An optimized Kernel Extreme Learning Machine for the classification of the autism spectrum disorder by using gaze tracking images
Autism spectrum disorder (ASD) is a lifelong neurological condition that affects how a person interacts and learns. The early and accurate diagnosis of ASD is vital to developing a comprehensive rehabilitation plan that improves the quality of life and the integration of the ASD person in the social...
Saved in:
Published in | Applied soft computing Vol. 120; p. 108654 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autism spectrum disorder (ASD) is a lifelong neurological condition that affects how a person interacts and learns. The early and accurate diagnosis of ASD is vital to developing a comprehensive rehabilitation plan that improves the quality of life and the integration of the ASD person in the social, family, and work environment. However, the accurate diagnosis of ASD is usually affected since it is linked to the judgment of an expert, which produces biases related to the lack of objectivity. In consequence, several works have been dedicated to developing early detection techniques for ASD based on Machine Learning (ML) technologies and eye-tracking tools. The present work aims to introduce a new methodology for ASD classification, which uses Kernel Extreme Learning Machine (KELM), an objective dataset based on gaze tracking, feature extraction techniques, and data augmentation for training the model. In turn, to enhance the accuracy in ASD classification, the KELM model is optimized through the Giza Pyramids Construction (GPC) algorithm. The proposed approach includes pipeline data augmentation, dimensionality reduction, and a posterior normalization to classify ASD subjects accurately. Statistical tests and analyses were performed to validate the performance of the proposed methodology, resulting in an average accuracy of 98.8% in ASD classification.
•A machine learning tools is proposed for autism spectrum disorder classification.•The kernel extreme learning machine is used for autism disorder classification.•It is proposed an optimized version of kernel extreme learning machine.•Giza pyramids construction algorithm is applied to optimize the KELM.•The classification is performed with a high degree of accuracy. |
---|---|
AbstractList | Autism spectrum disorder (ASD) is a lifelong neurological condition that affects how a person interacts and learns. The early and accurate diagnosis of ASD is vital to developing a comprehensive rehabilitation plan that improves the quality of life and the integration of the ASD person in the social, family, and work environment. However, the accurate diagnosis of ASD is usually affected since it is linked to the judgment of an expert, which produces biases related to the lack of objectivity. In consequence, several works have been dedicated to developing early detection techniques for ASD based on Machine Learning (ML) technologies and eye-tracking tools. The present work aims to introduce a new methodology for ASD classification, which uses Kernel Extreme Learning Machine (KELM), an objective dataset based on gaze tracking, feature extraction techniques, and data augmentation for training the model. In turn, to enhance the accuracy in ASD classification, the KELM model is optimized through the Giza Pyramids Construction (GPC) algorithm. The proposed approach includes pipeline data augmentation, dimensionality reduction, and a posterior normalization to classify ASD subjects accurately. Statistical tests and analyses were performed to validate the performance of the proposed methodology, resulting in an average accuracy of 98.8% in ASD classification.
•A machine learning tools is proposed for autism spectrum disorder classification.•The kernel extreme learning machine is used for autism disorder classification.•It is proposed an optimized version of kernel extreme learning machine.•Giza pyramids construction algorithm is applied to optimize the KELM.•The classification is performed with a high degree of accuracy. |
ArticleNumber | 108654 |
Author | Gaspar, Angel Aranguren, Itzel Oliva, Diego Hinojosa, Salvador Zaldivar, Daniel |
Author_xml | – sequence: 1 givenname: Angel orcidid: 0000-0002-3913-4546 surname: Gaspar fullname: Gaspar, Angel email: angel.gaspar@alumnos.udg.mx organization: División de Tecnologías para la Integración Ciber-Humana, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico – sequence: 2 givenname: Diego orcidid: 0000-0001-8781-7993 surname: Oliva fullname: Oliva, Diego email: diego.oliva@cucei.udg.mx organization: División de Tecnologías para la Integración Ciber-Humana, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico – sequence: 3 givenname: Salvador surname: Hinojosa fullname: Hinojosa, Salvador email: salvador.hinojosa@tec.mx organization: School of Engineering and Sciences, Tecnólogico de Monterrey, Zapopan, Mexico – sequence: 4 givenname: Itzel surname: Aranguren fullname: Aranguren, Itzel email: itzel.aranguren@academicos.udg.mx organization: División de Tecnologías para la Integración Ciber-Humana, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico – sequence: 5 givenname: Daniel surname: Zaldivar fullname: Zaldivar, Daniel email: daniel.zaldivar@cucei.udg.mx organization: División de Tecnologías para la Integración Ciber-Humana, Universidad de Guadalajara, CUCEI, Guadalajara, Jal, Mexico |
BookMark | eNp9kM1OAjEURhuDiYC-gKu-wGBbmE6buCEEfyLGDfum07mFIjND2mKEnW9uB1y5YNXbm5wv9zsD1GvaBhC6p2RECeUPm5EOrRkxwlhaCJ5PrlCfioJlkgvaS3PORTaRE36DBiFsSIIkE330M21wu4uudkeo8Bv4BrZ4_h091IAXoH3jmhV-12btGsC29TiuAZutDsFZZ3R0bQqwp63eRxdqHHZgot_XuHKh9RV4XB7wPnQ5K30EHL02n93P1XoF4RZdW70NcPf3DtHyab6cvWSLj-fX2XSRmTHnMZOysCJnlhpWSsNtyYQmEzJmspDEalqIIq8oy2nJdMFLUZYFI4ZLwnNLxno8ROwca3wbggerdj4d4A-KEtU5VBvVOVSdQ3V2mCDxDzIunjqnEm57GX08o5A6fTnwKhgHjYHK-eRHVa27hP8COr6Q8g |
CitedBy_id | crossref_primary_10_3390_electronics12153356 crossref_primary_10_1016_j_asoc_2024_112184 crossref_primary_10_1016_j_engappai_2024_109437 crossref_primary_10_1007_s12652_023_04641_6 crossref_primary_10_1016_j_jocs_2024_102447 crossref_primary_10_3390_e26080699 crossref_primary_10_3390_info14090494 crossref_primary_10_1002_aur_3083 crossref_primary_10_1155_2022_6140796 crossref_primary_10_3390_diagnostics13182948 crossref_primary_10_1007_s10586_024_04441_3 crossref_primary_10_1371_journal_pone_0282818 crossref_primary_10_1016_j_jretconser_2023_103471 crossref_primary_10_1016_j_ibmed_2025_100226 crossref_primary_10_1177_09287329241301678 crossref_primary_10_1615_CritRevBiomedEng_v51_i1_10 crossref_primary_10_1049_cvi2_12271 crossref_primary_10_1016_j_compbiomed_2024_108075 crossref_primary_10_1007_s11760_024_03638_8 crossref_primary_10_1016_j_asoc_2022_109914 crossref_primary_10_1155_2022_2340856 crossref_primary_10_1155_hbe2_1496105 crossref_primary_10_1016_j_health_2023_100293 crossref_primary_10_1016_j_jneumeth_2024_110319 crossref_primary_10_1007_s40996_024_01438_1 crossref_primary_10_1088_1361_6501_ad0f08 crossref_primary_10_4103_ijnpnd_ijnpnd_113_24 crossref_primary_10_1016_j_bspc_2023_104914 crossref_primary_10_1016_j_engappai_2024_109475 crossref_primary_10_1038_s41598_024_81779_z crossref_primary_10_1007_s13042_022_01740_2 crossref_primary_10_3390_su15129588 |
Cites_doi | 10.1016/j.nurpra.2019.04.001 10.1016/j.procs.2020.01.079 10.1016/j.catena.2016.06.004 10.1007/s10898-007-9149-x 10.1016/j.bspc.2021.103015 10.1002/mpr.1846 10.1016/j.asoc.2020.106476 10.1016/j.jocn.2018.06.049 10.1016/j.asoc.2020.106917 10.1109/ACCESS.2021.3056407 10.1016/j.asoc.2018.08.046 10.1016/j.ijdevneu.2018.08.010 10.1016/j.knosys.2020.105648 10.1109/ACCESS.2018.2841987 10.1186/s12864-019-6413-7 10.1007/s00521-011-0572-z 10.1016/j.compag.2020.105842 10.1007/s10462-018-09676-2 10.1016/j.advengsoft.2015.01.010 10.1016/j.engappai.2020.103980 10.1109/ACCESS.2021.3061455 10.1176/appi.books.9780890425596 10.1016/j.future.2019.02.028 10.1023/A:1016374617369 10.1016/j.compbiomed.2020.103722 10.1016/j.image.2021.116184 10.1007/s00521-013-1522-8 10.1016/j.asoc.2019.105884 10.1002/aur.239 10.1016/j.jbi.2021.103797 10.1038/tp.2012.10 10.1109/TSMCB.2011.2168604 10.1007/s13042-018-0833-6 10.1016/j.compbiomed.2021.104375 10.1038/mp.2012.126 10.1145/3459664 10.1016/j.bpsgos.2021.04.007 10.1016/j.ifacol.2019.06.052 10.1007/s10732-008-9080-4 10.1016/j.neucom.2021.03.004 10.1016/j.eswa.2019.07.031 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2022.108654 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2022_108654 S1568494622001314 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-997f852f1c2b9c6fb28a040329790fa17875d1251b2a76b8bb720c69065f03a3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 01:50:14 EDT 2025 Fri Feb 23 02:41:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Kernel Extreme Learning Machine (KELM) Autism Spectrum Disorder (ASD) Machine Learning Eye tracking Metaheuristic algorithms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-997f852f1c2b9c6fb28a040329790fa17875d1251b2a76b8bb720c69065f03a3 |
ORCID | 0000-0002-3913-4546 0000-0001-8781-7993 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2022_108654 crossref_citationtrail_10_1016_j_asoc_2022_108654 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Altay, Ulas (b7) 2018 Kennedy, Eberhart (b36) 1995 Webb, Keogh, Miikkulainen (b41) 2010 Negin, Ozyer, Agahian, Kacdioglu, Ozyer (b14) 2021; 446 Pelphrey, Sasson, Reznick, Paul, Goldman, Piven (b15) 2002; 32 Mirjalili (b38) 2015; 83 World Health Organization, Autism spectrum disorders, URL Yang (b39) 2010; vol. 284 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b40) 2019; 97 Yang (b28) 2010 Karaboga, Basturk (b37) 2007; 39 Ejlskov, Wulff, Kalkbrenner, Ladd-Acosta, Fallin, Agerbo, Mortensen, Lee, Schendel (b5) 2021 Kang, Han, Song, Niu, Li (b17) 2020; 120 Tsangaratos, Ilia (b42) 2016; 145 Monshi, Poon, Chung, Monshi (b56) 2021; 133 Velliangiri, Alagumuthukrishnan (b59) 2019; 165 Mazumdar, Arru, Battisti (b18) 2021; 94 Agrawal, Abutarboush, Ganesh, Mohamed (b45) 2021; 9 Li, Chen, Huang, Zhao, Cai, Tong, Liu, Tian (b55) 2017; 2017 Deepa, Arunadevi (b52) 2013 Sarovic, Hadjikhani, Schneiderman, Lundström, Gillberg (b12) 2020; 29 Harifi, Mohammadzadeh, Khalilian, Ebrahimnejad (b35) 2020 Pagnozzi, Conti, Calderoni, Fripp, Rose (b48) 2018; 71 American Psychiatric Association, Association (b1) 2013 Johnson (b49) 2004 Chicco, Jurman (b61) 2020; 21 Ahmad, Basheri, Iqbal, Rahim (b21) 2018; 6 . Kang, Zhou, Han, Li (b10) 2018; 56 American Psychiatric Association, American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fffth ed., Arlington, ISBN: 089042554X, 2013, p. 991, URL. Jennings Dunlap (b47) 2019; 15 Harifi, Khalilian, Mohammadzadeh, Ebrahimnejad (b50) 2020 Zhu, Zhang, Wang, Xu, He (b54) 2019; 52 Liang, Sabri, Alnajjar, Loo (b9) 2021; 9 Eshtay, Faris, Obeid (b30) 2019; 10 Huang, Zhou, Ding, Zhang (b24) 2012; 42 Elsabbagh, Divan, Koh, Kim, Kauchali, Marcín, Montiel-Nava, Patel, Paula, Wang (b2) 2012; 5 Fausto, Reyna-Orta, Cuevas, Andrade, Perez-Cisneros (b29) 2020; 53 Wall, Kosmicki, Deluca, Harstad, Fusaro (b6) 2012; 2 Lv, Wang, Zhang, Liu (b34) 2020; 195 Tripathi, Edla, Kuppili, Bablani (b33) 2020; 96 Ding, Xu, Nie (b23) 2014; 25 Ramchoun, Idrissi, Ghanou, Ettaouil (b43) 2016; 4 Karpagachelvi, Arthanari, Sivakumar (b19) 2012; 21 Chen, Zhang, Luo, Xu, Zhang (b31) 2020; 86 Startsev, Dorr (b16) 2019 Cao, Yang, Qin, Zhu, Chen, Wang, Liu (b13) 2021; 70 Romero-García, Martínez-Tomás, Pozo, de la Paz, Sarriá (b8) 2021; 118 García, Molina, Lozano, Herrera (b62) 2008; 15 Yang, Zhang, Yuan, Sun, Li, Ranjan, Sun (b26) 2019; 74 Carette, Elbattah, Dequen, Guerin, Cilia (b44) 2018 Bucurica, Dogaru, Dogaru (b20) 2015 Mirjalili, Dong, Lewis (b60) 2019 Xiao, Shao, Jin, Wu (b25) 2021; 99 Rubio-Solis, Martinez-Hernandez, Nava-Balanzar, Garcia-Valdovinos, Rodriguez-Olivares, Orozco-Muñiz, Salgado-Jimenez (b27) 2021 Skafidas, Testa, Zantomio, Chana, Everall, Pantelis (b11) 2014; 19 Wang, Lu, Wang, Zhang (b22) 2021 Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew (b51) 2004 Kusrini, Suputa, Setyanto, Agastya, Priantoro, Chandramouli, Izquierdo (b57) 2020; 179 Wen (b32) 2020; 94 Cai, Gu, Luo, Zhang, Chen, Pan, Li, Li (b53) 2019; 138 Talbi (b46) 2021; 54 A.S. Nsang, A.M. Bello, H. Shamsudeen, Image Reduction Using Assorted Dimensionality Reduction Techniques, in: MAICS, 2015, p. 8. 10.1016/j.asoc.2022.108654_b4 Ding (10.1016/j.asoc.2022.108654_b23) 2014; 25 10.1016/j.asoc.2022.108654_b3 Wen (10.1016/j.asoc.2022.108654_b32) 2020; 94 Pagnozzi (10.1016/j.asoc.2022.108654_b48) 2018; 71 Guang-Bin Huang (10.1016/j.asoc.2022.108654_b51) 2004 Cai (10.1016/j.asoc.2022.108654_b53) 2019; 138 Wang (10.1016/j.asoc.2022.108654_b22) 2021 Wall (10.1016/j.asoc.2022.108654_b6) 2012; 2 Karaboga (10.1016/j.asoc.2022.108654_b37) 2007; 39 Mirjalili (10.1016/j.asoc.2022.108654_b60) 2019 Ejlskov (10.1016/j.asoc.2022.108654_b5) 2021 Yang (10.1016/j.asoc.2022.108654_b28) 2010 Johnson (10.1016/j.asoc.2022.108654_b49) 2004 Tripathi (10.1016/j.asoc.2022.108654_b33) 2020; 96 Ramchoun (10.1016/j.asoc.2022.108654_b43) 2016; 4 Cao (10.1016/j.asoc.2022.108654_b13) 2021; 70 Xiao (10.1016/j.asoc.2022.108654_b25) 2021; 99 Rubio-Solis (10.1016/j.asoc.2022.108654_b27) 2021 Kang (10.1016/j.asoc.2022.108654_b17) 2020; 120 Elsabbagh (10.1016/j.asoc.2022.108654_b2) 2012; 5 Sarovic (10.1016/j.asoc.2022.108654_b12) 2020; 29 Agrawal (10.1016/j.asoc.2022.108654_b45) 2021; 9 Talbi (10.1016/j.asoc.2022.108654_b46) 2021; 54 Harifi (10.1016/j.asoc.2022.108654_b50) 2020 Romero-García (10.1016/j.asoc.2022.108654_b8) 2021; 118 Karpagachelvi (10.1016/j.asoc.2022.108654_b19) 2012; 21 Li (10.1016/j.asoc.2022.108654_b55) 2017; 2017 Bucurica (10.1016/j.asoc.2022.108654_b20) 2015 Jennings Dunlap (10.1016/j.asoc.2022.108654_b47) 2019; 15 Zhu (10.1016/j.asoc.2022.108654_b54) 2019; 52 10.1016/j.asoc.2022.108654_b58 Heidari (10.1016/j.asoc.2022.108654_b40) 2019; 97 Chen (10.1016/j.asoc.2022.108654_b31) 2020; 86 American Psychiatric Association (10.1016/j.asoc.2022.108654_b1) 2013 Liang (10.1016/j.asoc.2022.108654_b9) 2021; 9 Tsangaratos (10.1016/j.asoc.2022.108654_b42) 2016; 145 Webb (10.1016/j.asoc.2022.108654_b41) 2010 García (10.1016/j.asoc.2022.108654_b62) 2008; 15 Eshtay (10.1016/j.asoc.2022.108654_b30) 2019; 10 Chicco (10.1016/j.asoc.2022.108654_b61) 2020; 21 Startsev (10.1016/j.asoc.2022.108654_b16) 2019 Kusrini (10.1016/j.asoc.2022.108654_b57) 2020; 179 Carette (10.1016/j.asoc.2022.108654_b44) 2018 Skafidas (10.1016/j.asoc.2022.108654_b11) 2014; 19 Lv (10.1016/j.asoc.2022.108654_b34) 2020; 195 Velliangiri (10.1016/j.asoc.2022.108654_b59) 2019; 165 Negin (10.1016/j.asoc.2022.108654_b14) 2021; 446 Harifi (10.1016/j.asoc.2022.108654_b35) 2020 Yang (10.1016/j.asoc.2022.108654_b39) 2010; vol. 284 Kennedy (10.1016/j.asoc.2022.108654_b36) 1995 Altay (10.1016/j.asoc.2022.108654_b7) 2018 Pelphrey (10.1016/j.asoc.2022.108654_b15) 2002; 32 Mirjalili (10.1016/j.asoc.2022.108654_b38) 2015; 83 Monshi (10.1016/j.asoc.2022.108654_b56) 2021; 133 Fausto (10.1016/j.asoc.2022.108654_b29) 2020; 53 Deepa (10.1016/j.asoc.2022.108654_b52) 2013 Yang (10.1016/j.asoc.2022.108654_b26) 2019; 74 Kang (10.1016/j.asoc.2022.108654_b10) 2018; 56 Huang (10.1016/j.asoc.2022.108654_b24) 2012; 42 Mazumdar (10.1016/j.asoc.2022.108654_b18) 2021; 94 Ahmad (10.1016/j.asoc.2022.108654_b21) 2018; 6 |
References_xml | – volume: 4 start-page: 26 year: 2016 end-page: 30 ident: b43 article-title: Multilayer perceptron: Architecture optimization and training publication-title: Int. J. Interact. Multim. Artif. Intell. – volume: 94 year: 2021 ident: b18 article-title: Early detection of children with autism spectrum disorder based on visual exploration of images publication-title: Signal Process., Image Commun. – volume: 25 start-page: 549 year: 2014 end-page: 556 ident: b23 article-title: Extreme learning machine and its applications publication-title: Neural Comput. Appl. – year: 2013 ident: b1 article-title: Diagnostic and Statistical Manual of Mental Disorders: DSM-5, Vol. 10 – volume: 133 year: 2021 ident: b56 article-title: CovidXrayNet: optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR publication-title: Comput. Biol. Med. – volume: 15 start-page: 617 year: 2008 ident: b62 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter optimization publication-title: J. Heuristics – year: 2010 ident: b28 article-title: Engineering Optimization: An Introduction with Metaheuristic Applications – volume: 165 start-page: 104 year: 2019 end-page: 111 ident: b59 article-title: A review of dimensionality reduction techniques for efficient computation publication-title: Procedia Comput. Sci. – volume: 2 start-page: e100 year: 2012 ident: b6 article-title: Use of machine learning to shorten observation-based screening and diagnosis of autism publication-title: Transl. Psychiatry – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b37 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. – volume: 21 start-page: 1331 year: 2012 end-page: 1339 ident: b19 article-title: Classification of electrocardiogram signals with support vector machines and extreme learning machine publication-title: Neural Comput. Appl. – start-page: 713 year: 2010 end-page: 714 ident: b41 article-title: Naïve Bayes publication-title: Encyclopedia of Machine Learning, Vol. 15 – start-page: 985 year: 2004 end-page: 990 ident: b51 article-title: Extreme learning machine: A new learning scheme of feedforward neural networks publication-title: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Vol. 2 – volume: 118 year: 2021 ident: b8 article-title: Q-CHAT-NAO: A robotic approach to autism screening in toddlers publication-title: J. Biomed. Inform. – volume: 5 start-page: 160 year: 2012 end-page: 179 ident: b2 article-title: Global prevalence of autism and other pervasive developmental disorders publication-title: Autism Res. – reference: . World Health Organization, Autism spectrum disorders, URL – volume: 56 start-page: 101 year: 2018 end-page: 107 ident: b10 article-title: Eeg-based multi-feature fusion assessment for autism publication-title: J. Clin. Neurosci. – volume: 6 start-page: 33789 year: 2018 end-page: 33795 ident: b21 article-title: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection publication-title: IEEE Access – volume: 54 start-page: 1 year: 2021 end-page: 32 ident: b46 article-title: Machine learning into metaheuristics: A survey and taxonomy publication-title: ACM Comput. Surv. – volume: 9 start-page: 26766 year: 2021 end-page: 26791 ident: b45 article-title: Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019) publication-title: IEEE Access – volume: 120 year: 2020 ident: b17 article-title: The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data publication-title: Comput. Biol. Med. – year: 2021 ident: b5 article-title: Prediction of autism risk from family medical history data using machine learning: a national cohort study from Denmark publication-title: Biol. Psychiatry Glob. Open Sci. – volume: 86 year: 2020 ident: b31 article-title: An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine publication-title: Appl. Soft Comput. – reference: A.S. Nsang, A.M. Bello, H. Shamsudeen, Image Reduction Using Assorted Dimensionality Reduction Techniques, in: MAICS, 2015, p. 8. – volume: 2017 start-page: 1 year: 2017 end-page: 15 ident: b55 article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis publication-title: Comput. Math. Methods Med. – volume: 9 start-page: 34264 year: 2021 end-page: 34275 ident: b9 article-title: Autism spectrum self-stimulatory behaviors classification using explainable temporal coherency deep features and SVM classifier publication-title: IEEE Access – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: b24 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 71 start-page: 68 year: 2018 end-page: 82 ident: b48 article-title: A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective publication-title: Int. J. Dev. Neurosci. – volume: 145 start-page: 164 year: 2016 end-page: 179 ident: b42 article-title: Comparison of a logistic regression and naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size publication-title: Catena – volume: 19 start-page: 504 year: 2014 end-page: 510 ident: b11 article-title: Predicting the diagnosis of autism spectrum disorder using gene pathway analysis publication-title: Mol. Psychiatry – year: 2021 ident: b27 article-title: Online interval type-2 fuzzy extreme learning machine applied to 3D path following for remotely operated underwater vehicles publication-title: Appl. Soft Comput. – volume: 15 start-page: 496 year: 2019 end-page: 501 ident: b47 article-title: Autism spectrum disorder screening and early action publication-title: J. Nurse Practitioners – volume: 179 year: 2020 ident: b57 article-title: Data augmentation for automated pest classification in Mango farms publication-title: Comput. Electron. Agric. – start-page: 471 year: 2015 end-page: 474 ident: b20 article-title: A comparison of extreme learning machine and support vector machine classifiers publication-title: 2015 IEEE International Conference on Intelligent Computer Communication and Processing – start-page: 256 year: 2020 end-page: 261 ident: b50 article-title: New generation of metaheuristics by inspiration from ancient publication-title: 2020 10th International Conference on Computer and Knowledge Engineering – year: 2019 ident: b60 article-title: Nature-Inspired Optimizers: Theories, Literature Reviews and Applications, Vol. 811 – reference: American Psychiatric Association, American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fffth ed., Arlington, ISBN: 089042554X, 2013, p. 991, URL. – start-page: 1 year: 2021 end-page: 50 ident: b22 article-title: A review on extreme learning machine publication-title: Multimedia Tools Appl. – start-page: 11 year: 2013 ident: b52 article-title: Extreme learning machine for classification of brain TU- mor in 3D mr images elm za klasifikaciju tumora mozga kod 3d mr snimaka publication-title: Informatologia – volume: 446 start-page: 145 year: 2021 end-page: 155 ident: b14 article-title: Vision-assisted recognition of stereotype behaviors for early diagnosis of autism spectrum disorders publication-title: Neurocomputing – volume: 10 start-page: 1543 year: 2019 end-page: 1561 ident: b30 article-title: Metaheuristic-based extreme learning machines: a review of design formulations and applications publication-title: Int. J. Mach. Learn. Cybern. – start-page: 85 year: 2004 end-page: 123 ident: b49 article-title: Early clinical characteristics of children with autism publication-title: Autistic Spectrum Disorders in Children – start-page: 1942 year: 1995 end-page: 1948 ident: b36 article-title: Particle swarm optimization publication-title: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4 – volume: 29 start-page: 1 year: 2020 end-page: 18 ident: b12 article-title: Autism classified by magnetic resonance imaging: A pilot study of a potential diagnostic tool publication-title: Int. J. Methods Psychiatric Res. – volume: 96 year: 2020 ident: b33 article-title: Evolutionary extreme learning machine with novel activation function for credit scoring publication-title: Eng. Appl. Artif. Intell. – volume: 94 year: 2020 ident: b32 article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine publication-title: Appl. Soft Comput. – volume: 195 year: 2020 ident: b34 article-title: A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine publication-title: Knowl.-Based Syst. – year: 2020 ident: b35 article-title: Giza pyramids construction: An ancient-inspired metaheuristic algorithm for optimization publication-title: Evol. Intell. – volume: 70 year: 2021 ident: b13 article-title: Using deepGCN to identify the autism spectrum disorder from multi-site resting-state data publication-title: Biomed. Signal Process. Control – volume: vol. 284 start-page: 65 year: 2010 end-page: 74 ident: b39 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature Inspired Cooperative Strategies for Optimization – start-page: 1 year: 2018 end-page: 4 ident: b7 article-title: Prediction of the autism spectrum disorder diagnosis with linear discriminant analysis classifier and K-nearest neighbor in children publication-title: 2018 6th International Symposium on Digital Forensic and Security – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b40 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Gener. Comput. Syst. – volume: 74 start-page: 747 year: 2019 end-page: 759 ident: b26 article-title: Hierarchical extreme learning machine based image denoising network for visual internet of things publication-title: Appl. Soft Comput. – volume: 99 year: 2021 ident: b25 article-title: A self-adaptive kernel extreme learning machine for short-term wind speed forecasting publication-title: Appl. Soft Comput. – volume: 138 year: 2019 ident: b53 article-title: Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy publication-title: Expert Syst. Appl. – reference: . – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b38 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. – start-page: 633 year: 2019 end-page: 636 ident: b16 article-title: Classifying autism spectrum disorder based on scanpaths and saliency publication-title: 2019 IEEE International Conference on Multimedia & Expo Workshops – volume: 32 start-page: 249 year: 2002 end-page: 261 ident: b15 article-title: Visual scanning of faces in autism publication-title: J. Autism Dev. Disord. – volume: 21 start-page: 6 year: 2020 ident: b61 article-title: The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics – volume: 53 start-page: 753 year: 2020 end-page: 810 ident: b29 article-title: From ants to whales: metaheuristics for all tastes publication-title: Artif. Intell. Rev. – start-page: 248 year: 2018 end-page: 253 ident: b44 article-title: Visualization of eye-tracking patterns in autism spectrum disorder: Method and dataset publication-title: 2018 Thirteenth International Conference on Digital Information Management – volume: 52 start-page: 148 year: 2019 end-page: 153 ident: b54 article-title: A novel intelligent model integrating PLSR with RBF-Kernel based extreme learning machine: Application to modelling petrochemical process publication-title: IFAC-PapersOnLine – start-page: 471 year: 2015 ident: 10.1016/j.asoc.2022.108654_b20 article-title: A comparison of extreme learning machine and support vector machine classifiers – start-page: 713 year: 2010 ident: 10.1016/j.asoc.2022.108654_b41 article-title: Naïve Bayes – volume: 15 start-page: 496 issue: 7 year: 2019 ident: 10.1016/j.asoc.2022.108654_b47 article-title: Autism spectrum disorder screening and early action publication-title: J. Nurse Practitioners doi: 10.1016/j.nurpra.2019.04.001 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2022.108654_b36 article-title: Particle swarm optimization – volume: 165 start-page: 104 year: 2019 ident: 10.1016/j.asoc.2022.108654_b59 article-title: A review of dimensionality reduction techniques for efficient computation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.01.079 – volume: 145 start-page: 164 year: 2016 ident: 10.1016/j.asoc.2022.108654_b42 article-title: Comparison of a logistic regression and naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size publication-title: Catena doi: 10.1016/j.catena.2016.06.004 – start-page: 11 year: 2013 ident: 10.1016/j.asoc.2022.108654_b52 article-title: Extreme learning machine for classification of brain TU- mor in 3D mr images elm za klasifikaciju tumora mozga kod 3d mr snimaka publication-title: Informatologia – volume: 39 start-page: 459 year: 2007 ident: 10.1016/j.asoc.2022.108654_b37 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – start-page: 248 year: 2018 ident: 10.1016/j.asoc.2022.108654_b44 article-title: Visualization of eye-tracking patterns in autism spectrum disorder: Method and dataset – volume: 70 year: 2021 ident: 10.1016/j.asoc.2022.108654_b13 article-title: Using deepGCN to identify the autism spectrum disorder from multi-site resting-state data publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103015 – year: 2021 ident: 10.1016/j.asoc.2022.108654_b27 article-title: Online interval type-2 fuzzy extreme learning machine applied to 3D path following for remotely operated underwater vehicles publication-title: Appl. Soft Comput. – start-page: 985 year: 2004 ident: 10.1016/j.asoc.2022.108654_b51 article-title: Extreme learning machine: A new learning scheme of feedforward neural networks – volume: 29 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.asoc.2022.108654_b12 article-title: Autism classified by magnetic resonance imaging: A pilot study of a potential diagnostic tool publication-title: Int. J. Methods Psychiatric Res. doi: 10.1002/mpr.1846 – start-page: 1 year: 2021 ident: 10.1016/j.asoc.2022.108654_b22 article-title: A review on extreme learning machine publication-title: Multimedia Tools Appl. – volume: 94 year: 2020 ident: 10.1016/j.asoc.2022.108654_b32 article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106476 – volume: 56 start-page: 101 year: 2018 ident: 10.1016/j.asoc.2022.108654_b10 article-title: Eeg-based multi-feature fusion assessment for autism publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2018.06.049 – volume: vol. 284 start-page: 65 year: 2010 ident: 10.1016/j.asoc.2022.108654_b39 article-title: A new metaheuristic bat-inspired algorithm – volume: 99 year: 2021 ident: 10.1016/j.asoc.2022.108654_b25 article-title: A self-adaptive kernel extreme learning machine for short-term wind speed forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106917 – volume: 9 start-page: 26766 year: 2021 ident: 10.1016/j.asoc.2022.108654_b45 article-title: Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019) publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056407 – volume: 74 start-page: 747 year: 2019 ident: 10.1016/j.asoc.2022.108654_b26 article-title: Hierarchical extreme learning machine based image denoising network for visual internet of things publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.08.046 – volume: 71 start-page: 68 issue: 1 year: 2018 ident: 10.1016/j.asoc.2022.108654_b48 article-title: A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective publication-title: Int. J. Dev. Neurosci. doi: 10.1016/j.ijdevneu.2018.08.010 – volume: 195 year: 2020 ident: 10.1016/j.asoc.2022.108654_b34 article-title: A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105648 – start-page: 256 year: 2020 ident: 10.1016/j.asoc.2022.108654_b50 article-title: New generation of metaheuristics by inspiration from ancient – volume: 6 start-page: 33789 year: 2018 ident: 10.1016/j.asoc.2022.108654_b21 article-title: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2841987 – volume: 21 start-page: 6 issue: 1 year: 2020 ident: 10.1016/j.asoc.2022.108654_b61 article-title: The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics doi: 10.1186/s12864-019-6413-7 – volume: 21 start-page: 1331 issue: 6 year: 2012 ident: 10.1016/j.asoc.2022.108654_b19 article-title: Classification of electrocardiogram signals with support vector machines and extreme learning machine publication-title: Neural Comput. Appl. doi: 10.1007/s00521-011-0572-z – volume: 179 year: 2020 ident: 10.1016/j.asoc.2022.108654_b57 article-title: Data augmentation for automated pest classification in Mango farms publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105842 – volume: 53 start-page: 753 issue: 1 year: 2020 ident: 10.1016/j.asoc.2022.108654_b29 article-title: From ants to whales: metaheuristics for all tastes publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-09676-2 – volume: 4 start-page: 26 issue: 1 year: 2016 ident: 10.1016/j.asoc.2022.108654_b43 article-title: Multilayer perceptron: Architecture optimization and training publication-title: Int. J. Interact. Multim. Artif. Intell. – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.asoc.2022.108654_b38 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 96 year: 2020 ident: 10.1016/j.asoc.2022.108654_b33 article-title: Evolutionary extreme learning machine with novel activation function for credit scoring publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103980 – start-page: 85 year: 2004 ident: 10.1016/j.asoc.2022.108654_b49 article-title: Early clinical characteristics of children with autism – volume: 9 start-page: 34264 year: 2021 ident: 10.1016/j.asoc.2022.108654_b9 article-title: Autism spectrum self-stimulatory behaviors classification using explainable temporal coherency deep features and SVM classifier publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061455 – year: 2013 ident: 10.1016/j.asoc.2022.108654_b1 – year: 2019 ident: 10.1016/j.asoc.2022.108654_b60 – ident: 10.1016/j.asoc.2022.108654_b4 doi: 10.1176/appi.books.9780890425596 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.asoc.2022.108654_b40 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 32 start-page: 249 issue: 4 year: 2002 ident: 10.1016/j.asoc.2022.108654_b15 article-title: Visual scanning of faces in autism publication-title: J. Autism Dev. Disord. doi: 10.1023/A:1016374617369 – volume: 120 year: 2020 ident: 10.1016/j.asoc.2022.108654_b17 article-title: The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103722 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2022.108654_b7 article-title: Prediction of the autism spectrum disorder diagnosis with linear discriminant analysis classifier and K-nearest neighbor in children – year: 2020 ident: 10.1016/j.asoc.2022.108654_b35 article-title: Giza pyramids construction: An ancient-inspired metaheuristic algorithm for optimization publication-title: Evol. Intell. – volume: 94 year: 2021 ident: 10.1016/j.asoc.2022.108654_b18 article-title: Early detection of children with autism spectrum disorder based on visual exploration of images publication-title: Signal Process., Image Commun. doi: 10.1016/j.image.2021.116184 – volume: 25 start-page: 549 issue: 3 year: 2014 ident: 10.1016/j.asoc.2022.108654_b23 article-title: Extreme learning machine and its applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1522-8 – volume: 86 year: 2020 ident: 10.1016/j.asoc.2022.108654_b31 article-title: An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105884 – volume: 5 start-page: 160 issue: 3 year: 2012 ident: 10.1016/j.asoc.2022.108654_b2 article-title: Global prevalence of autism and other pervasive developmental disorders publication-title: Autism Res. doi: 10.1002/aur.239 – volume: 118 year: 2021 ident: 10.1016/j.asoc.2022.108654_b8 article-title: Q-CHAT-NAO: A robotic approach to autism screening in toddlers publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2021.103797 – year: 2010 ident: 10.1016/j.asoc.2022.108654_b28 – volume: 2 start-page: e100 issue: 4 year: 2012 ident: 10.1016/j.asoc.2022.108654_b6 article-title: Use of machine learning to shorten observation-based screening and diagnosis of autism publication-title: Transl. Psychiatry doi: 10.1038/tp.2012.10 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.asoc.2022.108654_b24 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2011.2168604 – volume: 10 start-page: 1543 issue: 6 year: 2019 ident: 10.1016/j.asoc.2022.108654_b30 article-title: Metaheuristic-based extreme learning machines: a review of design formulations and applications publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-018-0833-6 – volume: 133 year: 2021 ident: 10.1016/j.asoc.2022.108654_b56 article-title: CovidXrayNet: optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104375 – start-page: 633 year: 2019 ident: 10.1016/j.asoc.2022.108654_b16 article-title: Classifying autism spectrum disorder based on scanpaths and saliency – volume: 19 start-page: 504 issue: 4 year: 2014 ident: 10.1016/j.asoc.2022.108654_b11 article-title: Predicting the diagnosis of autism spectrum disorder using gene pathway analysis publication-title: Mol. Psychiatry doi: 10.1038/mp.2012.126 – volume: 54 start-page: 1 issue: 6 year: 2021 ident: 10.1016/j.asoc.2022.108654_b46 article-title: Machine learning into metaheuristics: A survey and taxonomy publication-title: ACM Comput. Surv. doi: 10.1145/3459664 – ident: 10.1016/j.asoc.2022.108654_b3 – ident: 10.1016/j.asoc.2022.108654_b58 – year: 2021 ident: 10.1016/j.asoc.2022.108654_b5 article-title: Prediction of autism risk from family medical history data using machine learning: a national cohort study from Denmark publication-title: Biol. Psychiatry Glob. Open Sci. doi: 10.1016/j.bpsgos.2021.04.007 – volume: 52 start-page: 148 issue: 1 year: 2019 ident: 10.1016/j.asoc.2022.108654_b54 article-title: A novel intelligent model integrating PLSR with RBF-Kernel based extreme learning machine: Application to modelling petrochemical process publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.06.052 – volume: 15 start-page: 617 issue: 6 year: 2008 ident: 10.1016/j.asoc.2022.108654_b62 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter optimization publication-title: J. Heuristics doi: 10.1007/s10732-008-9080-4 – volume: 446 start-page: 145 year: 2021 ident: 10.1016/j.asoc.2022.108654_b14 article-title: Vision-assisted recognition of stereotype behaviors for early diagnosis of autism spectrum disorders publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.004 – volume: 138 year: 2019 ident: 10.1016/j.asoc.2022.108654_b53 article-title: Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.07.031 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.asoc.2022.108654_b55 article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis publication-title: Comput. Math. Methods Med. |
SSID | ssj0016928 |
Score | 2.5332153 |
Snippet | Autism spectrum disorder (ASD) is a lifelong neurological condition that affects how a person interacts and learns. The early and accurate diagnosis of ASD is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108654 |
SubjectTerms | Autism Spectrum Disorder (ASD) Eye tracking Kernel Extreme Learning Machine (KELM) Machine Learning Metaheuristic algorithms |
Title | An optimized Kernel Extreme Learning Machine for the classification of the autism spectrum disorder by using gaze tracking images |
URI | https://dx.doi.org/10.1016/j.asoc.2022.108654 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-wwFA6iGzfX5-V6r8pZuJM60zRNk-UwKOMT8QHuSpImw1ycjowjqAvBf25OmoqCuHBVGk6g5DyTfvkOITuK-5xYZTIxssLfjNYlkguZ8K4xlTKpFeEc8vSMD67Z0U1-M0f67V0YhFXG2N_E9BCt40gnrmbnbjTqXPqdh2CScUoDaQxygjJWoJXvvbzDPFIuQ39VFE5QOl6caTBeyq-A3yNSGhoO5ezr5PQh4Rwsk1-xUoRe8zErZM7Wq2Sp7cIA0SnXyGuvhol3_PHo2VZwbKe1vYX9xxke_EGkTx3CaQBNWvA1KviaDwxWzQgTCpqBiQujypvh_RjC9cvpwxiqyM0J-gkQIT-EoXq2MJsqg0fsMBr7cHS_Tq4O9q_6gyQ2VkhMxvkskbJwIqcuNVRLw52mQnlnzqgsZNep1DtxXmHlo6kquBZaF7RrkNI4d91MZb_JfD2p7R8CQhjKcl2ZjGU-szkppGaici4TXLpcbJC0XdDSRNJx7H1xW7bosv8lKqFEJZSNEjbI7vucu4Zy41vpvNVT-clwSp8Tvpn394fz_pFFfGswj5tk3mvDbvm6ZKa3g-Ftk4Ve_-LkHJ-Hx4OzN_uW5CE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW3w7B2-ytpvNpsmxlEp91IsVvC1JNikVu5VaQXsQ_Ocm2awoiAev2QyEfPNK9ssMQieC2piYJzxSPHe_GbWJOGU8ok2lcqFizfw9ZP-G9u7I5X16X0Od6i2Mo1UG31_6dO-tw0gj7GbjaTRq3NqTByOcUIx90RiygBaJNV_XxuDs_YvnEVPuG6y62ZGbHl7OlCQvYbfAHhIx9h2HUvJ7dPoWcc7X0EpIFaFdrmYd1XSxgVarNgwQrHITfbQLmFjLH4_mOocrPS30I3RfZ-7mD0L91CH0PWtSg01SwSZ9oFza7HhCHhqYGD8qrB4-j8G_v5y-jCEPxTlBvoGjyA9hKOYaZlOh3B07jMbWHz1vocF5d9DpRaGzQqQSSmcR5y3DUmxihSVX1EjMhLXmBPMWbxoRWytOc5f6SCxaVDIpW7ipXE3j1DQTkWyjejEp9A4CxhQmqcxVQhIb2gxnXBKWG5Mwyk3KdlFcbWimQtVx1_ziMavoZQ-ZAyFzIGQlCLvo9Evmqay58efstMIp-6E5mQ0Kf8jt_VPuGC31Bv3r7Pri5mofLbsvJQHyANUtMvrQJikzeeSV8BMkxOQa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+Kernel+Extreme+Learning+Machine+for+the+classification+of+the+autism+spectrum+disorder+by+using+gaze+tracking+images&rft.jtitle=Applied+soft+computing&rft.au=Gaspar%2C+Angel&rft.au=Oliva%2C+Diego&rft.au=Hinojosa%2C+Salvador&rft.au=Aranguren%2C+Itzel&rft.date=2022-05-01&rft.issn=1568-4946&rft.volume=120&rft.spage=108654&rft_id=info:doi/10.1016%2Fj.asoc.2022.108654&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_108654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |