Surface Restructuring Prussian Blue Analog-derived Bimetallic CoFe Phosphides by N-doped Graphene Quantum Dots for Electroactive Hydrogen Evolving Catalyst

[Display omitted] •A novel PBA-derived CoFe phosphides has been developed for hydrogen evolution reaction.•The catalytic activity of the PBA-derived phosphides has been significantly enhanced by NGQD.•The role of NGQD in inducing surface restructuring of the CoFeP has been investigated by XAS.•The s...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 654; no. Pt A; pp. 677 - 687
Main Authors Lin, Wei-Shiang, Rinawati, Mia, Huang, Wei-Hsiang, Chang, Chia-Yu, Chang, Ling-Yu, Cheng, Yao-Sheng, Chang, Ching-Cheng, Chen, Jeng-Lung, Su, Wei-Nien, Yeh, Min-Hsin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A novel PBA-derived CoFe phosphides has been developed for hydrogen evolution reaction.•The catalytic activity of the PBA-derived phosphides has been significantly enhanced by NGQD.•The role of NGQD in inducing surface restructuring of the CoFeP has been investigated by XAS.•The surface-restructuring NGQD/CoFeP exhibit remarkable HER activity and stability. As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating platinum in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from bimetallic cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm-2 in 0.5M H2SO4. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm-2 after 12 hours of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation.
AbstractList [Display omitted] •A novel PBA-derived CoFe phosphides has been developed for hydrogen evolution reaction.•The catalytic activity of the PBA-derived phosphides has been significantly enhanced by NGQD.•The role of NGQD in inducing surface restructuring of the CoFeP has been investigated by XAS.•The surface-restructuring NGQD/CoFeP exhibit remarkable HER activity and stability. As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating platinum in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from bimetallic cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm-2 in 0.5M H2SO4. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm-2 after 12 hours of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation.
As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating Pt in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity for HER. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm⁻² in 0.5 M H₂SO₄. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm⁻² after 12 h of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation.
As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating Pt in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity for HER. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm-2 in 0.5 M H2SO4. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm-2 after 12 h of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation.As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating Pt in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity for HER. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm-2 in 0.5 M H2SO4. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm-2 after 12 h of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation.
Author Lin, Wei-Shiang
Chen, Jeng-Lung
Rinawati, Mia
Chang, Ching-Cheng
Cheng, Yao-Sheng
Yeh, Min-Hsin
Huang, Wei-Hsiang
Chang, Chia-Yu
Chang, Ling-Yu
Su, Wei-Nien
Author_xml – sequence: 1
  givenname: Wei-Shiang
  surname: Lin
  fullname: Lin, Wei-Shiang
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 2
  givenname: Mia
  surname: Rinawati
  fullname: Rinawati, Mia
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 3
  givenname: Wei-Hsiang
  surname: Huang
  fullname: Huang, Wei-Hsiang
  organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
– sequence: 4
  givenname: Chia-Yu
  surname: Chang
  fullname: Chang, Chia-Yu
  organization: Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 5
  givenname: Ling-Yu
  surname: Chang
  fullname: Chang, Ling-Yu
  email: linui1008@gmail.com
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 6
  givenname: Yao-Sheng
  surname: Cheng
  fullname: Cheng, Yao-Sheng
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 7
  givenname: Ching-Cheng
  surname: Chang
  fullname: Chang, Ching-Cheng
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 8
  givenname: Jeng-Lung
  orcidid: 0000-0002-0223-5538
  surname: Chen
  fullname: Chen, Jeng-Lung
  organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
– sequence: 9
  givenname: Wei-Nien
  surname: Su
  fullname: Su, Wei-Nien
  email: wsu@mail.ntust.edu.tw
  organization: Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 10
  givenname: Min-Hsin
  orcidid: 0000-0002-6150-4750
  surname: Yeh
  fullname: Yeh, Min-Hsin
  email: mhyeh@mail.ntust.edu.tw
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
BookMark eNqFkc1qGzEUhUVJoU7aF-hKy27GlTSeGQ10k7hOUght-rcWGumOLSNLU_0Y_Cx92WpwVlmkqwuH850L51yiC-cdIPSekiUltP24X-6ViUtGWF2EJWH8FVpQ0jdVR0l9gRaEMFr1Xd-9QZcx7gmhtGn6Bfr7M4dRKsA_IKaQVcrBuC1-DDlGIx2-sRnwtZPWbysNwRxB4xtzgCStNQqv_S3gx52P085oiHg44a-V9lNx3QU57cAB_p6lS_mAP_sU8egD3lhQKXipUonD9ycd_BYc3hy9Pc7P17Kkn2J6i16P0kZ493Sv0O_bza_1ffXw7e7L-vqhUnXbporrtmuI4u1Ae1Y3jHE9KtU3UkvVDXQ1MA581fCekYG3spNKNQNbsbHWlGjg9RX6cM6dgv-TSw_iYKICa6UDn6OoabOivKU9_a-VcU5Iz-uOFSs_W1XwMQYYhTJJJuNdCtJYQYmYpxN7MU8n5ulmrUxXUPYMnYI5yHB6Gfp0hqBUdTQQRFQGnAJtQulbaG9ewv8B4Sa3WQ
CitedBy_id crossref_primary_10_1016_j_foodchem_2024_139918
crossref_primary_10_1016_j_jcis_2025_01_042
crossref_primary_10_1039_D4TA06599A
crossref_primary_10_1016_j_cej_2024_151436
crossref_primary_10_1039_D4NR04343J
crossref_primary_10_1016_j_apenergy_2024_122930
crossref_primary_10_1016_j_jcis_2024_07_256
crossref_primary_10_1016_j_jpowsour_2024_235454
crossref_primary_10_1016_j_est_2024_114727
crossref_primary_10_1016_j_ijhydene_2024_09_309
crossref_primary_10_1016_j_jcis_2024_06_084
Cites_doi 10.1021/acssuschemeng.7b04457
10.1021/acs.energyfuels.1c00462
10.1021/acsnano.7b06501
10.1016/j.apcatb.2022.121728
10.3390/catal12020222
10.1021/acsami.0c07821
10.1002/aenm.202001275
10.1021/acscatal.2c05433
10.1039/C9SC03831K
10.1039/C4TA04867A
10.1016/j.jcis.2023.05.187
10.1016/j.apsusc.2022.153249
10.1016/j.carbon.2021.08.063
10.3389/fchem.2021.700020
10.1016/j.electacta.2018.02.145
10.1038/s41467-021-24322-2
10.1002/smll.201902613
10.1021/acsenergylett.8b00584
10.1149/2.F18214IF
10.1107/S1600577515017178
10.3390/surfaces3020017
10.1039/C9TA02886B
10.1021/jacs.9b07986
10.1021/acs.jpcc.1c06646
10.1021/acssuschemeng.9b03166
10.1039/C8QI01227J
10.1021/acs.inorgchem.1c01694
10.1021/acsanm.2c02279
10.1016/j.jpowsour.2021.230884
10.1039/C8TA07686C
10.1016/j.cej.2021.131687
10.1016/j.ijhydene.2021.04.194
10.1021/nn501796r
10.1016/j.ceramint.2020.10.098
10.1016/j.carbon.2022.08.067
10.1016/j.jcis.2019.12.075
10.1002/adma.202002857
10.1002/adfm.202104285
10.1016/j.jcis.2023.06.199
10.1021/acs.inorgchem.6b02929
10.1126/science.1188566
10.3390/catal11111265
10.1016/j.jallcom.2018.04.070
10.1039/C8TA00968F
10.1016/j.cej.2021.130204
10.1021/acsaem.2c01475
10.1002/smll.201700264
10.1021/acscatal.0c03094
10.1021/acsaem.0c01903
10.1016/j.carbon.2021.10.027
10.1039/C4CS00448E
10.1002/celc.201901623
10.1016/j.snb.2023.133617
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2023.10.028
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 687
ExternalDocumentID 10_1016_j_jcis_2023_10_028
S0021979723019410
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c366t-8d6750c86b19235228dfcc95adac7b14b28e8458920b86a7acc5b242f3d10de83
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Thu Jul 10 19:26:14 EDT 2025
Tue Aug 05 11:08:35 EDT 2025
Tue Jul 01 04:19:14 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Fri Feb 23 02:33:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords N-doped graphene quantum dots
electrocatalyst
Prussian blue analogues
transition metal phosphides
X-ray absorption spectroscopy
hydrogen evolution reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-8d6750c86b19235228dfcc95adac7b14b28e8458920b86a7acc5b242f3d10de83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6150-4750
0000-0002-0223-5538
PQID 2880098372
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3154186191
proquest_miscellaneous_2880098372
crossref_citationtrail_10_1016_j_jcis_2023_10_028
crossref_primary_10_1016_j_jcis_2023_10_028
elsevier_sciencedirect_doi_10_1016_j_jcis_2023_10_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-15
PublicationDateYYYYMMDD 2024-01-15
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Guo, Yu, Feng, Liang, Li, Lv, Liu, Hao, Li (b0040) 2018; 6
Gong, Zhang, Zeng, Wang, Kong, Liu, Chen (b0215) 2021; 184
Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zschech, Feng (b0010) 2017; 8
Rinawati, Wang, Chen, Yeh (b0145) 2021; 423
Jian, Hsiao, Yeh, Ho (b0135) 2019; 7
Favaro, Cattelan, Price, Russell, Calvillo, Agnoli, Granozzi (b0210) 2020; 3
Anantharaj, Reddy, Kundu (b0270) 2017; 56
Shiraz, Crispin, Berggren (b0080) 2021; 46
Karakaya, Solati, Savacı, Keleş, Turan, Çelebi, Kaya (b0090) 2020; 10
Theerthagiri, Murthy, Lee, Karuppasamy, Arumugam, Yu, Hanafiah, Kim, Mittal, Choi (b0120) 2021; 47
Wang, Chen, Yu, Wang, Wang, Sun, Li, Yang, Zhang (b0260) 2019; 15
Zhang, Wei, Sui, Jin, Luo, Bie, Yang (b0275) 2018; 750
Aulia, Lin, Chang, Wang, Lin, Ho, Yeh (b0160) 2022; 5
Zhang, Wu, Sun, Liu, Tang, Guo (b0265) 2019; 6
Liu, Li, Jiang, Li, Zhu, Xiao, Zhu, Gao, Yu, Feng (b0205) 2020; 10
Weng, Grice, Meng, Guan, Xu, Yu, Wang, Zhao, Yan (b0130) 2018; 3
Liu, He, Jiang, Lin, Zhang, Habib, Chen, Song (b0245) 2017; 11
Davis, Caldeira, Matthews (b0005) 2010; 329
Xiong, Lu, Chen, Wang, Kong, Liu, Ying, Yi (b0250) 2022; 520
Hu, Jiang, Xian, Mi, Wei, Fang, Guo, Xu, Liu, Jin (b0065) 2022; 317
Xiao, Huang, Wu, Song, Jiang (b0075) 2022; 591
Du, Chen, Li, Shi, Shao, Zhu (b0125) 2019; 7
Dubouis, Grimaud (b0030) 2019; 10
Zhang, Hao, Chen, Gao, Wang, Zhang (b0100) 2023; 650
Chuang, Hsiao, Yeh, Wang, Chang, Tsai, Ho (b0165) 2020; 3
Jia, Zhang, Meng, An, Wang, Yang, Zhang (b0105) 2020; 563
Lin, Cai, Wu, Yeh, Jiang (b0185) 2021; 125
Gu, Wei, Legut, Fu, Du, Zhang, Francisco, Zhang (b0060) 2021; 31
Borup, Krause, Brouwer (b0015) 2021; 30
Wu, Wang, Zhang, Qin, Wang, Han, Zhan, Yang, Li, Lai, Wang (b0110) 2021; 12
Lin, Aulia, Yeh, Hsiao, Tarigan, Ho (b0170) 2023; 648
Lin, Chuang, Hsiao, Yeh, Ho (b0175) 2020; 12
Zhang, Diao, Ouyang, Yadegari, Mao, Wang, Henkelman, Xie, Riley (b0180) 2023; 13
Wang, Rinawati, Zhan, Lin, Huang, Chen, Mizuguchi, Jiang, Hwang, Yeh (b0195) 2022; 5
Lv, Zhao, Fang, Jiang, Li, Ma, Zhu (b0220) 2017; 13
Pan, Liu, Zhao, Yang, Liang, Liu, Hu, Liu, Liu, Liu (b0115) 2015; 3
Wang, Rinawati, Huang, Cheng, Lin, Chen, Chang, Ho, Su, Yeh (b0190) 2022; 186
Huang, Shi, Zhong, Cheng, Jiang, Chen, Liao, Tang (b0225) 2018; 269
Wang, Tsao, Rinawati, Chen, Chen, Chang, Yeh (b0155) 2022; 427
Zhou, Zi, Xu, Li, Yang, Tang (b0045) 2021; 60
Jian, Huang, Yeh, Ho (b0140) 2018; 6
Feng, Pang, Xu, Guo, Gao, Qiu, Chen (b0070) 2020; 7
Delley, Wu, Mundy, Ung, Cossairt, Wang, Mayer (b0255) 2019; 141
Bora, Cheng, Kapilashrami, Glans, Luo, Guo (b0240) 2015; 22
Ying, Wang (b0095) 2021; 9
Tan, Geng, Ji, Shao, Zhu, Wang, Li, Huang (b0035) 2020; 32
Rinawati, Wang, Huang, Wu, Cheng, Kurniawan, Haw, Chiang, Su, Yeh (b0150) 2022; 200
Zhao, Xu, Chen, Cheng, You, Wang, Dong, Tao, Zhu (b0055) 2022; 12
Tang, Ji, Li, Bai, Liu, Hao, Lin, Jiang, Teng, Yang (b0230) 2014; 8
Chen, Ye, Tao, Yang, Cheng, Liu, Cao, Fan, Wei, Zhu (b0050) 2021; 11
G.n.L. Cardoso, P.C. Piquini, R. Ahuja, From monolayers to nanotubes: toward catalytic transition-metal dichalcogenides for hydrogen evolution reaction, Energy Fuels 35(7) (2021) 6282-6288.
Li, Kang, Baeyens, Zhang, Deng (b0025) 2020
Lin, Rinawati, Chang, Wang, Wu, Yen, Chen, Ho, Yeh (b0200) 2023; 383
Liu, Bai, Ji, Wang, Wen, Lin, Zheng, Li, Zhang, Peng (b0235) 2019; 7
Zou, Zhang (b0020) 2015; 44
Feng (10.1016/j.jcis.2023.10.028_b0070) 2020; 7
Gu (10.1016/j.jcis.2023.10.028_b0060) 2021; 31
Zhang (10.1016/j.jcis.2023.10.028_b0265) 2019; 6
Hu (10.1016/j.jcis.2023.10.028_b0065) 2022; 317
Lin (10.1016/j.jcis.2023.10.028_b0170) 2023; 648
Lin (10.1016/j.jcis.2023.10.028_b0200) 2023; 383
Zhao (10.1016/j.jcis.2023.10.028_b0055) 2022; 12
Jia (10.1016/j.jcis.2023.10.028_b0105) 2020; 563
Rinawati (10.1016/j.jcis.2023.10.028_b0145) 2021; 423
Tan (10.1016/j.jcis.2023.10.028_b0035) 2020; 32
Lv (10.1016/j.jcis.2023.10.028_b0220) 2017; 13
Jian (10.1016/j.jcis.2023.10.028_b0140) 2018; 6
Zhang (10.1016/j.jcis.2023.10.028_b0275) 2018; 750
Bora (10.1016/j.jcis.2023.10.028_b0240) 2015; 22
Theerthagiri (10.1016/j.jcis.2023.10.028_b0120) 2021; 47
Lin (10.1016/j.jcis.2023.10.028_b0185) 2021; 125
Du (10.1016/j.jcis.2023.10.028_b0125) 2019; 7
10.1016/j.jcis.2023.10.028_b0085
Guo (10.1016/j.jcis.2023.10.028_b0040) 2018; 6
Chuang (10.1016/j.jcis.2023.10.028_b0165) 2020; 3
Ying (10.1016/j.jcis.2023.10.028_b0095) 2021; 9
Liu (10.1016/j.jcis.2023.10.028_b0235) 2019; 7
Xiao (10.1016/j.jcis.2023.10.028_b0075) 2022; 591
Wang (10.1016/j.jcis.2023.10.028_b0190) 2022; 186
Chen (10.1016/j.jcis.2023.10.028_b0050) 2021; 11
Anantharaj (10.1016/j.jcis.2023.10.028_b0270) 2017; 56
Wu (10.1016/j.jcis.2023.10.028_b0110) 2021; 12
Favaro (10.1016/j.jcis.2023.10.028_b0210) 2020; 3
Xiong (10.1016/j.jcis.2023.10.028_b0250) 2022; 520
Jian (10.1016/j.jcis.2023.10.028_b0135) 2019; 7
Dubouis (10.1016/j.jcis.2023.10.028_b0030) 2019; 10
Aulia (10.1016/j.jcis.2023.10.028_b0160) 2022; 5
Liu (10.1016/j.jcis.2023.10.028_b0245) 2017; 11
Li (10.1016/j.jcis.2023.10.028_b0025) 2020
Rinawati (10.1016/j.jcis.2023.10.028_b0150) 2022; 200
Liu (10.1016/j.jcis.2023.10.028_b0205) 2020; 10
Tang (10.1016/j.jcis.2023.10.028_b0230) 2014; 8
Huang (10.1016/j.jcis.2023.10.028_b0225) 2018; 269
Zhang (10.1016/j.jcis.2023.10.028_b0180) 2023; 13
Gong (10.1016/j.jcis.2023.10.028_b0215) 2021; 184
Borup (10.1016/j.jcis.2023.10.028_b0015) 2021; 30
Karakaya (10.1016/j.jcis.2023.10.028_b0090) 2020; 10
Davis (10.1016/j.jcis.2023.10.028_b0005) 2010; 329
Zou (10.1016/j.jcis.2023.10.028_b0020) 2015; 44
Delley (10.1016/j.jcis.2023.10.028_b0255) 2019; 141
Wang (10.1016/j.jcis.2023.10.028_b0195) 2022; 5
Zhou (10.1016/j.jcis.2023.10.028_b0045) 2021; 60
Shiraz (10.1016/j.jcis.2023.10.028_b0080) 2021; 46
Lin (10.1016/j.jcis.2023.10.028_b0175) 2020; 12
Wang (10.1016/j.jcis.2023.10.028_b0260) 2019; 15
Wang (10.1016/j.jcis.2023.10.028_b0155) 2022; 427
Pan (10.1016/j.jcis.2023.10.028_b0115) 2015; 3
Zhang (10.1016/j.jcis.2023.10.028_b0010) 2017; 8
Weng (10.1016/j.jcis.2023.10.028_b0130) 2018; 3
Zhang (10.1016/j.jcis.2023.10.028_b0100) 2023; 650
References_xml – volume: 3
  start-page: 225
  year: 2020
  end-page: 236
  ident: b0210
  article-title: In situ study of graphene oxide quantum dot-MoSx nanohybrids as hydrogen evolution catalysts
  publication-title: Surfaces
– volume: 22
  start-page: 1450
  year: 2015
  end-page: 1458
  ident: b0240
  article-title: Influence of crystal structure, ligand environment and morphology on Co L-edge XAS spectral characteristics in cobalt compounds
  publication-title: J. Synchrotron Radiat.
– volume: 8
  start-page: 6312
  year: 2014
  end-page: 6320
  ident: b0230
  article-title: Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots
  publication-title: ACS Nano
– volume: 60
  start-page: 11661
  year: 2021
  end-page: 11671
  ident: b0045
  article-title: Core–shell-structured Prussian blue analogues ternary metal phosphides as efficient bifunctional electrocatalysts for OER and HER
  publication-title: Inorg. Chem.
– volume: 200
  start-page: 437
  year: 2022
  end-page: 447
  ident: b0150
  article-title: Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction
  publication-title: Carbon
– volume: 329
  start-page: 1330
  year: 2010
  end-page: 1333
  ident: b0005
  article-title: Future CO2 emissions and climate change from existing energy infrastructure
  publication-title: Science
– volume: 7
  start-page: 1479
  year: 2019
  end-page: 1490
  ident: b0135
  article-title: Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 141
  start-page: 15390
  year: 2019
  end-page: 15402
  ident: b0255
  article-title: Hydrogen on cobalt phosphide
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 1902613
  year: 2019
  ident: b0260
  article-title: Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for PH-universal hydrogen evolution
  publication-title: Small
– volume: 7
  start-page: 12434
  year: 2019
  end-page: 12439
  ident: b0235
  article-title: A highly efficient alkaline HER Co–Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  ident: b0020
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 125
  start-page: 24894
  year: 2021
  end-page: 24901
  ident: b0185
  article-title: Boron and nitrogen codoped multilayer graphene as a counter electrode: a combined theoretical and experimental study on dye-sensitized solar cells under ambient light conditions
  publication-title: J. Phys. Chem. C
– volume: 563
  start-page: 189
  year: 2020
  end-page: 196
  ident: b0105
  article-title: Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 1700264
  year: 2017
  ident: b0220
  article-title: Incorporating nitrogen-doped graphene quantum dots and Ni3S2 nanosheets: a synergistic electrocatalyst with highly enhanced activity for overall water splitting
  publication-title: Small
– volume: 520
  year: 2022
  ident: b0250
  article-title: CoFeP nanocube-arrays based on Prussian blue analogues for accelerated oxygen evolution electrocatalysis
  publication-title: J. Power Sources
– volume: 650
  start-page: 816
  year: 2023
  end-page: 824
  ident: b0100
  article-title: Facile synthesis of Co–Fe layered double hydroxide nanosheets wrapped on Ni-doped nanoporous carbon nanorods for oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
– volume: 648
  start-page: 193
  year: 2023
  end-page: 202
  ident: b0170
  article-title: Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
– volume: 5
  start-page: 11100
  year: 2022
  end-page: 11110
  ident: b0195
  article-title: Boron-doped graphene quantum dots anchored to carbon nanotubes as noble metal-free electrocatalysts of uric acid for a wearable sweat sensor
  publication-title: ACS Appl. Nano Mater.
– volume: 12
  start-page: 4018
  year: 2021
  ident: b0110
  article-title: Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution
  publication-title: Nat. Commun.
– volume: 186
  start-page: 406
  year: 2022
  end-page: 415
  ident: b0190
  article-title: Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor
  publication-title: Carbon
– volume: 32
  start-page: 2002857
  year: 2020
  ident: b0035
  article-title: Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1434
  year: 2018
  end-page: 1442
  ident: b0130
  article-title: Metal–organic framework-derived CoWP@ C composite nanowire electrocatalyst for efficient water splitting
  publication-title: ACS Energy Lett.
– volume: 383
  year: 2023
  ident: b0200
  article-title: A non-invasive wearable sweat biosensor with a flexible N-GQDs/PANI nanocomposite layer for glucose monitoring
  publication-title: Sens. Actuat. B
– volume: 7
  start-page: 31
  year: 2020
  end-page: 54
  ident: b0070
  article-title: Transition metal selenides for electrocatalytic hydrogen evolution reaction
  publication-title: ChemElectroChem
– volume: 591
  year: 2022
  ident: b0075
  article-title: Tetragonal transition metal selenide for hydrogen evolution
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 5107
  year: 2018
  end-page: 5118
  ident: b0140
  article-title: A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells
  publication-title: J. Mater. Chem. A
– volume: 184
  start-page: 554
  year: 2021
  end-page: 561
  ident: b0215
  article-title: Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER
  publication-title: Carbon
– volume: 3
  start-page: 1656
  year: 2015
  end-page: 1665
  ident: b0115
  article-title: Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 11574
  year: 2017
  end-page: 11583
  ident: b0245
  article-title: Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting
  publication-title: ACS Nano
– volume: 6
  start-page: 8150
  year: 2018
  end-page: 8158
  ident: b0040
  article-title: Intercalation synthesis of prussian blue analogue nanocone and their conversion into Fe-doped Co x P nanocone for enhanced hydrogen evolution
  publication-title: ACS Sustain. Chem. Eng.
– volume: 9
  year: 2021
  ident: b0095
  article-title: Strategies for developing transition metal phosphides in electrochemical water splitting
  publication-title: Front. Chem.
– volume: 750
  start-page: 655
  year: 2018
  end-page: 658
  ident: b0275
  article-title: Cobalt phosphide microsphere as an efficient bifunctional oxygen catalyst for Li-air batteries
  publication-title: J. Alloy. Compd.
– volume: 427
  year: 2022
  ident: b0155
  article-title: Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for enzyme-free electrochemical lactate monitoring in human sweat
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 604
  year: 2019
  end-page: 611
  ident: b0265
  article-title: CoFeP hollow cube as advanced electrocatalyst for water oxidation
  publication-title: Inorg. Chem. Front.
– volume: 47
  start-page: 4404
  year: 2021
  end-page: 4425
  ident: b0120
  article-title: Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion
  publication-title: Ceram. Int.
– volume: 10
  start-page: 2001275
  year: 2020
  ident: b0205
  article-title: Graphene quantum dots-based advanced electrode materials: design, synthesis and their applications in electrochemical energy storage and electrocatalysis
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 222
  year: 2022
  ident: b0055
  article-title: Surface modification towards integral bulk catalysts of transition metal borides for hydrogen evolution reaction
  publication-title: Catalysts
– volume: 12
  start-page: 42634
  year: 2020
  end-page: 42643
  ident: b0175
  article-title: Oxygen plasma activation of carbon nanotubes-interconnected Prussian blue analogue for oxygen evolution reaction
  publication-title: ACS Appl Mater Interfaces
– volume: 31
  start-page: 2104285
  year: 2021
  ident: b0060
  article-title: Single atom-modified hybrid transition metal carbides as efficient hydrogen evolution reaction catalysts
  publication-title: Adv. Funct. Mater.
– volume: 423
  year: 2021
  ident: b0145
  article-title: Designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 11752
  year: 2020
  end-page: 11762
  ident: b0165
  article-title: Prussian blue analogue-derived metal oxides as electrocatalysts for oxygen evolution reaction: tailoring the molar ratio of cobalt to iron
  publication-title: ACS Appl. Energy Mater.
– reference: G.n.L. Cardoso, P.C. Piquini, R. Ahuja, From monolayers to nanotubes: toward catalytic transition-metal dichalcogenides for hydrogen evolution reaction, Energy Fuels 35(7) (2021) 6282-6288.
– volume: 317
  year: 2022
  ident: b0065
  article-title: Microwave-pulse sugar-blowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution
  publication-title: Appl Catal B
– volume: 8
  start-page: 1
  year: 2017
  end-page: 8
  ident: b0010
  article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics
  publication-title: Nat. Commun.
– year: 2020
  ident: b0025
  article-title: Hydrogen production: State of technology, IOP conference series: Earth and environmental science
  publication-title: IOP Publishing
– volume: 5
  start-page: 9801
  year: 2022
  end-page: 9810
  ident: b0160
  article-title: Oxygen plasma-activated NiFe prussian blue analogues interconnected N-doped carbon nanotubes as a bifunctional electrocatalyst for a rechargeable zinc-air battery
  publication-title: ACS Appl. Energy Mater.
– volume: 269
  start-page: 45
  year: 2018
  end-page: 54
  ident: b0225
  article-title: Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 15114
  year: 2020
  end-page: 15122
  ident: b0090
  article-title: Mesoporous thin-film NiS2 as an idealized pre-electrocatalyst for a hydrogen evolution reaction
  publication-title: ACS Catal.
– volume: 7
  start-page: 13523
  year: 2019
  end-page: 13531
  ident: b0125
  article-title: Core–shell FeCo Prussian blue analogue/Ni (OH) 2 derived porous ternary transition metal phosphides connected by graphene for effectively electrocatalytic water splitting
  publication-title: ACS Sustain. Chem. Eng.
– volume: 13
  start-page: 1349
  year: 2023
  end-page: 1358
  ident: b0180
  article-title: Heterostructured core-shell Ni–Co@Fe–Co nanoboxes of prussian blue analogues for efficient electrocatalytic hydrogen evolution from alkaline seawater
  publication-title: ACS Catal.
– volume: 30
  start-page: 79
  year: 2021
  ident: b0015
  article-title: Hydrogen is essential for industry and transportation decarbonization
  publication-title: Electrochem. Soc. Interface
– volume: 56
  start-page: 1742
  year: 2017
  end-page: 1756
  ident: b0270
  article-title: Core-oxidized amorphous cobalt phosphide nanostructures: an advanced and highly efficient oxygen evolution catalyst
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 1265
  year: 2021
  ident: b0050
  article-title: Constructing 1D boron chains in the structure of transition metal monoborides for hydrogen evolution reactions
  publication-title: Catalysts
– volume: 10
  start-page: 9165
  year: 2019
  end-page: 9181
  ident: b0030
  article-title: The hydrogen evolution reaction: from material to interfacial descriptors
  publication-title: Chem. Sci.
– volume: 46
  start-page: 24060
  year: 2021
  end-page: 24077
  ident: b0080
  article-title: Transition metal sulfides for electrochemical hydrogen evolution
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 8150
  issue: 7
  year: 2018
  ident: 10.1016/j.jcis.2023.10.028_b0040
  article-title: Intercalation synthesis of prussian blue analogue nanocone and their conversion into Fe-doped Co x P nanocone for enhanced hydrogen evolution
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04457
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.jcis.2023.10.028_b0010
  article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics
  publication-title: Nat. Commun.
– ident: 10.1016/j.jcis.2023.10.028_b0085
  doi: 10.1021/acs.energyfuels.1c00462
– volume: 11
  start-page: 11574
  issue: 11
  year: 2017
  ident: 10.1016/j.jcis.2023.10.028_b0245
  article-title: Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06501
– volume: 317
  year: 2022
  ident: 10.1016/j.jcis.2023.10.028_b0065
  article-title: Microwave-pulse sugar-blowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.121728
– volume: 12
  start-page: 222
  issue: 2
  year: 2022
  ident: 10.1016/j.jcis.2023.10.028_b0055
  article-title: Surface modification towards integral bulk catalysts of transition metal borides for hydrogen evolution reaction
  publication-title: Catalysts
  doi: 10.3390/catal12020222
– volume: 12
  start-page: 42634
  issue: 38
  year: 2020
  ident: 10.1016/j.jcis.2023.10.028_b0175
  article-title: Oxygen plasma activation of carbon nanotubes-interconnected Prussian blue analogue for oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c07821
– volume: 10
  start-page: 2001275
  issue: 29
  year: 2020
  ident: 10.1016/j.jcis.2023.10.028_b0205
  article-title: Graphene quantum dots-based advanced electrode materials: design, synthesis and their applications in electrochemical energy storage and electrocatalysis
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001275
– volume: 13
  start-page: 1349
  issue: 2
  year: 2023
  ident: 10.1016/j.jcis.2023.10.028_b0180
  article-title: Heterostructured core-shell Ni–Co@Fe–Co nanoboxes of prussian blue analogues for efficient electrocatalytic hydrogen evolution from alkaline seawater
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c05433
– volume: 10
  start-page: 9165
  issue: 40
  year: 2019
  ident: 10.1016/j.jcis.2023.10.028_b0030
  article-title: The hydrogen evolution reaction: from material to interfacial descriptors
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03831K
– volume: 3
  start-page: 1656
  issue: 4
  year: 2015
  ident: 10.1016/j.jcis.2023.10.028_b0115
  article-title: Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04867A
– volume: 648
  start-page: 193
  year: 2023
  ident: 10.1016/j.jcis.2023.10.028_b0170
  article-title: Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.05.187
– volume: 591
  year: 2022
  ident: 10.1016/j.jcis.2023.10.028_b0075
  article-title: Tetragonal transition metal selenide for hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153249
– volume: 184
  start-page: 554
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0215
  article-title: Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.08.063
– volume: 9
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0095
  article-title: Strategies for developing transition metal phosphides in electrochemical water splitting
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.700020
– volume: 269
  start-page: 45
  year: 2018
  ident: 10.1016/j.jcis.2023.10.028_b0225
  article-title: Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.145
– volume: 12
  start-page: 4018
  issue: 1
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0110
  article-title: Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24322-2
– volume: 15
  start-page: 1902613
  issue: 37
  year: 2019
  ident: 10.1016/j.jcis.2023.10.028_b0260
  article-title: Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for PH-universal hydrogen evolution
  publication-title: Small
  doi: 10.1002/smll.201902613
– volume: 3
  start-page: 1434
  issue: 6
  year: 2018
  ident: 10.1016/j.jcis.2023.10.028_b0130
  article-title: Metal–organic framework-derived CoWP@ C composite nanowire electrocatalyst for efficient water splitting
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00584
– volume: 30
  start-page: 79
  issue: 4
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0015
  article-title: Hydrogen is essential for industry and transportation decarbonization
  publication-title: Electrochem. Soc. Interface
  doi: 10.1149/2.F18214IF
– volume: 22
  start-page: 1450
  issue: 6
  year: 2015
  ident: 10.1016/j.jcis.2023.10.028_b0240
  article-title: Influence of crystal structure, ligand environment and morphology on Co L-edge XAS spectral characteristics in cobalt compounds
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577515017178
– volume: 3
  start-page: 225
  issue: 2
  year: 2020
  ident: 10.1016/j.jcis.2023.10.028_b0210
  article-title: In situ study of graphene oxide quantum dot-MoSx nanohybrids as hydrogen evolution catalysts
  publication-title: Surfaces
  doi: 10.3390/surfaces3020017
– volume: 7
  start-page: 12434
  issue: 20
  year: 2019
  ident: 10.1016/j.jcis.2023.10.028_b0235
  article-title: A highly efficient alkaline HER Co–Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02886B
– volume: 141
  start-page: 15390
  issue: 38
  year: 2019
  ident: 10.1016/j.jcis.2023.10.028_b0255
  article-title: Hydrogen on cobalt phosphide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07986
– volume: 125
  start-page: 24894
  issue: 45
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0185
  article-title: Boron and nitrogen codoped multilayer graphene as a counter electrode: a combined theoretical and experimental study on dye-sensitized solar cells under ambient light conditions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c06646
– volume: 7
  start-page: 13523
  issue: 15
  year: 2019
  ident: 10.1016/j.jcis.2023.10.028_b0125
  article-title: Core–shell FeCo Prussian blue analogue/Ni (OH) 2 derived porous ternary transition metal phosphides connected by graphene for effectively electrocatalytic water splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03166
– volume: 6
  start-page: 604
  issue: 2
  year: 2019
  ident: 10.1016/j.jcis.2023.10.028_b0265
  article-title: CoFeP hollow cube as advanced electrocatalyst for water oxidation
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI01227J
– volume: 60
  start-page: 11661
  issue: 15
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0045
  article-title: Core–shell-structured Prussian blue analogues ternary metal phosphides as efficient bifunctional electrocatalysts for OER and HER
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c01694
– volume: 5
  start-page: 11100
  issue: 8
  year: 2022
  ident: 10.1016/j.jcis.2023.10.028_b0195
  article-title: Boron-doped graphene quantum dots anchored to carbon nanotubes as noble metal-free electrocatalysts of uric acid for a wearable sweat sensor
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c02279
– volume: 520
  year: 2022
  ident: 10.1016/j.jcis.2023.10.028_b0250
  article-title: CoFeP nanocube-arrays based on Prussian blue analogues for accelerated oxygen evolution electrocatalysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230884
– volume: 7
  start-page: 1479
  issue: 4
  year: 2019
  ident: 10.1016/j.jcis.2023.10.028_b0135
  article-title: Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07686C
– volume: 427
  year: 2022
  ident: 10.1016/j.jcis.2023.10.028_b0155
  article-title: Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for enzyme-free electrochemical lactate monitoring in human sweat
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131687
– volume: 46
  start-page: 24060
  issue: 47
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0080
  article-title: Transition metal sulfides for electrochemical hydrogen evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.04.194
– volume: 8
  start-page: 6312
  issue: 6
  year: 2014
  ident: 10.1016/j.jcis.2023.10.028_b0230
  article-title: Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots
  publication-title: ACS Nano
  doi: 10.1021/nn501796r
– volume: 47
  start-page: 4404
  issue: 4
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0120
  article-title: Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.098
– volume: 200
  start-page: 437
  year: 2022
  ident: 10.1016/j.jcis.2023.10.028_b0150
  article-title: Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.08.067
– volume: 563
  start-page: 189
  year: 2020
  ident: 10.1016/j.jcis.2023.10.028_b0105
  article-title: Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.075
– volume: 32
  start-page: 2002857
  issue: 40
  year: 2020
  ident: 10.1016/j.jcis.2023.10.028_b0035
  article-title: Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002857
– volume: 31
  start-page: 2104285
  issue: 43
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0060
  article-title: Single atom-modified hybrid transition metal carbides as efficient hydrogen evolution reaction catalysts
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104285
– volume: 650
  start-page: 816
  year: 2023
  ident: 10.1016/j.jcis.2023.10.028_b0100
  article-title: Facile synthesis of Co–Fe layered double hydroxide nanosheets wrapped on Ni-doped nanoporous carbon nanorods for oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.06.199
– volume: 56
  start-page: 1742
  issue: 3
  year: 2017
  ident: 10.1016/j.jcis.2023.10.028_b0270
  article-title: Core-oxidized amorphous cobalt phosphide nanostructures: an advanced and highly efficient oxygen evolution catalyst
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02929
– volume: 329
  start-page: 1330
  issue: 5997
  year: 2010
  ident: 10.1016/j.jcis.2023.10.028_b0005
  article-title: Future CO2 emissions and climate change from existing energy infrastructure
  publication-title: Science
  doi: 10.1126/science.1188566
– volume: 11
  start-page: 1265
  issue: 11
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0050
  article-title: Constructing 1D boron chains in the structure of transition metal monoborides for hydrogen evolution reactions
  publication-title: Catalysts
  doi: 10.3390/catal11111265
– volume: 750
  start-page: 655
  year: 2018
  ident: 10.1016/j.jcis.2023.10.028_b0275
  article-title: Cobalt phosphide microsphere as an efficient bifunctional oxygen catalyst for Li-air batteries
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.04.070
– volume: 6
  start-page: 5107
  issue: 12
  year: 2018
  ident: 10.1016/j.jcis.2023.10.028_b0140
  article-title: A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00968F
– volume: 423
  year: 2021
  ident: 10.1016/j.jcis.2023.10.028_b0145
  article-title: Designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130204
– volume: 5
  start-page: 9801
  issue: 8
  year: 2022
  ident: 10.1016/j.jcis.2023.10.028_b0160
  article-title: Oxygen plasma-activated NiFe prussian blue analogues interconnected N-doped carbon nanotubes as a bifunctional electrocatalyst for a rechargeable zinc-air battery
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c01475
– volume: 13
  start-page: 1700264
  issue: 24
  year: 2017
  ident: 10.1016/j.jcis.2023.10.028_b0220
  article-title: Incorporating nitrogen-doped graphene quantum dots and Ni3S2 nanosheets: a synergistic electrocatalyst with highly enhanced activity for overall water splitting
  publication-title: Small
  doi: 10.1002/smll.201700264
– year: 2020
  ident: 10.1016/j.jcis.2023.10.028_b0025
  article-title: Hydrogen production: State of technology, IOP conference series: Earth and environmental science
  publication-title: IOP Publishing
– volume: 10
  start-page: 15114
  issue: 24
  year: 2020
  ident: 10.1016/j.jcis.2023.10.028_b0090
  article-title: Mesoporous thin-film NiS2 as an idealized pre-electrocatalyst for a hydrogen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03094
– volume: 3
  start-page: 11752
  issue: 12
  year: 2020
  ident: 10.1016/j.jcis.2023.10.028_b0165
  article-title: Prussian blue analogue-derived metal oxides as electrocatalysts for oxygen evolution reaction: tailoring the molar ratio of cobalt to iron
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01903
– volume: 186
  start-page: 406
  year: 2022
  ident: 10.1016/j.jcis.2023.10.028_b0190
  article-title: Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.10.027
– volume: 44
  start-page: 5148
  issue: 15
  year: 2015
  ident: 10.1016/j.jcis.2023.10.028_b0020
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 7
  start-page: 31
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2023.10.028_b0070
  article-title: Transition metal selenides for electrocatalytic hydrogen evolution reaction
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901623
– volume: 383
  year: 2023
  ident: 10.1016/j.jcis.2023.10.028_b0200
  article-title: A non-invasive wearable sweat biosensor with a flexible N-GQDs/PANI nanocomposite layer for glucose monitoring
  publication-title: Sens. Actuat. B
  doi: 10.1016/j.snb.2023.133617
SSID ssj0011559
Score 2.5179024
Snippet [Display omitted] •A novel PBA-derived CoFe phosphides has been developed for hydrogen evolution reaction.•The catalytic activity of the PBA-derived phosphides...
As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 677
SubjectTerms catalysts
cobalt
durability
electrocatalyst
electrochemistry
graphene
hydrogen
hydrogen evolution reaction
hydrogen production
N-doped graphene quantum dots
phosphides
Prussian blue analogues
transition metal phosphides
X-ray absorption spectroscopy
Title Surface Restructuring Prussian Blue Analog-derived Bimetallic CoFe Phosphides by N-doped Graphene Quantum Dots for Electroactive Hydrogen Evolving Catalyst
URI https://dx.doi.org/10.1016/j.jcis.2023.10.028
https://www.proquest.com/docview/2880098372
https://www.proquest.com/docview/3154186191
Volume 654
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqIUqiMxA25jZM4ax_bsMsCYlUelXqL_GxTbTerzabSXvgj_Flm8qgAQQ_ckmisRJ7JN2N75htCXjuZuRAHxUxkBEu5VkwKuFKxFSGTKnUCq5E_zbLpafrhTJxtkXyohcG0yh77O0xv0bp_ctjP5uGyLLHGF_62EXbNgjAlbcus0nSEVn7w_SbNg-OxW5fmwRlK94UzXY7XpS2RsjtODjDDCzuy_905_QHTre-ZPCQP-qCRHnXf9Yhs-cUOuZsPvdp2yP1faAUfkx9fm1XQ1tMvvqOHbUsR6cmqqbFkkh7PG0-RjaQ6Zw7GXHtHj8srD3H4vLQ0ryaenlxU9fKidL6mZkNnzFVLkHqH9NaAjvRzAxpprujbal1TiHvpuGuno1v4pNONW1VgmnQM6IdbFjTHbaJNvX5CTifjb_mU9U0YmE2ybM2kgyVFZGVmMBaEaE26YK0S2mk7Mjw1sfQyFVLFkZGZHmlrhQG_HxLHI-dl8pRsL6qFf0Zo0CHLpA1WGZsaExTXPNYujgNS0Kh0l_Bh9gvbM5Rjo4x5MaSiXRaosQI1hs9AY7vkzc2YZcfPcau0GJRa_GZlBTiQW8e9GiygAM3imYpe-KoBIcC_SMEqP_63TAJhKpewUuXP__P9e-Qe3GG6EOPiBdkG2_EvIRham_3W2vfJnaP3H6eznypZDC0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCAqI8jQSnJDb2Hmsc-BAt7tsabsq0Eq9BT9pqu1mtdmA9sIf4WfwB5nJowIEPSD1FiV2EnnG33y250HICysT64VPmQ50zCKuUiZjuEqFiX0i08jGGI18ME5Gx9G7k_hkhfzoYmHQrbLF_gbTa7Ru72y1o7k1y3OM8YXZ1sOqWUBTIh60npV7bvkV1m3l690dEPJLIYaDo_6ItaUFmAmTZMGkBaIcGJloZDjAQaT1xqSxssr0NI-0kE5GsUxFoGWiesqYWIM186HlgXUyhPdeI9cjgAssm7D57cKvhOM5X-NXwhn-Xhup0ziVnZkcc4SLcBNdyrAE_N-t4R92oTZ2w9vkVstS6ZtmIO6QFTddJ2v9rjjcOrn5Sx7Du-T7x2rulXH0g2vy0daxj_RwXpUYo0m3J5WjmP6k-Mws9PniLN3Ozx0Q_0luaL8YOnp4WpSz09y6kuolHTNbzKDVW8ynDXBM31egAtU53SkWJQWiTQdN_R5V4zUdLe28gLlABwC3uEdC-7gvtSwX98jxlYjmPlmdFlP3gFCvfJJI402qTaS1T7niQlkhPOa8SaMNwrvRz0ybEh0rc0yyzvftLEOJZSgxvAcS2yCvLvrMmoQgl7aOO6Fmv6l1Bhbr0n7POw3IQLJ4iKOmrqigEQBukMqwJ_7dJgRezCUsjfnD__z-M7I2OjrYz_Z3x3uPyA14gr5KjMePySrokXsCTGyhn9aaT8mnq55qPwEEokef
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+restructuring+Prussian+blue+analog-derived+bimetallic+CoFe+phosphides+by+N-doped+graphene+quantum+dots+for+electroactive+hydrogen+evolving+catalyst&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Lin%2C+Wei-Shiang&rft.au=Rinawati%2C+Mia&rft.au=Huang%2C+Wei-Hsiang&rft.au=Chang%2C+Chia-Yu&rft.date=2024-01-15&rft.issn=0021-9797&rft.volume=654+p.677-687&rft.spage=677&rft.epage=687&rft_id=info:doi/10.1016%2Fj.jcis.2023.10.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon