prediction of the autism spectrum disorder diagnosis with linear discriminant analysis classifier and K-nearest neighbor in children
  publication-title: 2018 6th International Symposium on Digital Forensic and Security
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b40
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 74
  start-page: 747
  year: 2019
  end-page: 759
  ident: b26
  article-title: Hierarchical extreme learning machine based image denoising network for visual internet of things
  publication-title: Appl. Soft Comput.
– volume: 99
  year: 2021
  ident: b25
  article-title: A self-adaptive kernel extreme learning machine for short-term wind speed forecasting
  publication-title: Appl. Soft Comput.
– volume: 138
  year: 2019
  ident: b53
  article-title: Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy
  publication-title: Expert Syst. Appl.
– reference: .
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b38
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
– start-page: 633
  year: 2019
  end-page: 636
  ident: b16
  article-title: Classifying autism spectrum disorder based on scanpaths and saliency
  publication-title: 2019 IEEE International Conference on Multimedia & Expo Workshops
– volume: 32
  start-page: 249
  year: 2002
  end-page: 261
  ident: b15
  article-title: Visual scanning of faces in autism
  publication-title: J. Autism Dev. Disord.
– volume: 21
  start-page: 6
  year: 2020
  ident: b61
  article-title: The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
– volume: 53
  start-page: 753
  year: 2020
  end-page: 810
  ident: b29
  article-title: From ants to whales: metaheuristics for all tastes
  publication-title: Artif. Intell. Rev.
– start-page: 248
  year: 2018
  end-page: 253
  ident: b44
  article-title: Visualization of eye-tracking patterns in autism spectrum disorder: Method and dataset
  publication-title: 2018 Thirteenth International Conference on Digital Information Management
– volume: 52
  start-page: 148
  year: 2019
  end-page: 153
  ident: b54
  article-title: A novel intelligent model integrating PLSR with RBF-Kernel based extreme learning machine: Application to modelling petrochemical process
  publication-title: IFAC-PapersOnLine
– start-page: 471
  year: 2015
  ident: 10.1016/j.asoc.2022.108654_b20
  article-title: A comparison of extreme learning machine and support vector machine classifiers
– start-page: 713
  year: 2010
  ident: 10.1016/j.asoc.2022.108654_b41
  article-title: Naïve Bayes
– volume: 15
  start-page: 496
  issue: 7
  year: 2019
  ident: 10.1016/j.asoc.2022.108654_b47
  article-title: Autism spectrum disorder screening and early action
  publication-title: J. Nurse Practitioners
  doi: 10.1016/j.nurpra.2019.04.001
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2022.108654_b36
  article-title: Particle swarm optimization
– volume: 165
  start-page: 104
  year: 2019
  ident: 10.1016/j.asoc.2022.108654_b59
  article-title: A review of dimensionality reduction techniques for efficient computation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.01.079
– volume: 145
  start-page: 164
  year: 2016
  ident: 10.1016/j.asoc.2022.108654_b42
  article-title: Comparison of a logistic regression and naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size
  publication-title: Catena
  doi: 10.1016/j.catena.2016.06.004
– start-page: 11
  year: 2013
  ident: 10.1016/j.asoc.2022.108654_b52
  article-title: Extreme learning machine for classification of brain TU- mor in 3D mr images elm za klasifikaciju tumora mozga kod 3d mr snimaka
  publication-title: Informatologia
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.asoc.2022.108654_b37
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– start-page: 248
  year: 2018
  ident: 10.1016/j.asoc.2022.108654_b44
  article-title: Visualization of eye-tracking patterns in autism spectrum disorder: Method and dataset
– volume: 70
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b13
  article-title: Using deepGCN to identify the autism spectrum disorder from multi-site resting-state data
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103015
– year: 2021
  ident: 10.1016/j.asoc.2022.108654_b27
  article-title: Online interval type-2 fuzzy extreme learning machine applied to 3D path following for remotely operated underwater vehicles
  publication-title: Appl. Soft Comput.
– start-page: 985
  year: 2004
  ident: 10.1016/j.asoc.2022.108654_b51
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
– volume: 29
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b12
  article-title: Autism classified by magnetic resonance imaging: A pilot study of a potential diagnostic tool
  publication-title: Int. J. Methods Psychiatric Res.
  doi: 10.1002/mpr.1846
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b22
  article-title: A review on extreme learning machine
  publication-title: Multimedia Tools Appl.
– volume: 94
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b32
  article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106476
– volume: 56
  start-page: 101
  year: 2018
  ident: 10.1016/j.asoc.2022.108654_b10
  article-title: Eeg-based multi-feature fusion assessment for autism
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2018.06.049
– volume: vol. 284
  start-page: 65
  year: 2010
  ident: 10.1016/j.asoc.2022.108654_b39
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 99
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b25
  article-title: A self-adaptive kernel extreme learning machine for short-term wind speed forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106917
– volume: 9
  start-page: 26766
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b45
  article-title: Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056407
– volume: 74
  start-page: 747
  year: 2019
  ident: 10.1016/j.asoc.2022.108654_b26
  article-title: Hierarchical extreme learning machine based image denoising network for visual internet of things
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.08.046
– volume: 71
  start-page: 68
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2022.108654_b48
  article-title: A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1016/j.ijdevneu.2018.08.010
– volume: 195
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b34
  article-title: A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105648
– start-page: 256
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b50
  article-title: New generation of metaheuristics by inspiration from ancient
– volume: 6
  start-page: 33789
  year: 2018
  ident: 10.1016/j.asoc.2022.108654_b21
  article-title: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2841987
– volume: 21
  start-page: 6
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b61
  article-title: The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– volume: 21
  start-page: 1331
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2022.108654_b19
  article-title: Classification of electrocardiogram signals with support vector machines and extreme learning machine
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0572-z
– volume: 179
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b57
  article-title: Data augmentation for automated pest classification in Mango farms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105842
– volume: 53
  start-page: 753
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b29
  article-title: From ants to whales: metaheuristics for all tastes
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-09676-2
– volume: 4
  start-page: 26
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2022.108654_b43
  article-title: Multilayer perceptron: Architecture optimization and training
  publication-title: Int. J. Interact. Multim. Artif. Intell.
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.asoc.2022.108654_b38
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 96
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b33
  article-title: Evolutionary extreme learning machine with novel activation function for credit scoring
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103980
– start-page: 85
  year: 2004
  ident: 10.1016/j.asoc.2022.108654_b49
  article-title: Early clinical characteristics of children with autism
– volume: 9
  start-page: 34264
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b9
  article-title: Autism spectrum self-stimulatory behaviors classification using explainable temporal coherency deep features and SVM classifier
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061455
– year: 2013
  ident: 10.1016/j.asoc.2022.108654_b1
– year: 2019
  ident: 10.1016/j.asoc.2022.108654_b60
– ident: 10.1016/j.asoc.2022.108654_b4
  doi: 10.1176/appi.books.9780890425596
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.asoc.2022.108654_b40
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 32
  start-page: 249
  issue: 4
  year: 2002
  ident: 10.1016/j.asoc.2022.108654_b15
  article-title: Visual scanning of faces in autism
  publication-title: J. Autism Dev. Disord.
  doi: 10.1023/A:1016374617369
– volume: 120
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b17
  article-title: The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103722
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2022.108654_b7
  article-title: Prediction of the autism spectrum disorder diagnosis with linear discriminant analysis classifier and K-nearest neighbor in children
– year: 2020
  ident: 10.1016/j.asoc.2022.108654_b35
  article-title: Giza pyramids construction: An ancient-inspired metaheuristic algorithm for optimization
  publication-title: Evol. Intell.
– volume: 94
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b18
  article-title: Early detection of children with autism spectrum disorder based on visual exploration of images
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2021.116184
– volume: 25
  start-page: 549
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2022.108654_b23
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1522-8
– volume: 86
  year: 2020
  ident: 10.1016/j.asoc.2022.108654_b31
  article-title: An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105884
– volume: 5
  start-page: 160
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2022.108654_b2
  article-title: Global prevalence of autism and other pervasive developmental disorders
  publication-title: Autism Res.
  doi: 10.1002/aur.239
– volume: 118
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b8
  article-title: Q-CHAT-NAO: A robotic approach to autism screening in toddlers
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2021.103797
– year: 2010
  ident: 10.1016/j.asoc.2022.108654_b28
– volume: 2
  start-page: e100
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2022.108654_b6
  article-title: Use of machine learning to shorten observation-based screening and diagnosis of autism
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2012.10
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2022.108654_b24
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2011.2168604
– volume: 10
  start-page: 1543
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2022.108654_b30
  article-title: Metaheuristic-based extreme learning machines: a review of design formulations and applications
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0833-6
– volume: 133
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b56
  article-title: CovidXrayNet: optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104375
– start-page: 633
  year: 2019
  ident: 10.1016/j.asoc.2022.108654_b16
  article-title: Classifying autism spectrum disorder based on scanpaths and saliency
– volume: 19
  start-page: 504
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2022.108654_b11
  article-title: Predicting the diagnosis of autism spectrum disorder using gene pathway analysis
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2012.126
– volume: 54
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b46
  article-title: Machine learning into metaheuristics: A survey and taxonomy
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3459664
– ident: 10.1016/j.asoc.2022.108654_b3
– ident: 10.1016/j.asoc.2022.108654_b58
– year: 2021
  ident: 10.1016/j.asoc.2022.108654_b5
  article-title: Prediction of autism risk from family medical history data using machine learning: a national cohort study from Denmark
  publication-title: Biol. Psychiatry Glob. Open Sci.
  doi: 10.1016/j.bpsgos.2021.04.007
– volume: 52
  start-page: 148
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.108654_b54
  article-title: A novel intelligent model integrating PLSR with RBF-Kernel based extreme learning machine: Application to modelling petrochemical process
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.06.052
– volume: 15
  start-page: 617
  issue: 6
  year: 2008
  ident: 10.1016/j.asoc.2022.108654_b62
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter optimization
  publication-title: J. Heuristics
  doi: 10.1007/s10732-008-9080-4
– volume: 446
  start-page: 145
  year: 2021
  ident: 10.1016/j.asoc.2022.108654_b14
  article-title: Vision-assisted recognition of stereotype behaviors for early diagnosis of autism spectrum disorders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.004
– volume: 138
  year: 2019
  ident: 10.1016/j.asoc.2022.108654_b53
  article-title: Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.07.031
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2022.108654_b55
  article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis
  publication-title: Comput. Math. Methods Med.
SSID ssj0016928
Score 2.5332153
Snippet Autism spectrum disorder (ASD) is a lifelong neurological condition that affects how a person interacts and learns. The early and accurate diagnosis of ASD is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108654
SubjectTerms Autism Spectrum Disorder (ASD)
Eye tracking
Kernel Extreme Learning Machine (KELM)
Machine Learning
Metaheuristic algorithms
Title An optimized Kernel Extreme Learning Machine for the classification of the autism spectrum disorder by using gaze tracking images
URI https://dx.doi.org/10.1016/j.asoc.2022.108654
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-wwFA6iGzfX5-V6r8pZuJM60zRNk-UwKOMT8QHuSpImw1ycjowjqAvBf25OmoqCuHBVGk6g5DyTfvkOITuK-5xYZTIxssLfjNYlkguZ8K4xlTKpFeEc8vSMD67Z0U1-M0f67V0YhFXG2N_E9BCt40gnrmbnbjTqXPqdh2CScUoDaQxygjJWoJXvvbzDPFIuQ39VFE5QOl6caTBeyq-A3yNSGhoO5ezr5PQh4Rwsk1-xUoRe8zErZM7Wq2Sp7cIA0SnXyGuvhol3_PHo2VZwbKe1vYX9xxke_EGkTx3CaQBNWvA1KviaDwxWzQgTCpqBiQujypvh_RjC9cvpwxiqyM0J-gkQIT-EoXq2MJsqg0fsMBr7cHS_Tq4O9q_6gyQ2VkhMxvkskbJwIqcuNVRLw52mQnlnzqgsZNep1DtxXmHlo6kquBZaF7RrkNI4d91MZb_JfD2p7R8CQhjKcl2ZjGU-szkppGaici4TXLpcbJC0XdDSRNJx7H1xW7bosv8lKqFEJZSNEjbI7vucu4Zy41vpvNVT-clwSp8Tvpn394fz_pFFfGswj5tk3mvDbvm6ZKa3g-Ftk4Ve_-LkHJ-Hx4OzN_uW5CE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW3w7B2-ytpvNpsmxlEp91IsVvC1JNikVu5VaQXsQ_Ocm2awoiAev2QyEfPNK9ssMQieC2piYJzxSPHe_GbWJOGU8ok2lcqFizfw9ZP-G9u7I5X16X0Od6i2Mo1UG31_6dO-tw0gj7GbjaTRq3NqTByOcUIx90RiygBaJNV_XxuDs_YvnEVPuG6y62ZGbHl7OlCQvYbfAHhIx9h2HUvJ7dPoWcc7X0EpIFaFdrmYd1XSxgVarNgwQrHITfbQLmFjLH4_mOocrPS30I3RfZ-7mD0L91CH0PWtSg01SwSZ9oFza7HhCHhqYGD8qrB4-j8G_v5y-jCEPxTlBvoGjyA9hKOYaZlOh3B07jMbWHz1vocF5d9DpRaGzQqQSSmcR5y3DUmxihSVX1EjMhLXmBPMWbxoRWytOc5f6SCxaVDIpW7ipXE3j1DQTkWyjejEp9A4CxhQmqcxVQhIb2gxnXBKWG5Mwyk3KdlFcbWimQtVx1_ziMavoZQ-ZAyFzIGQlCLvo9Evmqay58efstMIp-6E5mQ0Kf8jt_VPuGC31Bv3r7Pri5mofLbsvJQHyANUtMvrQJikzeeSV8BMkxOQa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+Kernel+Extreme+Learning+Machine+for+the+classification+of+the+autism+spectrum+disorder+by+using+gaze+tracking+images&rft.jtitle=Applied+soft+computing&rft.au=Gaspar%2C+Angel&rft.au=Oliva%2C+Diego&rft.au=Hinojosa%2C+Salvador&rft.au=Aranguren%2C+Itzel&rft.date=2022-05-01&rft.issn=1568-4946&rft.volume=120&rft.spage=108654&rft_id=info:doi/10.1016%2Fj.asoc.2022.108654&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_108654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon