Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst
•The self-supported HEA catalyst was prepared by corrosion engineering.•Amorphous honeycomb nano-hydroxides are obtained on the HEA surface.•HEA-250Ni demonstrates the high OER activity and excellent stability.•The excellent performance is due to its special structure and diverse valence states.•Our...
Saved in:
Published in | Journal of materials science & technology Vol. 109; pp. 267 - 275 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
20.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The self-supported HEA catalyst was prepared by corrosion engineering.•Amorphous honeycomb nano-hydroxides are obtained on the HEA surface.•HEA-250Ni demonstrates the high OER activity and excellent stability.•The excellent performance is due to its special structure and diverse valence states.•Our findings open up a new avenue to prepare large-scale HEA as electrocatalysts.
Oxygen evolution reaction (OER) is a critical process in electrocatalytic water splitting. However, the development of low-cost, highly efficient OER electrocatalysts by a simple method that can be used for industrial application on a large scale is still a huge challenge. Recently, high entropy alloy (HEA) has acquired extensive attention, which may provide answers to the current dilemma. Here, we report bulk Fe50Mn30Co10Cr10, which is prepared by 3D printing on a large scale, as electrocatalyst for OER with high catalytic performance. Especially, an easy approach, corrosion engineering, is adopted for the first time to build an active layer of honeycomb nanostructures on its surface, leading to ultrahigh OER performance with an overpotential of 247 mV to achieve a current density of 10 mA cm−2, a low Tafel slope of 63 mV dec−1, and excellent stability up to 60 h at 100 mA cm−2 in 1 M KOH. The excellent catalytic activity mainly originates from: (1) the binder-free self-supported honeycomb nanostructures and multi-component hydroxides, which improve intrinsic catalytic activity, provide rich active sites, and reduce interfacial resistance; and (2) the diverse valence states for multiple active sites to enhance the OER kinetics. Our findings show that corrosion engineering is a novel strategy to improve the bulk HEA catalytic performance. We expect that this work would open up a new avenue to fabricate large-scale HEA electrocatalysts by 3D printing and corrosion engineering for industrial applications.
[Display omitted] |
---|---|
AbstractList | •The self-supported HEA catalyst was prepared by corrosion engineering.•Amorphous honeycomb nano-hydroxides are obtained on the HEA surface.•HEA-250Ni demonstrates the high OER activity and excellent stability.•The excellent performance is due to its special structure and diverse valence states.•Our findings open up a new avenue to prepare large-scale HEA as electrocatalysts.
Oxygen evolution reaction (OER) is a critical process in electrocatalytic water splitting. However, the development of low-cost, highly efficient OER electrocatalysts by a simple method that can be used for industrial application on a large scale is still a huge challenge. Recently, high entropy alloy (HEA) has acquired extensive attention, which may provide answers to the current dilemma. Here, we report bulk Fe50Mn30Co10Cr10, which is prepared by 3D printing on a large scale, as electrocatalyst for OER with high catalytic performance. Especially, an easy approach, corrosion engineering, is adopted for the first time to build an active layer of honeycomb nanostructures on its surface, leading to ultrahigh OER performance with an overpotential of 247 mV to achieve a current density of 10 mA cm−2, a low Tafel slope of 63 mV dec−1, and excellent stability up to 60 h at 100 mA cm−2 in 1 M KOH. The excellent catalytic activity mainly originates from: (1) the binder-free self-supported honeycomb nanostructures and multi-component hydroxides, which improve intrinsic catalytic activity, provide rich active sites, and reduce interfacial resistance; and (2) the diverse valence states for multiple active sites to enhance the OER kinetics. Our findings show that corrosion engineering is a novel strategy to improve the bulk HEA catalytic performance. We expect that this work would open up a new avenue to fabricate large-scale HEA electrocatalysts by 3D printing and corrosion engineering for industrial applications.
[Display omitted] |
Author | Pan, Hui Kwok, Chi Tat Chen, Yuyun Chen, Mingpeng Chen, Shi Zhou, Pengfei Liu, Dong Liu, Yunxiao Tang, Yuxin Wang, Shuangpeng |
Author_xml | – sequence: 1 givenname: Pengfei surname: Zhou fullname: Zhou, Pengfei organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao – sequence: 2 givenname: Dong surname: Liu fullname: Liu, Dong organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao – sequence: 3 givenname: Yuyun surname: Chen fullname: Chen, Yuyun organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao – sequence: 4 givenname: Mingpeng surname: Chen fullname: Chen, Mingpeng organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao – sequence: 5 givenname: Yunxiao surname: Liu fullname: Liu, Yunxiao organization: Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, 999078, Macao – sequence: 6 givenname: Shi surname: Chen fullname: Chen, Shi organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao – sequence: 7 givenname: Chi Tat surname: Kwok fullname: Kwok, Chi Tat organization: Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao – sequence: 8 givenname: Yuxin surname: Tang fullname: Tang, Yuxin email: yxtang@fzu.edu.cn organization: College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China – sequence: 9 givenname: Shuangpeng orcidid: 0000-0001-8464-4994 surname: Wang fullname: Wang, Shuangpeng email: spwang@um.edu.mo organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao – sequence: 10 givenname: Hui orcidid: 0000-0002-6515-4970 surname: Pan fullname: Pan, Hui email: huipan@um.edu.mo organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao |
BookMark | eNp9kM1OxCAUhYnRRB19AVd9gdYLnTI0cWMa_xKNG_eE0ssMIxYDjHHewYeWzszKhRs4ufAdOOecHI9-REKuKFQUKL9eV-uPmCoGjFbQVgD1ETmj7ZyWlHJ2nDVAU0IN7JScx7jOFxaNEGfkp_Mh-Gj9WOC4tCNisOOy6L2PaSc27r24xwZexho6T6ELFIqVXa5KHFPwn9tCOefzGg9TY6y2-SzP35XLjoX_3i4x-395t0nTSwGV3gl0qLOJVkm5bUwX5MQoF_HysM_I2_3dW_dYPr8-PHW3z6WuOU9ly7kxQ8_mOQEYI2AuaiYM6xctNUb3gFTMTYONEnxgqOsF61k99FwIrluoZ0TsbXVOHgMaqW1S04dSUNZJCnIqVa7lVKqcSpXQytxZRtkf9DPYDxW2_0M3ewhzpi-LQcapIY2DDTm_HLz9D_8F3rmWTA |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_11_034 crossref_primary_10_1016_j_jece_2022_109080 crossref_primary_10_1016_j_cej_2023_144015 crossref_primary_10_1002_adma_202404772 crossref_primary_10_1016_j_jcis_2023_05_123 crossref_primary_10_1016_j_jallcom_2023_169699 crossref_primary_10_1002_cjoc_202300718 crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_1002_smll_202405596 crossref_primary_10_1016_j_jmrt_2023_02_135 crossref_primary_10_1002_cmt2_26 crossref_primary_10_1016_j_ijhydene_2023_12_271 crossref_primary_10_1016_j_ijhydene_2024_03_351 crossref_primary_10_1039_D4TA04274C crossref_primary_10_1039_D2TA09052J crossref_primary_10_1016_j_jpcs_2022_110730 crossref_primary_10_1016_j_jallcom_2023_170131 crossref_primary_10_1002_cssc_202201464 crossref_primary_10_1002_adsu_202300192 crossref_primary_10_1007_s12598_022_02255_z crossref_primary_10_1007_s40843_022_2234_5 crossref_primary_10_3866_PKU_WHXB202404023 crossref_primary_10_1002_smsc_202200109 crossref_primary_10_1016_j_jcis_2024_12_147 crossref_primary_10_1007_s40820_024_01504_3 crossref_primary_10_1016_j_coelec_2022_101136 crossref_primary_10_1016_j_jmst_2024_01_096 crossref_primary_10_1016_j_gee_2024_07_009 crossref_primary_10_1016_j_jmst_2024_07_025 crossref_primary_10_1016_j_jallcom_2024_176427 crossref_primary_10_1016_j_ijhydene_2024_09_379 crossref_primary_10_1016_j_ensm_2024_103718 crossref_primary_10_1016_j_est_2023_106813 crossref_primary_10_1016_j_ijhydene_2024_10_160 crossref_primary_10_1016_j_jallcom_2023_169319 crossref_primary_10_1016_j_decarb_2023_100019 crossref_primary_10_1016_j_jiec_2024_02_015 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1016_j_ijhydene_2023_07_023 crossref_primary_10_1016_j_ijhydene_2024_09_075 crossref_primary_10_1016_j_mtnano_2022_100282 crossref_primary_10_1016_j_apsusc_2025_162383 crossref_primary_10_1016_j_jallcom_2022_168582 crossref_primary_10_1002_smll_202311929 crossref_primary_10_1016_j_ijhydene_2022_07_135 crossref_primary_10_1016_j_cej_2024_153997 crossref_primary_10_1016_j_ijhydene_2024_06_267 crossref_primary_10_1039_D2SE00929C crossref_primary_10_1016_j_jpowsour_2024_235804 crossref_primary_10_1016_j_ccr_2024_215832 crossref_primary_10_1016_j_jclepro_2023_136076 crossref_primary_10_1088_2752_5724_accbd8 crossref_primary_10_1016_j_jallcom_2023_169987 crossref_primary_10_1016_j_surfcoat_2023_129407 crossref_primary_10_1016_j_jelechem_2025_119083 crossref_primary_10_1016_j_mtphys_2023_101169 crossref_primary_10_1016_j_jmst_2024_02_068 crossref_primary_10_12677_NAT_2022_124030 |
Cites_doi | 10.1039/D0SE00466A 10.1039/a908800h 10.1021/acs.inorgchem.0c01927 10.1016/j.jes.2018.01.010 10.1021/jacs.8b00752 10.1039/D0TA04940A 10.1021/acsami.7b08917 10.1038/s41467-018-05019-5 10.1039/C9EE02388G 10.1016/j.msea.2018.10.035 10.1039/C9TA05161A 10.1021/acs.accounts.0c00127 10.1002/adsu.201900105 10.1016/j.jpowsour.2019.05.030 10.1038/nature17981 10.1016/j.jmst.2020.12.079 10.1039/D0TA09092A 10.1016/j.ijhydene.2019.07.018 10.1038/s41467-019-13092-7 10.1002/anie.202009002 10.1021/acscatal.8b01332 10.1016/j.jechem.2020.03.020 10.1016/j.jmst.2019.08.042 10.1039/D1QI00124H 10.1039/b709167b 10.1021/acs.energyfuels.0c02533 10.1002/adfm.201604804 10.1149/1945-7111/abb6cb 10.1016/j.jmst.2021.03.046 10.1016/j.jmst.2020.10.058 10.1021/acscatal.7b02949 10.1039/D1NR90103F 10.1038/ncomms3439 10.1039/D0TA05628F 10.1179/1743284714Y.0000000749 10.1039/C5CC08845C 10.1016/j.jmst.2021.07.002 10.1007/s40843-020-1461-2 10.1016/j.jmst.2020.09.046 10.1016/j.jmst.2020.06.045 10.1021/acsami.7b12629 10.1039/D0TA03272G 10.1021/acsnano.7b00233 10.1021/acscatal.7b03191 10.1021/acsmaterialslett.9b00414 10.1007/s12598-015-0548-8 10.1016/j.jmst.2019.06.021 10.1016/j.jmst.2020.11.020 10.1016/j.jmst.2020.12.042 10.1557/mrc.2018.111 10.1016/j.jechem.2021.04.067 10.1002/adfm.201905933 10.1016/j.jcat.2020.01.024 10.1021/ef400163x 10.1021/acsami.9b14213 10.1021/acsami.0c00701 10.1039/D0NR00446D 10.1039/D0TA05176D 10.1016/j.apcatb.2020.119046 10.1038/s41467-020-19277-9 10.1021/acsnano.7b05050 10.1039/D1QI00428J |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmst.2021.09.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-1162 |
EndPage | 275 |
ExternalDocumentID | 10_1016_j_jmst_2021_09_003 S1005030221008240 |
GroupedDBID | --K --M -02 -0B -SB -S~ .~1 0R~ 1B1 1~. 4.4 457 5GY 5VR 5VS 5XA 5XC 5XL 8P~ 92M 9D9 9DB AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJEB CAJUS CCEZO CDRFL CHBEP CW9 DU5 EBS EFJIC EFLBG FA0 FDB FIRID FNPLU FYGXN GBLVA J1W JUIAU KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OK1 P-8 P-9 P2P PC. Q-- Q38 R-B ROL RT2 S.. SDF SES SPC SPCBC SSM SSZ T5K T8R U1F U1G U5B U5L ~G- 92H 92I AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFUIB AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD HZ~ RIG SSH TCJ TGT |
ID | FETCH-LOGICAL-c366t-966ffdb245880ff8048328f2b791ffcb0e184f5e5a86d2ec372b23db6886c903 |
IEDL.DBID | .~1 |
ISSN | 1005-0302 |
IngestDate | Thu Apr 24 22:53:19 EDT 2025 Tue Jul 01 02:20:06 EDT 2025 Fri Feb 23 02:38:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Corrosion engineering Electrocatalysis Self-supporting Oxygen evolution reaction High entropy alloy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-966ffdb245880ff8048328f2b791ffcb0e184f5e5a86d2ec372b23db6886c903 |
ORCID | 0000-0002-6515-4970 0000-0001-8464-4994 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jmst_2021_09_003 crossref_primary_10_1016_j_jmst_2021_09_003 elsevier_sciencedirect_doi_10_1016_j_jmst_2021_09_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-20 |
PublicationDateYYYYMMDD | 2022-05-20 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials science & technology |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dai, Lu, Pan (bib0037) 2019; 430 Wang, Wang, Zhang, Liu, Luo, Cui, Lu, Wang, Ma, Sun (bib0075) 2020; 59 Chen, Qian, Xu, Yu, Yu, Xia, Yin (bib0047) 2020; 12 Bo, Li, Hocking, Zhao (bib0070) 2017; 9 Pang, Xu, Zhu, Cui, Liang, Li, Wu, Chang, Luo (bib0018) 2021; 82 Dupin, Gonbeau, Vinatier, Levasseur (bib0068) 2000; 2 Bondesgaard, Broge, Mamakhel, Bremholm, Iversen (bib0035) 2019; 29 Sial, Baskaran, Jalil, Talib, Lin, Yao, Zhang, Qian, Zou, Zeng (bib0051) 2019; 44 Fan, Mu, Wei, Peng, Shen (bib0061) 2020; 8 Liu, Liu, Qu, Wang, Zhang, Ge, Hao, Ma, Du, Asiri, Chen, Sun (bib0003) 2017; 7 Liang, Zou, Nairan, Zhang, Liu, Liu, Hu, Kang, Fan, Yang (bib0065) 2020; 13 Liu, Zhang, Waterhouse (bib0010) 2020; 8 Kuang, Han, Wang, Li, Zheng (bib0066) 2016; 26 Chen, Cai, Yang, Kronawitter, Guo, Shen, Koel (bib0067) 2018; 8 Yu, Zhu, Song, McElhenny, Wang, Wu, Qin, Bao, Yu, Chen, Ren (bib0069) 2019; 10 Zhang, Lv, Tian, Li, Ao, Lan, Jiang, Wang (bib0016) 2017; 9 Zhao, Su, Li, Bi, Han (bib0046) 2018; 73 He, Jia, Wang, Yan, Shen (bib0026) 2021; 86 Yang, Song, Mo, Liu (bib0062) 2020; 417 Fang, Gao, Lv, Jia, Li, Liu, Xie, Chen, Huang, Yuan, Liu, Lin, Sun, Qiu (bib0041) 2020; 268 Liu, Ai, Li, Fang, Chen, Liu, Du, Zhou, Li, Lo, Tang, Chen, Wang, Xing, Pan (bib0020) 2020; 10 Li, Pradeep, Deng, Raabe, Tasan (bib0023) 2016; 534 Peng, Xie, Xie, Wu, Zhu, Liang, Wang (bib0036) 2020; 8 Jiang, Tang, Zhang, Hu (bib0071) 2020; 53 Zhang, Zhao, Xu, Liu, Li, Luo, Gao, Shi, Asiri, Sun (bib0008) 2020; 2 Shang, Tang, Dong, Sun (bib0005) 2020; 4 Jothi, Karuppasamy, Maiyalagan, Rajan, Jung, Yi (bib0044) 2020; 10 Jin, Long, Song, Xiong, Guo, Wang (bib0050) 2013; 27 Huang, Wang, Li, Yin, Wang (bib0032) 2021; 93 Tian, Wei, Guo, Wu, Chen, Xu, Cao, Liu, Wang, Ding, Tu, Zeng (bib0019) 2021; 77 Liu, Gong, Deng, Zhao, Shen, Zhang, Wang (bib0045) 2020; 31 Ding, Bian, Shuang, Liu, Hu, Sun, Yang (bib0072) 2020; 4 Kim, Kim, Lee, Kwon, Kim, Kim, Seok, Park, Kim (bib0012) 2022; 64 Wang, Wei, Li, Ma, Hao, Guan (bib0057) 2021; 68 Xu, Kong, Chen, Wang, Wang (bib0027) 2021; 82 Ye, Zhang, Yue, Deng, Cao, Liu, Luo, Lu, Zheng, Sun (bib0015) 2021; 8 Li, Han, Zhao, Qi, Zhang, Yu, Cai, Li, Lai, Huang, Wang (bib0031) 2020; 11 Zhou, Xiao, Wu, Ou (bib0022) 2019; 739 Grimaud, May, Carlton, Lee, Risch, Hong, Zhou, Shao-Horn (bib0074) 2013; 4 Ong, Zheng, Antonietti (bib0004) 2021; 13 Ma, Zhang, Zhang, Gu, Zhang, Sun, Ji, Fu (bib0029) 2020; 63 Anantharaj, Venkatesh, Salunke, Simha, Prabu, Kundu, Sustain (bib0049) 2017; 5 Chang, Huang, Aaron Ong, Zhao, Li, Wang, Ding (bib0028) 2019; 7 Todoroki, Wadayama (bib0054) 2019; 11 Liu, Liang, Gu, Zhang, Li, Zou, Chen (bib0043) 2018; 9 Park, Sa, Baik, Kwon, Joo, Lee (bib0055) 2017; 11 Cai, Liu, Luo, Chen, Pan, Zhang, Zhong (bib0063) 2020; 12 Wu, Wei, Li, Hu (bib0001) 2021 Wang, Dong, Qiao, Huang, Saray, Zhong, Lin, Cui, Brozena, Hong, Xia, Gao, Chen, Shahbazian-Yassar, Wang, Hu (bib0033) 2020; 32 Yan, Huang, Wu, Li, Tan, Zhang, Sun, Huang, Xiong (bib0017) 2020; 42 Broge, Bondesgaard, Sondergaard-Pedersen, Roelsgaard, Iversen (bib0034) 2020; 59 Xu, Zhao, Li, Liang, Lu, Chen, Gao, Asiri, Wu, Sun (bib0006) 2020; 8 Ren, Zhai, Zhou, Yan, Liu (bib0011) 2020; 50 Gao, Jin, Fan, Xu, Meng, Wang, Yu, Zhang, Wang (bib0025) 2022; 102 Tomboc, Kwon, Joo, Lee (bib0030) 2020; 8 Qiu, Fang, Gao, Wen, Lv, Li, Xie, Liu, Sun (bib0040) 2019; 1 Zhou, Chen, Zhao, Lin, Yu, Xu, Wang, Liu, Sun, Dou (bib0060) 2018; 8 Liu, Xi, Xin, Zhang, Zhang, Zhang, Huang, Li, Liu, Kang (bib0056) 2021; 404 Cao, Wang, Li, Zhang, Luo, Zhang, Asiri, Hu, Liu, Sun (bib0014) 2021; 8 Li, Hu, Liu, Zhang, Wang, Han, Zhong, Hu, Deng (bib0064) 2020; 37 Ramadoss, Chen, Hu, Wang, Jeyagopal, Marimuthu, Wang, Yang (bib0002) 2021; 78 Baltrusaitis, Cwiertny, Grassian (bib0048) 2007; 9 Zhang, Liu, Xi, Yu, Chen, Sun, Wang, Lange, Zhang (bib0013) 2018; 140 Wang, Jiang, Wang, Xian, Wang, Yang (bib0052) 2015; 36 Cui, Zhang, Zeng, Guo (bib0042) 2018; 8 Lu, Qian, Tian, Li, Sun, Duan (bib0059) 2016; 52 Wang, Tao, Lin, Wang, Zhao, Cai, Tao, Zhang, Sun, Hu, Huang, Yang (bib0007) 2021; 81 Gupta, Zhao, Wang, Hwang, Karakalos, Devaguptapu, Mukherjee, Su, Xu, Wu (bib0038) 2017; 7 Du, Ai, Chen, Liu, Chen, Wang, Lo, Pan (bib0009) 2020; 272 Li, Sun, Jiang, Ma, Wang, Qu (bib0058) 2020; 34 Sicklinger, Beyer, Hartmann, Riewald, Sedlmeier, Gasteiger (bib0053) 2020; 167 Miracle (bib0024) 2015; 31 Dai, Geng, Wang, Luo, Li, Zong, Yang, Guo, Zheng, Wang, Yan (bib0073) 2017; 11 Wu, Yu, Xiao, Zhang, Song, Chen, Ren (bib0021) 2020; 2020 Li, Tang, Jia, Li, Xie, Liu, Lin, Qiu (bib0039) 2020; 383 Ma (10.1016/j.jmst.2021.09.003_bib0029) 2020; 63 Wang (10.1016/j.jmst.2021.09.003_bib0007) 2021; 81 Cai (10.1016/j.jmst.2021.09.003_bib0063) 2020; 12 Bo (10.1016/j.jmst.2021.09.003_bib0070) 2017; 9 Chang (10.1016/j.jmst.2021.09.003_bib0028) 2019; 7 Dupin (10.1016/j.jmst.2021.09.003_bib0068) 2000; 2 Liu (10.1016/j.jmst.2021.09.003_bib0010) 2020; 8 Ding (10.1016/j.jmst.2021.09.003_bib0072) 2020; 4 Tian (10.1016/j.jmst.2021.09.003_bib0019) 2021; 77 Gupta (10.1016/j.jmst.2021.09.003_bib0038) 2017; 7 Yan (10.1016/j.jmst.2021.09.003_bib0017) 2020; 42 Wang (10.1016/j.jmst.2021.09.003_bib0033) 2020; 32 Bondesgaard (10.1016/j.jmst.2021.09.003_bib0035) 2019; 29 Cui (10.1016/j.jmst.2021.09.003_bib0042) 2018; 8 Ye (10.1016/j.jmst.2021.09.003_bib0015) 2021; 8 Sicklinger (10.1016/j.jmst.2021.09.003_bib0053) 2020; 167 Liu (10.1016/j.jmst.2021.09.003_bib0056) 2021; 404 Zhang (10.1016/j.jmst.2021.09.003_bib0013) 2018; 140 Jiang (10.1016/j.jmst.2021.09.003_bib0071) 2020; 53 Wu (10.1016/j.jmst.2021.09.003_bib0001) 2021 Kuang (10.1016/j.jmst.2021.09.003_bib0066) 2016; 26 Xu (10.1016/j.jmst.2021.09.003_bib0006) 2020; 8 Park (10.1016/j.jmst.2021.09.003_bib0055) 2017; 11 Miracle (10.1016/j.jmst.2021.09.003_bib0024) 2015; 31 Ong (10.1016/j.jmst.2021.09.003_bib0004) 2021; 13 Wang (10.1016/j.jmst.2021.09.003_bib0052) 2015; 36 Sial (10.1016/j.jmst.2021.09.003_bib0051) 2019; 44 Shang (10.1016/j.jmst.2021.09.003_bib0005) 2020; 4 Liang (10.1016/j.jmst.2021.09.003_bib0065) 2020; 13 Peng (10.1016/j.jmst.2021.09.003_bib0036) 2020; 8 Liu (10.1016/j.jmst.2021.09.003_bib0043) 2018; 9 Baltrusaitis (10.1016/j.jmst.2021.09.003_bib0048) 2007; 9 Anantharaj (10.1016/j.jmst.2021.09.003_bib0049) 2017; 5 Du (10.1016/j.jmst.2021.09.003_bib0009) 2020; 272 Wu (10.1016/j.jmst.2021.09.003_bib0021) 2020; 2020 Liu (10.1016/j.jmst.2021.09.003_bib0045) 2020; 31 Chen (10.1016/j.jmst.2021.09.003_bib0047) 2020; 12 Zhang (10.1016/j.jmst.2021.09.003_bib0016) 2017; 9 Wang (10.1016/j.jmst.2021.09.003_bib0075) 2020; 59 Kim (10.1016/j.jmst.2021.09.003_bib0012) 2022; 64 Huang (10.1016/j.jmst.2021.09.003_bib0032) 2021; 93 Liu (10.1016/j.jmst.2021.09.003_bib0003) 2017; 7 Qiu (10.1016/j.jmst.2021.09.003_bib0040) 2019; 1 Ramadoss (10.1016/j.jmst.2021.09.003_bib0002) 2021; 78 Grimaud (10.1016/j.jmst.2021.09.003_bib0074) 2013; 4 Li (10.1016/j.jmst.2021.09.003_bib0064) 2020; 37 Fan (10.1016/j.jmst.2021.09.003_bib0061) 2020; 8 Cao (10.1016/j.jmst.2021.09.003_bib0014) 2021; 8 Tomboc (10.1016/j.jmst.2021.09.003_bib0030) 2020; 8 Pang (10.1016/j.jmst.2021.09.003_bib0018) 2021; 82 Yang (10.1016/j.jmst.2021.09.003_bib0062) 2020; 417 Zhao (10.1016/j.jmst.2021.09.003_bib0046) 2018; 73 Lu (10.1016/j.jmst.2021.09.003_bib0059) 2016; 52 Li (10.1016/j.jmst.2021.09.003_bib0023) 2016; 534 Xu (10.1016/j.jmst.2021.09.003_bib0027) 2021; 82 Gao (10.1016/j.jmst.2021.09.003_bib0025) 2022; 102 Zhou (10.1016/j.jmst.2021.09.003_bib0060) 2018; 8 Zhou (10.1016/j.jmst.2021.09.003_bib0022) 2019; 739 Chen (10.1016/j.jmst.2021.09.003_bib0067) 2018; 8 Jothi (10.1016/j.jmst.2021.09.003_bib0044) 2020; 10 Todoroki (10.1016/j.jmst.2021.09.003_bib0054) 2019; 11 Broge (10.1016/j.jmst.2021.09.003_bib0034) 2020; 59 Dai (10.1016/j.jmst.2021.09.003_bib0073) 2017; 11 Li (10.1016/j.jmst.2021.09.003_bib0039) 2020; 383 Jin (10.1016/j.jmst.2021.09.003_bib0050) 2013; 27 Zhang (10.1016/j.jmst.2021.09.003_bib0008) 2020; 2 Liu (10.1016/j.jmst.2021.09.003_bib0020) 2020; 10 He (10.1016/j.jmst.2021.09.003_bib0026) 2021; 86 Li (10.1016/j.jmst.2021.09.003_bib0031) 2020; 11 Wang (10.1016/j.jmst.2021.09.003_bib0057) 2021; 68 Li (10.1016/j.jmst.2021.09.003_bib0058) 2020; 34 Dai (10.1016/j.jmst.2021.09.003_bib0037) 2019; 430 Yu (10.1016/j.jmst.2021.09.003_bib0069) 2019; 10 Fang (10.1016/j.jmst.2021.09.003_bib0041) 2020; 268 Ren (10.1016/j.jmst.2021.09.003_bib0011) 2020; 50 |
References_xml | – volume: 77 start-page: 108 year: 2021 end-page: 116 ident: bib0019 publication-title: J. Mater. Sci. Technol. – volume: 81 year: 2021 ident: bib0007 publication-title: Nano Energy – volume: 272 year: 2020 ident: bib0009 publication-title: Appl. Catal. B Environ. – volume: 11 start-page: 5437 year: 2020 ident: bib0031 publication-title: Nat. Commun. – volume: 9 start-page: 5542 year: 2007 end-page: 5554 ident: bib0048 publication-title: Phys. Chem. Chem. Phys. – volume: 50 start-page: 125 year: 2020 end-page: 134 ident: bib0011 publication-title: J. Energy Chem. – volume: 26 start-page: 8555 year: 2016 end-page: 8561 ident: bib0066 publication-title: Adv. Funct. Mater. – volume: 59 start-page: 9491 year: 2020 end-page: 9495 ident: bib0075 publication-title: Inorg. Chem. – volume: 2020 year: 2020 ident: bib0021 publication-title: Research – volume: 7 start-page: 18338 year: 2019 end-page: 18347 ident: bib0028 publication-title: J. Mater. Chem. A – volume: 93 start-page: 110 year: 2021 end-page: 118 ident: bib0032 publication-title: J. Mater. Sci. Technol. – volume: 140 start-page: 3876 year: 2018 end-page: 3879 ident: bib0013 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 33833 year: 2017 end-page: 33840 ident: bib0016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 23142 year: 2020 end-page: 23161 ident: bib0010 publication-title: J. Mater. Chem. A – volume: 8 start-page: 5382 year: 2018 end-page: 5390 ident: bib0060 publication-title: ACS Catal. – volume: 383 start-page: 164 year: 2020 end-page: 171 ident: bib0039 publication-title: J. Catal. – volume: 8 start-page: 1238 year: 2018 end-page: 1247 ident: bib0067 publication-title: ACS Catal. – volume: 78 start-page: 229 year: 2021 end-page: 237 ident: bib0002 publication-title: J. Mater. Sci. Technol. – volume: 8 start-page: 19729 year: 2020 end-page: 19745 ident: bib0006 publication-title: J. Mater. Chem. A – volume: 1 start-page: 526 year: 2019 end-page: 533 ident: bib0040 publication-title: ACS Mater. Lett. – volume: 34 start-page: 11628 year: 2020 end-page: 11636 ident: bib0058 publication-title: Energy Fuels – volume: 82 start-page: 96 year: 2021 end-page: 104 ident: bib0018 publication-title: J. Mater. Sci. Technol. – volume: 102 start-page: 159 year: 2022 end-page: 165 ident: bib0025 publication-title: J. Mater. Sci. Technol. – volume: 42 start-page: 10 year: 2020 end-page: 16 ident: bib0017 publication-title: J. Mater. Sci. Technol. – volume: 52 start-page: 908 year: 2016 end-page: 911 ident: bib0059 publication-title: Chem. Commun – volume: 32 year: 2020 ident: bib0033 publication-title: Adv. Mater. – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: bib0023 publication-title: Nature – volume: 82 start-page: 207 year: 2021 end-page: 213 ident: bib0027 publication-title: J. Mater. Sci. Technol. – volume: 8 start-page: 18318 year: 2020 end-page: 18326 ident: bib0036 publication-title: J. Mater. Chem. A – volume: 5 start-page: 10072 year: 2017 end-page: 10083 ident: bib0049 publication-title: Chem. Eng. – volume: 167 year: 2020 ident: bib0053 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 2439 year: 2013 ident: bib0074 publication-title: Nat. Commun. – volume: 36 start-page: 612 year: 2015 end-page: 616 ident: bib0052 publication-title: Rare Met. – volume: 11 start-page: 44161 year: 2019 end-page: 44169 ident: bib0054 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 21920 year: 2020 end-page: 21924 ident: bib0034 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 417 year: 2020 ident: bib0062 publication-title: Chem. Eng. J. – volume: 64 start-page: 364 year: 2022 end-page: 371 ident: bib0012 publication-title: J. Energy Chem. – volume: 31 start-page: 1142 year: 2015 end-page: 1147 ident: bib0024 publication-title: Mater. Sci. Technol. – volume: 31 year: 2020 ident: bib0045 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 9904 year: 2021 end-page: 9907 ident: bib0004 publication-title: Nanoscale – volume: 11 start-page: 5500 year: 2017 end-page: 5509 ident: bib0055 publication-title: ACS Nano – volume: 63 start-page: 2613 year: 2020 end-page: 2619 ident: bib0029 publication-title: Sci. China Mater. – volume: 13 start-page: 86 year: 2020 end-page: 95 ident: bib0065 publication-title: Energy Environ. Sci. – volume: 8 start-page: 3162 year: 2021 end-page: 3166 ident: bib0015 publication-title: Inorg. Chem. Front. – year: 2021 ident: bib0001 publication-title: J. Mater. Sci. Technol. – volume: 4 start-page: 3211 year: 2020 end-page: 3228 ident: bib0005 publication-title: Sustain. Energy Fuels – volume: 8 start-page: 9871 year: 2020 end-page: 9881 ident: bib0061 publication-title: J. Mater. Chem. A – volume: 29 year: 2019 ident: bib0035 publication-title: Adv. Funct. Mater. – volume: 7 year: 2017 ident: bib0003 publication-title: Adv. Energy Mater. – volume: 8 start-page: 3049 year: 2021 end-page: 3054 ident: bib0014 publication-title: Inorg. Chem. Front. – volume: 8 start-page: 14844 year: 2020 end-page: 14862 ident: bib0030 publication-title: J. Mater. Chem. A – volume: 44 start-page: 22991 year: 2019 end-page: 23001 ident: bib0051 publication-title: Int. J. Hydrog. Energy – volume: 8 start-page: 1230 year: 2018 end-page: 1235 ident: bib0042 publication-title: MRS Commun. – volume: 68 start-page: 191 year: 2021 end-page: 198 ident: bib0057 publication-title: J. Mater. Sci. Technol. – volume: 27 start-page: 3394 year: 2013 end-page: 3399 ident: bib0050 publication-title: Energy Fuels – volume: 10 year: 2020 ident: bib0020 publication-title: Adv. Energy Mater. – volume: 10 start-page: 5106 year: 2019 ident: bib0069 publication-title: Nat. Commun. – volume: 10 year: 2020 ident: bib0044 publication-title: Adv. Energy Mater. – volume: 12 start-page: 7116 year: 2020 end-page: 7123 ident: bib0047 publication-title: Nanoscale – volume: 12 start-page: 13971 year: 2020 end-page: 13981 ident: bib0063 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2020 ident: bib0072 publication-title: Adv. Sustain. Syst. – volume: 2 start-page: 1319 year: 2000 end-page: 1324 ident: bib0068 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 11031 year: 2017 end-page: 11040 ident: bib0073 publication-title: ACS Nano – volume: 404 year: 2021 ident: bib0056 publication-title: Chem. Eng. J. – volume: 2 year: 2020 ident: bib0008 publication-title: Small Struct. – volume: 9 start-page: 41239 year: 2017 end-page: 41245 ident: bib0070 publication-title: ACS Appl. Mater. Interfaces – volume: 73 start-page: 47 year: 2018 end-page: 57 ident: bib0046 publication-title: J. Environ. Sci. – volume: 9 start-page: 2609 year: 2018 ident: bib0043 publication-title: Nat. Commun. – volume: 430 start-page: 104 year: 2019 end-page: 111 ident: bib0037 publication-title: J. Power Sources – volume: 53 start-page: 1111 year: 2020 end-page: 1123 ident: bib0071 publication-title: Acc. Chem. Res. – volume: 268 year: 2020 ident: bib0041 publication-title: Appl. Catal. B Environ. – volume: 37 start-page: 154 year: 2020 end-page: 160 ident: bib0064 publication-title: J. Mater. Sci. Technol. – volume: 739 start-page: 86 year: 2019 end-page: 89 ident: bib0022 publication-title: Mater. Sci. Eng. A – volume: 86 start-page: 158 year: 2021 end-page: 170 ident: bib0026 publication-title: J. Mater. Sci. Technol. – volume: 7 start-page: 8386 year: 2017 end-page: 8393 ident: bib0038 publication-title: ACS Catal. – volume: 4 start-page: 3211 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0005 publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE00466A – volume: 2 start-page: 1319 year: 2000 ident: 10.1016/j.jmst.2021.09.003_bib0068 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a908800h – volume: 59 start-page: 9491 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0075 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c01927 – volume: 73 start-page: 47 year: 2018 ident: 10.1016/j.jmst.2021.09.003_bib0046 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.01.010 – volume: 140 start-page: 3876 year: 2018 ident: 10.1016/j.jmst.2021.09.003_bib0013 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 8 start-page: 18318 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0036 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04940A – volume: 9 start-page: 33833 year: 2017 ident: 10.1016/j.jmst.2021.09.003_bib0016 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08917 – volume: 9 start-page: 2609 year: 2018 ident: 10.1016/j.jmst.2021.09.003_bib0043 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05019-5 – volume: 13 start-page: 86 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0065 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02388G – volume: 739 start-page: 86 year: 2019 ident: 10.1016/j.jmst.2021.09.003_bib0022 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.10.035 – volume: 7 year: 2017 ident: 10.1016/j.jmst.2021.09.003_bib0003 publication-title: Adv. Energy Mater. – volume: 7 start-page: 18338 year: 2019 ident: 10.1016/j.jmst.2021.09.003_bib0028 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05161A – volume: 404 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0056 publication-title: Chem. Eng. J. – volume: 53 start-page: 1111 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0071 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00127 – volume: 4 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0072 publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201900105 – volume: 268 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0041 publication-title: Appl. Catal. B Environ. – year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0001 publication-title: J. Mater. Sci. Technol. – volume: 430 start-page: 104 year: 2019 ident: 10.1016/j.jmst.2021.09.003_bib0037 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.05.030 – volume: 534 start-page: 227 year: 2016 ident: 10.1016/j.jmst.2021.09.003_bib0023 publication-title: Nature doi: 10.1038/nature17981 – volume: 86 start-page: 158 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0026 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.12.079 – volume: 8 start-page: 23142 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0010 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09092A – volume: 44 start-page: 22991 year: 2019 ident: 10.1016/j.jmst.2021.09.003_bib0051 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.07.018 – volume: 10 start-page: 5106 year: 2019 ident: 10.1016/j.jmst.2021.09.003_bib0069 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13092-7 – volume: 59 start-page: 21920 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0034 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202009002 – volume: 8 start-page: 5382 year: 2018 ident: 10.1016/j.jmst.2021.09.003_bib0060 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01332 – volume: 50 start-page: 125 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0011 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.020 – volume: 42 start-page: 10 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0017 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.08.042 – volume: 8 start-page: 3049 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0014 publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI00124H – volume: 417 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0062 publication-title: Chem. Eng. J. – volume: 31 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0045 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 5542 year: 2007 ident: 10.1016/j.jmst.2021.09.003_bib0048 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b709167b – volume: 34 start-page: 11628 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0058 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c02533 – volume: 26 start-page: 8555 year: 2016 ident: 10.1016/j.jmst.2021.09.003_bib0066 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604804 – volume: 167 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0053 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abb6cb – volume: 93 start-page: 110 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0032 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.03.046 – volume: 78 start-page: 229 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0002 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.10.058 – volume: 7 start-page: 8386 year: 2017 ident: 10.1016/j.jmst.2021.09.003_bib0038 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02949 – volume: 10 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0044 publication-title: Adv. Energy Mater. – volume: 13 start-page: 9904 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0004 publication-title: Nanoscale doi: 10.1039/D1NR90103F – volume: 4 start-page: 2439 year: 2013 ident: 10.1016/j.jmst.2021.09.003_bib0074 publication-title: Nat. Commun. doi: 10.1038/ncomms3439 – volume: 8 start-page: 19729 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0006 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05628F – volume: 31 start-page: 1142 year: 2015 ident: 10.1016/j.jmst.2021.09.003_bib0024 publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000749 – volume: 52 start-page: 908 year: 2016 ident: 10.1016/j.jmst.2021.09.003_bib0059 publication-title: Chem. Commun doi: 10.1039/C5CC08845C – volume: 102 start-page: 159 year: 2022 ident: 10.1016/j.jmst.2021.09.003_bib0025 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.07.002 – volume: 63 start-page: 2613 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0029 publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1461-2 – volume: 77 start-page: 108 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0019 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.09.046 – volume: 68 start-page: 191 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0057 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.06.045 – volume: 9 start-page: 41239 year: 2017 ident: 10.1016/j.jmst.2021.09.003_bib0070 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b12629 – volume: 8 start-page: 9871 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0061 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03272G – volume: 11 start-page: 5500 year: 2017 ident: 10.1016/j.jmst.2021.09.003_bib0055 publication-title: ACS Nano doi: 10.1021/acsnano.7b00233 – volume: 8 start-page: 1238 year: 2018 ident: 10.1016/j.jmst.2021.09.003_bib0067 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03191 – volume: 81 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0007 publication-title: Nano Energy – volume: 1 start-page: 526 year: 2019 ident: 10.1016/j.jmst.2021.09.003_bib0040 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00414 – volume: 36 start-page: 612 year: 2015 ident: 10.1016/j.jmst.2021.09.003_bib0052 publication-title: Rare Met. doi: 10.1007/s12598-015-0548-8 – volume: 37 start-page: 154 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0064 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.06.021 – volume: 82 start-page: 96 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0018 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.11.020 – volume: 2020 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0021 publication-title: Research – volume: 82 start-page: 207 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0027 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.12.042 – volume: 8 start-page: 1230 year: 2018 ident: 10.1016/j.jmst.2021.09.003_bib0042 publication-title: MRS Commun. doi: 10.1557/mrc.2018.111 – volume: 64 start-page: 364 year: 2022 ident: 10.1016/j.jmst.2021.09.003_bib0012 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.04.067 – volume: 29 year: 2019 ident: 10.1016/j.jmst.2021.09.003_bib0035 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905933 – volume: 383 start-page: 164 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0039 publication-title: J. Catal. doi: 10.1016/j.jcat.2020.01.024 – volume: 27 start-page: 3394 year: 2013 ident: 10.1016/j.jmst.2021.09.003_bib0050 publication-title: Energy Fuels doi: 10.1021/ef400163x – volume: 11 start-page: 44161 year: 2019 ident: 10.1016/j.jmst.2021.09.003_bib0054 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14213 – volume: 32 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0033 publication-title: Adv. Mater. – volume: 12 start-page: 13971 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0063 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00701 – volume: 10 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0020 publication-title: Adv. Energy Mater. – volume: 2 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0008 publication-title: Small Struct. – volume: 12 start-page: 7116 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0047 publication-title: Nanoscale doi: 10.1039/D0NR00446D – volume: 8 start-page: 14844 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0030 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05176D – volume: 272 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0009 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119046 – volume: 11 start-page: 5437 year: 2020 ident: 10.1016/j.jmst.2021.09.003_bib0031 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19277-9 – volume: 11 start-page: 11031 year: 2017 ident: 10.1016/j.jmst.2021.09.003_bib0073 publication-title: ACS Nano doi: 10.1021/acsnano.7b05050 – volume: 8 start-page: 3162 year: 2021 ident: 10.1016/j.jmst.2021.09.003_bib0015 publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI00428J – volume: 5 start-page: 10072 year: 2017 ident: 10.1016/j.jmst.2021.09.003_bib0049 publication-title: Chem. Eng. |
SSID | ssj0037588 |
Score | 2.5053284 |
Snippet | •The self-supported HEA catalyst was prepared by corrosion engineering.•Amorphous honeycomb nano-hydroxides are obtained on the HEA surface.•HEA-250Ni... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 267 |
SubjectTerms | Corrosion engineering Electrocatalysis High entropy alloy Oxygen evolution reaction Self-supporting |
Title | Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst |
URI | https://dx.doi.org/10.1016/j.jmst.2021.09.003 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TuwwELUQNFAgHhfB8pALOhTWj8ROShSxWkDQABJdFDu2xGuz2g1Xdxu-gI9mJusAl4KCJoomsRXZR56JfeYMIYdeO1MJg7KhmYpiLlxkSlMClm1qU14qYXEf8vJKDW_j87vkboHkXS4M0irD2j9f09vVOlj6YTT74_v7_jVvtUzAB6E-DTgmzGCPNaL8-PWD5iEhHp6nwyFJTSKbp_fJ8Xp4niKfUvBW67QrnPXdOX1xOIM1shoiRXoy_5h1suBGG2Tli37gJnnL6wl0BENL3aedQuA8bdqbl6dHOnAJuxxJltec5RPOKCoUR7ipW49nFM_d4ToN1lZQAp6B_bHECJTW_2aAMer-BoxSiDLbXAgaKui0G0CzafOH3AxOb_JhFMorRFYq1aAup_eVEZiryrxPUVxepF4YnXHvrWEO_v584pIyVZVwVmphhKyMSlNlMya3yOKoHrltQnlWSau1LqGj2GtuWGqNkqzU0lY2FjuEd8Na2CA9jhUwnoqOY_ZQ4FQUOBUFy1CwdIccfbQZz4U3fnw76War-A8-BXiGH9r1ftlulywLzIMAUAm2RxabyYvbh-ikMQct_A7I0snZxfDqHaJC5pw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9tAEIBHNBwoh4qWVuXRdg-9ISv7iNf2EVmNQiG5NEjcLO96V-LROEoMIv-BH82MswbKgUMvljX2WtbuaGa8nvkG4KdPnKmkIWxopqOBkC4ypSlRl21qU1FqaWkfcjzRo_PB74v4YgPyrhaG0iqD7V_b9NZaB0k_zGZ_fnnZ_yNalgn6IOLToGN6B5tEp4p7sHl8cjqadAZZYUi8roijPDVFCT37z2leV3-XlFIpRYs77XpnvfZPL3zOcAc-hGCRHa_f5yNsuNkn2H6BENyFh7xe4INwdpl7ljOMnZdNe3J7c82GLubjmeJ5LXi-EJwRpDiifd16vmL06x2PyyBtmRJ4DeXXJQWhrL5foZoxdxfUlGGg2ZZDsNBEp90DWi2bzzAd_prmoyh0WIis0rohNKf3lZFUrsq9T4kvL1MvTZIJ763hDj8AfeziMtWVdFYl0khVGZ2m2mZcfYHerJ65r8BEVimbJEmJDxr4RBieWqMVLxNlKzuQeyC6aS1soI9TE4ybokszuypoKQpaioJnxCzdg6OnMfM1e-PNu-NutYp_NKhA5_DGuP3_HPcDtkbT8VlxdjI5PYD3ksoiUMEkP4Res7h13zBYacz3oIyPiu3pTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+engineering+boosting+bulk+Fe50Mn30Co10Cr10+high-entropy+alloy+as+high-efficient+alkaline+oxygen+evolution+reaction+electrocatalyst&rft.jtitle=Journal+of+materials+science+%26+technology&rft.au=Zhou%2C+Pengfei&rft.au=Liu%2C+Dong&rft.au=Chen%2C+Yuyun&rft.au=Chen%2C+Mingpeng&rft.date=2022-05-20&rft.issn=1005-0302&rft.volume=109&rft.spage=267&rft.epage=275&rft_id=info:doi/10.1016%2Fj.jmst.2021.09.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmst_2021_09_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-0302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-0302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-0302&client=summon |