An experimental method for dynamic tensile testing of concrete by spalling
A new application of the spalling phenomenon in long specimens is reported in this paper. The new experimental technique is based on an experimental setup which consists of an air launcher of cylindrical projectiles with a Hopkinson bar as a measuring tool and a relatively long concrete specimen in...
Saved in:
Published in | International journal of impact engineering Vol. 25; no. 4; pp. 387 - 409 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2001
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new application of the spalling phenomenon in long specimens is reported in this paper. The new experimental technique is based on an experimental setup which consists of an air launcher of cylindrical projectiles with a Hopkinson bar as a measuring tool and a relatively long concrete specimen in contact with the bar. The incident compression wave transmitted by the Hopkinson bar into the specimen is reflected as a tensile wave causing spalling. Although such configurations have been reported in the past, the main advantage of the present approach lies in the application of the detailed analysis, based on the wave mechanics with dispersion, to extract the specimen behaviour. Such an approach leads to an exact estimation of the local failure stress in tension at high strain rates, even above 100
s
−1. This paper demonstrates, using two series of tests on concrete, that this experimental setup can cover one decimal order of strain rates, from ∼10 to ∼120
s
−1. The tests performed at high strain rates on wet and dry concrete have indicated that the tensile strength is substantially influenced by the loading rate or strain rate. The absolute value of the failure stress for wet and dry concrete is almost the same for a particular strain rate, which does not occur when subject to low strain rates in tension or compression. A brief discussion is offered on a high rate sensitivity of concrete strength in tension at high strain rates. |
---|---|
AbstractList | A new application of the spalling phenomenon in long specimens is reported in this paper. The new experimental technique is based on an experimental setup which consists of an air launcher of cylindrical projectiles with a Hopkinson bar as a measuring tool and a relatively long concrete specimen in contact with the bar. The incident compression wave transmitted by the Hopkinson bar into the specimen is reflected as a tensile wave causing spalling. Although such configurations have been reported in the past, the main advantage of the present approach lies in the application of the detailed analysis, based on the wave mechanics with dispersion, to extract the specimen behaviour. Such an approach leads to an exact estimation of the local failure stress in tension at high strain rates, even above 100
s
−1. This paper demonstrates, using two series of tests on concrete, that this experimental setup can cover one decimal order of strain rates, from ∼10 to ∼120
s
−1. The tests performed at high strain rates on wet and dry concrete have indicated that the tensile strength is substantially influenced by the loading rate or strain rate. The absolute value of the failure stress for wet and dry concrete is almost the same for a particular strain rate, which does not occur when subject to low strain rates in tension or compression. A brief discussion is offered on a high rate sensitivity of concrete strength in tension at high strain rates. A new application of the spalling phenomenon in long specimens is reported in this paper. The new experimental technique is based on an experimental setup which consists of an air launcher of cylindrical projectiles with a Hopkinson bar as a measuring tool and a relatively long concrete specimen in contact with the bar. The incident compression wave transmitted by the Hopkinson bar into the specimen is reflected as a tensile wave causing spalling. Although such configurations have been reported in the past, the main advantage of the present approach lies in the application of the detailed analysis, based on the wave mechanics with dispersion, to extract the specimen behaviour. Such an approach leads to an exact estimation of the local failure stress in tension at high strain rates, even above 100 s exp -1 . This paper demonstrates, using two series of tests on concrete, that this experimental setup can cover one decimal order of strain rates, from approx =10 to approx =120 s exp -1 . The tests performed at high strain rates on wet and dry concrete have indicated that the tensile strength is substantially influenced by the loading rate or strain rate. The absolute value of the failure stress for wet and dry concrete is almost the same for a particular strain rate, which does not occur when subject to low strain rates in tension or compression. A brief discussion is offered on a high rate sensitivity of concrete strength in tension at high strain rates. |
Author | Klepaczko, J.R. Brara, A. |
Author_xml | – sequence: 1 givenname: J.R. surname: Klepaczko fullname: Klepaczko, J.R. email: klepaczko@lpmm.univ-metz.fr – sequence: 2 givenname: A. surname: Brara fullname: Brara, A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=909479$$DView record in Pascal Francis |
BookMark | eNqFkE1rVDEUhkOp0Gn1JwiBQtHF1XPvnZvc4EJK8ZOCCxXchTPJSZuSScYkLc6_N9NpXbjp6kB43vecPMfsMKZIjL3s4U0PvXj7HeS47ORy_PUK4DUATNCJA7boZ6m6cQJ1yBb_kCN2XMoNQC8btmBfzyOnPxvKfk2xYuBrqtfJcpcyt9uIa294pVh8oDZL9fGKJ8dNiiZTJb7a8rLBENr7c_bMYSj04mGesJ8fP_y4-Nxdfvv05eL8sjOjELWbrRtAiH4CMmitcoOVDtQKZsCVmYSZUEw4yFkoh2KlyA4kZkczKJQgYTxhZ_veTU6_b9tNeu2LoRAwUrotemhMPyrRwNMHEIvB4DJG44vetL9i3moFailVo97tKZNTKZmcNr5i9SnWjD7oHvTOsr63rHcKNYC-t6x3O6b_0o_1T-Xe73PUTN15yroYT9GQ9ZlM1Tb5Jxr-Auivl3M |
CODEN | IJIED4 |
CitedBy_id | crossref_primary_10_1007_s11431_023_2443_8 crossref_primary_10_1080_12795119_2003_9692436 crossref_primary_10_1007_s40870_017_0135_1 crossref_primary_10_1016_j_finel_2021_103652 crossref_primary_10_1016_j_cemconcomp_2022_104633 crossref_primary_10_1051_epjconf_201818302065 crossref_primary_10_1007_s11340_016_0243_1 crossref_primary_10_1140_epjst_e2012_01593_3 crossref_primary_10_1080_15376494_2013_861045 crossref_primary_10_1007_s00466_014_1100_7 crossref_primary_10_1177_1056789509104839 crossref_primary_10_1016_j_eml_2021_101506 crossref_primary_10_1016_j_engstruct_2022_114382 crossref_primary_10_1007_s11340_009_9284_z crossref_primary_10_1016_j_ijimpeng_2020_103598 crossref_primary_10_1177_1056789516651692 crossref_primary_10_1016_j_ijimpeng_2010_10_028 crossref_primary_10_1016_j_conbuildmat_2018_04_040 crossref_primary_10_1016_j_ijimpeng_2020_103581 crossref_primary_10_1080_12795119_2003_9692548 crossref_primary_10_1002_gamm_201800008 crossref_primary_10_1016_j_jrmge_2014_07_008 crossref_primary_10_1016_j_cemconres_2013_03_021 crossref_primary_10_1016_j_conbuildmat_2024_137306 crossref_primary_10_3390_ma13081871 crossref_primary_10_1016_j_compstruc_2011_08_016 crossref_primary_10_1016_j_conbuildmat_2017_08_113 crossref_primary_10_1177_2041419618788697 crossref_primary_10_1016_j_jobe_2024_109006 crossref_primary_10_1016_j_ijsolstr_2016_03_022 crossref_primary_10_1016_j_conbuildmat_2023_132577 crossref_primary_10_1007_s10704_009_9419_3 crossref_primary_10_1016_S0045_7949_03_00039_7 crossref_primary_10_1016_j_ijsolstr_2018_04_024 crossref_primary_10_1016_j_tust_2021_104339 crossref_primary_10_1016_j_ijimpeng_2019_103359 crossref_primary_10_1016_S0045_7949_03_00043_9 crossref_primary_10_1007_s11340_017_0355_2 crossref_primary_10_1080_12795119_2003_9692529 crossref_primary_10_1016_j_ijimpeng_2005_10_004 crossref_primary_10_1016_j_istruc_2025_108644 crossref_primary_10_1007_s00603_010_0101_x crossref_primary_10_1140_epjst_e2018_00057_1 crossref_primary_10_1051_epjconf_201818303024 crossref_primary_10_1002_pamm_201410057 crossref_primary_10_1007_s00603_016_1164_0 crossref_primary_10_1016_j_ijimpeng_2017_12_006 crossref_primary_10_1016_j_nucengdes_2012_05_004 crossref_primary_10_1016_j_ijimpeng_2015_04_001 crossref_primary_10_1007_s11042_019_7616_2 crossref_primary_10_1016_j_conbuildmat_2020_122110 crossref_primary_10_1016_j_mechmat_2019_103273 crossref_primary_10_1016_j_ijimpeng_2005_01_010 crossref_primary_10_1140_epjst_e2012_01591_5 crossref_primary_10_1016_j_actamat_2013_02_045 crossref_primary_10_1080_19648189_2011_9695306 crossref_primary_10_1108_02644400510603023 crossref_primary_10_3390_ma6083241 crossref_primary_10_1007_s00603_006_0117_4 crossref_primary_10_1007_s40870_016_0062_6 crossref_primary_10_1155_2014_173531 crossref_primary_10_1016_j_ijimpeng_2021_104139 crossref_primary_10_1016_j_tafmec_2023_104149 crossref_primary_10_1088_1755_1315_1124_1_012117 crossref_primary_10_1061__ASCE_EM_1943_7889_0001428 crossref_primary_10_1061_JMCEE7_MTENG_16714 crossref_primary_10_1016_j_ijimpeng_2005_05_008 crossref_primary_10_1016_j_jsv_2010_01_021 crossref_primary_10_1016_j_cemconcomp_2018_10_009 crossref_primary_10_1680_macr_12_00175 crossref_primary_10_1016_j_compstruc_2004_05_016 crossref_primary_10_1016_j_ijimpeng_2019_103432 crossref_primary_10_1016_j_conbuildmat_2020_119642 crossref_primary_10_1016_j_ijimpeng_2020_103776 crossref_primary_10_1016_j_ijimpeng_2019_103315 crossref_primary_10_1016_j_ijimpeng_2021_104107 crossref_primary_10_1680_macr_2003_55_2_183 crossref_primary_10_1016_j_conbuildmat_2022_129912 crossref_primary_10_1016_j_ijimpeng_2019_01_001 crossref_primary_10_1016_j_engfracmech_2022_108772 crossref_primary_10_1016_j_tafmec_2019_01_011 crossref_primary_10_1140_epjst_e2015_77777_x crossref_primary_10_1016_j_engfailanal_2023_107858 crossref_primary_10_1016_j_ijimpeng_2018_09_010 crossref_primary_10_1007_s10704_009_9421_9 crossref_primary_10_1016_j_mechmat_2011_05_002 crossref_primary_10_1631_jzus_A2300338 crossref_primary_10_1016_j_engfracmech_2023_109808 crossref_primary_10_1007_s10409_021_01055_5 crossref_primary_10_1016_j_ijimpeng_2021_103946 crossref_primary_10_1016_j_tafmec_2023_103757 crossref_primary_10_1007_s11340_008_9159_8 crossref_primary_10_1016_j_conbuildmat_2025_140021 crossref_primary_10_1016_j_jmps_2021_104715 crossref_primary_10_1016_j_ijimpeng_2023_104562 crossref_primary_10_1002_cend_202200015 crossref_primary_10_3390_app122211621 crossref_primary_10_1016_j_ijrmms_2023_105340 crossref_primary_10_1061_JMCEE7_MTENG_17503 crossref_primary_10_1016_j_ijrmms_2022_105185 crossref_primary_10_1016_j_ijimpeng_2021_103918 crossref_primary_10_12989_sem_2006_23_2_129 crossref_primary_10_1680_macr_2010_62_11_795 crossref_primary_10_1016_j_cemconcomp_2021_104085 crossref_primary_10_1016_j_undsp_2022_01_006 crossref_primary_10_1016_j_ijimpeng_2005_07_007 crossref_primary_10_1016_j_ijimpeng_2007_12_012 crossref_primary_10_1016_j_jobe_2024_109673 crossref_primary_10_1016_j_ijimpeng_2018_11_012 crossref_primary_10_1016_j_jrmge_2023_05_016 crossref_primary_10_1016_j_ijimpeng_2007_07_006 crossref_primary_10_1061__ASCE_EM_1943_7889_0001918 crossref_primary_10_1016_j_ijimpeng_2010_07_001 crossref_primary_10_1007_s40870_021_00300_z crossref_primary_10_1016_j_ijmecsci_2023_108826 crossref_primary_10_1016_j_engstruct_2019_109844 crossref_primary_10_1007_s10704_020_00422_w crossref_primary_10_1016_j_conbuildmat_2020_118042 crossref_primary_10_1016_j_ijimpeng_2020_103500 crossref_primary_10_1016_j_ijimpeng_2017_01_011 crossref_primary_10_1016_j_cemconcomp_2008_06_008 crossref_primary_10_1016_j_engfracmech_2022_108985 crossref_primary_10_1016_j_msea_2012_11_080 crossref_primary_10_1080_17455030_2021_1876960 crossref_primary_10_1007_s00707_020_02639_1 crossref_primary_10_1016_j_engfailanal_2019_05_030 crossref_primary_10_3166_remn_17_749_760 crossref_primary_10_5802_crmeca_137 crossref_primary_10_1002_best_200900038 crossref_primary_10_1007_s11771_023_5354_0 crossref_primary_10_1016_j_mechmat_2016_08_002 crossref_primary_10_1016_j_ijimpeng_2006_01_005 crossref_primary_10_1016_j_istruc_2023_105502 crossref_primary_10_1177_1056789512455968 crossref_primary_10_1016_j_engfracmech_2010_04_006 crossref_primary_10_1016_j_ijrmms_2020_104317 crossref_primary_10_1007_s11771_014_2481_7 crossref_primary_10_1007_s40870_017_0139_x crossref_primary_10_1098_rsta_2016_0174 crossref_primary_10_1002_nme_4327 crossref_primary_10_1016_j_ijimpeng_2014_04_002 crossref_primary_10_1016_j_cemconres_2013_05_008 crossref_primary_10_1016_j_mechmat_2005_06_004 crossref_primary_10_1016_j_mspro_2014_06_033 crossref_primary_10_1002_best_202300035 crossref_primary_10_1002_best_201800094 crossref_primary_10_1007_s11277_020_07085_9 crossref_primary_10_1016_j_conbuildmat_2018_09_187 crossref_primary_10_1140_epjst_e2012_01595_1 crossref_primary_10_1016_j_ijimpeng_2020_103716 crossref_primary_10_1016_j_apm_2015_09_022 crossref_primary_10_1111_j_1475_1305_2012_00835_x crossref_primary_10_1016_j_engfracmech_2014_06_006 crossref_primary_10_1111_str_12363 crossref_primary_10_3389_fmats_2022_996650 crossref_primary_10_1016_j_ijimpeng_2016_10_001 crossref_primary_10_3390_s23229215 crossref_primary_10_1016_j_engfracmech_2021_107636 crossref_primary_10_1007_s00603_013_0463_y crossref_primary_10_1016_j_finel_2024_104277 crossref_primary_10_1016_j_istruc_2022_12_115 crossref_primary_10_1016_j_ijimpeng_2022_104231 crossref_primary_10_1007_s40870_022_00350_x crossref_primary_10_1051_meca_2012026 crossref_primary_10_1016_j_ijsolstr_2014_01_023 crossref_primary_10_1063_1_4852935 crossref_primary_10_1016_j_engfailanal_2022_106645 crossref_primary_10_1016_j_engstruct_2024_118716 crossref_primary_10_1051_epjconf_201818302039 crossref_primary_10_1088_1742_6596_1637_1_012094 crossref_primary_10_1016_j_ees_2024_07_003 crossref_primary_10_1177_1369433216630828 crossref_primary_10_1520_GTJ20150174 crossref_primary_10_1016_j_ijimpeng_2008_04_007 crossref_primary_10_4028_www_scientific_net_KEM_326_328_1543 crossref_primary_10_1016_j_ijimpeng_2021_104064 crossref_primary_10_1016_j_ijimpeng_2021_103895 crossref_primary_10_1617_s11527_014_0281_z crossref_primary_10_1016_j_conbuildmat_2022_127343 crossref_primary_10_1051_epjconf_20159401045 crossref_primary_10_1177_0021998311415444 crossref_primary_10_1016_j_cemconres_2019_105890 crossref_primary_10_12989_cac_2010_7_1_083 crossref_primary_10_1007_s43452_021_00294_4 crossref_primary_10_1088_1361_6501_ab35c8 crossref_primary_10_1016_j_ijimpeng_2023_104557 crossref_primary_10_1016_j_engfailanal_2011_05_001 crossref_primary_10_1016_j_ijimpeng_2021_104079 crossref_primary_10_12989_sem_2012_44_6_801 crossref_primary_10_1007_s11053_020_09656_w crossref_primary_10_1002_best_200700580 crossref_primary_10_1111_ffe_13162 crossref_primary_10_1016_j_engfailanal_2015_08_020 crossref_primary_10_1016_j_jobe_2023_107525 crossref_primary_10_1016_j_compgeo_2023_105825 crossref_primary_10_1016_j_ijimpeng_2011_08_006 crossref_primary_10_1016_j_ijimpeng_2011_08_003 |
Cites_doi | 10.1051/jp4:1994817 10.1016/B978-0-444-89732-9.50115-1 10.1016/0749-6419(90)90011-3 10.1007/BF02326224 10.1051/jp4:1994878 10.1115/1.3225620 10.1088/0370-1301/62/11/302 10.1007/BF02472311 10.1007/BF02473020 10.1016/S0734-743X(98)00048-7 10.1016/0167-6636(87)90027-5 10.1115/1.2903329 10.1007/978-94-011-3388-3_35 10.1007/BF02472016 10.1016/0262-5075(86)90009-6 10.1016/0022-5096(64)90028-6 10.1103/PhysRev.59.588 10.1016/B978-1-85573-424-1.50027-7 10.1016/0734-743X(94)90011-9 10.1016/S0734-743X(05)80005-3 |
ContentType | Journal Article |
Copyright | 2001 Elsevier Science Ltd 2001 INIST-CNRS |
Copyright_xml | – notice: 2001 Elsevier Science Ltd – notice: 2001 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 8FD JG9 |
DOI | 10.1016/S0734-743X(00)00050-6 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3509 |
EndPage | 409 |
ExternalDocumentID | 909479 10_1016_S0734_743X_00_00050_6 S0734743X00000506 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c366t-8df2066150ecadd9f2d7f09b080abc56c5a65a27869fa6b9ed2e68fe809a70703 |
IEDL.DBID | AIKHN |
ISSN | 0734-743X |
IngestDate | Fri Jul 11 11:43:04 EDT 2025 Wed Apr 02 08:08:53 EDT 2025 Tue Jul 01 03:11:04 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Fri Feb 23 02:27:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Compression Dispersion (wave) High strain Dynamic testing Ruptures Projectiles Compressive testing Tensile tests Computerized simulation Impact tests Experimental study Traction Failures Dynamic method Beam(mechanics) Penetration ballistics Concretes Wave transmission Hopkinson bar Materials properties Scaling Strain rate |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-8df2066150ecadd9f2d7f09b080abc56c5a65a27869fa6b9ed2e68fe809a70703 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 27031396 |
PQPubID | 23500 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_27031396 pascalfrancis_primary_909479 crossref_citationtrail_10_1016_S0734_743X_00_00050_6 crossref_primary_10_1016_S0734_743X_00_00050_6 elsevier_sciencedirect_doi_10_1016_S0734_743X_00_00050_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-04-01 |
PublicationDateYYYYMMDD | 2001-04-01 |
PublicationDate_xml | – month: 04 year: 2001 text: 2001-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2001 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Gran, Seaman, Gupta (BIB23) 1985; C5 Kruszka, Nowacki (BIB31) 1996; 34 Dowling (BIB2) 1993 Gary G, Klepaczko JR. Summary of the experimental results on dynamic behaviour in compression of mini-concrete. Program GRECO — “Geomaterials”, Technical Report, 1992, (in French). Kolsky (BIB11) 1949; B 62 Bacon (BIB39) 1999; 22 Watson, Sanderson (BIB21) 1979 Franz, Follansbee (BIB35) 1983; 105 Najar (BIB24) 1994; C8 Albertini C, Montagnani M. Study of the true tensile stress–strain diagram of plain concrete with real size aggregate. Proceedings of the International Conference EURODYMAT, Oxford, C8-113, 1994. Reinhardt, Rossi, Van Mier (BIB10) 1990; 23 Pochhammer (BIB32) 1876; 81 Davies (BIB34) 1948; A240 Brara A. Experimental study of dynamic tension of concrete via spalling, Ph D thesis. LPMM, Metz University, 1999 (in French). Daimaruya, Kobayashi, Nonaka (BIB27) 1997; C3 Bancroft (BIB40) 1941; 59 Bischoff, Perry (BIB1) 1991; 24 Muller-Bechtel M, Najar J. Spalling fracture experiments with alumina bars at elevated temperatures. In: Local strain and temperature measurements in non-uniform fields at elevated temperature. Proceedings of the International Symposium on BAM 226. Cambridge: Woodhead Publishing Ltd., 1996. Toutlemonde F. Impact resistance of concrete structures, PhD thesis. Laboratory of Bridges and Roads (LCPC), Paris, 1995 (in French). Reinhardt, Kormeling, Zielinski (BIB14) 1986; 19 Goldsmith, Polivka, Yang (BIB20) 1966; 6 Camborde F. Modeling of dynamic behaviour of concrete, application for the problems of impacts and explosions, PhD thesis. Ecole Centrale de Nantes, Nantes, 1999 (in French). Zhao H. Analysis of tests with Hopkinson bar. Application for dynamic behaviour of materials, Ph D thesis. ENPC, Paris 1992 (in French). Hopkinson (BIB18) 1921 Bustami S. Daimaruya M. Concentration of tensile stress waves and impact tensile strength of brittle materials. Proceedings of the Asian Pacific Conference on Fracture Strength’96, Korea, 1996, p. 709–14 Ross CA. Fracture of concrete in high strain rate. Proceedings of the NATO Advanced Research Workshop. Northwestern University, Evanston, 1990, Rotterdam: Kluwer Academic Publishers, 1991. Van Doormal JCAM, Weerheijm J, Sluys LJ. Experimental and numerical determination of the dynamic fracture energy of concrete. Proceedings of the International Conference EURODYMAT, Oxford, C8-26-30, 1994. Zielinski (BIB13) 1982 Klepaczko (BIB29) 1994; 15 Tedesco, Ross, Kuennen (BIB16) 1994; 90 Lifhitz, Leber (BIB37) 1994; 15 Mindess S, Shah SP, Editors. Cement-based-composites, strain rate effects on fracture. Proceedings of the Materials Research Society Symposium, MRS, Pittsburgh, (1986). Zhao, Gary (BIB38) 1996; 28 Antonn JR, Rajendran AM. Effect of strain rate and size on tensile strength of concrete. Proceedings of the Topical Conference on Shock Compression of Condensed Matter. Amsterdam: Elsevier 1992, p. 501. Khan, Irani (BIB22) 1987; 6 Gong, Malvern, Jenkins (BIB36) 1990; 112 Brara A, Klepaczko JR. Experimental Study on Dynamic Tension of Concrete by Spalling. Research Report 1996, Program GEO, 1996 (in French). Chree (BIB33) 1889; 14 London, Quinney (BIB19) 1923; A 103 Brara A. An analysis of a new experimental arrangement for determination of fracture criterion for concrete at high loading rates in tension. DEA Report, LPMM, Metz University, 1996 (in French). Lindholm (BIB12) 1964; 12 Klepaczko (BIB3) 1990; 6 Faure L, Klepaczko JR, A fast video setup with CCD cameras, Technical Report ISGMP-LPMM. Project GDR 972- “Impact on Materials”, LPMM-Metz University, 1996 (in French). Ross, Tedesco, Kuennen (BIB6) 1995; 12 10.1016/S0734-743X(00)00050-6_BIB42 10.1016/S0734-743X(00)00050-6_BIB41 Reinhardt (10.1016/S0734-743X(00)00050-6_BIB14) 1986; 19 10.1016/S0734-743X(00)00050-6_BIB44 Kruszka (10.1016/S0734-743X(00)00050-6_BIB31) 1996; 34 Chree (10.1016/S0734-743X(00)00050-6_BIB33) 1889; 14 10.1016/S0734-743X(00)00050-6_BIB43 Gong (10.1016/S0734-743X(00)00050-6_BIB36) 1990; 112 Lifhitz (10.1016/S0734-743X(00)00050-6_BIB37) 1994; 15 Kolsky (10.1016/S0734-743X(00)00050-6_BIB11) 1949; B 62 Bacon (10.1016/S0734-743X(00)00050-6_BIB39) 1999; 22 Dowling (10.1016/S0734-743X(00)00050-6_BIB2) 1993 Bischoff (10.1016/S0734-743X(00)00050-6_BIB1) 1991; 24 Goldsmith (10.1016/S0734-743X(00)00050-6_BIB20) 1966; 6 Ross (10.1016/S0734-743X(00)00050-6_BIB6) 1995; 12 Khan (10.1016/S0734-743X(00)00050-6_BIB22) 1987; 6 Najar (10.1016/S0734-743X(00)00050-6_BIB24) 1994; C8 Pochhammer (10.1016/S0734-743X(00)00050-6_BIB32) 1876; 81 Franz (10.1016/S0734-743X(00)00050-6_BIB35) 1983; 105 10.1016/S0734-743X(00)00050-6_BIB17 Watson (10.1016/S0734-743X(00)00050-6_BIB21) 1979 Gran (10.1016/S0734-743X(00)00050-6_BIB23) 1985; C5 Klepaczko (10.1016/S0734-743X(00)00050-6_BIB3) 1990; 6 Reinhardt (10.1016/S0734-743X(00)00050-6_BIB10) 1990; 23 10.1016/S0734-743X(00)00050-6_BIB15 Daimaruya (10.1016/S0734-743X(00)00050-6_BIB27) 1997; C3 10.1016/S0734-743X(00)00050-6_BIB4 Hopkinson (10.1016/S0734-743X(00)00050-6_BIB18) 1921 10.1016/S0734-743X(00)00050-6_BIB30 10.1016/S0734-743X(00)00050-6_BIB5 Klepaczko (10.1016/S0734-743X(00)00050-6_BIB29) 1994; 15 London (10.1016/S0734-743X(00)00050-6_BIB19) 1923; A 103 10.1016/S0734-743X(00)00050-6_BIB8 10.1016/S0734-743X(00)00050-6_BIB7 10.1016/S0734-743X(00)00050-6_BIB9 Tedesco (10.1016/S0734-743X(00)00050-6_BIB16) 1994; 90 Lindholm (10.1016/S0734-743X(00)00050-6_BIB12) 1964; 12 Zhao (10.1016/S0734-743X(00)00050-6_BIB38) 1996; 28 10.1016/S0734-743X(00)00050-6_BIB28 Zielinski (10.1016/S0734-743X(00)00050-6_BIB13) 1982 10.1016/S0734-743X(00)00050-6_BIB26 Bancroft (10.1016/S0734-743X(00)00050-6_BIB40) 1941; 59 10.1016/S0734-743X(00)00050-6_BIB25 Davies (10.1016/S0734-743X(00)00050-6_BIB34) 1948; A240 |
References_xml | – volume: C3 start-page: C3 year: 1997 end-page: 253 ident: BIB27 article-title: Impact tensile strength and fracture of concrete. Proceedings of the International Conference EURODYMAT 97 publication-title: J Phys Coll – volume: A 103 start-page: 622 year: 1923 end-page: 643 ident: BIB19 article-title: Experiment with the pressure Hopkinson bar publication-title: Proc Roy Soc London, ser A: Math Phys Sci – volume: 19 start-page: 55 year: 1986 ident: BIB14 article-title: The split Hopkinson bar, a versatile tool for impact testing of concrete publication-title: Mater Struct – volume: 28 start-page: 1 year: 1996 end-page: 7 ident: BIB38 article-title: On the use of the SHPB techniques to determine the dynamic behaviour of materials in the range of small strains publication-title: Int J Solids Struct – volume: 14 start-page: 250 year: 1889 end-page: 369 ident: BIB33 article-title: The equation of an isotopic solid in polar and cylindrical coordinates, their solutions and applications publication-title: Trans Cambridge Phil Soc – volume: 6 start-page: 285 year: 1987 end-page: 292 ident: BIB22 article-title: An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone and granite publication-title: Mech Mater – reference: Zhao H. Analysis of tests with Hopkinson bar. Application for dynamic behaviour of materials, Ph D thesis. ENPC, Paris 1992 (in French). – reference: Gary G, Klepaczko JR. Summary of the experimental results on dynamic behaviour in compression of mini-concrete. Program GRECO — “Geomaterials”, Technical Report, 1992, (in French). – reference: Van Doormal JCAM, Weerheijm J, Sluys LJ. Experimental and numerical determination of the dynamic fracture energy of concrete. Proceedings of the International Conference EURODYMAT, Oxford, C8-26-30, 1994. – reference: Albertini C, Montagnani M. Study of the true tensile stress–strain diagram of plain concrete with real size aggregate. Proceedings of the International Conference EURODYMAT, Oxford, C8-113, 1994. – reference: Bustami S. Daimaruya M. Concentration of tensile stress waves and impact tensile strength of brittle materials. Proceedings of the Asian Pacific Conference on Fracture Strength’96, Korea, 1996, p. 709–14 – volume: 23 start-page: 213 year: 1990 end-page: 216 ident: BIB10 article-title: Joint investigation of concrete at high rates of loading publication-title: Mater Struct – volume: C5 start-page: C5 year: 1985 end-page: 617 ident: BIB23 article-title: Application of a new technique to study the dynamic tensile failure of concrete. Proceedings of the International Conference on DYMAT 85 publication-title: J Phys Coll – volume: 105 start-page: 61 year: 1983 end-page: 66 ident: BIB35 article-title: Wave propagation in the split Hopkinson pressure bar publication-title: J Engng Mat Technol – reference: Faure L, Klepaczko JR, A fast video setup with CCD cameras, Technical Report ISGMP-LPMM. Project GDR 972- “Impact on Materials”, LPMM-Metz University, 1996 (in French). – volume: 12 start-page: 37 year: 1995 ident: BIB6 article-title: Effects of strain rate on concrete strength publication-title: ACI Mater J – year: 1982 ident: BIB13 publication-title: Fracture of concrete and mortar under uniaxial impact tensile loading, PhD thesis – volume: 112 start-page: 309 year: 1990 end-page: 314 ident: BIB36 article-title: Dispersion investigations in the SHPB publication-title: J Engng Mat Technol – reference: Muller-Bechtel M, Najar J. Spalling fracture experiments with alumina bars at elevated temperatures. In: Local strain and temperature measurements in non-uniform fields at elevated temperature. Proceedings of the International Symposium on BAM 226. Cambridge: Woodhead Publishing Ltd., 1996. – volume: 15 start-page: 723 year: 1994 end-page: 733 ident: BIB37 article-title: Data processing in the SHPB tests publication-title: Int J Impact Engng – volume: 22 start-page: 55 year: 1999 end-page: 69 ident: BIB39 article-title: Separation of waves propagating in elastic or viscoelastic Hopkinson pressure bar with three-dimensional effects publication-title: Int J Impact Engng – volume: 90 start-page: 162 year: 1994 end-page: 169 ident: BIB16 article-title: Experimental and numerical analysis of high strain rate splitting tensile Tests publication-title: ACI Mater J – volume: 15 start-page: 25 year: 1994 end-page: 39 ident: BIB29 article-title: An experimental technique for shear testing at high and very high strain rates, the case of a mild steel publication-title: Int J Impact Engng – volume: 34 start-page: 259 year: 1996 ident: BIB31 article-title: New application of Hopkinson's pressure bar technique for determining dynamic behaviour of materials publication-title: J Theor Appl Mech – volume: 59 start-page: 588 year: 1941 end-page: 593 ident: BIB40 article-title: The velocity of longitudinal waves in cylindrical bars publication-title: Phys Rev – reference: Camborde F. Modeling of dynamic behaviour of concrete, application for the problems of impacts and explosions, PhD thesis. Ecole Centrale de Nantes, Nantes, 1999 (in French). – reference: Antonn JR, Rajendran AM. Effect of strain rate and size on tensile strength of concrete. Proceedings of the Topical Conference on Shock Compression of Condensed Matter. Amsterdam: Elsevier 1992, p. 501. – reference: Brara A, Klepaczko JR. Experimental Study on Dynamic Tension of Concrete by Spalling. Research Report 1996, Program GEO, 1996 (in French). – volume: 6 start-page: 415 year: 1990 end-page: 432 ident: BIB3 article-title: Behavior of rock-like materials at high strain rates in compression publication-title: Int J Plast – volume: B 62 start-page: 676 year: 1949 ident: BIB11 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc Phys Soc London – volume: 12 start-page: 317 year: 1964 end-page: 335 ident: BIB12 article-title: Some experiments with the split Hopkinson pressure bar publication-title: J Mech Phys Solids – volume: A240 start-page: 375 year: 1948 end-page: 457 ident: BIB34 article-title: A critical study of the Hopkinson pressure bar publication-title: Phil Trans – reference: Toutlemonde F. Impact resistance of concrete structures, PhD thesis. Laboratory of Bridges and Roads (LCPC), Paris, 1995 (in French). – reference: Mindess S, Shah SP, Editors. Cement-based-composites, strain rate effects on fracture. Proceedings of the Materials Research Society Symposium, MRS, Pittsburgh, (1986). – reference: Brara A. An analysis of a new experimental arrangement for determination of fracture criterion for concrete at high loading rates in tension. DEA Report, LPMM, Metz University, 1996 (in French). – volume: C8 start-page: C8 year: 1994 end-page: 647 ident: BIB24 article-title: Dynamic tensile fracture fracture phenomenon at wave propagation in ceramic bars. Proceedings of the International Conference EURODYMAT 94 publication-title: J Phys Coll – year: 1993 ident: BIB2 publication-title: Mechanical behaviour of materials – year: 1921 ident: BIB18 publication-title: The pressure of a blows, collected scientific papers – reference: Brara A. Experimental study of dynamic tension of concrete via spalling, Ph D thesis. LPMM, Metz University, 1999 (in French). – reference: Ross CA. Fracture of concrete in high strain rate. Proceedings of the NATO Advanced Research Workshop. Northwestern University, Evanston, 1990, Rotterdam: Kluwer Academic Publishers, 1991. – volume: 6 start-page: 65 year: 1966 end-page: 79 ident: BIB20 article-title: Dynamic behaviour of concrete publication-title: Exp Mech – volume: 24 start-page: 425 year: 1991 end-page: 450 ident: BIB1 article-title: Compressive behaviour of concrete under high strain rates publication-title: Mater. Struct. – year: 1979 ident: BIB21 publication-title: The resistance of concrete to shock. Proceedings of the Conference on Mechanics and Physics, Behaviour of Materials Under Dynamic Loading 1979 – volume: 81 start-page: 324 year: 1876 end-page: 326 ident: BIB32 article-title: On the propagation velocities of small oscillations in an unlimited isotropic circular cylinder publication-title: J fur die Reine Angewandte Math – year: 1982 ident: 10.1016/S0734-743X(00)00050-6_BIB13 – ident: 10.1016/S0734-743X(00)00050-6_BIB15 doi: 10.1051/jp4:1994817 – volume: 81 start-page: 324 year: 1876 ident: 10.1016/S0734-743X(00)00050-6_BIB32 article-title: On the propagation velocities of small oscillations in an unlimited isotropic circular cylinder publication-title: J fur die Reine Angewandte Math – ident: 10.1016/S0734-743X(00)00050-6_BIB8 – ident: 10.1016/S0734-743X(00)00050-6_BIB17 doi: 10.1016/B978-0-444-89732-9.50115-1 – volume: 6 start-page: 415 year: 1990 ident: 10.1016/S0734-743X(00)00050-6_BIB3 article-title: Behavior of rock-like materials at high strain rates in compression publication-title: Int J Plast doi: 10.1016/0749-6419(90)90011-3 – volume: C5 start-page: C5 year: 1985 ident: 10.1016/S0734-743X(00)00050-6_BIB23 article-title: Application of a new technique to study the dynamic tensile failure of concrete. Proceedings of the International Conference on DYMAT 85 publication-title: J Phys Coll – volume: 12 start-page: 37 year: 1995 ident: 10.1016/S0734-743X(00)00050-6_BIB6 article-title: Effects of strain rate on concrete strength publication-title: ACI Mater J – volume: 90 start-page: 162 year: 1994 ident: 10.1016/S0734-743X(00)00050-6_BIB16 article-title: Experimental and numerical analysis of high strain rate splitting tensile Tests publication-title: ACI Mater J – volume: A 103 start-page: 622 year: 1923 ident: 10.1016/S0734-743X(00)00050-6_BIB19 article-title: Experiment with the pressure Hopkinson bar publication-title: Proc Roy Soc London, ser A: Math Phys Sci – ident: 10.1016/S0734-743X(00)00050-6_BIB42 – volume: 34 start-page: 259 year: 1996 ident: 10.1016/S0734-743X(00)00050-6_BIB31 article-title: New application of Hopkinson's pressure bar technique for determining dynamic behaviour of materials publication-title: J Theor Appl Mech – volume: 6 start-page: 65 year: 1966 ident: 10.1016/S0734-743X(00)00050-6_BIB20 article-title: Dynamic behaviour of concrete publication-title: Exp Mech doi: 10.1007/BF02326224 – volume: 28 start-page: 1 year: 1996 ident: 10.1016/S0734-743X(00)00050-6_BIB38 article-title: On the use of the SHPB techniques to determine the dynamic behaviour of materials in the range of small strains publication-title: Int J Solids Struct – ident: 10.1016/S0734-743X(00)00050-6_BIB4 doi: 10.1051/jp4:1994878 – volume: 105 start-page: 61 year: 1983 ident: 10.1016/S0734-743X(00)00050-6_BIB35 article-title: Wave propagation in the split Hopkinson pressure bar publication-title: J Engng Mat Technol doi: 10.1115/1.3225620 – volume: B 62 start-page: 676 year: 1949 ident: 10.1016/S0734-743X(00)00050-6_BIB11 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc Phys Soc London doi: 10.1088/0370-1301/62/11/302 – volume: C3 start-page: C3 year: 1997 ident: 10.1016/S0734-743X(00)00050-6_BIB27 article-title: Impact tensile strength and fracture of concrete. Proceedings of the International Conference EURODYMAT 97 publication-title: J Phys Coll – volume: 14 start-page: 250 year: 1889 ident: 10.1016/S0734-743X(00)00050-6_BIB33 article-title: The equation of an isotopic solid in polar and cylindrical coordinates, their solutions and applications publication-title: Trans Cambridge Phil Soc – volume: 19 start-page: 55 year: 1986 ident: 10.1016/S0734-743X(00)00050-6_BIB14 article-title: The split Hopkinson bar, a versatile tool for impact testing of concrete publication-title: Mater Struct doi: 10.1007/BF02472311 – volume: 23 start-page: 213 year: 1990 ident: 10.1016/S0734-743X(00)00050-6_BIB10 article-title: Joint investigation of concrete at high rates of loading publication-title: Mater Struct doi: 10.1007/BF02473020 – volume: 22 start-page: 55 year: 1999 ident: 10.1016/S0734-743X(00)00050-6_BIB39 article-title: Separation of waves propagating in elastic or viscoelastic Hopkinson pressure bar with three-dimensional effects publication-title: Int J Impact Engng doi: 10.1016/S0734-743X(98)00048-7 – volume: 6 start-page: 285 year: 1987 ident: 10.1016/S0734-743X(00)00050-6_BIB22 article-title: An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone and granite publication-title: Mech Mater doi: 10.1016/0167-6636(87)90027-5 – ident: 10.1016/S0734-743X(00)00050-6_BIB30 – volume: 112 start-page: 309 year: 1990 ident: 10.1016/S0734-743X(00)00050-6_BIB36 article-title: Dispersion investigations in the SHPB publication-title: J Engng Mat Technol doi: 10.1115/1.2903329 – ident: 10.1016/S0734-743X(00)00050-6_BIB44 doi: 10.1007/978-94-011-3388-3_35 – volume: A240 start-page: 375 year: 1948 ident: 10.1016/S0734-743X(00)00050-6_BIB34 article-title: A critical study of the Hopkinson pressure bar publication-title: Phil Trans – ident: 10.1016/S0734-743X(00)00050-6_BIB7 – year: 1921 ident: 10.1016/S0734-743X(00)00050-6_BIB18 – volume: 24 start-page: 425 year: 1991 ident: 10.1016/S0734-743X(00)00050-6_BIB1 article-title: Compressive behaviour of concrete under high strain rates publication-title: Mater. Struct. doi: 10.1007/BF02472016 – year: 1979 ident: 10.1016/S0734-743X(00)00050-6_BIB21 – ident: 10.1016/S0734-743X(00)00050-6_BIB9 doi: 10.1016/0262-5075(86)90009-6 – volume: 12 start-page: 317 year: 1964 ident: 10.1016/S0734-743X(00)00050-6_BIB12 article-title: Some experiments with the split Hopkinson pressure bar publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(64)90028-6 – volume: 59 start-page: 588 year: 1941 ident: 10.1016/S0734-743X(00)00050-6_BIB40 article-title: The velocity of longitudinal waves in cylindrical bars publication-title: Phys Rev doi: 10.1103/PhysRev.59.588 – ident: 10.1016/S0734-743X(00)00050-6_BIB41 – ident: 10.1016/S0734-743X(00)00050-6_BIB25 doi: 10.1016/B978-1-85573-424-1.50027-7 – volume: 15 start-page: 723 year: 1994 ident: 10.1016/S0734-743X(00)00050-6_BIB37 article-title: Data processing in the SHPB tests publication-title: Int J Impact Engng doi: 10.1016/0734-743X(94)90011-9 – year: 1993 ident: 10.1016/S0734-743X(00)00050-6_BIB2 – ident: 10.1016/S0734-743X(00)00050-6_BIB5 – volume: C8 start-page: C8 year: 1994 ident: 10.1016/S0734-743X(00)00050-6_BIB24 article-title: Dynamic tensile fracture fracture phenomenon at wave propagation in ceramic bars. Proceedings of the International Conference EURODYMAT 94 publication-title: J Phys Coll – ident: 10.1016/S0734-743X(00)00050-6_BIB26 – volume: 15 start-page: 25 year: 1994 ident: 10.1016/S0734-743X(00)00050-6_BIB29 article-title: An experimental technique for shear testing at high and very high strain rates, the case of a mild steel publication-title: Int J Impact Engng doi: 10.1016/S0734-743X(05)80005-3 – ident: 10.1016/S0734-743X(00)00050-6_BIB28 – ident: 10.1016/S0734-743X(00)00050-6_BIB43 |
SSID | ssj0017050 |
Score | 2.138995 |
Snippet | A new application of the spalling phenomenon in long specimens is reported in this paper. The new experimental technique is based on an experimental setup... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 387 |
SubjectTerms | Cross-disciplinary physics: materials science; rheology Deformation, plasticity, and creep Exact sciences and technology Materials science Physics Treatment of materials and its effects on microstructure and properties |
Title | An experimental method for dynamic tensile testing of concrete by spalling |
URI | https://dx.doi.org/10.1016/S0734-743X(00)00050-6 https://www.proquest.com/docview/27031396 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zuygifuJ0zhw86KFblrZpcxzDMSfuooPdQtImMBjdcN3Bi3-7L_3YByIDLy2EvrS8vP7yC3n5PYQeuCs1NdQ4nraXWHUcxQxxqA6IUsTVUtnzzm8jNhh7w4k_qaBeeRbGplUW2J9jeobWRUu78GZ7MZ223yE4PZj_JhnP9a3sdo26nEFo17ovr4PRejMhIFmhVvu8Yw02B3nyTrLGR0Kesn4c9tcUdbyQS3CcySte_ALvbEbqn6KTgkribv61Z6iik3N0tCUweIGG3QRva_jjvGA0BqaK47wWPc5S2Gca7kubAo3nBsMaGchkqrH6woA4mWz3JRr3nz96A6eonuBELmOpE8bGSrUD4dMRgBg3NA4M4QooolSRzyJfMl_SIGTcSKa4jqlmodEh4TKwQHCFqsk80dcIwxpJAdMikmnjMeopEzNitB-rUHU8GdaRVzpMRIW0uK1wMRObHDLws7B-FsTqkYKfBauj1tpskWtr7DMIy9EQO0EiAP_3mTZ2Rm_9Qg7r24DX0X05mAL-L7tpIhM9Xy0FtQL_EFY3_3_3LTrMM9dsvk8DVdPPlb4DKpOqJjpofXeaRcD-AARG7s0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4IHtQY42dEUXrwoIdB2Ue3HgmRIAIXIeHWtFubkJBBBA5e_O2-7TaQGEPiZUuafixv26dPu7fPi9Aj84RytasdX5lHIpuOpJo4rgqJlMRTQpr7zoMh7Y793iSYlFC7uAtj3Cpz7M8w3aJ1ntLIrdlYTKeNdxicPqx_E8tzAyO7feDD9DWzs_618fMwcjH2oAVyOyb79hpPVoVNfCLk2dbi0L8WqJOFWILZdBbv4hd02_Woc4ZOcyKJW9m3nqOSSi_Q8Q95wUvUa6X4p4I_zsJFY-CpOMki0WPrwD5T8F4aB2g81xh2yEAlVwrLTwx4Y0W7r9C48zJqd508doITe5SunCjRRqgd6J6KAcKYdpNQEyaBIAoZBzQOBA2EG0aUaUElU4mraKRVRJgIDQxco3I6T9UNwrBDksCziKBK-9T1pU4o0SpIZCSbvogqyC8MxuNcWNzEt5jxrQcZ2JkbO3Ni1EjBzpxWUH1TbJEpa-wrEBW9wXeGCAf031e0utN7mwYZ7G5DVkG1ojM5zC7zy0Skar5ectfI-3uM3v6_7Ro67I4Gfd5_Hb7doaPMh814_lRRefWxVvdAalbywQ7ab-y275E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+method+for+dynamic+tensile+testing+of+concrete+by+spalling&rft.jtitle=International+journal+of+impact+engineering&rft.au=Klepaczko%2C+J.R.&rft.au=Brara%2C+A.&rft.date=2001-04-01&rft.issn=0734-743X&rft.volume=25&rft.issue=4&rft.spage=387&rft.epage=409&rft_id=info:doi/10.1016%2FS0734-743X%2800%2900050-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0734_743X_00_00050_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |