Independent transcriptional patterns reveal biological processes associated with disease-free survival in early colorectal cancer
Background Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the transcriptional patterns are subtle and/or obscured by other processes’ patterns. Consensus-independent component analysis (c-ICA) can...
Saved in:
Published in | Communications medicine Vol. 4; no. 1; p. 79 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.05.2024
Springer Nature B.V Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the transcriptional patterns are subtle and/or obscured by other processes’ patterns. Consensus-independent component analysis (c-ICA) can dissect such transcriptomes into statistically independent transcriptional components (TCs), capturing both pronounced and subtle biological processes.
Methods
In this study we (1) integrated transcriptomes (
n
= 4228) from multiple early CRC studies, (2) performed c-ICA to define the TC landscape within this integrated data set, 3) determined the biological processes captured by these TCs, (4) performed Cox regression to identify DFS-associated TCs, (5) performed random survival forest (RSF) analyses with activity of DFS-associated TCs as classifiers to identify subgroups of patients, and 6) performed a sensitivity analysis to determine the robustness of our results
Results
We identify 191 TCs, 43 of which are associated with DFS, revealing transcriptional diversity among DFS-associated biological processes. A prominent example is the epithelial-mesenchymal transition (EMT), for which we identify an association with nine independent DFS-associated TCs, each with coordinated upregulation or downregulation of various sets of genes.
Conclusions
This finding indicates that early CRC may have nine distinct routes to achieve EMT, each requiring a specific peri-operative treatment strategy. Finally, we stratify patients into DFS patient subgroups with distinct transcriptional patterns associated with stage 2 and stage 3 CRC.
Plain language summary
While treatments for patients with colorectal cancer have improved, many patients (around 30-50%) have cancers that will eventually relapse and these patients will die due to their disease. Researchers have been studying the genes involved in colorectal cancer to help us understand why some cancers might relapse. However, current methods to do this may miss subtle or hidden patterns in the gene activity related to cancer relapse. To deal with this, we used a special method called consensus-independent component analysis (c-ICA) to dig more deeply into the activity of genes. This helped us to uncover some potential biological processes underpinning colorectal cancer relapse, which ultimately could help researchers to identify better treatments for patients with colorectal cancer.
Knapen et al. apply consensus-independent transcriptional component analysis to dissect transcriptomes into statistically independent transcriptional components in early colorectal cancer. Their findings identify 43 biological processes associated with disease-free survival which enables stratification of patients into different subgroups. |
---|---|
AbstractList | BackgroundBulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the transcriptional patterns are subtle and/or obscured by other processes’ patterns. Consensus-independent component analysis (c-ICA) can dissect such transcriptomes into statistically independent transcriptional components (TCs), capturing both pronounced and subtle biological processes.MethodsIn this study we (1) integrated transcriptomes (n = 4228) from multiple early CRC studies, (2) performed c-ICA to define the TC landscape within this integrated data set, 3) determined the biological processes captured by these TCs, (4) performed Cox regression to identify DFS-associated TCs, (5) performed random survival forest (RSF) analyses with activity of DFS-associated TCs as classifiers to identify subgroups of patients, and 6) performed a sensitivity analysis to determine the robustness of our resultsResultsWe identify 191 TCs, 43 of which are associated with DFS, revealing transcriptional diversity among DFS-associated biological processes. A prominent example is the epithelial-mesenchymal transition (EMT), for which we identify an association with nine independent DFS-associated TCs, each with coordinated upregulation or downregulation of various sets of genes.ConclusionsThis finding indicates that early CRC may have nine distinct routes to achieve EMT, each requiring a specific peri-operative treatment strategy. Finally, we stratify patients into DFS patient subgroups with distinct transcriptional patterns associated with stage 2 and stage 3 CRC.Plain language summaryWhile treatments for patients with colorectal cancer have improved, many patients (around 30-50%) have cancers that will eventually relapse and these patients will die due to their disease. Researchers have been studying the genes involved in colorectal cancer to help us understand why some cancers might relapse. However, current methods to do this may miss subtle or hidden patterns in the gene activity related to cancer relapse. To deal with this, we used a special method called consensus-independent component analysis (c-ICA) to dig more deeply into the activity of genes. This helped us to uncover some potential biological processes underpinning colorectal cancer relapse, which ultimately could help researchers to identify better treatments for patients with colorectal cancer. Background Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the transcriptional patterns are subtle and/or obscured by other processes’ patterns. Consensus-independent component analysis (c-ICA) can dissect such transcriptomes into statistically independent transcriptional components (TCs), capturing both pronounced and subtle biological processes. Methods In this study we (1) integrated transcriptomes ( n = 4228) from multiple early CRC studies, (2) performed c-ICA to define the TC landscape within this integrated data set, 3) determined the biological processes captured by these TCs, (4) performed Cox regression to identify DFS-associated TCs, (5) performed random survival forest (RSF) analyses with activity of DFS-associated TCs as classifiers to identify subgroups of patients, and 6) performed a sensitivity analysis to determine the robustness of our results Results We identify 191 TCs, 43 of which are associated with DFS, revealing transcriptional diversity among DFS-associated biological processes. A prominent example is the epithelial-mesenchymal transition (EMT), for which we identify an association with nine independent DFS-associated TCs, each with coordinated upregulation or downregulation of various sets of genes. Conclusions This finding indicates that early CRC may have nine distinct routes to achieve EMT, each requiring a specific peri-operative treatment strategy. Finally, we stratify patients into DFS patient subgroups with distinct transcriptional patterns associated with stage 2 and stage 3 CRC. Plain language summary While treatments for patients with colorectal cancer have improved, many patients (around 30-50%) have cancers that will eventually relapse and these patients will die due to their disease. Researchers have been studying the genes involved in colorectal cancer to help us understand why some cancers might relapse. However, current methods to do this may miss subtle or hidden patterns in the gene activity related to cancer relapse. To deal with this, we used a special method called consensus-independent component analysis (c-ICA) to dig more deeply into the activity of genes. This helped us to uncover some potential biological processes underpinning colorectal cancer relapse, which ultimately could help researchers to identify better treatments for patients with colorectal cancer. Knapen et al. apply consensus-independent transcriptional component analysis to dissect transcriptomes into statistically independent transcriptional components in early colorectal cancer. Their findings identify 43 biological processes associated with disease-free survival which enables stratification of patients into different subgroups. Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the transcriptional patterns are subtle and/or obscured by other processes' patterns. Consensus-independent component analysis (c-ICA) can dissect such transcriptomes into statistically independent transcriptional components (TCs), capturing both pronounced and subtle biological processes. In this study we (1) integrated transcriptomes (n = 4228) from multiple early CRC studies, (2) performed c-ICA to define the TC landscape within this integrated data set, 3) determined the biological processes captured by these TCs, (4) performed Cox regression to identify DFS-associated TCs, (5) performed random survival forest (RSF) analyses with activity of DFS-associated TCs as classifiers to identify subgroups of patients, and 6) performed a sensitivity analysis to determine the robustness of our results RESULTS: We identify 191 TCs, 43 of which are associated with DFS, revealing transcriptional diversity among DFS-associated biological processes. A prominent example is the epithelial-mesenchymal transition (EMT), for which we identify an association with nine independent DFS-associated TCs, each with coordinated upregulation or downregulation of various sets of genes. This finding indicates that early CRC may have nine distinct routes to achieve EMT, each requiring a specific peri-operative treatment strategy. Finally, we stratify patients into DFS patient subgroups with distinct transcriptional patterns associated with stage 2 and stage 3 CRC. BACKGROUNDBulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the transcriptional patterns are subtle and/or obscured by other processes' patterns. Consensus-independent component analysis (c-ICA) can dissect such transcriptomes into statistically independent transcriptional components (TCs), capturing both pronounced and subtle biological processes.METHODSIn this study we (1) integrated transcriptomes (n = 4228) from multiple early CRC studies, (2) performed c-ICA to define the TC landscape within this integrated data set, 3) determined the biological processes captured by these TCs, (4) performed Cox regression to identify DFS-associated TCs, (5) performed random survival forest (RSF) analyses with activity of DFS-associated TCs as classifiers to identify subgroups of patients, and 6) performed a sensitivity analysis to determine the robustness of our results RESULTS: We identify 191 TCs, 43 of which are associated with DFS, revealing transcriptional diversity among DFS-associated biological processes. A prominent example is the epithelial-mesenchymal transition (EMT), for which we identify an association with nine independent DFS-associated TCs, each with coordinated upregulation or downregulation of various sets of genes.CONCLUSIONSThis finding indicates that early CRC may have nine distinct routes to achieve EMT, each requiring a specific peri-operative treatment strategy. Finally, we stratify patients into DFS patient subgroups with distinct transcriptional patterns associated with stage 2 and stage 3 CRC. Abstract Background Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the transcriptional patterns are subtle and/or obscured by other processes’ patterns. Consensus-independent component analysis (c-ICA) can dissect such transcriptomes into statistically independent transcriptional components (TCs), capturing both pronounced and subtle biological processes. Methods In this study we (1) integrated transcriptomes (n = 4228) from multiple early CRC studies, (2) performed c-ICA to define the TC landscape within this integrated data set, 3) determined the biological processes captured by these TCs, (4) performed Cox regression to identify DFS-associated TCs, (5) performed random survival forest (RSF) analyses with activity of DFS-associated TCs as classifiers to identify subgroups of patients, and 6) performed a sensitivity analysis to determine the robustness of our results Results We identify 191 TCs, 43 of which are associated with DFS, revealing transcriptional diversity among DFS-associated biological processes. A prominent example is the epithelial-mesenchymal transition (EMT), for which we identify an association with nine independent DFS-associated TCs, each with coordinated upregulation or downregulation of various sets of genes. Conclusions This finding indicates that early CRC may have nine distinct routes to achieve EMT, each requiring a specific peri-operative treatment strategy. Finally, we stratify patients into DFS patient subgroups with distinct transcriptional patterns associated with stage 2 and stage 3 CRC. Abstract Background Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the transcriptional patterns are subtle and/or obscured by other processes’ patterns. Consensus-independent component analysis (c-ICA) can dissect such transcriptomes into statistically independent transcriptional components (TCs), capturing both pronounced and subtle biological processes. Methods In this study we (1) integrated transcriptomes ( n = 4228) from multiple early CRC studies, (2) performed c-ICA to define the TC landscape within this integrated data set, 3) determined the biological processes captured by these TCs, (4) performed Cox regression to identify DFS-associated TCs, (5) performed random survival forest (RSF) analyses with activity of DFS-associated TCs as classifiers to identify subgroups of patients, and 6) performed a sensitivity analysis to determine the robustness of our results Results We identify 191 TCs, 43 of which are associated with DFS, revealing transcriptional diversity among DFS-associated biological processes. A prominent example is the epithelial-mesenchymal transition (EMT), for which we identify an association with nine independent DFS-associated TCs, each with coordinated upregulation or downregulation of various sets of genes. Conclusions This finding indicates that early CRC may have nine distinct routes to achieve EMT, each requiring a specific peri-operative treatment strategy. Finally, we stratify patients into DFS patient subgroups with distinct transcriptional patterns associated with stage 2 and stage 3 CRC. |
ArticleNumber | 79 |
Author | Dienstmann, Rodrigo Fehrmann, Rudolf S. N. de Haan, Jacco-Juri Knapen, Daan G. Hone Lopez, Sara Bhattacharya, Arkajyoti de Groot, Derk Jan A. de Jong, Steven de Vries, Elisabeth G. E. |
Author_xml | – sequence: 1 givenname: Daan G. orcidid: 0000-0002-2523-137X surname: Knapen fullname: Knapen, Daan G. organization: Department of Medical Oncology, University Medical Center Groningen, University of Groningen – sequence: 2 givenname: Sara orcidid: 0000-0001-7615-3474 surname: Hone Lopez fullname: Hone Lopez, Sara organization: Department of Medical Oncology, University Medical Center Groningen, University of Groningen – sequence: 3 givenname: Derk Jan A. surname: de Groot fullname: de Groot, Derk Jan A. organization: Department of Medical Oncology, University Medical Center Groningen, University of Groningen – sequence: 4 givenname: Jacco-Juri orcidid: 0000-0002-1629-4715 surname: de Haan fullname: de Haan, Jacco-Juri organization: Department of Medical Oncology, University Medical Center Groningen, University of Groningen – sequence: 5 givenname: Elisabeth G. E. orcidid: 0000-0002-8949-7425 surname: de Vries fullname: de Vries, Elisabeth G. E. organization: Department of Medical Oncology, University Medical Center Groningen, University of Groningen – sequence: 6 givenname: Rodrigo surname: Dienstmann fullname: Dienstmann, Rodrigo organization: Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology, Universitat Autónoma de Barcelona – sequence: 7 givenname: Steven orcidid: 0000-0001-5831-6997 surname: de Jong fullname: de Jong, Steven organization: Department of Medical Oncology, University Medical Center Groningen, University of Groningen – sequence: 8 givenname: Arkajyoti orcidid: 0000-0003-1479-0739 surname: Bhattacharya fullname: Bhattacharya, Arkajyoti organization: Department of Medical Oncology, University Medical Center Groningen, University of Groningen – sequence: 9 givenname: Rudolf S. N. orcidid: 0000-0002-7516-315X surname: Fehrmann fullname: Fehrmann, Rudolf S. N. email: r.s.n.fehrmann@umcg.nl organization: Department of Medical Oncology, University Medical Center Groningen, University of Groningen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38702451$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9vFSEQx4mpsbX2H_BgNvHiZZUFloWjafzxkiZeNPFG2GH2ycs-eAL7THvzP5d2azUevAAz85kvMN-n5CTEgIQ87-jrjnL1JguuetlSJlpKeyram0fkjA2ctlKKryd_nU_JRc47SikbpBaKPiGnXA21se_OyM9NcHjAuoTSlGRDhuQPxcdg5-ZgS8EUcpPwiDUefZzj1sNtKUXAnDE3NucI3hZ0zQ9fvjXOZ7QZ2ykhNnlJR3-svA8N2jRfN1AlEkKpObABMD0jjyc7Z7y438_Jl_fvPl9-bK8-fdhcvr1qgUtZWj3wqet7JXtwrkPNtaBajsJx3StEodnQT3KkEtA5ARStrT8eJwmT1VRSfk42q66LdmcOye9tujbRenOXiGlrbCoeZjTKDZPUFLUaQEgHljk6IpOgQCtgY9V6tWrVMXxfMBez9xlwnm3AuGTDqyNaMCpERV_-g-7ikup0V4oPfce6SrGVghRzTjg9PLCj5tZvs_ptqm3mzm9zU5te3Esv4x7dQ8tvdyvAVyDXUthi-nP3f2R_AR1Xut4 |
Cites_doi | 10.3322/caac.21834 10.1038/nature11252 10.1038/s41467-020-14605-5 10.1038/s41588-022-01100-4 10.1016/j.cels.2015.12.004 10.1038/nm.3175 10.1016/j.celrep.2014.10.035 10.3390/cells8101118 10.1038/nm.3967 10.1038/ng.3173 10.1001/jama.2016.3332 10.1158/0008-5472.CAN-07-2938 10.1186/s13059-016-1070-5 10.1089/cmb.2004.11.1090 10.1007/978-1-4939-3578-9_5 10.5281/zenodo.10907204 10.18632/oncotarget.24132 10.1016/j.cell.2018.08.067 10.1038/nm.3174 10.1186/1755-8794-5-66 10.1038/ncomms15107 10.1074/jbc.RA117.000871 10.1002/ijc.28387 10.1038/s41392-022-01259-6 10.1016/j.annonc.2020.06.022 10.4149/neo_2020_190814N758 10.1158/0008-5472.CAN-07-0607 10.3390/molecules28145567 10.1093/bioinformatics/19.2.185 10.1038/s41467-021-21671-w 10.1200/JCO.20.02755 10.1038/s41375-019-0378-z 10.1371/journal.pmed.1001453 10.1186/1471-2407-11-529 10.1002/path.4212 10.2144/000112950 10.1038/nm.3802 10.1186/1471-2407-12-260 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88C 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M0T M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.1038/s43856-024-00504-z |
DatabaseName | Springer Nature OA Free Journals PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Healthcare Administration Database Medical Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Public Health ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Health Management ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2730-664X |
EndPage | 79 |
ExternalDocumentID | oai_doaj_org_article_8d7f690e987c46dca2d0be26c8c98c2b 10_1038_s43856_024_00504_z 38702451 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 7X7 88E 8C1 8FI 8FJ AAJSJ ABUWG ACLNF ACSMW AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR C6C CCPQU EBLON FYUFA GROUPED_DOAJ HMCUK M0T M1P M~E NAO OK1 PGMZT PIMPY PSQYO RPM SNYQT UKHRP NPM AAYXX CITATION 3V. 7XB 8FK AZQEC DWQXO K9. PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c366t-973f155865cdd1e9394096b4d3958ee49275f6b06cedd4c0eaa002bf6cfa90603 |
IEDL.DBID | C6C |
ISSN | 2730-664X |
IngestDate | Tue Oct 22 15:07:37 EDT 2024 Sat Oct 26 05:27:21 EDT 2024 Thu Oct 10 16:01:30 EDT 2024 Fri Aug 23 01:49:53 EDT 2024 Tue Oct 29 09:19:31 EDT 2024 Fri Oct 11 20:45:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-973f155865cdd1e9394096b4d3958ee49275f6b06cedd4c0eaa002bf6cfa90603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1629-4715 0000-0002-7516-315X 0000-0002-2523-137X 0000-0001-5831-6997 0000-0003-1479-0739 0000-0002-8949-7425 0000-0001-7615-3474 |
OpenAccessLink | https://doi.org/10.1038/s43856-024-00504-z |
PMID | 38702451 |
PQID | 3050375121 |
PQPubID | 5642959 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8d7f690e987c46dca2d0be26c8c98c2b proquest_miscellaneous_3050942044 proquest_journals_3050375121 crossref_primary_10_1038_s43856_024_00504_z pubmed_primary_38702451 springer_journals_10_1038_s43856_024_00504_z |
PublicationCentury | 2000 |
PublicationDate | 2024-05-03 |
PublicationDateYYYYMMDD | 2024-05-03 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Communications medicine |
PublicationTitleAbbrev | Commun Med |
PublicationTitleAlternate | Commun Med (Lond) |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Portfolio |
References | KongWVanderburgCRGunshinHRogersJTHuangXA review of independent component analysis application to microarray gene expression dataBiotechniques2008455015201:CAS:528:DC%2BD1cXhsVartb%2FN10.2144/000112950190073363005719 Perez-VillamilBColon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behaviorBMC Cancer2012121:CAS:528:DC%2BC3sXjsVShsr4%3D10.1186/1471-2407-12-260227125703571914 PangXTargeting integrin pathways: mechanisms and advances in therapySig. Transduct Target Ther.2023811:CAS:528:DC%2BB3sXkslChtQ%3D%3D10.1038/s41392-022-01259-6 Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 1–35 (2024). MarisaLGene expression classification of colon cancer into molecular subtypes: characterisation, validation, and prognostic valuePloS Med.201310e10014531:CAS:528:DC%2BC3sXptlSisbo%3D10.1371/journal.pmed.1001453237003913660251 BudinskaEGene expression patterns unveil a new level of molecular heterogeneity in colorectal cancerJ. Pathol201323163761:CAS:528:DC%2BC3sXht1GhtLjF10.1002/path.4212238364653840702 RackKAEuropean recommendations and quality assurance for cytogenomic analysis of haematological neoplasmsLeukemia201933185118671:CAS:528:DC%2BC1MXhtVyrt77P10.1038/s41375-019-0378-z306969486756035 LinJSScreening for colorectal cancer: Updated evidence report and systematic review for the US preventive services task forceJAMA2016315257625941:CAS:528:DC%2BC28XhtFGqsbnO10.1001/jama.2016.333227305422 BitonAIndependent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypesCell Rep.20149123512451:CAS:528:DC%2BC2cXhvFGitL7N10.1016/j.celrep.2014.10.03525456126 BhattacharyaATranscriptional effects of copy number alterations in a large set of human cancersNat. Commun.2020111:CAS:528:DC%2BB3cXkvFWqt70%3D10.1038/s41467-020-14605-5320248387002723 SadanandamAA colorectal cancer classification system that associates cellular phenotype and responses to therapyNat. Med.2013196196251:CAS:528:DC%2BC3sXlsl2isLw%3D10.1038/nm.3175235840893774607 LiberzonAThe Molecular Signatures Database (MsigDB) hallmark gene set collectionCell Syst.201514174251:CAS:528:DC%2BC2sXhtFaltLc%3D10.1016/j.cels.2015.12.004267710214707969 IsellaCSelective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancerNat. Commun.201781:CAS:528:DC%2BC2sXovFCls7s%3D10.1038/ncomms15107285610635499209 OnderTTLoss of E-cadherin promotes metastasis via multiple downstream transcriptional pathwaysCancer Res.200868364536541:CAS:528:DC%2BD1cXlvVOitLw%3D10.1158/0008-5472.CAN-07-293818483246 SananesAA potent, proteolysis-resistant inhibitor of kallikrein-related peptidase 6 (KLK6) for cancer therapy, developed by combinatorial engineeringJ. Biol. Chem.201829312663126801:CAS:528:DC%2BC1cXhsFeiu73K10.1074/jbc.RA117.000871299343096102146 GuinneyJThe consensus molecular subtypes of colorectal cancerNat. Med.201521135013561:CAS:528:DC%2BC2MXhs1Chu77M10.1038/nm.3967264577594636487 Arkajyotibhattacharya. arkajyotibhattacharya/TranscriptionalLandscapeColorectalCancer: Transcriptional landscape of colorectal cancer (TranscriptionalLandscapeColorectalCancer). Zenodo. https://doi.org/10.5281/zenodo.10907204 (2024). CloughEBarrettTThe gene expression Omnibus DatabaseMethods Mol. Biol.201614189311010.1007/978-1-4939-3578-9_5270080114944384 AnastassiouDHuman cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivoBMC Cancer2011111:CAS:528:DC%2BC38XisFyltr0%3D10.1186/1471-2407-11-529222089483268117 BolstadBMIrizarryRAAstrandMSpeedTPAComparison of normalization methods for high density oligonucleotide array data based on variance and biasBioinformatics2003191851931:CAS:528:DC%2BD3sXitlCnsL4%3D10.1093/bioinformatics/19.2.18512538238 WeiHDongCShenZKallikrein-related peptidase (KLK10) cessation blunts colorectal cancer growth and glucose metabolism by regulating the PI3K/Akt/mTOR pathwayNeoplasma2020678898971:CAS:528:DC%2BB3MXit12ksbrK10.4149/neo_2020_190814N75832386481 JoanitoISingle-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancerNat. Gene2022549639751:CAS:528:DC%2BB38XhslSls7%2FF10.1038/s41588-022-01100-4 BechtEEstimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expressionGenome Biol.20161710.1186/s13059-016-1070-5277650665073889 Urzúa-TraslaviñaCGImproving gene function predictions using independent transcriptional componentsNat. Commun.20211210.1038/s41467-021-21671-w336746107935959 KinchenJStructual remodeling of the human colonic mesenchyme in inflammatory bowel diseaseCell.20181753723861:CAS:528:DC%2BC1cXhvVahsLfL10.1016/j.cell.2018.08.067302700426176871 ChiappettaPRoubaudMCTorrésaniBBlind source separation and the analysis of microarray dataJ. Comput. Biol.200411109011091:CAS:528:DC%2BD2MXhtFersbo%3D10.1089/cmb.2004.11.109015662200 MatanoMModeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoidsNat. Med.2015212562621:CAS:528:DC%2BC2MXjtFemsLg%3D10.1038/nm.380225706875 ArgilesGLocalised colon cancer: ESMO clinical practice guidelines for diagnosis treatment and follow upAnn. Oncol.202031129113051:STN:280:DC%2BB38jmt1Wnug%3D%3D10.1016/j.annonc.2020.06.02232702383 KluckyBKallikrein 6 induces E-cadherin shedding and promotes cell proliferation, migration, and invasionCancer Res.200767819882061:CAS:528:DC%2BD2sXpvFKjtbc%3D10.1158/0008-5472.CAN-07-060717804733 ShahMAPhase III study to evaluate efficacy and safety of andecaliximab with mFOLFOX6 as first-line treatment in patients with advanced gastric or GEJ adenocarcinoma (GAMMA-1)J. Clin. Oncol.20213999010001:CAS:528:DC%2BB38XhslKltbY%3D10.1200/JCO.20.02755335773588078292 RoepmanPColorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transitionInt. J. Cancer20141345525621:CAS:528:DC%2BC3sXhsVeqsrzF10.1002/ijc.2838723852808 SchlickerASubtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell linesBMC Med. Genomics201251:CAS:528:DC%2BC3sXhsFyjtbk%3D10.1186/1755-8794-5-66232729493543849 FehrmannRSNGene expression analysis identifies global gene dosage sensitivity in cancerNat. Genet.2015471151251:CAS:528:DC%2BC2MXmtV2rsw%3D%3D10.1038/ng.317325581432 The Cancer Genome Atlas Network.Comprehensive molecular characterization of human colon and rectal cancerNature201348733033710.1038/nature11252 De SousaEPoor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesionsNat. Med.20131961461810.1038/nm.3174 LohCYThe E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challengesCells2019811181:CAS:528:DC%2BB3cXnvVymsL0%3D10.3390/cells8101118315471936830116 DuJPKallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancerOncotarget20189128941290610.18632/oncotarget.24132295601185849182 RaoYLiuHYanXWangJIn silico analysis identifies differently expressed lncRNAs as novel biomarkers for the prognosis of thyroid cancerComput. Math. Methods Me.d202020203651051 AlmutairiSKalloushHMManoonNABardaweelSKMatrix metalloproteinases inhibitors in cancer treatment: An updated review (2013–2023)Molecules20232855671:CAS:528:DC%2BB3sXhs1aksL3M10.3390/molecules281455673751344010384300 A Sananes (504_CR29) 2018; 293 The Cancer Genome Atlas Network. (504_CR36) 2013; 487 P Chiappetta (504_CR14) 2004; 11 E Clough (504_CR16) 2016; 1418 504_CR39 C Isella (504_CR23) 2017; 8 A Sadanandam (504_CR9) 2013; 19 H Wei (504_CR27) 2020; 67 504_CR1 A Bhattacharya (504_CR19) 2020; 11 A Schlicker (504_CR10) 2012; 5 S Almutairi (504_CR34) 2023; 28 JS Lin (504_CR2) 2016; 315 E Becht (504_CR18) 2016; 17 D Anastassiou (504_CR31) 2011; 11 B Perez-Villamil (504_CR7) 2012; 12 A Biton (504_CR15) 2014; 9 CG Urzúa-Traslaviña (504_CR21) 2021; 12 A Liberzon (504_CR20) 2015; 1 BM Bolstad (504_CR17) 2003; 19 KA Rack (504_CR38) 2019; 33 B Klucky (504_CR28) 2007; 67 MA Shah (504_CR35) 2021; 39 P Roepman (504_CR8) 2014; 134 W Kong (504_CR13) 2008; 45 G Argiles (504_CR3) 2020; 31 JP Du (504_CR30) 2018; 9 I Joanito (504_CR24) 2022; 54 J Guinney (504_CR11) 2015; 21 Y Rao (504_CR32) 2020; 2020 X Pang (504_CR33) 2023; 8 J Kinchen (504_CR22) 2018; 175 RSN Fehrmann (504_CR12) 2015; 47 TT Onder (504_CR25) 2008; 68 E Budinska (504_CR4) 2013; 231 L Marisa (504_CR6) 2013; 10 M Matano (504_CR37) 2015; 21 E De Sousa (504_CR5) 2013; 19 CY Loh (504_CR26) 2019; 8 |
References_xml | – ident: 504_CR1 doi: 10.3322/caac.21834 – volume: 487 start-page: 330 year: 2013 ident: 504_CR36 publication-title: Nature doi: 10.1038/nature11252 contributor: fullname: The Cancer Genome Atlas Network. – volume: 11 year: 2020 ident: 504_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14605-5 contributor: fullname: A Bhattacharya – volume: 54 start-page: 963 year: 2022 ident: 504_CR24 publication-title: Nat. Gene doi: 10.1038/s41588-022-01100-4 contributor: fullname: I Joanito – volume: 1 start-page: 417 year: 2015 ident: 504_CR20 publication-title: Cell Syst. doi: 10.1016/j.cels.2015.12.004 contributor: fullname: A Liberzon – volume: 19 start-page: 619 year: 2013 ident: 504_CR9 publication-title: Nat. Med. doi: 10.1038/nm.3175 contributor: fullname: A Sadanandam – volume: 9 start-page: 1235 year: 2014 ident: 504_CR15 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.035 contributor: fullname: A Biton – volume: 8 start-page: 1118 year: 2019 ident: 504_CR26 publication-title: Cells doi: 10.3390/cells8101118 contributor: fullname: CY Loh – volume: 21 start-page: 1350 year: 2015 ident: 504_CR11 publication-title: Nat. Med. doi: 10.1038/nm.3967 contributor: fullname: J Guinney – volume: 47 start-page: 115 year: 2015 ident: 504_CR12 publication-title: Nat. Genet. doi: 10.1038/ng.3173 contributor: fullname: RSN Fehrmann – volume: 315 start-page: 2576 year: 2016 ident: 504_CR2 publication-title: JAMA doi: 10.1001/jama.2016.3332 contributor: fullname: JS Lin – volume: 68 start-page: 3645 year: 2008 ident: 504_CR25 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-2938 contributor: fullname: TT Onder – volume: 17 year: 2016 ident: 504_CR18 publication-title: Genome Biol. doi: 10.1186/s13059-016-1070-5 contributor: fullname: E Becht – volume: 11 start-page: 1090 year: 2004 ident: 504_CR14 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2004.11.1090 contributor: fullname: P Chiappetta – volume: 1418 start-page: 93 year: 2016 ident: 504_CR16 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-3578-9_5 contributor: fullname: E Clough – ident: 504_CR39 doi: 10.5281/zenodo.10907204 – volume: 9 start-page: 12894 year: 2018 ident: 504_CR30 publication-title: Oncotarget doi: 10.18632/oncotarget.24132 contributor: fullname: JP Du – volume: 175 start-page: 372 year: 2018 ident: 504_CR22 publication-title: Cell. doi: 10.1016/j.cell.2018.08.067 contributor: fullname: J Kinchen – volume: 19 start-page: 614 year: 2013 ident: 504_CR5 publication-title: Nat. Med. doi: 10.1038/nm.3174 contributor: fullname: E De Sousa – volume: 5 year: 2012 ident: 504_CR10 publication-title: BMC Med. Genomics doi: 10.1186/1755-8794-5-66 contributor: fullname: A Schlicker – volume: 8 year: 2017 ident: 504_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms15107 contributor: fullname: C Isella – volume: 293 start-page: 12663 year: 2018 ident: 504_CR29 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.000871 contributor: fullname: A Sananes – volume: 134 start-page: 552 year: 2014 ident: 504_CR8 publication-title: Int. J. Cancer doi: 10.1002/ijc.28387 contributor: fullname: P Roepman – volume: 8 start-page: 1 year: 2023 ident: 504_CR33 publication-title: Sig. Transduct Target Ther. doi: 10.1038/s41392-022-01259-6 contributor: fullname: X Pang – volume: 31 start-page: 1291 year: 2020 ident: 504_CR3 publication-title: Ann. Oncol. doi: 10.1016/j.annonc.2020.06.022 contributor: fullname: G Argiles – volume: 67 start-page: 889 year: 2020 ident: 504_CR27 publication-title: Neoplasma doi: 10.4149/neo_2020_190814N758 contributor: fullname: H Wei – volume: 67 start-page: 8198 year: 2007 ident: 504_CR28 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0607 contributor: fullname: B Klucky – volume: 28 start-page: 5567 year: 2023 ident: 504_CR34 publication-title: Molecules doi: 10.3390/molecules28145567 contributor: fullname: S Almutairi – volume: 19 start-page: 185 year: 2003 ident: 504_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 contributor: fullname: BM Bolstad – volume: 12 year: 2021 ident: 504_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21671-w contributor: fullname: CG Urzúa-Traslaviña – volume: 2020 start-page: 3651051 year: 2020 ident: 504_CR32 publication-title: Comput. Math. Methods Me.d contributor: fullname: Y Rao – volume: 39 start-page: 990 year: 2021 ident: 504_CR35 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.20.02755 contributor: fullname: MA Shah – volume: 33 start-page: 1851 year: 2019 ident: 504_CR38 publication-title: Leukemia doi: 10.1038/s41375-019-0378-z contributor: fullname: KA Rack – volume: 10 start-page: e1001453 year: 2013 ident: 504_CR6 publication-title: PloS Med. doi: 10.1371/journal.pmed.1001453 contributor: fullname: L Marisa – volume: 11 year: 2011 ident: 504_CR31 publication-title: BMC Cancer doi: 10.1186/1471-2407-11-529 contributor: fullname: D Anastassiou – volume: 231 start-page: 63 year: 2013 ident: 504_CR4 publication-title: J. Pathol doi: 10.1002/path.4212 contributor: fullname: E Budinska – volume: 45 start-page: 501 year: 2008 ident: 504_CR13 publication-title: Biotechniques doi: 10.2144/000112950 contributor: fullname: W Kong – volume: 21 start-page: 256 year: 2015 ident: 504_CR37 publication-title: Nat. Med. doi: 10.1038/nm.3802 contributor: fullname: M Matano – volume: 12 year: 2012 ident: 504_CR7 publication-title: BMC Cancer doi: 10.1186/1471-2407-12-260 contributor: fullname: B Perez-Villamil |
SSID | ssj0002769480 |
Score | 2.3084135 |
Snippet | Background
Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS)... Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the... Abstract Background Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free... BackgroundBulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if... BACKGROUNDBulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if... Abstract Background Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free... |
SourceID | doaj proquest crossref pubmed springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 79 |
SubjectTerms | 38 631/67/1504/1885 631/67/69 Cancer therapies Colorectal cancer Datasets Gene expression Integrated approach Large intestine Medicine Medicine & Public Health Patients Principal components analysis Regression analysis Sarcoma Sensitivity analysis Survival analysis Transcription factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9UwELdQJxYEgkKgICOxgVW_-CP22CKqglQmKnWzEvsswZA-veQt3fjPubPzHkWAunSM41j2ffkuZ_-OsXeAJk91HhUJMFbVGHyJvk1ZdKhLNqsWXCnTefHVnl_qL1fm6lapLzoTVuGBK-GOXeoyRnCAsXHUNkUcSQ7Q2uiid7EdivWV_lYw9aOk06zXTi63ZKRyx5NWztB5Wy0I80SLmz92ogLY_y8v868Madl4zh6zR4vHyE_qTJ-wBzA-ZT8_78vXznym_Wan_dh1XTAzx4kTPBM-V6Al4gZf13sBMPF-4QskTv9i-ZKpEXkDwKctWhCUQf595EAQyJzArck4YlskQdk8Y5dnn759PBdLNQURlbWz8J3K6Dw4a2JKK_BUEt3bQSfljQPQvu1MtoO0EVLSUULfIx2HbGPuvbRSHbKD8XqEF4ynbFZoGXwyw4Dxme09OVKm67vskF-qYe93lA3rCpoRSrJbuVD5EJAPofAh3DTslIi_70mA16UBxSAsYhDuEoOGHe1YFxYtnIIisJsOXZpVw97uX6P-UFKkH-F6W_t43UqtG_a8snw_E4XGrNUGv_6wk4Hfg_9_QS_vY0Gv2MO2CKsRUh2xg3mzhdfo_8zDmyLqvwDgqQOV priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Health Database dbid: 8C1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagXLggUFkCBRmJG1hN4v2EaEXVIsGJSr1ZiRfEJe_1Je_SW_85M46TCrEc4ziW49k99jeEvIug8ri2IEgRYlUBwRfr2pCYBllSibfR5DKdX7-p80vx5UpelQ23sRyrXHRiVtRh43GP_JgjcIkG89R83F4zrBqF2dVSQuM-edCAncPgy5w26x5Lq5UVpi53ZWpujkfBjcRTt4Ih8olgN7_Zowzb_zdf8488aTY_Z4_Jo-I30k8zoZ-Qe3E4JLcXaxHbiU5odRYdAF23GTlzGCmCNMHzDLeENKHb-XZAHGlXqBMDxR1ZWvI1LO1ipOMe9AhwIv050IhAyBQhrlFFQptHdtk9JZdnn7-fnrNSU4F5rtTErOYJXAijpA-hiRYLo1vVi8CtNDEK22qZVF8rH0MQvo5dB-vYJ-VTZ2tV82fkYNgM8QWhIckG9IMNsu8hSlOdRXdK6k4nY4LmFXm_rKzbztAZLqe8uXEzHRzQwWU6uJuKnODirz0R9jo3bHY_XJEiB8MmCOejNdoLFTywVd3HVnnjrfFtX5GjhXSuyOLo7jinIm_X1yBFmBrphrjZz32saGshKvJ8Jvk6Ew4qrRUSvv6w8MDd4P_-oZf_n8sr8rDNbChZzY_IwbTbx9fg30z9m8zEvwBAWPmw priority: 102 providerName: ProQuest |
Title | Independent transcriptional patterns reveal biological processes associated with disease-free survival in early colorectal cancer |
URI | https://link.springer.com/article/10.1038/s43856-024-00504-z https://www.ncbi.nlm.nih.gov/pubmed/38702451 https://www.proquest.com/docview/3050375121 https://search.proquest.com/docview/3050942044 https://doaj.org/article/8d7f690e987c46dca2d0be26c8c98c2b |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6aBEovpe-4TY0KvbWmXut9bJaEtJBQSgN7E7Y0gl6cZdd7ya3_vCPZ6xKaHnoxWJaErW9mNNJY3wC8RzJ5XFtSJKS1qqDFV9U2IVaadElF3qDJaTovr9TFtfi6kquJJiedhbkTv-fm01ZwI9NvsqJKVCWiuj2AozQHpzQNS7Wc91Maraww9XQu5v6md-aeTNF_n1_5V0w0TzXnT-Dx5COyzyOoT-EB9s_g4eUUBX8Ov77MuWsHNqTJZq_61GqdCTP7LUvcTHQ_siwlKNh6PBSAW9ZOoGBgaSOWTWGaKm4Q2XZH5oMEkP3sGSb-Y5aYrZNlpDKfpGTzAq7Pz34sL6oplULluVJDZTWP5DkYJX0IC7QpH7pVnQjcSoMobKNlVF2tPIYgfI1tS0PaReVja2tV85dw2N_0eAwsRLkgs2CD7DpanKnWJi9K6lZHY4LmBXzYD7Jbj4wZLke6uXEjJI4gcRkSd1vAacJhrpnYrnMBCYGblMdRt5FW8WiN9kIFT9JUd9gob7w1vukKONmj6CYV3DqemG40-TOLAt7Nj0l5UkSk7fFmN9axoqmFKODViP78JpwsWSMktf64F4c_nf_7g17_X_U38KjJEiqrmp_A4bDZ4Vtyc4auhAO90nQ1y0UJR6dnV9--l1nmy7xxUOadqd9Divvz |
link.rule.ids | 315,783,787,867,2109,12070,12237,21402,27938,27939,31733,31734,33280,33281,33758,33759,41134,42203,43324,43593,43819,51590,74081,74350,74638 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagHOCCQGyBAkbiBlYz8X5CgKim0PbUSnOzEi-ol8wwyVx645_znuNMhViOcRzL8Vv8Fvt7hLyNoPK4tiBIEXxVAc4Xa5uQmAZZUok30eQynWfnankpvq7kqgTchnKsctaJWVGHtccY-RFH4BIN29Piw-YHw6pRmF0tJTRukzuIw4XY-Xql9zGWRisrTF3uytTcHA2CG4mnbgVD5BPBrn_bjzJs_99szT_ypHn7OX5A7he7kX6cCP2Q3Ir9I_LzZF_EdqQj7jqzDoCum4yc2Q8UQZrgeYJbQprQzXQ7IA60LdSJgWJElpZ8DUvbGOmwAz0CnEivehoRCJkixDWqSGjzyC7bx-Ty-MvF5yUrNRWY50qNzGqewIQwSvoQFtFiYXSrOhG4lSZGYRstk-pq5WMIwtexbWEdu6R8am2tav6EHPTrPj4jNCS5AP1gg-w68NJUa9GckrrVyZigeUXezSvrNhN0hsspb27cRAcHdHCZDu66Ip9w8fc9EfY6N6y3312RIgfDJnDnozXaCxU8sFXdxUZ5463xTVeRw5l0rsji4G44pyJv9q9BijA10vZxvZv6WNHUQlTk6UTy_Uw4qLRGSPj6_cwDN4P_-4ee_38ur8nd5cXZqTs9Of_2gtxrMktKVvNDcjBud_El2Dpj9yoz9C9k2vzP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuCMQrUMBI3MDabPw-IQpdtTxWFaJSb1biR8Ulu2yyl97458wkzlaIxzGOYzmeb8Zjj_0NIa8imDyuLShShLWqgMUXq6uQmAZdUolX0QxpOr-s1Mm5-HghL_L5py4fq5xs4mCow9rjHvmcI3GJhulpMU_5WMTZh-XbzQ-GGaQw0prTadwkB1oAqmbk4Oh4dfZ1v-NSaWWFKfPNmZKbeSe4kXgGVzDkQRHs6rfZaSDx_5vn-UfUdJiMlnfJnexF0nej2O-RG7G9T36e7lPa9rTHOWiyCFB1M_Both1FyiZ4HsmXUEJ0M94ViB2ts6xioLg_S3P0hqVtjLTbgVUBXNLvLY1Ii0yR8BoNJpR5BM_2ATlfHn97f8JyhgXmuVI9s5oncCiMkj6ERbSYJt2qRgRupYlR2ErLpJpS-RiC8GWsaxjHJimfaluqkj8ks3bdxseEhiQXYC1skE0DazZVW3SupK51MiZoXpDX08i6zUik4YYAODdulIMDObhBDu6qIEc4-PuaSII9FKy3ly7rlINmEyzuozXaCxU8gKxsYqW88db4qinI4SQ6lzWzc9c4KsjL_WvQKQyU1G1c78Y6VlSlEAV5NIp83xMOBq4SEr5-M2HguvF__9CT__flBbkFaHafT1efnpLb1YBIyUp-SGb9dhefgePTN88zon8Bm-0CgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+transcriptional+patterns+reveal+biological+processes+associated+with+disease-free+survival+in+early+colorectal+cancer&rft.jtitle=Communications+medicine&rft.au=Knapen%2C+Daan+G.&rft.au=Hone+Lopez%2C+Sara&rft.au=de+Groot%2C+Derk+Jan+A.&rft.au=de+Haan%2C+Jacco-Juri&rft.date=2024-05-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2730-664X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1038%2Fs43856-024-00504-z&rft.externalDocID=10_1038_s43856_024_00504_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-664X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-664X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-664X&client=summon |