Surface Restructuring Prussian Blue Analog-derived Bimetallic CoFe Phosphides by N-doped Graphene Quantum Dots for Electroactive Hydrogen Evolving Catalyst
[Display omitted] •A novel PBA-derived CoFe phosphides has been developed for hydrogen evolution reaction.•The catalytic activity of the PBA-derived phosphides has been significantly enhanced by NGQD.•The role of NGQD in inducing surface restructuring of the CoFeP has been investigated by XAS.•The s...
Saved in:
Published in | Journal of colloid and interface science Vol. 654; no. Pt A; pp. 677 - 687 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A novel PBA-derived CoFe phosphides has been developed for hydrogen evolution reaction.•The catalytic activity of the PBA-derived phosphides has been significantly enhanced by NGQD.•The role of NGQD in inducing surface restructuring of the CoFeP has been investigated by XAS.•The surface-restructuring NGQD/CoFeP exhibit remarkable HER activity and stability.
As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating platinum in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from bimetallic cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm-2 in 0.5M H2SO4. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm-2 after 12 hours of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation. |
---|---|
AbstractList | [Display omitted]
•A novel PBA-derived CoFe phosphides has been developed for hydrogen evolution reaction.•The catalytic activity of the PBA-derived phosphides has been significantly enhanced by NGQD.•The role of NGQD in inducing surface restructuring of the CoFeP has been investigated by XAS.•The surface-restructuring NGQD/CoFeP exhibit remarkable HER activity and stability.
As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating platinum in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from bimetallic cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm-2 in 0.5M H2SO4. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm-2 after 12 hours of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation. As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating Pt in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity for HER. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm⁻² in 0.5 M H₂SO₄. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm⁻² after 12 h of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation. As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating Pt in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity for HER. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm-2 in 0.5 M H2SO4. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm-2 after 12 h of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation.As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating Pt in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity for HER. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm-2 in 0.5 M H2SO4. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm-2 after 12 h of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation. |
Author | Lin, Wei-Shiang Chen, Jeng-Lung Rinawati, Mia Chang, Ching-Cheng Cheng, Yao-Sheng Yeh, Min-Hsin Huang, Wei-Hsiang Chang, Chia-Yu Chang, Ling-Yu Su, Wei-Nien |
Author_xml | – sequence: 1 givenname: Wei-Shiang surname: Lin fullname: Lin, Wei-Shiang organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 2 givenname: Mia surname: Rinawati fullname: Rinawati, Mia organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 3 givenname: Wei-Hsiang surname: Huang fullname: Huang, Wei-Hsiang organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan – sequence: 4 givenname: Chia-Yu surname: Chang fullname: Chang, Chia-Yu organization: Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 5 givenname: Ling-Yu surname: Chang fullname: Chang, Ling-Yu email: linui1008@gmail.com organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 6 givenname: Yao-Sheng surname: Cheng fullname: Cheng, Yao-Sheng organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 7 givenname: Ching-Cheng surname: Chang fullname: Chang, Ching-Cheng organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 8 givenname: Jeng-Lung orcidid: 0000-0002-0223-5538 surname: Chen fullname: Chen, Jeng-Lung organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan – sequence: 9 givenname: Wei-Nien surname: Su fullname: Su, Wei-Nien email: wsu@mail.ntust.edu.tw organization: Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 10 givenname: Min-Hsin orcidid: 0000-0002-6150-4750 surname: Yeh fullname: Yeh, Min-Hsin email: mhyeh@mail.ntust.edu.tw organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan |
BookMark | eNqFkc1qGzEUhUVJoU7aF-hKy27GlTSeGQ10k7hOUght-rcWGumOLSNLU_0Y_Cx92WpwVlmkqwuH850L51yiC-cdIPSekiUltP24X-6ViUtGWF2EJWH8FVpQ0jdVR0l9gRaEMFr1Xd-9QZcx7gmhtGn6Bfr7M4dRKsA_IKaQVcrBuC1-DDlGIx2-sRnwtZPWbysNwRxB4xtzgCStNQqv_S3gx52P085oiHg44a-V9lNx3QU57cAB_p6lS_mAP_sU8egD3lhQKXipUonD9ycd_BYc3hy9Pc7P17Kkn2J6i16P0kZ493Sv0O_bza_1ffXw7e7L-vqhUnXbporrtmuI4u1Ae1Y3jHE9KtU3UkvVDXQ1MA581fCekYG3spNKNQNbsbHWlGjg9RX6cM6dgv-TSw_iYKICa6UDn6OoabOivKU9_a-VcU5Iz-uOFSs_W1XwMQYYhTJJJuNdCtJYQYmYpxN7MU8n5ulmrUxXUPYMnYI5yHB6Gfp0hqBUdTQQRFQGnAJtQulbaG9ewv8B4Sa3WQ |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2024_139918 crossref_primary_10_1016_j_jcis_2025_01_042 crossref_primary_10_1039_D4TA06599A crossref_primary_10_1016_j_cej_2024_151436 crossref_primary_10_1039_D4NR04343J crossref_primary_10_1016_j_apenergy_2024_122930 crossref_primary_10_1016_j_jcis_2024_07_256 crossref_primary_10_1016_j_jpowsour_2024_235454 crossref_primary_10_1016_j_est_2024_114727 crossref_primary_10_1016_j_ijhydene_2024_09_309 crossref_primary_10_1016_j_jcis_2024_06_084 |
Cites_doi | 10.1021/acssuschemeng.7b04457 10.1021/acs.energyfuels.1c00462 10.1021/acsnano.7b06501 10.1016/j.apcatb.2022.121728 10.3390/catal12020222 10.1021/acsami.0c07821 10.1002/aenm.202001275 10.1021/acscatal.2c05433 10.1039/C9SC03831K 10.1039/C4TA04867A 10.1016/j.jcis.2023.05.187 10.1016/j.apsusc.2022.153249 10.1016/j.carbon.2021.08.063 10.3389/fchem.2021.700020 10.1016/j.electacta.2018.02.145 10.1038/s41467-021-24322-2 10.1002/smll.201902613 10.1021/acsenergylett.8b00584 10.1149/2.F18214IF 10.1107/S1600577515017178 10.3390/surfaces3020017 10.1039/C9TA02886B 10.1021/jacs.9b07986 10.1021/acs.jpcc.1c06646 10.1021/acssuschemeng.9b03166 10.1039/C8QI01227J 10.1021/acs.inorgchem.1c01694 10.1021/acsanm.2c02279 10.1016/j.jpowsour.2021.230884 10.1039/C8TA07686C 10.1016/j.cej.2021.131687 10.1016/j.ijhydene.2021.04.194 10.1021/nn501796r 10.1016/j.ceramint.2020.10.098 10.1016/j.carbon.2022.08.067 10.1016/j.jcis.2019.12.075 10.1002/adma.202002857 10.1002/adfm.202104285 10.1016/j.jcis.2023.06.199 10.1021/acs.inorgchem.6b02929 10.1126/science.1188566 10.3390/catal11111265 10.1016/j.jallcom.2018.04.070 10.1039/C8TA00968F 10.1016/j.cej.2021.130204 10.1021/acsaem.2c01475 10.1002/smll.201700264 10.1021/acscatal.0c03094 10.1021/acsaem.0c01903 10.1016/j.carbon.2021.10.027 10.1039/C4CS00448E 10.1002/celc.201901623 10.1016/j.snb.2023.133617 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2023.10.028 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 687 |
ExternalDocumentID | 10_1016_j_jcis_2023_10_028 S0021979723019410 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-8d6750c86b19235228dfcc95adac7b14b28e8458920b86a7acc5b242f3d10de83 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Thu Jul 10 19:26:14 EDT 2025 Tue Aug 05 11:08:35 EDT 2025 Tue Jul 01 04:19:14 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Fri Feb 23 02:33:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | N-doped graphene quantum dots electrocatalyst Prussian blue analogues transition metal phosphides X-ray absorption spectroscopy hydrogen evolution reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-8d6750c86b19235228dfcc95adac7b14b28e8458920b86a7acc5b242f3d10de83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6150-4750 0000-0002-0223-5538 |
PQID | 2880098372 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3154186191 proquest_miscellaneous_2880098372 crossref_citationtrail_10_1016_j_jcis_2023_10_028 crossref_primary_10_1016_j_jcis_2023_10_028 elsevier_sciencedirect_doi_10_1016_j_jcis_2023_10_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-15 |
PublicationDateYYYYMMDD | 2024-01-15 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Guo, Yu, Feng, Liang, Li, Lv, Liu, Hao, Li (b0040) 2018; 6 Gong, Zhang, Zeng, Wang, Kong, Liu, Chen (b0215) 2021; 184 Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zschech, Feng (b0010) 2017; 8 Rinawati, Wang, Chen, Yeh (b0145) 2021; 423 Jian, Hsiao, Yeh, Ho (b0135) 2019; 7 Favaro, Cattelan, Price, Russell, Calvillo, Agnoli, Granozzi (b0210) 2020; 3 Anantharaj, Reddy, Kundu (b0270) 2017; 56 Shiraz, Crispin, Berggren (b0080) 2021; 46 Karakaya, Solati, Savacı, Keleş, Turan, Çelebi, Kaya (b0090) 2020; 10 Theerthagiri, Murthy, Lee, Karuppasamy, Arumugam, Yu, Hanafiah, Kim, Mittal, Choi (b0120) 2021; 47 Wang, Chen, Yu, Wang, Wang, Sun, Li, Yang, Zhang (b0260) 2019; 15 Zhang, Wei, Sui, Jin, Luo, Bie, Yang (b0275) 2018; 750 Aulia, Lin, Chang, Wang, Lin, Ho, Yeh (b0160) 2022; 5 Zhang, Wu, Sun, Liu, Tang, Guo (b0265) 2019; 6 Liu, Li, Jiang, Li, Zhu, Xiao, Zhu, Gao, Yu, Feng (b0205) 2020; 10 Weng, Grice, Meng, Guan, Xu, Yu, Wang, Zhao, Yan (b0130) 2018; 3 Liu, He, Jiang, Lin, Zhang, Habib, Chen, Song (b0245) 2017; 11 Davis, Caldeira, Matthews (b0005) 2010; 329 Xiong, Lu, Chen, Wang, Kong, Liu, Ying, Yi (b0250) 2022; 520 Hu, Jiang, Xian, Mi, Wei, Fang, Guo, Xu, Liu, Jin (b0065) 2022; 317 Xiao, Huang, Wu, Song, Jiang (b0075) 2022; 591 Du, Chen, Li, Shi, Shao, Zhu (b0125) 2019; 7 Dubouis, Grimaud (b0030) 2019; 10 Zhang, Hao, Chen, Gao, Wang, Zhang (b0100) 2023; 650 Chuang, Hsiao, Yeh, Wang, Chang, Tsai, Ho (b0165) 2020; 3 Jia, Zhang, Meng, An, Wang, Yang, Zhang (b0105) 2020; 563 Lin, Cai, Wu, Yeh, Jiang (b0185) 2021; 125 Gu, Wei, Legut, Fu, Du, Zhang, Francisco, Zhang (b0060) 2021; 31 Borup, Krause, Brouwer (b0015) 2021; 30 Wu, Wang, Zhang, Qin, Wang, Han, Zhan, Yang, Li, Lai, Wang (b0110) 2021; 12 Lin, Aulia, Yeh, Hsiao, Tarigan, Ho (b0170) 2023; 648 Lin, Chuang, Hsiao, Yeh, Ho (b0175) 2020; 12 Zhang, Diao, Ouyang, Yadegari, Mao, Wang, Henkelman, Xie, Riley (b0180) 2023; 13 Wang, Rinawati, Zhan, Lin, Huang, Chen, Mizuguchi, Jiang, Hwang, Yeh (b0195) 2022; 5 Lv, Zhao, Fang, Jiang, Li, Ma, Zhu (b0220) 2017; 13 Pan, Liu, Zhao, Yang, Liang, Liu, Hu, Liu, Liu, Liu (b0115) 2015; 3 Wang, Rinawati, Huang, Cheng, Lin, Chen, Chang, Ho, Su, Yeh (b0190) 2022; 186 Huang, Shi, Zhong, Cheng, Jiang, Chen, Liao, Tang (b0225) 2018; 269 Wang, Tsao, Rinawati, Chen, Chen, Chang, Yeh (b0155) 2022; 427 Zhou, Zi, Xu, Li, Yang, Tang (b0045) 2021; 60 Jian, Huang, Yeh, Ho (b0140) 2018; 6 Feng, Pang, Xu, Guo, Gao, Qiu, Chen (b0070) 2020; 7 Delley, Wu, Mundy, Ung, Cossairt, Wang, Mayer (b0255) 2019; 141 Bora, Cheng, Kapilashrami, Glans, Luo, Guo (b0240) 2015; 22 Ying, Wang (b0095) 2021; 9 Tan, Geng, Ji, Shao, Zhu, Wang, Li, Huang (b0035) 2020; 32 Rinawati, Wang, Huang, Wu, Cheng, Kurniawan, Haw, Chiang, Su, Yeh (b0150) 2022; 200 Zhao, Xu, Chen, Cheng, You, Wang, Dong, Tao, Zhu (b0055) 2022; 12 Tang, Ji, Li, Bai, Liu, Hao, Lin, Jiang, Teng, Yang (b0230) 2014; 8 Chen, Ye, Tao, Yang, Cheng, Liu, Cao, Fan, Wei, Zhu (b0050) 2021; 11 G.n.L. Cardoso, P.C. Piquini, R. Ahuja, From monolayers to nanotubes: toward catalytic transition-metal dichalcogenides for hydrogen evolution reaction, Energy Fuels 35(7) (2021) 6282-6288. Li, Kang, Baeyens, Zhang, Deng (b0025) 2020 Lin, Rinawati, Chang, Wang, Wu, Yen, Chen, Ho, Yeh (b0200) 2023; 383 Liu, Bai, Ji, Wang, Wen, Lin, Zheng, Li, Zhang, Peng (b0235) 2019; 7 Zou, Zhang (b0020) 2015; 44 Feng (10.1016/j.jcis.2023.10.028_b0070) 2020; 7 Gu (10.1016/j.jcis.2023.10.028_b0060) 2021; 31 Zhang (10.1016/j.jcis.2023.10.028_b0265) 2019; 6 Hu (10.1016/j.jcis.2023.10.028_b0065) 2022; 317 Lin (10.1016/j.jcis.2023.10.028_b0170) 2023; 648 Lin (10.1016/j.jcis.2023.10.028_b0200) 2023; 383 Zhao (10.1016/j.jcis.2023.10.028_b0055) 2022; 12 Jia (10.1016/j.jcis.2023.10.028_b0105) 2020; 563 Rinawati (10.1016/j.jcis.2023.10.028_b0145) 2021; 423 Tan (10.1016/j.jcis.2023.10.028_b0035) 2020; 32 Lv (10.1016/j.jcis.2023.10.028_b0220) 2017; 13 Jian (10.1016/j.jcis.2023.10.028_b0140) 2018; 6 Zhang (10.1016/j.jcis.2023.10.028_b0275) 2018; 750 Bora (10.1016/j.jcis.2023.10.028_b0240) 2015; 22 Theerthagiri (10.1016/j.jcis.2023.10.028_b0120) 2021; 47 Lin (10.1016/j.jcis.2023.10.028_b0185) 2021; 125 Du (10.1016/j.jcis.2023.10.028_b0125) 2019; 7 10.1016/j.jcis.2023.10.028_b0085 Guo (10.1016/j.jcis.2023.10.028_b0040) 2018; 6 Chuang (10.1016/j.jcis.2023.10.028_b0165) 2020; 3 Ying (10.1016/j.jcis.2023.10.028_b0095) 2021; 9 Liu (10.1016/j.jcis.2023.10.028_b0235) 2019; 7 Xiao (10.1016/j.jcis.2023.10.028_b0075) 2022; 591 Wang (10.1016/j.jcis.2023.10.028_b0190) 2022; 186 Chen (10.1016/j.jcis.2023.10.028_b0050) 2021; 11 Anantharaj (10.1016/j.jcis.2023.10.028_b0270) 2017; 56 Wu (10.1016/j.jcis.2023.10.028_b0110) 2021; 12 Favaro (10.1016/j.jcis.2023.10.028_b0210) 2020; 3 Xiong (10.1016/j.jcis.2023.10.028_b0250) 2022; 520 Jian (10.1016/j.jcis.2023.10.028_b0135) 2019; 7 Dubouis (10.1016/j.jcis.2023.10.028_b0030) 2019; 10 Aulia (10.1016/j.jcis.2023.10.028_b0160) 2022; 5 Liu (10.1016/j.jcis.2023.10.028_b0245) 2017; 11 Li (10.1016/j.jcis.2023.10.028_b0025) 2020 Rinawati (10.1016/j.jcis.2023.10.028_b0150) 2022; 200 Liu (10.1016/j.jcis.2023.10.028_b0205) 2020; 10 Tang (10.1016/j.jcis.2023.10.028_b0230) 2014; 8 Huang (10.1016/j.jcis.2023.10.028_b0225) 2018; 269 Zhang (10.1016/j.jcis.2023.10.028_b0180) 2023; 13 Gong (10.1016/j.jcis.2023.10.028_b0215) 2021; 184 Borup (10.1016/j.jcis.2023.10.028_b0015) 2021; 30 Karakaya (10.1016/j.jcis.2023.10.028_b0090) 2020; 10 Davis (10.1016/j.jcis.2023.10.028_b0005) 2010; 329 Zou (10.1016/j.jcis.2023.10.028_b0020) 2015; 44 Delley (10.1016/j.jcis.2023.10.028_b0255) 2019; 141 Wang (10.1016/j.jcis.2023.10.028_b0195) 2022; 5 Zhou (10.1016/j.jcis.2023.10.028_b0045) 2021; 60 Shiraz (10.1016/j.jcis.2023.10.028_b0080) 2021; 46 Lin (10.1016/j.jcis.2023.10.028_b0175) 2020; 12 Wang (10.1016/j.jcis.2023.10.028_b0260) 2019; 15 Wang (10.1016/j.jcis.2023.10.028_b0155) 2022; 427 Pan (10.1016/j.jcis.2023.10.028_b0115) 2015; 3 Zhang (10.1016/j.jcis.2023.10.028_b0010) 2017; 8 Weng (10.1016/j.jcis.2023.10.028_b0130) 2018; 3 Zhang (10.1016/j.jcis.2023.10.028_b0100) 2023; 650 |
References_xml | – volume: 3 start-page: 225 year: 2020 end-page: 236 ident: b0210 article-title: In situ study of graphene oxide quantum dot-MoSx nanohybrids as hydrogen evolution catalysts publication-title: Surfaces – volume: 22 start-page: 1450 year: 2015 end-page: 1458 ident: b0240 article-title: Influence of crystal structure, ligand environment and morphology on Co L-edge XAS spectral characteristics in cobalt compounds publication-title: J. Synchrotron Radiat. – volume: 8 start-page: 6312 year: 2014 end-page: 6320 ident: b0230 article-title: Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots publication-title: ACS Nano – volume: 60 start-page: 11661 year: 2021 end-page: 11671 ident: b0045 article-title: Core–shell-structured Prussian blue analogues ternary metal phosphides as efficient bifunctional electrocatalysts for OER and HER publication-title: Inorg. Chem. – volume: 200 start-page: 437 year: 2022 end-page: 447 ident: b0150 article-title: Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction publication-title: Carbon – volume: 329 start-page: 1330 year: 2010 end-page: 1333 ident: b0005 article-title: Future CO2 emissions and climate change from existing energy infrastructure publication-title: Science – volume: 7 start-page: 1479 year: 2019 end-page: 1490 ident: b0135 article-title: Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors publication-title: J. Mater. Chem. A – volume: 141 start-page: 15390 year: 2019 end-page: 15402 ident: b0255 article-title: Hydrogen on cobalt phosphide publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 1902613 year: 2019 ident: b0260 article-title: Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for PH-universal hydrogen evolution publication-title: Small – volume: 7 start-page: 12434 year: 2019 end-page: 12439 ident: b0235 article-title: A highly efficient alkaline HER Co–Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state publication-title: J. Mater. Chem. A – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: b0020 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. – volume: 125 start-page: 24894 year: 2021 end-page: 24901 ident: b0185 article-title: Boron and nitrogen codoped multilayer graphene as a counter electrode: a combined theoretical and experimental study on dye-sensitized solar cells under ambient light conditions publication-title: J. Phys. Chem. C – volume: 563 start-page: 189 year: 2020 end-page: 196 ident: b0105 article-title: Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 1700264 year: 2017 ident: b0220 article-title: Incorporating nitrogen-doped graphene quantum dots and Ni3S2 nanosheets: a synergistic electrocatalyst with highly enhanced activity for overall water splitting publication-title: Small – volume: 520 year: 2022 ident: b0250 article-title: CoFeP nanocube-arrays based on Prussian blue analogues for accelerated oxygen evolution electrocatalysis publication-title: J. Power Sources – volume: 650 start-page: 816 year: 2023 end-page: 824 ident: b0100 article-title: Facile synthesis of Co–Fe layered double hydroxide nanosheets wrapped on Ni-doped nanoporous carbon nanorods for oxygen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 648 start-page: 193 year: 2023 end-page: 202 ident: b0170 article-title: Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 5 start-page: 11100 year: 2022 end-page: 11110 ident: b0195 article-title: Boron-doped graphene quantum dots anchored to carbon nanotubes as noble metal-free electrocatalysts of uric acid for a wearable sweat sensor publication-title: ACS Appl. Nano Mater. – volume: 12 start-page: 4018 year: 2021 ident: b0110 article-title: Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution publication-title: Nat. Commun. – volume: 186 start-page: 406 year: 2022 end-page: 415 ident: b0190 article-title: Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor publication-title: Carbon – volume: 32 start-page: 2002857 year: 2020 ident: b0035 article-title: Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution publication-title: Adv. Mater. – volume: 3 start-page: 1434 year: 2018 end-page: 1442 ident: b0130 article-title: Metal–organic framework-derived CoWP@ C composite nanowire electrocatalyst for efficient water splitting publication-title: ACS Energy Lett. – volume: 383 year: 2023 ident: b0200 article-title: A non-invasive wearable sweat biosensor with a flexible N-GQDs/PANI nanocomposite layer for glucose monitoring publication-title: Sens. Actuat. B – volume: 7 start-page: 31 year: 2020 end-page: 54 ident: b0070 article-title: Transition metal selenides for electrocatalytic hydrogen evolution reaction publication-title: ChemElectroChem – volume: 591 year: 2022 ident: b0075 article-title: Tetragonal transition metal selenide for hydrogen evolution publication-title: Appl. Surf. Sci. – volume: 6 start-page: 5107 year: 2018 end-page: 5118 ident: b0140 article-title: A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells publication-title: J. Mater. Chem. A – volume: 184 start-page: 554 year: 2021 end-page: 561 ident: b0215 article-title: Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER publication-title: Carbon – volume: 3 start-page: 1656 year: 2015 end-page: 1665 ident: b0115 article-title: Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution publication-title: J. Mater. Chem. A – volume: 11 start-page: 11574 year: 2017 end-page: 11583 ident: b0245 article-title: Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting publication-title: ACS Nano – volume: 6 start-page: 8150 year: 2018 end-page: 8158 ident: b0040 article-title: Intercalation synthesis of prussian blue analogue nanocone and their conversion into Fe-doped Co x P nanocone for enhanced hydrogen evolution publication-title: ACS Sustain. Chem. Eng. – volume: 9 year: 2021 ident: b0095 article-title: Strategies for developing transition metal phosphides in electrochemical water splitting publication-title: Front. Chem. – volume: 750 start-page: 655 year: 2018 end-page: 658 ident: b0275 article-title: Cobalt phosphide microsphere as an efficient bifunctional oxygen catalyst for Li-air batteries publication-title: J. Alloy. Compd. – volume: 427 year: 2022 ident: b0155 article-title: Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for enzyme-free electrochemical lactate monitoring in human sweat publication-title: Chem. Eng. J. – volume: 6 start-page: 604 year: 2019 end-page: 611 ident: b0265 article-title: CoFeP hollow cube as advanced electrocatalyst for water oxidation publication-title: Inorg. Chem. Front. – volume: 47 start-page: 4404 year: 2021 end-page: 4425 ident: b0120 article-title: Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion publication-title: Ceram. Int. – volume: 10 start-page: 2001275 year: 2020 ident: b0205 article-title: Graphene quantum dots-based advanced electrode materials: design, synthesis and their applications in electrochemical energy storage and electrocatalysis publication-title: Adv. Energy Mater. – volume: 12 start-page: 222 year: 2022 ident: b0055 article-title: Surface modification towards integral bulk catalysts of transition metal borides for hydrogen evolution reaction publication-title: Catalysts – volume: 12 start-page: 42634 year: 2020 end-page: 42643 ident: b0175 article-title: Oxygen plasma activation of carbon nanotubes-interconnected Prussian blue analogue for oxygen evolution reaction publication-title: ACS Appl Mater Interfaces – volume: 31 start-page: 2104285 year: 2021 ident: b0060 article-title: Single atom-modified hybrid transition metal carbides as efficient hydrogen evolution reaction catalysts publication-title: Adv. Funct. Mater. – volume: 423 year: 2021 ident: b0145 article-title: Designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution publication-title: Chem. Eng. J. – volume: 3 start-page: 11752 year: 2020 end-page: 11762 ident: b0165 article-title: Prussian blue analogue-derived metal oxides as electrocatalysts for oxygen evolution reaction: tailoring the molar ratio of cobalt to iron publication-title: ACS Appl. Energy Mater. – reference: G.n.L. Cardoso, P.C. Piquini, R. Ahuja, From monolayers to nanotubes: toward catalytic transition-metal dichalcogenides for hydrogen evolution reaction, Energy Fuels 35(7) (2021) 6282-6288. – volume: 317 year: 2022 ident: b0065 article-title: Microwave-pulse sugar-blowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution publication-title: Appl Catal B – volume: 8 start-page: 1 year: 2017 end-page: 8 ident: b0010 article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics publication-title: Nat. Commun. – year: 2020 ident: b0025 article-title: Hydrogen production: State of technology, IOP conference series: Earth and environmental science publication-title: IOP Publishing – volume: 5 start-page: 9801 year: 2022 end-page: 9810 ident: b0160 article-title: Oxygen plasma-activated NiFe prussian blue analogues interconnected N-doped carbon nanotubes as a bifunctional electrocatalyst for a rechargeable zinc-air battery publication-title: ACS Appl. Energy Mater. – volume: 269 start-page: 45 year: 2018 end-page: 54 ident: b0225 article-title: Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance publication-title: Electrochim. Acta – volume: 10 start-page: 15114 year: 2020 end-page: 15122 ident: b0090 article-title: Mesoporous thin-film NiS2 as an idealized pre-electrocatalyst for a hydrogen evolution reaction publication-title: ACS Catal. – volume: 7 start-page: 13523 year: 2019 end-page: 13531 ident: b0125 article-title: Core–shell FeCo Prussian blue analogue/Ni (OH) 2 derived porous ternary transition metal phosphides connected by graphene for effectively electrocatalytic water splitting publication-title: ACS Sustain. Chem. Eng. – volume: 13 start-page: 1349 year: 2023 end-page: 1358 ident: b0180 article-title: Heterostructured core-shell Ni–Co@Fe–Co nanoboxes of prussian blue analogues for efficient electrocatalytic hydrogen evolution from alkaline seawater publication-title: ACS Catal. – volume: 30 start-page: 79 year: 2021 ident: b0015 article-title: Hydrogen is essential for industry and transportation decarbonization publication-title: Electrochem. Soc. Interface – volume: 56 start-page: 1742 year: 2017 end-page: 1756 ident: b0270 article-title: Core-oxidized amorphous cobalt phosphide nanostructures: an advanced and highly efficient oxygen evolution catalyst publication-title: Inorg. Chem. – volume: 11 start-page: 1265 year: 2021 ident: b0050 article-title: Constructing 1D boron chains in the structure of transition metal monoborides for hydrogen evolution reactions publication-title: Catalysts – volume: 10 start-page: 9165 year: 2019 end-page: 9181 ident: b0030 article-title: The hydrogen evolution reaction: from material to interfacial descriptors publication-title: Chem. Sci. – volume: 46 start-page: 24060 year: 2021 end-page: 24077 ident: b0080 article-title: Transition metal sulfides for electrochemical hydrogen evolution publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 8150 issue: 7 year: 2018 ident: 10.1016/j.jcis.2023.10.028_b0040 article-title: Intercalation synthesis of prussian blue analogue nanocone and their conversion into Fe-doped Co x P nanocone for enhanced hydrogen evolution publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b04457 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.jcis.2023.10.028_b0010 article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics publication-title: Nat. Commun. – ident: 10.1016/j.jcis.2023.10.028_b0085 doi: 10.1021/acs.energyfuels.1c00462 – volume: 11 start-page: 11574 issue: 11 year: 2017 ident: 10.1016/j.jcis.2023.10.028_b0245 article-title: Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting publication-title: ACS Nano doi: 10.1021/acsnano.7b06501 – volume: 317 year: 2022 ident: 10.1016/j.jcis.2023.10.028_b0065 article-title: Microwave-pulse sugar-blowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.121728 – volume: 12 start-page: 222 issue: 2 year: 2022 ident: 10.1016/j.jcis.2023.10.028_b0055 article-title: Surface modification towards integral bulk catalysts of transition metal borides for hydrogen evolution reaction publication-title: Catalysts doi: 10.3390/catal12020222 – volume: 12 start-page: 42634 issue: 38 year: 2020 ident: 10.1016/j.jcis.2023.10.028_b0175 article-title: Oxygen plasma activation of carbon nanotubes-interconnected Prussian blue analogue for oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c07821 – volume: 10 start-page: 2001275 issue: 29 year: 2020 ident: 10.1016/j.jcis.2023.10.028_b0205 article-title: Graphene quantum dots-based advanced electrode materials: design, synthesis and their applications in electrochemical energy storage and electrocatalysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001275 – volume: 13 start-page: 1349 issue: 2 year: 2023 ident: 10.1016/j.jcis.2023.10.028_b0180 article-title: Heterostructured core-shell Ni–Co@Fe–Co nanoboxes of prussian blue analogues for efficient electrocatalytic hydrogen evolution from alkaline seawater publication-title: ACS Catal. doi: 10.1021/acscatal.2c05433 – volume: 10 start-page: 9165 issue: 40 year: 2019 ident: 10.1016/j.jcis.2023.10.028_b0030 article-title: The hydrogen evolution reaction: from material to interfacial descriptors publication-title: Chem. Sci. doi: 10.1039/C9SC03831K – volume: 3 start-page: 1656 issue: 4 year: 2015 ident: 10.1016/j.jcis.2023.10.028_b0115 article-title: Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04867A – volume: 648 start-page: 193 year: 2023 ident: 10.1016/j.jcis.2023.10.028_b0170 article-title: Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.05.187 – volume: 591 year: 2022 ident: 10.1016/j.jcis.2023.10.028_b0075 article-title: Tetragonal transition metal selenide for hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153249 – volume: 184 start-page: 554 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0215 article-title: Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER publication-title: Carbon doi: 10.1016/j.carbon.2021.08.063 – volume: 9 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0095 article-title: Strategies for developing transition metal phosphides in electrochemical water splitting publication-title: Front. Chem. doi: 10.3389/fchem.2021.700020 – volume: 269 start-page: 45 year: 2018 ident: 10.1016/j.jcis.2023.10.028_b0225 article-title: Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.02.145 – volume: 12 start-page: 4018 issue: 1 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0110 article-title: Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-021-24322-2 – volume: 15 start-page: 1902613 issue: 37 year: 2019 ident: 10.1016/j.jcis.2023.10.028_b0260 article-title: Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for PH-universal hydrogen evolution publication-title: Small doi: 10.1002/smll.201902613 – volume: 3 start-page: 1434 issue: 6 year: 2018 ident: 10.1016/j.jcis.2023.10.028_b0130 article-title: Metal–organic framework-derived CoWP@ C composite nanowire electrocatalyst for efficient water splitting publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00584 – volume: 30 start-page: 79 issue: 4 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0015 article-title: Hydrogen is essential for industry and transportation decarbonization publication-title: Electrochem. Soc. Interface doi: 10.1149/2.F18214IF – volume: 22 start-page: 1450 issue: 6 year: 2015 ident: 10.1016/j.jcis.2023.10.028_b0240 article-title: Influence of crystal structure, ligand environment and morphology on Co L-edge XAS spectral characteristics in cobalt compounds publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577515017178 – volume: 3 start-page: 225 issue: 2 year: 2020 ident: 10.1016/j.jcis.2023.10.028_b0210 article-title: In situ study of graphene oxide quantum dot-MoSx nanohybrids as hydrogen evolution catalysts publication-title: Surfaces doi: 10.3390/surfaces3020017 – volume: 7 start-page: 12434 issue: 20 year: 2019 ident: 10.1016/j.jcis.2023.10.028_b0235 article-title: A highly efficient alkaline HER Co–Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02886B – volume: 141 start-page: 15390 issue: 38 year: 2019 ident: 10.1016/j.jcis.2023.10.028_b0255 article-title: Hydrogen on cobalt phosphide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07986 – volume: 125 start-page: 24894 issue: 45 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0185 article-title: Boron and nitrogen codoped multilayer graphene as a counter electrode: a combined theoretical and experimental study on dye-sensitized solar cells under ambient light conditions publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c06646 – volume: 7 start-page: 13523 issue: 15 year: 2019 ident: 10.1016/j.jcis.2023.10.028_b0125 article-title: Core–shell FeCo Prussian blue analogue/Ni (OH) 2 derived porous ternary transition metal phosphides connected by graphene for effectively electrocatalytic water splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b03166 – volume: 6 start-page: 604 issue: 2 year: 2019 ident: 10.1016/j.jcis.2023.10.028_b0265 article-title: CoFeP hollow cube as advanced electrocatalyst for water oxidation publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI01227J – volume: 60 start-page: 11661 issue: 15 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0045 article-title: Core–shell-structured Prussian blue analogues ternary metal phosphides as efficient bifunctional electrocatalysts for OER and HER publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c01694 – volume: 5 start-page: 11100 issue: 8 year: 2022 ident: 10.1016/j.jcis.2023.10.028_b0195 article-title: Boron-doped graphene quantum dots anchored to carbon nanotubes as noble metal-free electrocatalysts of uric acid for a wearable sweat sensor publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c02279 – volume: 520 year: 2022 ident: 10.1016/j.jcis.2023.10.028_b0250 article-title: CoFeP nanocube-arrays based on Prussian blue analogues for accelerated oxygen evolution electrocatalysis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230884 – volume: 7 start-page: 1479 issue: 4 year: 2019 ident: 10.1016/j.jcis.2023.10.028_b0135 article-title: Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07686C – volume: 427 year: 2022 ident: 10.1016/j.jcis.2023.10.028_b0155 article-title: Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for enzyme-free electrochemical lactate monitoring in human sweat publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131687 – volume: 46 start-page: 24060 issue: 47 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0080 article-title: Transition metal sulfides for electrochemical hydrogen evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.04.194 – volume: 8 start-page: 6312 issue: 6 year: 2014 ident: 10.1016/j.jcis.2023.10.028_b0230 article-title: Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots publication-title: ACS Nano doi: 10.1021/nn501796r – volume: 47 start-page: 4404 issue: 4 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0120 article-title: Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.10.098 – volume: 200 start-page: 437 year: 2022 ident: 10.1016/j.jcis.2023.10.028_b0150 article-title: Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction publication-title: Carbon doi: 10.1016/j.carbon.2022.08.067 – volume: 563 start-page: 189 year: 2020 ident: 10.1016/j.jcis.2023.10.028_b0105 article-title: Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.075 – volume: 32 start-page: 2002857 issue: 40 year: 2020 ident: 10.1016/j.jcis.2023.10.028_b0035 article-title: Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.202002857 – volume: 31 start-page: 2104285 issue: 43 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0060 article-title: Single atom-modified hybrid transition metal carbides as efficient hydrogen evolution reaction catalysts publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104285 – volume: 650 start-page: 816 year: 2023 ident: 10.1016/j.jcis.2023.10.028_b0100 article-title: Facile synthesis of Co–Fe layered double hydroxide nanosheets wrapped on Ni-doped nanoporous carbon nanorods for oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.06.199 – volume: 56 start-page: 1742 issue: 3 year: 2017 ident: 10.1016/j.jcis.2023.10.028_b0270 article-title: Core-oxidized amorphous cobalt phosphide nanostructures: an advanced and highly efficient oxygen evolution catalyst publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02929 – volume: 329 start-page: 1330 issue: 5997 year: 2010 ident: 10.1016/j.jcis.2023.10.028_b0005 article-title: Future CO2 emissions and climate change from existing energy infrastructure publication-title: Science doi: 10.1126/science.1188566 – volume: 11 start-page: 1265 issue: 11 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0050 article-title: Constructing 1D boron chains in the structure of transition metal monoborides for hydrogen evolution reactions publication-title: Catalysts doi: 10.3390/catal11111265 – volume: 750 start-page: 655 year: 2018 ident: 10.1016/j.jcis.2023.10.028_b0275 article-title: Cobalt phosphide microsphere as an efficient bifunctional oxygen catalyst for Li-air batteries publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.04.070 – volume: 6 start-page: 5107 issue: 12 year: 2018 ident: 10.1016/j.jcis.2023.10.028_b0140 article-title: A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00968F – volume: 423 year: 2021 ident: 10.1016/j.jcis.2023.10.028_b0145 article-title: Designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130204 – volume: 5 start-page: 9801 issue: 8 year: 2022 ident: 10.1016/j.jcis.2023.10.028_b0160 article-title: Oxygen plasma-activated NiFe prussian blue analogues interconnected N-doped carbon nanotubes as a bifunctional electrocatalyst for a rechargeable zinc-air battery publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c01475 – volume: 13 start-page: 1700264 issue: 24 year: 2017 ident: 10.1016/j.jcis.2023.10.028_b0220 article-title: Incorporating nitrogen-doped graphene quantum dots and Ni3S2 nanosheets: a synergistic electrocatalyst with highly enhanced activity for overall water splitting publication-title: Small doi: 10.1002/smll.201700264 – year: 2020 ident: 10.1016/j.jcis.2023.10.028_b0025 article-title: Hydrogen production: State of technology, IOP conference series: Earth and environmental science publication-title: IOP Publishing – volume: 10 start-page: 15114 issue: 24 year: 2020 ident: 10.1016/j.jcis.2023.10.028_b0090 article-title: Mesoporous thin-film NiS2 as an idealized pre-electrocatalyst for a hydrogen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.0c03094 – volume: 3 start-page: 11752 issue: 12 year: 2020 ident: 10.1016/j.jcis.2023.10.028_b0165 article-title: Prussian blue analogue-derived metal oxides as electrocatalysts for oxygen evolution reaction: tailoring the molar ratio of cobalt to iron publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01903 – volume: 186 start-page: 406 year: 2022 ident: 10.1016/j.jcis.2023.10.028_b0190 article-title: Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor publication-title: Carbon doi: 10.1016/j.carbon.2021.10.027 – volume: 44 start-page: 5148 issue: 15 year: 2015 ident: 10.1016/j.jcis.2023.10.028_b0020 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 7 start-page: 31 issue: 1 year: 2020 ident: 10.1016/j.jcis.2023.10.028_b0070 article-title: Transition metal selenides for electrocatalytic hydrogen evolution reaction publication-title: ChemElectroChem doi: 10.1002/celc.201901623 – volume: 383 year: 2023 ident: 10.1016/j.jcis.2023.10.028_b0200 article-title: A non-invasive wearable sweat biosensor with a flexible N-GQDs/PANI nanocomposite layer for glucose monitoring publication-title: Sens. Actuat. B doi: 10.1016/j.snb.2023.133617 |
SSID | ssj0011559 |
Score | 2.5179024 |
Snippet | [Display omitted]
•A novel PBA-derived CoFe phosphides has been developed for hydrogen evolution reaction.•The catalytic activity of the PBA-derived phosphides... As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 677 |
SubjectTerms | catalysts cobalt durability electrocatalyst electrochemistry graphene hydrogen hydrogen evolution reaction hydrogen production N-doped graphene quantum dots phosphides Prussian blue analogues transition metal phosphides X-ray absorption spectroscopy |
Title | Surface Restructuring Prussian Blue Analog-derived Bimetallic CoFe Phosphides by N-doped Graphene Quantum Dots for Electroactive Hydrogen Evolving Catalyst |
URI | https://dx.doi.org/10.1016/j.jcis.2023.10.028 https://www.proquest.com/docview/2880098372 https://www.proquest.com/docview/3154186191 |
Volume | 654 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqIUqiMxA25jZM4ax_bsMsCYlUelXqL_GxTbTerzabSXvgj_Flm8qgAQQ_ckmisRJ7JN2N75htCXjuZuRAHxUxkBEu5VkwKuFKxFSGTKnUCq5E_zbLpafrhTJxtkXyohcG0yh77O0xv0bp_ctjP5uGyLLHGF_62EXbNgjAlbcus0nSEVn7w_SbNg-OxW5fmwRlK94UzXY7XpS2RsjtODjDDCzuy_905_QHTre-ZPCQP-qCRHnXf9Yhs-cUOuZsPvdp2yP1faAUfkx9fm1XQ1tMvvqOHbUsR6cmqqbFkkh7PG0-RjaQ6Zw7GXHtHj8srD3H4vLQ0ryaenlxU9fKidL6mZkNnzFVLkHqH9NaAjvRzAxpprujbal1TiHvpuGuno1v4pNONW1VgmnQM6IdbFjTHbaJNvX5CTifjb_mU9U0YmE2ybM2kgyVFZGVmMBaEaE26YK0S2mk7Mjw1sfQyFVLFkZGZHmlrhQG_HxLHI-dl8pRsL6qFf0Zo0CHLpA1WGZsaExTXPNYujgNS0Kh0l_Bh9gvbM5Rjo4x5MaSiXRaosQI1hs9AY7vkzc2YZcfPcau0GJRa_GZlBTiQW8e9GiygAM3imYpe-KoBIcC_SMEqP_63TAJhKpewUuXP__P9e-Qe3GG6EOPiBdkG2_EvIRham_3W2vfJnaP3H6eznypZDC0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCAqI8jQSnJDb2Hmsc-BAt7tsabsq0Eq9BT9pqu1mtdmA9sIf4WfwB5nJowIEPSD1FiV2EnnG33y250HICysT64VPmQ50zCKuUiZjuEqFiX0i08jGGI18ME5Gx9G7k_hkhfzoYmHQrbLF_gbTa7Ru72y1o7k1y3OM8YXZ1sOqWUBTIh60npV7bvkV1m3l690dEPJLIYaDo_6ItaUFmAmTZMGkBaIcGJloZDjAQaT1xqSxssr0NI-0kE5GsUxFoGWiesqYWIM186HlgXUyhPdeI9cjgAssm7D57cKvhOM5X-NXwhn-Xhup0ziVnZkcc4SLcBNdyrAE_N-t4R92oTZ2w9vkVstS6ZtmIO6QFTddJ2v9rjjcOrn5Sx7Du-T7x2rulXH0g2vy0daxj_RwXpUYo0m3J5WjmP6k-Mws9PniLN3Ozx0Q_0luaL8YOnp4WpSz09y6kuolHTNbzKDVW8ynDXBM31egAtU53SkWJQWiTQdN_R5V4zUdLe28gLlABwC3uEdC-7gvtSwX98jxlYjmPlmdFlP3gFCvfJJI402qTaS1T7niQlkhPOa8SaMNwrvRz0ybEh0rc0yyzvftLEOJZSgxvAcS2yCvLvrMmoQgl7aOO6Fmv6l1Bhbr0n7POw3IQLJ4iKOmrqigEQBukMqwJ_7dJgRezCUsjfnD__z-M7I2OjrYz_Z3x3uPyA14gr5KjMePySrokXsCTGyhn9aaT8mnq55qPwEEokef |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+restructuring+Prussian+blue+analog-derived+bimetallic+CoFe+phosphides+by+N-doped+graphene+quantum+dots+for+electroactive+hydrogen+evolving+catalyst&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Lin%2C+Wei-Shiang&rft.au=Rinawati%2C+Mia&rft.au=Huang%2C+Wei-Hsiang&rft.au=Chang%2C+Chia-Yu&rft.date=2024-01-15&rft.issn=0021-9797&rft.volume=654+p.677-687&rft.spage=677&rft.epage=687&rft_id=info:doi/10.1016%2Fj.jcis.2023.10.028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |