Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst

•The self-supported HEA catalyst was prepared by corrosion engineering.•Amorphous honeycomb nano-hydroxides are obtained on the HEA surface.•HEA-250Ni demonstrates the high OER activity and excellent stability.•The excellent performance is due to its special structure and diverse valence states.•Our...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science & technology Vol. 109; pp. 267 - 275
Main Authors Zhou, Pengfei, Liu, Dong, Chen, Yuyun, Chen, Mingpeng, Liu, Yunxiao, Chen, Shi, Kwok, Chi Tat, Tang, Yuxin, Wang, Shuangpeng, Pan, Hui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The self-supported HEA catalyst was prepared by corrosion engineering.•Amorphous honeycomb nano-hydroxides are obtained on the HEA surface.•HEA-250Ni demonstrates the high OER activity and excellent stability.•The excellent performance is due to its special structure and diverse valence states.•Our findings open up a new avenue to prepare large-scale HEA as electrocatalysts. Oxygen evolution reaction (OER) is a critical process in electrocatalytic water splitting. However, the development of low-cost, highly efficient OER electrocatalysts by a simple method that can be used for industrial application on a large scale is still a huge challenge. Recently, high entropy alloy (HEA) has acquired extensive attention, which may provide answers to the current dilemma. Here, we report bulk Fe50Mn30Co10Cr10, which is prepared by 3D printing on a large scale, as electrocatalyst for OER with high catalytic performance. Especially, an easy approach, corrosion engineering, is adopted for the first time to build an active layer of honeycomb nanostructures on its surface, leading to ultrahigh OER performance with an overpotential of 247 mV to achieve a current density of 10 mA cm−2, a low Tafel slope of 63 mV dec−1, and excellent stability up to 60 h at 100 mA cm−2 in 1 M KOH. The excellent catalytic activity mainly originates from: (1) the binder-free self-supported honeycomb nanostructures and multi-component hydroxides, which improve intrinsic catalytic activity, provide rich active sites, and reduce interfacial resistance; and (2) the diverse valence states for multiple active sites to enhance the OER kinetics. Our findings show that corrosion engineering is a novel strategy to improve the bulk HEA catalytic performance. We expect that this work would open up a new avenue to fabricate large-scale HEA electrocatalysts by 3D printing and corrosion engineering for industrial applications. [Display omitted]
AbstractList •The self-supported HEA catalyst was prepared by corrosion engineering.•Amorphous honeycomb nano-hydroxides are obtained on the HEA surface.•HEA-250Ni demonstrates the high OER activity and excellent stability.•The excellent performance is due to its special structure and diverse valence states.•Our findings open up a new avenue to prepare large-scale HEA as electrocatalysts. Oxygen evolution reaction (OER) is a critical process in electrocatalytic water splitting. However, the development of low-cost, highly efficient OER electrocatalysts by a simple method that can be used for industrial application on a large scale is still a huge challenge. Recently, high entropy alloy (HEA) has acquired extensive attention, which may provide answers to the current dilemma. Here, we report bulk Fe50Mn30Co10Cr10, which is prepared by 3D printing on a large scale, as electrocatalyst for OER with high catalytic performance. Especially, an easy approach, corrosion engineering, is adopted for the first time to build an active layer of honeycomb nanostructures on its surface, leading to ultrahigh OER performance with an overpotential of 247 mV to achieve a current density of 10 mA cm−2, a low Tafel slope of 63 mV dec−1, and excellent stability up to 60 h at 100 mA cm−2 in 1 M KOH. The excellent catalytic activity mainly originates from: (1) the binder-free self-supported honeycomb nanostructures and multi-component hydroxides, which improve intrinsic catalytic activity, provide rich active sites, and reduce interfacial resistance; and (2) the diverse valence states for multiple active sites to enhance the OER kinetics. Our findings show that corrosion engineering is a novel strategy to improve the bulk HEA catalytic performance. We expect that this work would open up a new avenue to fabricate large-scale HEA electrocatalysts by 3D printing and corrosion engineering for industrial applications. [Display omitted]
Author Pan, Hui
Kwok, Chi Tat
Chen, Yuyun
Chen, Mingpeng
Chen, Shi
Zhou, Pengfei
Liu, Dong
Liu, Yunxiao
Tang, Yuxin
Wang, Shuangpeng
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Zhou
  fullname: Zhou, Pengfei
  organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao
– sequence: 2
  givenname: Dong
  surname: Liu
  fullname: Liu, Dong
  organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao
– sequence: 3
  givenname: Yuyun
  surname: Chen
  fullname: Chen, Yuyun
  organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao
– sequence: 4
  givenname: Mingpeng
  surname: Chen
  fullname: Chen, Mingpeng
  organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao
– sequence: 5
  givenname: Yunxiao
  surname: Liu
  fullname: Liu, Yunxiao
  organization: Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, 999078, Macao
– sequence: 6
  givenname: Shi
  surname: Chen
  fullname: Chen, Shi
  organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao
– sequence: 7
  givenname: Chi Tat
  surname: Kwok
  fullname: Kwok, Chi Tat
  organization: Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao
– sequence: 8
  givenname: Yuxin
  surname: Tang
  fullname: Tang, Yuxin
  email: yxtang@fzu.edu.cn
  organization: College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
– sequence: 9
  givenname: Shuangpeng
  orcidid: 0000-0001-8464-4994
  surname: Wang
  fullname: Wang, Shuangpeng
  email: spwang@um.edu.mo
  organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao
– sequence: 10
  givenname: Hui
  orcidid: 0000-0002-6515-4970
  surname: Pan
  fullname: Pan, Hui
  email: huipan@um.edu.mo
  organization: Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macao
BookMark eNp9kM1OxCAUhYnRRB19AVd9gdYLnTI0cWMa_xKNG_eE0ssMIxYDjHHewYeWzszKhRs4ufAdOOecHI9-REKuKFQUKL9eV-uPmCoGjFbQVgD1ETmj7ZyWlHJ2nDVAU0IN7JScx7jOFxaNEGfkp_Mh-Gj9WOC4tCNisOOy6L2PaSc27r24xwZexho6T6ELFIqVXa5KHFPwn9tCOefzGg9TY6y2-SzP35XLjoX_3i4x-395t0nTSwGV3gl0qLOJVkm5bUwX5MQoF_HysM_I2_3dW_dYPr8-PHW3z6WuOU9ly7kxQ8_mOQEYI2AuaiYM6xctNUb3gFTMTYONEnxgqOsF61k99FwIrluoZ0TsbXVOHgMaqW1S04dSUNZJCnIqVa7lVKqcSpXQytxZRtkf9DPYDxW2_0M3ewhzpi-LQcapIY2DDTm_HLz9D_8F3rmWTA
CitedBy_id crossref_primary_10_1016_j_jcis_2024_11_034
crossref_primary_10_1016_j_jece_2022_109080
crossref_primary_10_1016_j_cej_2023_144015
crossref_primary_10_1002_adma_202404772
crossref_primary_10_1016_j_jcis_2023_05_123
crossref_primary_10_1016_j_jallcom_2023_169699
crossref_primary_10_1002_cjoc_202300718
crossref_primary_10_1021_acsnano_4c03435
crossref_primary_10_1002_smll_202405596
crossref_primary_10_1016_j_jmrt_2023_02_135
crossref_primary_10_1002_cmt2_26
crossref_primary_10_1016_j_ijhydene_2023_12_271
crossref_primary_10_1016_j_ijhydene_2024_03_351
crossref_primary_10_1039_D4TA04274C
crossref_primary_10_1039_D2TA09052J
crossref_primary_10_1016_j_jpcs_2022_110730
crossref_primary_10_1016_j_jallcom_2023_170131
crossref_primary_10_1002_cssc_202201464
crossref_primary_10_1002_adsu_202300192
crossref_primary_10_1007_s12598_022_02255_z
crossref_primary_10_1007_s40843_022_2234_5
crossref_primary_10_3866_PKU_WHXB202404023
crossref_primary_10_1002_smsc_202200109
crossref_primary_10_1016_j_jcis_2024_12_147
crossref_primary_10_1007_s40820_024_01504_3
crossref_primary_10_1016_j_coelec_2022_101136
crossref_primary_10_1016_j_jmst_2024_01_096
crossref_primary_10_1016_j_gee_2024_07_009
crossref_primary_10_1016_j_jmst_2024_07_025
crossref_primary_10_1016_j_jallcom_2024_176427
crossref_primary_10_1016_j_ijhydene_2024_09_379
crossref_primary_10_1016_j_ensm_2024_103718
crossref_primary_10_1016_j_est_2023_106813
crossref_primary_10_1016_j_ijhydene_2024_10_160
crossref_primary_10_1016_j_jallcom_2023_169319
crossref_primary_10_1016_j_decarb_2023_100019
crossref_primary_10_1016_j_jiec_2024_02_015
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1016_j_ijhydene_2023_07_023
crossref_primary_10_1016_j_ijhydene_2024_09_075
crossref_primary_10_1016_j_mtnano_2022_100282
crossref_primary_10_1016_j_apsusc_2025_162383
crossref_primary_10_1016_j_jallcom_2022_168582
crossref_primary_10_1002_smll_202311929
crossref_primary_10_1016_j_ijhydene_2022_07_135
crossref_primary_10_1016_j_cej_2024_153997
crossref_primary_10_1016_j_ijhydene_2024_06_267
crossref_primary_10_1039_D2SE00929C
crossref_primary_10_1016_j_jpowsour_2024_235804
crossref_primary_10_1016_j_ccr_2024_215832
crossref_primary_10_1016_j_jclepro_2023_136076
crossref_primary_10_1088_2752_5724_accbd8
crossref_primary_10_1016_j_jallcom_2023_169987
crossref_primary_10_1016_j_surfcoat_2023_129407
crossref_primary_10_1016_j_jelechem_2025_119083
crossref_primary_10_1016_j_mtphys_2023_101169
crossref_primary_10_1016_j_jmst_2024_02_068
crossref_primary_10_12677_NAT_2022_124030
Cites_doi 10.1039/D0SE00466A
10.1039/a908800h
10.1021/acs.inorgchem.0c01927
10.1016/j.jes.2018.01.010
10.1021/jacs.8b00752
10.1039/D0TA04940A
10.1021/acsami.7b08917
10.1038/s41467-018-05019-5
10.1039/C9EE02388G
10.1016/j.msea.2018.10.035
10.1039/C9TA05161A
10.1021/acs.accounts.0c00127
10.1002/adsu.201900105
10.1016/j.jpowsour.2019.05.030
10.1038/nature17981
10.1016/j.jmst.2020.12.079
10.1039/D0TA09092A
10.1016/j.ijhydene.2019.07.018
10.1038/s41467-019-13092-7
10.1002/anie.202009002
10.1021/acscatal.8b01332
10.1016/j.jechem.2020.03.020
10.1016/j.jmst.2019.08.042
10.1039/D1QI00124H
10.1039/b709167b
10.1021/acs.energyfuels.0c02533
10.1002/adfm.201604804
10.1149/1945-7111/abb6cb
10.1016/j.jmst.2021.03.046
10.1016/j.jmst.2020.10.058
10.1021/acscatal.7b02949
10.1039/D1NR90103F
10.1038/ncomms3439
10.1039/D0TA05628F
10.1179/1743284714Y.0000000749
10.1039/C5CC08845C
10.1016/j.jmst.2021.07.002
10.1007/s40843-020-1461-2
10.1016/j.jmst.2020.09.046
10.1016/j.jmst.2020.06.045
10.1021/acsami.7b12629
10.1039/D0TA03272G
10.1021/acsnano.7b00233
10.1021/acscatal.7b03191
10.1021/acsmaterialslett.9b00414
10.1007/s12598-015-0548-8
10.1016/j.jmst.2019.06.021
10.1016/j.jmst.2020.11.020
10.1016/j.jmst.2020.12.042
10.1557/mrc.2018.111
10.1016/j.jechem.2021.04.067
10.1002/adfm.201905933
10.1016/j.jcat.2020.01.024
10.1021/ef400163x
10.1021/acsami.9b14213
10.1021/acsami.0c00701
10.1039/D0NR00446D
10.1039/D0TA05176D
10.1016/j.apcatb.2020.119046
10.1038/s41467-020-19277-9
10.1021/acsnano.7b05050
10.1039/D1QI00428J
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.jmst.2021.09.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-1162
EndPage 275
ExternalDocumentID 10_1016_j_jmst_2021_09_003
S1005030221008240
GroupedDBID --K
--M
-02
-0B
-SB
-S~
.~1
0R~
1B1
1~.
4.4
457
5GY
5VR
5VS
5XA
5XC
5XL
8P~
92M
9D9
9DB
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CHBEP
CW9
DU5
EBS
EFJIC
EFLBG
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q--
Q38
R-B
ROL
RT2
S..
SDF
SES
SPC
SPCBC
SSM
SSZ
T5K
T8R
U1F
U1G
U5B
U5L
~G-
92H
92I
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFUIB
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
HZ~
RIG
SSH
TCJ
TGT
ID FETCH-LOGICAL-c366t-966ffdb245880ff8048328f2b791ffcb0e184f5e5a86d2ec372b23db6886c903
IEDL.DBID .~1
ISSN 1005-0302
IngestDate Thu Apr 24 22:53:19 EDT 2025
Tue Jul 01 02:20:06 EDT 2025
Fri Feb 23 02:38:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Corrosion engineering
Electrocatalysis
Self-supporting
Oxygen evolution reaction
High entropy alloy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-966ffdb245880ff8048328f2b791ffcb0e184f5e5a86d2ec372b23db6886c903
ORCID 0000-0002-6515-4970
0000-0001-8464-4994
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_jmst_2021_09_003
crossref_primary_10_1016_j_jmst_2021_09_003
elsevier_sciencedirect_doi_10_1016_j_jmst_2021_09_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-20
PublicationDateYYYYMMDD 2022-05-20
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-20
  day: 20
PublicationDecade 2020
PublicationTitle Journal of materials science & technology
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dai, Lu, Pan (bib0037) 2019; 430
Wang, Wang, Zhang, Liu, Luo, Cui, Lu, Wang, Ma, Sun (bib0075) 2020; 59
Chen, Qian, Xu, Yu, Yu, Xia, Yin (bib0047) 2020; 12
Bo, Li, Hocking, Zhao (bib0070) 2017; 9
Pang, Xu, Zhu, Cui, Liang, Li, Wu, Chang, Luo (bib0018) 2021; 82
Dupin, Gonbeau, Vinatier, Levasseur (bib0068) 2000; 2
Bondesgaard, Broge, Mamakhel, Bremholm, Iversen (bib0035) 2019; 29
Sial, Baskaran, Jalil, Talib, Lin, Yao, Zhang, Qian, Zou, Zeng (bib0051) 2019; 44
Fan, Mu, Wei, Peng, Shen (bib0061) 2020; 8
Liu, Liu, Qu, Wang, Zhang, Ge, Hao, Ma, Du, Asiri, Chen, Sun (bib0003) 2017; 7
Liang, Zou, Nairan, Zhang, Liu, Liu, Hu, Kang, Fan, Yang (bib0065) 2020; 13
Liu, Zhang, Waterhouse (bib0010) 2020; 8
Kuang, Han, Wang, Li, Zheng (bib0066) 2016; 26
Chen, Cai, Yang, Kronawitter, Guo, Shen, Koel (bib0067) 2018; 8
Yu, Zhu, Song, McElhenny, Wang, Wu, Qin, Bao, Yu, Chen, Ren (bib0069) 2019; 10
Zhang, Lv, Tian, Li, Ao, Lan, Jiang, Wang (bib0016) 2017; 9
Zhao, Su, Li, Bi, Han (bib0046) 2018; 73
He, Jia, Wang, Yan, Shen (bib0026) 2021; 86
Yang, Song, Mo, Liu (bib0062) 2020; 417
Fang, Gao, Lv, Jia, Li, Liu, Xie, Chen, Huang, Yuan, Liu, Lin, Sun, Qiu (bib0041) 2020; 268
Liu, Ai, Li, Fang, Chen, Liu, Du, Zhou, Li, Lo, Tang, Chen, Wang, Xing, Pan (bib0020) 2020; 10
Li, Pradeep, Deng, Raabe, Tasan (bib0023) 2016; 534
Peng, Xie, Xie, Wu, Zhu, Liang, Wang (bib0036) 2020; 8
Jiang, Tang, Zhang, Hu (bib0071) 2020; 53
Zhang, Zhao, Xu, Liu, Li, Luo, Gao, Shi, Asiri, Sun (bib0008) 2020; 2
Shang, Tang, Dong, Sun (bib0005) 2020; 4
Jothi, Karuppasamy, Maiyalagan, Rajan, Jung, Yi (bib0044) 2020; 10
Jin, Long, Song, Xiong, Guo, Wang (bib0050) 2013; 27
Huang, Wang, Li, Yin, Wang (bib0032) 2021; 93
Tian, Wei, Guo, Wu, Chen, Xu, Cao, Liu, Wang, Ding, Tu, Zeng (bib0019) 2021; 77
Liu, Gong, Deng, Zhao, Shen, Zhang, Wang (bib0045) 2020; 31
Ding, Bian, Shuang, Liu, Hu, Sun, Yang (bib0072) 2020; 4
Kim, Kim, Lee, Kwon, Kim, Kim, Seok, Park, Kim (bib0012) 2022; 64
Wang, Wei, Li, Ma, Hao, Guan (bib0057) 2021; 68
Xu, Kong, Chen, Wang, Wang (bib0027) 2021; 82
Ye, Zhang, Yue, Deng, Cao, Liu, Luo, Lu, Zheng, Sun (bib0015) 2021; 8
Li, Han, Zhao, Qi, Zhang, Yu, Cai, Li, Lai, Huang, Wang (bib0031) 2020; 11
Zhou, Xiao, Wu, Ou (bib0022) 2019; 739
Grimaud, May, Carlton, Lee, Risch, Hong, Zhou, Shao-Horn (bib0074) 2013; 4
Ong, Zheng, Antonietti (bib0004) 2021; 13
Ma, Zhang, Zhang, Gu, Zhang, Sun, Ji, Fu (bib0029) 2020; 63
Anantharaj, Venkatesh, Salunke, Simha, Prabu, Kundu, Sustain (bib0049) 2017; 5
Chang, Huang, Aaron Ong, Zhao, Li, Wang, Ding (bib0028) 2019; 7
Todoroki, Wadayama (bib0054) 2019; 11
Liu, Liang, Gu, Zhang, Li, Zou, Chen (bib0043) 2018; 9
Park, Sa, Baik, Kwon, Joo, Lee (bib0055) 2017; 11
Cai, Liu, Luo, Chen, Pan, Zhang, Zhong (bib0063) 2020; 12
Wu, Wei, Li, Hu (bib0001) 2021
Wang, Dong, Qiao, Huang, Saray, Zhong, Lin, Cui, Brozena, Hong, Xia, Gao, Chen, Shahbazian-Yassar, Wang, Hu (bib0033) 2020; 32
Yan, Huang, Wu, Li, Tan, Zhang, Sun, Huang, Xiong (bib0017) 2020; 42
Broge, Bondesgaard, Sondergaard-Pedersen, Roelsgaard, Iversen (bib0034) 2020; 59
Xu, Zhao, Li, Liang, Lu, Chen, Gao, Asiri, Wu, Sun (bib0006) 2020; 8
Ren, Zhai, Zhou, Yan, Liu (bib0011) 2020; 50
Gao, Jin, Fan, Xu, Meng, Wang, Yu, Zhang, Wang (bib0025) 2022; 102
Tomboc, Kwon, Joo, Lee (bib0030) 2020; 8
Qiu, Fang, Gao, Wen, Lv, Li, Xie, Liu, Sun (bib0040) 2019; 1
Zhou, Chen, Zhao, Lin, Yu, Xu, Wang, Liu, Sun, Dou (bib0060) 2018; 8
Liu, Xi, Xin, Zhang, Zhang, Zhang, Huang, Li, Liu, Kang (bib0056) 2021; 404
Cao, Wang, Li, Zhang, Luo, Zhang, Asiri, Hu, Liu, Sun (bib0014) 2021; 8
Li, Hu, Liu, Zhang, Wang, Han, Zhong, Hu, Deng (bib0064) 2020; 37
Ramadoss, Chen, Hu, Wang, Jeyagopal, Marimuthu, Wang, Yang (bib0002) 2021; 78
Baltrusaitis, Cwiertny, Grassian (bib0048) 2007; 9
Zhang, Liu, Xi, Yu, Chen, Sun, Wang, Lange, Zhang (bib0013) 2018; 140
Wang, Jiang, Wang, Xian, Wang, Yang (bib0052) 2015; 36
Cui, Zhang, Zeng, Guo (bib0042) 2018; 8
Lu, Qian, Tian, Li, Sun, Duan (bib0059) 2016; 52
Wang, Tao, Lin, Wang, Zhao, Cai, Tao, Zhang, Sun, Hu, Huang, Yang (bib0007) 2021; 81
Gupta, Zhao, Wang, Hwang, Karakalos, Devaguptapu, Mukherjee, Su, Xu, Wu (bib0038) 2017; 7
Du, Ai, Chen, Liu, Chen, Wang, Lo, Pan (bib0009) 2020; 272
Li, Sun, Jiang, Ma, Wang, Qu (bib0058) 2020; 34
Sicklinger, Beyer, Hartmann, Riewald, Sedlmeier, Gasteiger (bib0053) 2020; 167
Miracle (bib0024) 2015; 31
Dai, Geng, Wang, Luo, Li, Zong, Yang, Guo, Zheng, Wang, Yan (bib0073) 2017; 11
Wu, Yu, Xiao, Zhang, Song, Chen, Ren (bib0021) 2020; 2020
Li, Tang, Jia, Li, Xie, Liu, Lin, Qiu (bib0039) 2020; 383
Ma (10.1016/j.jmst.2021.09.003_bib0029) 2020; 63
Wang (10.1016/j.jmst.2021.09.003_bib0007) 2021; 81
Cai (10.1016/j.jmst.2021.09.003_bib0063) 2020; 12
Bo (10.1016/j.jmst.2021.09.003_bib0070) 2017; 9
Chang (10.1016/j.jmst.2021.09.003_bib0028) 2019; 7
Dupin (10.1016/j.jmst.2021.09.003_bib0068) 2000; 2
Liu (10.1016/j.jmst.2021.09.003_bib0010) 2020; 8
Ding (10.1016/j.jmst.2021.09.003_bib0072) 2020; 4
Tian (10.1016/j.jmst.2021.09.003_bib0019) 2021; 77
Gupta (10.1016/j.jmst.2021.09.003_bib0038) 2017; 7
Yan (10.1016/j.jmst.2021.09.003_bib0017) 2020; 42
Wang (10.1016/j.jmst.2021.09.003_bib0033) 2020; 32
Bondesgaard (10.1016/j.jmst.2021.09.003_bib0035) 2019; 29
Cui (10.1016/j.jmst.2021.09.003_bib0042) 2018; 8
Ye (10.1016/j.jmst.2021.09.003_bib0015) 2021; 8
Sicklinger (10.1016/j.jmst.2021.09.003_bib0053) 2020; 167
Liu (10.1016/j.jmst.2021.09.003_bib0056) 2021; 404
Zhang (10.1016/j.jmst.2021.09.003_bib0013) 2018; 140
Jiang (10.1016/j.jmst.2021.09.003_bib0071) 2020; 53
Wu (10.1016/j.jmst.2021.09.003_bib0001) 2021
Kuang (10.1016/j.jmst.2021.09.003_bib0066) 2016; 26
Xu (10.1016/j.jmst.2021.09.003_bib0006) 2020; 8
Park (10.1016/j.jmst.2021.09.003_bib0055) 2017; 11
Miracle (10.1016/j.jmst.2021.09.003_bib0024) 2015; 31
Ong (10.1016/j.jmst.2021.09.003_bib0004) 2021; 13
Wang (10.1016/j.jmst.2021.09.003_bib0052) 2015; 36
Sial (10.1016/j.jmst.2021.09.003_bib0051) 2019; 44
Shang (10.1016/j.jmst.2021.09.003_bib0005) 2020; 4
Liang (10.1016/j.jmst.2021.09.003_bib0065) 2020; 13
Peng (10.1016/j.jmst.2021.09.003_bib0036) 2020; 8
Liu (10.1016/j.jmst.2021.09.003_bib0043) 2018; 9
Baltrusaitis (10.1016/j.jmst.2021.09.003_bib0048) 2007; 9
Anantharaj (10.1016/j.jmst.2021.09.003_bib0049) 2017; 5
Du (10.1016/j.jmst.2021.09.003_bib0009) 2020; 272
Wu (10.1016/j.jmst.2021.09.003_bib0021) 2020; 2020
Liu (10.1016/j.jmst.2021.09.003_bib0045) 2020; 31
Chen (10.1016/j.jmst.2021.09.003_bib0047) 2020; 12
Zhang (10.1016/j.jmst.2021.09.003_bib0016) 2017; 9
Wang (10.1016/j.jmst.2021.09.003_bib0075) 2020; 59
Kim (10.1016/j.jmst.2021.09.003_bib0012) 2022; 64
Huang (10.1016/j.jmst.2021.09.003_bib0032) 2021; 93
Liu (10.1016/j.jmst.2021.09.003_bib0003) 2017; 7
Qiu (10.1016/j.jmst.2021.09.003_bib0040) 2019; 1
Ramadoss (10.1016/j.jmst.2021.09.003_bib0002) 2021; 78
Grimaud (10.1016/j.jmst.2021.09.003_bib0074) 2013; 4
Li (10.1016/j.jmst.2021.09.003_bib0064) 2020; 37
Fan (10.1016/j.jmst.2021.09.003_bib0061) 2020; 8
Cao (10.1016/j.jmst.2021.09.003_bib0014) 2021; 8
Tomboc (10.1016/j.jmst.2021.09.003_bib0030) 2020; 8
Pang (10.1016/j.jmst.2021.09.003_bib0018) 2021; 82
Yang (10.1016/j.jmst.2021.09.003_bib0062) 2020; 417
Zhao (10.1016/j.jmst.2021.09.003_bib0046) 2018; 73
Lu (10.1016/j.jmst.2021.09.003_bib0059) 2016; 52
Li (10.1016/j.jmst.2021.09.003_bib0023) 2016; 534
Xu (10.1016/j.jmst.2021.09.003_bib0027) 2021; 82
Gao (10.1016/j.jmst.2021.09.003_bib0025) 2022; 102
Zhou (10.1016/j.jmst.2021.09.003_bib0060) 2018; 8
Zhou (10.1016/j.jmst.2021.09.003_bib0022) 2019; 739
Chen (10.1016/j.jmst.2021.09.003_bib0067) 2018; 8
Jothi (10.1016/j.jmst.2021.09.003_bib0044) 2020; 10
Todoroki (10.1016/j.jmst.2021.09.003_bib0054) 2019; 11
Broge (10.1016/j.jmst.2021.09.003_bib0034) 2020; 59
Dai (10.1016/j.jmst.2021.09.003_bib0073) 2017; 11
Li (10.1016/j.jmst.2021.09.003_bib0039) 2020; 383
Jin (10.1016/j.jmst.2021.09.003_bib0050) 2013; 27
Zhang (10.1016/j.jmst.2021.09.003_bib0008) 2020; 2
Liu (10.1016/j.jmst.2021.09.003_bib0020) 2020; 10
He (10.1016/j.jmst.2021.09.003_bib0026) 2021; 86
Li (10.1016/j.jmst.2021.09.003_bib0031) 2020; 11
Wang (10.1016/j.jmst.2021.09.003_bib0057) 2021; 68
Li (10.1016/j.jmst.2021.09.003_bib0058) 2020; 34
Dai (10.1016/j.jmst.2021.09.003_bib0037) 2019; 430
Yu (10.1016/j.jmst.2021.09.003_bib0069) 2019; 10
Fang (10.1016/j.jmst.2021.09.003_bib0041) 2020; 268
Ren (10.1016/j.jmst.2021.09.003_bib0011) 2020; 50
References_xml – volume: 77
  start-page: 108
  year: 2021
  end-page: 116
  ident: bib0019
  publication-title: J. Mater. Sci. Technol.
– volume: 81
  year: 2021
  ident: bib0007
  publication-title: Nano Energy
– volume: 272
  year: 2020
  ident: bib0009
  publication-title: Appl. Catal. B Environ.
– volume: 11
  start-page: 5437
  year: 2020
  ident: bib0031
  publication-title: Nat. Commun.
– volume: 9
  start-page: 5542
  year: 2007
  end-page: 5554
  ident: bib0048
  publication-title: Phys. Chem. Chem. Phys.
– volume: 50
  start-page: 125
  year: 2020
  end-page: 134
  ident: bib0011
  publication-title: J. Energy Chem.
– volume: 26
  start-page: 8555
  year: 2016
  end-page: 8561
  ident: bib0066
  publication-title: Adv. Funct. Mater.
– volume: 59
  start-page: 9491
  year: 2020
  end-page: 9495
  ident: bib0075
  publication-title: Inorg. Chem.
– volume: 2020
  year: 2020
  ident: bib0021
  publication-title: Research
– volume: 7
  start-page: 18338
  year: 2019
  end-page: 18347
  ident: bib0028
  publication-title: J. Mater. Chem. A
– volume: 93
  start-page: 110
  year: 2021
  end-page: 118
  ident: bib0032
  publication-title: J. Mater. Sci. Technol.
– volume: 140
  start-page: 3876
  year: 2018
  end-page: 3879
  ident: bib0013
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 33833
  year: 2017
  end-page: 33840
  ident: bib0016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 23142
  year: 2020
  end-page: 23161
  ident: bib0010
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 5382
  year: 2018
  end-page: 5390
  ident: bib0060
  publication-title: ACS Catal.
– volume: 383
  start-page: 164
  year: 2020
  end-page: 171
  ident: bib0039
  publication-title: J. Catal.
– volume: 8
  start-page: 1238
  year: 2018
  end-page: 1247
  ident: bib0067
  publication-title: ACS Catal.
– volume: 78
  start-page: 229
  year: 2021
  end-page: 237
  ident: bib0002
  publication-title: J. Mater. Sci. Technol.
– volume: 8
  start-page: 19729
  year: 2020
  end-page: 19745
  ident: bib0006
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 526
  year: 2019
  end-page: 533
  ident: bib0040
  publication-title: ACS Mater. Lett.
– volume: 34
  start-page: 11628
  year: 2020
  end-page: 11636
  ident: bib0058
  publication-title: Energy Fuels
– volume: 82
  start-page: 96
  year: 2021
  end-page: 104
  ident: bib0018
  publication-title: J. Mater. Sci. Technol.
– volume: 102
  start-page: 159
  year: 2022
  end-page: 165
  ident: bib0025
  publication-title: J. Mater. Sci. Technol.
– volume: 42
  start-page: 10
  year: 2020
  end-page: 16
  ident: bib0017
  publication-title: J. Mater. Sci. Technol.
– volume: 52
  start-page: 908
  year: 2016
  end-page: 911
  ident: bib0059
  publication-title: Chem. Commun
– volume: 32
  year: 2020
  ident: bib0033
  publication-title: Adv. Mater.
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: bib0023
  publication-title: Nature
– volume: 82
  start-page: 207
  year: 2021
  end-page: 213
  ident: bib0027
  publication-title: J. Mater. Sci. Technol.
– volume: 8
  start-page: 18318
  year: 2020
  end-page: 18326
  ident: bib0036
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 10072
  year: 2017
  end-page: 10083
  ident: bib0049
  publication-title: Chem. Eng.
– volume: 167
  year: 2020
  ident: bib0053
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 2439
  year: 2013
  ident: bib0074
  publication-title: Nat. Commun.
– volume: 36
  start-page: 612
  year: 2015
  end-page: 616
  ident: bib0052
  publication-title: Rare Met.
– volume: 11
  start-page: 44161
  year: 2019
  end-page: 44169
  ident: bib0054
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 21920
  year: 2020
  end-page: 21924
  ident: bib0034
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 417
  year: 2020
  ident: bib0062
  publication-title: Chem. Eng. J.
– volume: 64
  start-page: 364
  year: 2022
  end-page: 371
  ident: bib0012
  publication-title: J. Energy Chem.
– volume: 31
  start-page: 1142
  year: 2015
  end-page: 1147
  ident: bib0024
  publication-title: Mater. Sci. Technol.
– volume: 31
  year: 2020
  ident: bib0045
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 9904
  year: 2021
  end-page: 9907
  ident: bib0004
  publication-title: Nanoscale
– volume: 11
  start-page: 5500
  year: 2017
  end-page: 5509
  ident: bib0055
  publication-title: ACS Nano
– volume: 63
  start-page: 2613
  year: 2020
  end-page: 2619
  ident: bib0029
  publication-title: Sci. China Mater.
– volume: 13
  start-page: 86
  year: 2020
  end-page: 95
  ident: bib0065
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 3162
  year: 2021
  end-page: 3166
  ident: bib0015
  publication-title: Inorg. Chem. Front.
– year: 2021
  ident: bib0001
  publication-title: J. Mater. Sci. Technol.
– volume: 4
  start-page: 3211
  year: 2020
  end-page: 3228
  ident: bib0005
  publication-title: Sustain. Energy Fuels
– volume: 8
  start-page: 9871
  year: 2020
  end-page: 9881
  ident: bib0061
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2019
  ident: bib0035
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2017
  ident: bib0003
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 3049
  year: 2021
  end-page: 3054
  ident: bib0014
  publication-title: Inorg. Chem. Front.
– volume: 8
  start-page: 14844
  year: 2020
  end-page: 14862
  ident: bib0030
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 22991
  year: 2019
  end-page: 23001
  ident: bib0051
  publication-title: Int. J. Hydrog. Energy
– volume: 8
  start-page: 1230
  year: 2018
  end-page: 1235
  ident: bib0042
  publication-title: MRS Commun.
– volume: 68
  start-page: 191
  year: 2021
  end-page: 198
  ident: bib0057
  publication-title: J. Mater. Sci. Technol.
– volume: 27
  start-page: 3394
  year: 2013
  end-page: 3399
  ident: bib0050
  publication-title: Energy Fuels
– volume: 10
  year: 2020
  ident: bib0020
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 5106
  year: 2019
  ident: bib0069
  publication-title: Nat. Commun.
– volume: 10
  year: 2020
  ident: bib0044
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 7116
  year: 2020
  end-page: 7123
  ident: bib0047
  publication-title: Nanoscale
– volume: 12
  start-page: 13971
  year: 2020
  end-page: 13981
  ident: bib0063
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2020
  ident: bib0072
  publication-title: Adv. Sustain. Syst.
– volume: 2
  start-page: 1319
  year: 2000
  end-page: 1324
  ident: bib0068
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 11031
  year: 2017
  end-page: 11040
  ident: bib0073
  publication-title: ACS Nano
– volume: 404
  year: 2021
  ident: bib0056
  publication-title: Chem. Eng. J.
– volume: 2
  year: 2020
  ident: bib0008
  publication-title: Small Struct.
– volume: 9
  start-page: 41239
  year: 2017
  end-page: 41245
  ident: bib0070
  publication-title: ACS Appl. Mater. Interfaces
– volume: 73
  start-page: 47
  year: 2018
  end-page: 57
  ident: bib0046
  publication-title: J. Environ. Sci.
– volume: 9
  start-page: 2609
  year: 2018
  ident: bib0043
  publication-title: Nat. Commun.
– volume: 430
  start-page: 104
  year: 2019
  end-page: 111
  ident: bib0037
  publication-title: J. Power Sources
– volume: 53
  start-page: 1111
  year: 2020
  end-page: 1123
  ident: bib0071
  publication-title: Acc. Chem. Res.
– volume: 268
  year: 2020
  ident: bib0041
  publication-title: Appl. Catal. B Environ.
– volume: 37
  start-page: 154
  year: 2020
  end-page: 160
  ident: bib0064
  publication-title: J. Mater. Sci. Technol.
– volume: 739
  start-page: 86
  year: 2019
  end-page: 89
  ident: bib0022
  publication-title: Mater. Sci. Eng. A
– volume: 86
  start-page: 158
  year: 2021
  end-page: 170
  ident: bib0026
  publication-title: J. Mater. Sci. Technol.
– volume: 7
  start-page: 8386
  year: 2017
  end-page: 8393
  ident: bib0038
  publication-title: ACS Catal.
– volume: 4
  start-page: 3211
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0005
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D0SE00466A
– volume: 2
  start-page: 1319
  year: 2000
  ident: 10.1016/j.jmst.2021.09.003_bib0068
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a908800h
– volume: 59
  start-page: 9491
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0075
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c01927
– volume: 73
  start-page: 47
  year: 2018
  ident: 10.1016/j.jmst.2021.09.003_bib0046
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.01.010
– volume: 140
  start-page: 3876
  year: 2018
  ident: 10.1016/j.jmst.2021.09.003_bib0013
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 8
  start-page: 18318
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0036
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04940A
– volume: 9
  start-page: 33833
  year: 2017
  ident: 10.1016/j.jmst.2021.09.003_bib0016
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08917
– volume: 9
  start-page: 2609
  year: 2018
  ident: 10.1016/j.jmst.2021.09.003_bib0043
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05019-5
– volume: 13
  start-page: 86
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0065
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02388G
– volume: 739
  start-page: 86
  year: 2019
  ident: 10.1016/j.jmst.2021.09.003_bib0022
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.10.035
– volume: 7
  year: 2017
  ident: 10.1016/j.jmst.2021.09.003_bib0003
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 18338
  year: 2019
  ident: 10.1016/j.jmst.2021.09.003_bib0028
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05161A
– volume: 404
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0056
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 1111
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0071
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00127
– volume: 4
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0072
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201900105
– volume: 268
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0041
  publication-title: Appl. Catal. B Environ.
– year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0001
  publication-title: J. Mater. Sci. Technol.
– volume: 430
  start-page: 104
  year: 2019
  ident: 10.1016/j.jmst.2021.09.003_bib0037
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.05.030
– volume: 534
  start-page: 227
  year: 2016
  ident: 10.1016/j.jmst.2021.09.003_bib0023
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 86
  start-page: 158
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0026
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.12.079
– volume: 8
  start-page: 23142
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0010
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09092A
– volume: 44
  start-page: 22991
  year: 2019
  ident: 10.1016/j.jmst.2021.09.003_bib0051
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.07.018
– volume: 10
  start-page: 5106
  year: 2019
  ident: 10.1016/j.jmst.2021.09.003_bib0069
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13092-7
– volume: 59
  start-page: 21920
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0034
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202009002
– volume: 8
  start-page: 5382
  year: 2018
  ident: 10.1016/j.jmst.2021.09.003_bib0060
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01332
– volume: 50
  start-page: 125
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0011
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.020
– volume: 42
  start-page: 10
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0017
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.08.042
– volume: 8
  start-page: 3049
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0014
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D1QI00124H
– volume: 417
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0062
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0045
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 5542
  year: 2007
  ident: 10.1016/j.jmst.2021.09.003_bib0048
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b709167b
– volume: 34
  start-page: 11628
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0058
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c02533
– volume: 26
  start-page: 8555
  year: 2016
  ident: 10.1016/j.jmst.2021.09.003_bib0066
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604804
– volume: 167
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0053
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abb6cb
– volume: 93
  start-page: 110
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0032
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.03.046
– volume: 78
  start-page: 229
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0002
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.10.058
– volume: 7
  start-page: 8386
  year: 2017
  ident: 10.1016/j.jmst.2021.09.003_bib0038
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02949
– volume: 10
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0044
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 9904
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0004
  publication-title: Nanoscale
  doi: 10.1039/D1NR90103F
– volume: 4
  start-page: 2439
  year: 2013
  ident: 10.1016/j.jmst.2021.09.003_bib0074
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3439
– volume: 8
  start-page: 19729
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0006
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05628F
– volume: 31
  start-page: 1142
  year: 2015
  ident: 10.1016/j.jmst.2021.09.003_bib0024
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000749
– volume: 52
  start-page: 908
  year: 2016
  ident: 10.1016/j.jmst.2021.09.003_bib0059
  publication-title: Chem. Commun
  doi: 10.1039/C5CC08845C
– volume: 102
  start-page: 159
  year: 2022
  ident: 10.1016/j.jmst.2021.09.003_bib0025
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.07.002
– volume: 63
  start-page: 2613
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0029
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1461-2
– volume: 77
  start-page: 108
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0019
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.09.046
– volume: 68
  start-page: 191
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0057
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.06.045
– volume: 9
  start-page: 41239
  year: 2017
  ident: 10.1016/j.jmst.2021.09.003_bib0070
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12629
– volume: 8
  start-page: 9871
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0061
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03272G
– volume: 11
  start-page: 5500
  year: 2017
  ident: 10.1016/j.jmst.2021.09.003_bib0055
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00233
– volume: 8
  start-page: 1238
  year: 2018
  ident: 10.1016/j.jmst.2021.09.003_bib0067
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03191
– volume: 81
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0007
  publication-title: Nano Energy
– volume: 1
  start-page: 526
  year: 2019
  ident: 10.1016/j.jmst.2021.09.003_bib0040
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00414
– volume: 36
  start-page: 612
  year: 2015
  ident: 10.1016/j.jmst.2021.09.003_bib0052
  publication-title: Rare Met.
  doi: 10.1007/s12598-015-0548-8
– volume: 37
  start-page: 154
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0064
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.06.021
– volume: 82
  start-page: 96
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0018
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.11.020
– volume: 2020
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0021
  publication-title: Research
– volume: 82
  start-page: 207
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0027
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.12.042
– volume: 8
  start-page: 1230
  year: 2018
  ident: 10.1016/j.jmst.2021.09.003_bib0042
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2018.111
– volume: 64
  start-page: 364
  year: 2022
  ident: 10.1016/j.jmst.2021.09.003_bib0012
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.04.067
– volume: 29
  year: 2019
  ident: 10.1016/j.jmst.2021.09.003_bib0035
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905933
– volume: 383
  start-page: 164
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0039
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.01.024
– volume: 27
  start-page: 3394
  year: 2013
  ident: 10.1016/j.jmst.2021.09.003_bib0050
  publication-title: Energy Fuels
  doi: 10.1021/ef400163x
– volume: 11
  start-page: 44161
  year: 2019
  ident: 10.1016/j.jmst.2021.09.003_bib0054
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14213
– volume: 32
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0033
  publication-title: Adv. Mater.
– volume: 12
  start-page: 13971
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0063
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00701
– volume: 10
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0020
  publication-title: Adv. Energy Mater.
– volume: 2
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0008
  publication-title: Small Struct.
– volume: 12
  start-page: 7116
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0047
  publication-title: Nanoscale
  doi: 10.1039/D0NR00446D
– volume: 8
  start-page: 14844
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0030
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05176D
– volume: 272
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0009
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119046
– volume: 11
  start-page: 5437
  year: 2020
  ident: 10.1016/j.jmst.2021.09.003_bib0031
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19277-9
– volume: 11
  start-page: 11031
  year: 2017
  ident: 10.1016/j.jmst.2021.09.003_bib0073
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05050
– volume: 8
  start-page: 3162
  year: 2021
  ident: 10.1016/j.jmst.2021.09.003_bib0015
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D1QI00428J
– volume: 5
  start-page: 10072
  year: 2017
  ident: 10.1016/j.jmst.2021.09.003_bib0049
  publication-title: Chem. Eng.
SSID ssj0037588
Score 2.5053284
Snippet •The self-supported HEA catalyst was prepared by corrosion engineering.•Amorphous honeycomb nano-hydroxides are obtained on the HEA surface.•HEA-250Ni...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 267
SubjectTerms Corrosion engineering
Electrocatalysis
High entropy alloy
Oxygen evolution reaction
Self-supporting
Title Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst
URI https://dx.doi.org/10.1016/j.jmst.2021.09.003
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TuwwELUQNFAgHhfB8pALOhTWj8ROShSxWkDQABJdFDu2xGuz2g1Xdxu-gI9mJusAl4KCJoomsRXZR56JfeYMIYdeO1MJg7KhmYpiLlxkSlMClm1qU14qYXEf8vJKDW_j87vkboHkXS4M0irD2j9f09vVOlj6YTT74_v7_jVvtUzAB6E-DTgmzGCPNaL8-PWD5iEhHp6nwyFJTSKbp_fJ8Xp4niKfUvBW67QrnPXdOX1xOIM1shoiRXoy_5h1suBGG2Tli37gJnnL6wl0BENL3aedQuA8bdqbl6dHOnAJuxxJltec5RPOKCoUR7ipW49nFM_d4ToN1lZQAp6B_bHECJTW_2aAMer-BoxSiDLbXAgaKui0G0CzafOH3AxOb_JhFMorRFYq1aAup_eVEZiryrxPUVxepF4YnXHvrWEO_v584pIyVZVwVmphhKyMSlNlMya3yOKoHrltQnlWSau1LqGj2GtuWGqNkqzU0lY2FjuEd8Na2CA9jhUwnoqOY_ZQ4FQUOBUFy1CwdIccfbQZz4U3fnw76War-A8-BXiGH9r1ftlulywLzIMAUAm2RxabyYvbh-ikMQct_A7I0snZxfDqHaJC5pw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9tAEIBHNBwoh4qWVuXRdg-9ISv7iNf2EVmNQiG5NEjcLO96V-LROEoMIv-BH82MswbKgUMvljX2WtbuaGa8nvkG4KdPnKmkIWxopqOBkC4ypSlRl21qU1FqaWkfcjzRo_PB74v4YgPyrhaG0iqD7V_b9NZaB0k_zGZ_fnnZ_yNalgn6IOLToGN6B5tEp4p7sHl8cjqadAZZYUi8roijPDVFCT37z2leV3-XlFIpRYs77XpnvfZPL3zOcAc-hGCRHa_f5yNsuNkn2H6BENyFh7xe4INwdpl7ljOMnZdNe3J7c82GLubjmeJ5LXi-EJwRpDiifd16vmL06x2PyyBtmRJ4DeXXJQWhrL5foZoxdxfUlGGg2ZZDsNBEp90DWi2bzzAd_prmoyh0WIis0rohNKf3lZFUrsq9T4kvL1MvTZIJ763hDj8AfeziMtWVdFYl0khVGZ2m2mZcfYHerJ65r8BEVimbJEmJDxr4RBieWqMVLxNlKzuQeyC6aS1soI9TE4ybokszuypoKQpaioJnxCzdg6OnMfM1e-PNu-NutYp_NKhA5_DGuP3_HPcDtkbT8VlxdjI5PYD3ksoiUMEkP4Res7h13zBYacz3oIyPiu3pTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+engineering+boosting+bulk+Fe50Mn30Co10Cr10+high-entropy+alloy+as+high-efficient+alkaline+oxygen+evolution+reaction+electrocatalyst&rft.jtitle=Journal+of+materials+science+%26+technology&rft.au=Zhou%2C+Pengfei&rft.au=Liu%2C+Dong&rft.au=Chen%2C+Yuyun&rft.au=Chen%2C+Mingpeng&rft.date=2022-05-20&rft.issn=1005-0302&rft.volume=109&rft.spage=267&rft.epage=275&rft_id=info:doi/10.1016%2Fj.jmst.2021.09.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmst_2021_09_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-0302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-0302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-0302&client=summon