Models predict planned phosphorus load reduction will make Lake Erie more toxic
Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis gr...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 376; no. 6596; pp. 1001 - 1005 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
27.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abm6791 |
Cover
Loading…
Abstract | Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of
Microcystis
growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.
Lake Erie receives water from important agricultural areas of Canada and the United States and is subject to high levels of nitrogen and phosphorus in runoff. These nutrients can lead to rapid growth of photosynthetic organisms, some of which produce toxins that harm aquatic animals and compromise drinking water. Recent efforts have focused on reducing phosphorus loading. With support from a large literature meta-analysis, Hellweger
et al
. developed an agent-based model of cyanobacterial metabolism to determine how toxin production changed under a range of nutrient and environmental conditions and defined the associated molecular mechanisms (see the Perspective by Ofiţeru and Picioreanu). They found that phosphorus reduction alone was potentially harmful, lowering total biomass but increasing toxin production. The proposed mechanism involves response to hydrogen peroxide stress and increased light transmission. —MAF
A mechanistic, molecular-level model of a toxin-producing cyanobacterium explains ecology and informs management. |
---|---|
AbstractList | Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of
growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations. Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations. Nutrient control must include nitrogenLake Erie receives water from important agricultural areas of Canada and the United States and is subject to high levels of nitrogen and phosphorus in runoff. These nutrients can lead to rapid growth of photosynthetic organisms, some of which produce toxins that harm aquatic animals and compromise drinking water. Recent efforts have focused on reducing phosphorus loading. With support from a large literature meta-analysis, Hellweger et al. developed an agent-based model of cyanobacterial metabolism to determine how toxin production changed under a range of nutrient and environmental conditions and defined the associated molecular mechanisms (see the Perspective by Ofiţeru and Picioreanu). They found that phosphorus reduction alone was potentially harmful, lowering total biomass but increasing toxin production. The proposed mechanism involves response to hydrogen peroxide stress and increased light transmission. —MAF Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations. Lake Erie receives water from important agricultural areas of Canada and the United States and is subject to high levels of nitrogen and phosphorus in runoff. These nutrients can lead to rapid growth of photosynthetic organisms, some of which produce toxins that harm aquatic animals and compromise drinking water. Recent efforts have focused on reducing phosphorus loading. With support from a large literature meta-analysis, Hellweger et al . developed an agent-based model of cyanobacterial metabolism to determine how toxin production changed under a range of nutrient and environmental conditions and defined the associated molecular mechanisms (see the Perspective by Ofiţeru and Picioreanu). They found that phosphorus reduction alone was potentially harmful, lowering total biomass but increasing toxin production. The proposed mechanism involves response to hydrogen peroxide stress and increased light transmission. —MAF A mechanistic, molecular-level model of a toxin-producing cyanobacterium explains ecology and informs management. |
Author | Eigemann, Falk Dick, Gregory J. Martin, Robbie M. Hellweger, Ferdi L. Smith, Derek J. Wilhelm, Steven W. |
Author_xml | – sequence: 1 givenname: Ferdi L. orcidid: 0000-0001-8705-0147 surname: Hellweger fullname: Hellweger, Ferdi L. organization: Water Quality Engineering, Technical University of Berlin, Berlin, Germany – sequence: 2 givenname: Robbie M. orcidid: 0000-0001-5284-7156 surname: Martin fullname: Martin, Robbie M. organization: Department of Microbiology, University of Tennessee, Knoxville, TN, USA – sequence: 3 givenname: Falk orcidid: 0000-0002-4499-5682 surname: Eigemann fullname: Eigemann, Falk organization: Water Quality Engineering, Technical University of Berlin, Berlin, Germany – sequence: 4 givenname: Derek J. orcidid: 0000-0002-0895-5712 surname: Smith fullname: Smith, Derek J. organization: Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA – sequence: 5 givenname: Gregory J. orcidid: 0000-0001-7666-6288 surname: Dick fullname: Dick, Gregory J. organization: Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA., Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA – sequence: 6 givenname: Steven W. orcidid: 0000-0001-6283-8077 surname: Wilhelm fullname: Wilhelm, Steven W. organization: Department of Microbiology, University of Tennessee, Knoxville, TN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35617400$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kTFv2zAQhYnAQWK7nbsVBLp0kXMUzZM1FkHaBnDgpZ0JijyhTCVRJSU0-fehEXsJkIHH4b53eHhvxRZDGIixTwI2QpR4k6ynwdLGND1WtbhgSwG1KuoS5IItASQWO6jUNVul9AiQd7W8YtdSoai2AEt2eAiOusTHSM7biY-dGQZyfPwTUn5xTrwLxvG8nu3kw8D_-67jvflLfH8cd9ET70MkPoUnbz-wy9Z0iT6e_jX7_f3u1-3PYn_4cX_7bV9YiTgVuxrBlVa1lTEKEB04kuS2NTYG261pmq1zO9FA05oShcxmJRoEI0hhrUq5Zl9f744x_JspTbr3yVKX7VOYky6xyvkoISCjX96gj2GOQ3Z3pEDsJEqZqc8nam56cnqMvjfxWZ-jyoB6BWwMKUVqtfWTOUYyReM7LUAfK9GnSvSpkqy7eaM7n35P8QIxp5CR |
CitedBy_id | crossref_primary_10_1111_1758_2229_13122 crossref_primary_10_1016_j_jenvman_2024_120128 crossref_primary_10_1016_j_jglr_2022_11_009 crossref_primary_10_1128_aem_02544_21 crossref_primary_10_1093_femsre_fuac029 crossref_primary_10_1016_j_hal_2023_102466 crossref_primary_10_1016_j_jglr_2022_10_001 crossref_primary_10_1007_s12190_023_01959_4 crossref_primary_10_1016_j_cjph_2023_11_025 crossref_primary_10_1016_j_envpol_2024_123878 crossref_primary_10_1088_1755_1315_1371_2_022005 crossref_primary_10_3389_fmicb_2024_1461119 crossref_primary_10_1016_j_scitotenv_2022_160474 crossref_primary_10_1126_science_add9959 crossref_primary_10_1016_j_scitotenv_2023_167102 crossref_primary_10_1016_j_watres_2025_123430 crossref_primary_10_1016_j_aquatox_2022_106327 crossref_primary_10_1021_acsestwater_3c00574 crossref_primary_10_1038_s41467_024_46968_4 crossref_primary_10_1111_jpy_70009 crossref_primary_10_5194_essd_15_3853_2023 crossref_primary_10_1016_j_gecco_2023_e02608 crossref_primary_10_1128_spectrum_01369_24 crossref_primary_10_1002_lno_12721 crossref_primary_10_3390_toxins14100684 crossref_primary_10_1016_j_jes_2024_02_025 crossref_primary_10_1021_acs_est_3c02257 crossref_primary_10_1016_j_watres_2023_120739 crossref_primary_10_1007_s11783_022_1584_x crossref_primary_10_1016_j_hal_2023_102434 crossref_primary_10_1016_j_hal_2024_102731 crossref_primary_10_1016_j_jes_2022_11_007 crossref_primary_10_1016_j_ejrh_2023_101441 crossref_primary_10_1016_j_hal_2024_102606 crossref_primary_10_1021_acsestwater_4c00115 crossref_primary_10_1093_ismejo_wrae021 crossref_primary_10_1021_acsestwater_3c00369 crossref_primary_10_1128_aem_01585_23 crossref_primary_10_1002_lno_12719 crossref_primary_10_1016_j_chaos_2024_114615 crossref_primary_10_1038_s44221_023_00138_w crossref_primary_10_1126_science_ade2277 crossref_primary_10_1016_j_jenvman_2024_122128 crossref_primary_10_1128_msystems_00334_24 crossref_primary_10_1016_j_jhydrol_2025_132805 crossref_primary_10_1016_j_envres_2024_118336 crossref_primary_10_1002_mlf2_12094 crossref_primary_10_1016_j_talanta_2024_125752 crossref_primary_10_1111_jpy_13519 crossref_primary_10_1002_lol2_10406 crossref_primary_10_1016_j_hal_2023_102440 crossref_primary_10_1016_j_envres_2025_121105 crossref_primary_10_1016_j_hal_2025_102841 crossref_primary_10_1007_s10750_024_05586_3 crossref_primary_10_1016_j_watres_2023_120107 crossref_primary_10_1016_j_envpol_2023_123022 crossref_primary_10_1038_s41579_024_01119_w crossref_primary_10_1016_j_scitotenv_2022_158894 crossref_primary_10_1016_j_envpol_2023_121316 crossref_primary_10_1016_j_envpol_2024_123812 crossref_primary_10_1088_1748_9326_ad31d8 crossref_primary_10_1039_D2EM00327A crossref_primary_10_1016_j_scitotenv_2023_167167 crossref_primary_10_1017_wat_2024_13 crossref_primary_10_1002_lol2_10294 crossref_primary_10_1111_gcb_17013 crossref_primary_10_1126_sciadv_add3783 crossref_primary_10_1016_j_jhazmat_2023_131737 crossref_primary_10_1126_science_abq0956 crossref_primary_10_3389_fmicb_2024_1464686 crossref_primary_10_1016_j_scitotenv_2024_173411 crossref_primary_10_1016_j_watres_2023_120679 crossref_primary_10_1016_j_hal_2023_102531 crossref_primary_10_1016_j_watres_2024_122835 crossref_primary_10_1016_j_scitotenv_2024_175392 crossref_primary_10_3389_fmicb_2023_1073753 crossref_primary_10_1016_j_jglr_2022_09_003 crossref_primary_10_1016_j_scitotenv_2023_162381 crossref_primary_10_1021_acs_jafc_4c12002 |
Cites_doi | 10.1128/AEM.66.8.3387-3392.2000 10.1016/j.hal.2016.01.003 10.1128/AEM.69.3.1475-1481.2003 10.1111/j.1462-2920.2005.00752.x 10.1017/CBO9780511542145 10.1007/s10811-007-9209-0 10.1201/9780429258770 10.1126/science.1155398 10.1007/s10646-015-1456-2 10.1007/s10452-016-9571-6 10.1128/AEM.01009-14 10.1016/j.hal.2009.07.001 10.1021/acs.est.7b06532 10.1128/jb.177.4.998-1007.1995 10.1016/0041-0101(83)90233-7 10.1128/mBio.00529-20 10.1016/S0044-328X(83)80162-7 10.1016/j.hal.2007.05.012 10.1002/mbo3.393 10.1371/journal.pone.0016805 10.1128/AEM.00487-13 10.1016/j.watres.2014.01.063 10.1007/BF00395897 10.1016/S0254-6299(16)31304-7 10.1038/s43705-021-00055-7 10.1371/journal.pone.0025569 10.1128/aem.36.4.572-576.1978 10.1371/journal.pone.0017615 10.1016/j.jtbi.2007.08.020 10.1093/plankt/fbt096 10.1021/acs.est.6b02204 10.1016/j.bbabio.2006.05.013 10.1128/JB.181.6.1875-1882.1999 10.1007/s11356-020-09729-6 10.1006/jtbi.2001.2468 10.1002/lno.11744 10.1016/j.jhazmat.2014.09.053 10.4319/lo.2003.48.6.2275 10.1111/1462-2920.14445 10.1111/j.1462-2920.2009.01866.x 10.1016/j.ecolmodel.2008.09.004 10.1098/rstb.1997.0145 10.1007/s10646-010-0500-5 10.1007/s00248-011-9899-3 10.1080/14634980290001995 10.3390/toxins6123260 10.1039/C7MB00342K 10.1371/journal.pone.0042444 10.1128/AEM.02601-14 10.1111/j.1529-8817.1980.tb03065.x 10.1016/j.ecolmodel.2010.08.019 10.1046/j.1365-2672.2000.01112.x 10.1007/978-1-4613-3267-1_25 10.1023/A:1003020823129 10.1016/j.hal.2019.101732 10.1016/j.hal.2008.05.005 10.1128/AEM.02892-06 10.1007/s10750-019-04087-y 10.46488/NEPT.2021.v20i02.052 10.1111/1462-2920.12904 10.4319/lo.1981.26.4.0622 10.1007/s10452-011-9384-6 10.1128/AEM.01862-09 10.1111/j.1574-6941.2001.tb00851.x 10.1099/00221287-144-12-3275 10.1016/S0022-2836(05)80360-2 10.1016/j.hal.2018.07.008 10.1002/tox.20106 10.3389/fmicb.2020.601864 10.1007/s10811-015-0688-0 10.1128/aem.61.2.797-800.1995 10.1080/00071618900650361 10.5268/IW-4.4.710 10.1007/978-3-662-21673-6 10.1007/s10750-015-2390-2 10.1128/AEM.01253-07 10.1111/1462-2920.15429 10.3390/toxins13010047 10.1111/j.1574-6976.2008.00134.x 10.1016/j.bbamem.2006.02.015 10.1016/j.plaphy.2013.01.011 10.1371/journal.pone.0029981 10.1146/annurev.micro.57.030502.090938 10.1371/journal.pone.0016208 10.3390/microorganisms9061183 10.1016/j.hal.2016.01.010 10.1016/j.bbrc.2004.11.091 10.3389/fmars.2017.00377 10.1016/j.cbpc.2016.07.001 10.1021/acs.est.7b01498 10.1128/AEM.05246-11 10.1111/j.1529-8817.1987.tb04436.x 10.1128/aem.58.4.1321-1325.1992 10.1128/AEM.66.1.176-179.2000 10.1007/s11270-005-1774-8 10.4319/lom.2009.7.509 10.1016/j.jglr.2009.04.005 10.1111/1462-2920.13299 10.1073/pnas.0400962101 10.1038/ismej.2011.28 10.1111/j.1461-0248.2009.01383.x 10.3390/toxins6123354 10.1126/science.1116681 10.1111/j.1462-2920.2006.01218.x 10.1007/BF00003879 10.1111/j.1529-8817.2011.01056.x 10.1017/S0025315400017240 10.1111/j.0022-3646.1997.00171.x 10.1046/j.1365-2958.2002.02778.x 10.1111/1462-2920.15032 10.1111/jam.12868 10.1016/j.hal.2015.10.011 10.1111/j.1440-1835.1998.tb00266.x 10.1111/1462-2920.12072 10.1111/1462-2920.12565 10.1111/j.1529-8817.1981.tb00848.x 10.1007/BF00003579 10.1016/j.aquatox.2010.05.018 10.1128/AEM.67.1.278-283.2001 10.1111/j.1529-8817.2012.01191.x 10.1016/j.watres.2021.117048 10.1371/journal.pone.0069834 10.1111/j.1462-2920.2008.01663.x 10.1016/j.hal.2021.102002 10.1038/nrmicro.2016.62 10.1016/j.biortech.2015.01.035 10.1111/1574-6941.12019 10.4319/lo.1997.42.2.0250 10.1127/archiv-hydrobiol/150/2001/177 10.1093/plankt/fbh071 10.1016/j.toxicon.2007.11.021 10.4319/lo.1998.43.7.1604 10.1128/aem.49.5.1342-1344.1985 10.1007/s00128-014-1217-6 10.1007/BF00023379 10.1126/science.aav3751 10.1007/s00248-001-0041-9 10.1016/j.ecolmodel.2010.03.015 10.1111/1462-2920.15301 10.1080/00071618500650251 10.1146/annurev-marine-010419-010829 10.1002/mbo3.173 10.4028/0-87849-958-x.606 10.1139/m58-024 10.1073/pnas.1216006110 10.1021/es049660k 10.4319/lo.2008.53.4.1227 10.1016/j.tiv.2008.07.008 10.1021/acs.est.5b03931 10.1023/A:1020537928216 10.1002/tox.10147 10.1186/s12864-015-2275-9 10.2216/i0031-8884-39-3-212.1 10.1073/pnas.072587199 10.1098/rstb.2011.0180 10.1021/es991294v 10.1046/j.1529-8817.2000.98219.x 10.1016/j.hal.2017.05.006 10.3390/rs8030212 10.3390/toxins12010018 10.1007/s10750-006-0506-4 10.1007/BF00482714 10.1038/s41396-019-0547-0 10.1111/1462-2920.15615 10.3390/toxins8100293 10.3354/ame01665 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abm6791 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1005 |
ExternalDocumentID | 35617400 10_1126_science_abm6791 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Meta-Analysis Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Lake Erie |
GeographicLocations_xml | – name: Lake Erie |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P01 ES028939 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c366t-8960d2c5f7aa5066d0de3ed496ba6f4abb4dd81b0bfa261374036a60a1e569523 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 05:34:25 EDT 2025 Sat Aug 23 12:37:45 EDT 2025 Wed Sep 03 05:49:09 EDT 2025 Thu Apr 24 23:09:56 EDT 2025 Tue Jul 01 02:24:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6596 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-8960d2c5f7aa5066d0de3ed496ba6f4abb4dd81b0bfa261374036a60a1e569523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5284-7156 0000-0002-4499-5682 0000-0002-0895-5712 0000-0001-7666-6288 0000-0001-8705-0147 0000-0001-6283-8077 |
OpenAccessLink | https://repository.library.noaa.gov/view/noaa/60160/noaa_60160_DS1.pdf |
PMID | 35617400 |
PQID | 2670183633 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2671265110 proquest_journals_2670183633 pubmed_primary_35617400 crossref_citationtrail_10_1126_science_abm6791 crossref_primary_10_1126_science_abm6791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-27 20220527 |
PublicationDateYYYYMMDD | 2022-05-27 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_28_2 Van der Westhuizen A. (e_1_3_2_115_2) 1986; 4 e_1_3_2_172_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_146_2 e_1_3_2_169_2 e_1_3_2_104_2 e_1_3_2_142_2 e_1_3_2_165_2 e_1_3_2_81_2 e_1_3_2_127_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_161_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_180_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_135_2 e_1_3_2_158_2 e_1_3_2_92_2 e_1_3_2_131_2 e_1_3_2_154_2 e_1_3_2_177_2 e_1_3_2_50_2 e_1_3_2_116_2 e_1_3_2_139_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_171_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_145_2 e_1_3_2_126_2 e_1_3_2_168_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_141_2 e_1_3_2_122_2 e_1_3_2_164_2 e_1_3_2_149_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_160_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_134_2 e_1_3_2_93_2 e_1_3_2_157_2 e_1_3_2_130_2 e_1_3_2_176_2 e_1_3_2_70_2 e_1_3_2_153_2 e_1_3_2_138_2 e_1_3_2_119_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_151_2 e_1_3_2_170_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_125_2 e_1_3_2_148_2 e_1_3_2_167_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_121_2 e_1_3_2_144_2 e_1_3_2_163_2 e_1_3_2_106_2 e_1_3_2_129_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_140_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_137_2 e_1_3_2_156_2 e_1_3_2_179_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_133_2 e_1_3_2_152_2 e_1_3_2_175_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_150_2 e_1_3_2_173_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_124_2 e_1_3_2_147_2 e_1_3_2_61_2 e_1_3_2_120_2 e_1_3_2_166_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_143_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_128_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_162_2 e_1_3_2_181_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_113_2 e_1_3_2_159_2 e_1_3_2_136_2 e_1_3_2_178_2 e_1_3_2_72_2 e_1_3_2_155_2 e_1_3_2_132_2 e_1_3_2_174_2 Ward A. K. (e_1_3_2_111_2) 1980; 90 e_1_3_2_117_2 35617381 - Science. 2022 May 27;376(6596):914-916 |
References_xml | – ident: e_1_3_2_84_2 doi: 10.1128/AEM.66.8.3387-3392.2000 – ident: e_1_3_2_4_2 doi: 10.1016/j.hal.2016.01.003 – ident: e_1_3_2_12_2 doi: 10.1128/AEM.69.3.1475-1481.2003 – ident: e_1_3_2_20_2 doi: 10.1111/j.1462-2920.2005.00752.x – ident: e_1_3_2_69_2 doi: 10.1017/CBO9780511542145 – ident: e_1_3_2_74_2 doi: 10.1007/s10811-007-9209-0 – ident: e_1_3_2_55_2 doi: 10.1201/9780429258770 – ident: e_1_3_2_2_2 doi: 10.1126/science.1155398 – ident: e_1_3_2_19_2 doi: 10.1007/s10646-015-1456-2 – ident: e_1_3_2_165_2 doi: 10.1007/s10452-016-9571-6 – ident: e_1_3_2_48_2 – ident: e_1_3_2_153_2 doi: 10.1128/AEM.01009-14 – ident: e_1_3_2_40_2 doi: 10.1016/j.hal.2009.07.001 – ident: e_1_3_2_87_2 doi: 10.1021/acs.est.7b06532 – ident: e_1_3_2_51_2 doi: 10.1128/jb.177.4.998-1007.1995 – ident: e_1_3_2_113_2 doi: 10.1016/0041-0101(83)90233-7 – ident: e_1_3_2_22_2 doi: 10.1128/mBio.00529-20 – ident: e_1_3_2_112_2 doi: 10.1016/S0044-328X(83)80162-7 – ident: e_1_3_2_135_2 doi: 10.1016/j.hal.2007.05.012 – ident: e_1_3_2_164_2 doi: 10.1002/mbo3.393 – ident: e_1_3_2_18_2 doi: 10.1371/journal.pone.0016805 – ident: e_1_3_2_97_2 doi: 10.1128/AEM.00487-13 – ident: e_1_3_2_152_2 doi: 10.1016/j.watres.2014.01.063 – ident: e_1_3_2_47_2 – ident: e_1_3_2_71_2 doi: 10.1007/BF00395897 – ident: e_1_3_2_116_2 doi: 10.1016/S0254-6299(16)31304-7 – ident: e_1_3_2_177_2 doi: 10.1038/s43705-021-00055-7 – ident: e_1_3_2_8_2 doi: 10.1371/journal.pone.0025569 – ident: e_1_3_2_68_2 doi: 10.1128/aem.36.4.572-576.1978 – ident: e_1_3_2_10_2 doi: 10.1371/journal.pone.0017615 – volume: 90 start-page: 1 year: 1980 ident: e_1_3_2_111_2 article-title: Interactions of light and nitrogen source among planktonic blue-green algae publication-title: Arch. Hydrobiol. – ident: e_1_3_2_52_2 doi: 10.1016/j.jtbi.2007.08.020 – ident: e_1_3_2_124_2 – ident: e_1_3_2_149_2 doi: 10.1093/plankt/fbt096 – ident: e_1_3_2_5_2 doi: 10.1021/acs.est.6b02204 – ident: e_1_3_2_80_2 doi: 10.1016/j.bbabio.2006.05.013 – ident: e_1_3_2_81_2 doi: 10.1128/JB.181.6.1875-1882.1999 – ident: e_1_3_2_170_2 doi: 10.1007/s11356-020-09729-6 – ident: e_1_3_2_63_2 doi: 10.1006/jtbi.2001.2468 – ident: e_1_3_2_41_2 doi: 10.1002/lno.11744 – ident: e_1_3_2_110_2 – ident: e_1_3_2_159_2 doi: 10.1016/j.jhazmat.2014.09.053 – ident: e_1_3_2_65_2 doi: 10.4319/lo.2003.48.6.2275 – ident: e_1_3_2_79_2 doi: 10.1111/1462-2920.14445 – ident: e_1_3_2_34_2 doi: 10.1111/j.1462-2920.2009.01866.x – ident: e_1_3_2_105_2 doi: 10.1016/j.ecolmodel.2008.09.004 – ident: e_1_3_2_75_2 doi: 10.1098/rstb.1997.0145 – ident: e_1_3_2_141_2 doi: 10.1007/s10646-010-0500-5 – ident: e_1_3_2_146_2 doi: 10.1007/s00248-011-9899-3 – ident: e_1_3_2_126_2 doi: 10.1080/14634980290001995 – ident: e_1_3_2_150_2 doi: 10.3390/toxins6123260 – ident: e_1_3_2_83_2 doi: 10.1039/C7MB00342K – ident: e_1_3_2_23_2 doi: 10.1371/journal.pone.0042444 – ident: e_1_3_2_90_2 doi: 10.1128/AEM.02601-14 – ident: e_1_3_2_72_2 doi: 10.1111/j.1529-8817.1980.tb03065.x – ident: e_1_3_2_30_2 doi: 10.1016/j.ecolmodel.2010.08.019 – ident: e_1_3_2_37_2 doi: 10.1046/j.1365-2672.2000.01112.x – ident: e_1_3_2_96_2 doi: 10.1007/978-1-4613-3267-1_25 – ident: e_1_3_2_181_2 doi: 10.1023/A:1003020823129 – ident: e_1_3_2_70_2 doi: 10.1016/j.hal.2019.101732 – ident: e_1_3_2_138_2 doi: 10.1016/j.hal.2008.05.005 – ident: e_1_3_2_104_2 doi: 10.1128/AEM.02892-06 – ident: e_1_3_2_27_2 doi: 10.1007/s10750-019-04087-y – ident: e_1_3_2_176_2 doi: 10.46488/NEPT.2021.v20i02.052 – ident: e_1_3_2_53_2 – ident: e_1_3_2_89_2 doi: 10.1111/1462-2920.12904 – ident: e_1_3_2_59_2 doi: 10.4319/lo.1981.26.4.0622 – ident: e_1_3_2_106_2 doi: 10.1007/s10452-011-9384-6 – ident: e_1_3_2_85_2 doi: 10.1128/AEM.01862-09 – ident: e_1_3_2_122_2 doi: 10.1111/j.1574-6941.2001.tb00851.x – ident: e_1_3_2_123_2 – ident: e_1_3_2_98_2 doi: 10.1099/00221287-144-12-3275 – ident: e_1_3_2_179_2 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_3_2_16_2 doi: 10.1016/j.hal.2018.07.008 – ident: e_1_3_2_129_2 doi: 10.1002/tox.20106 – ident: e_1_3_2_9_2 doi: 10.3389/fmicb.2020.601864 – ident: e_1_3_2_161_2 doi: 10.1007/s10811-015-0688-0 – ident: e_1_3_2_46_2 doi: 10.1128/aem.61.2.797-800.1995 – ident: e_1_3_2_45_2 doi: 10.1080/00071618900650361 – ident: e_1_3_2_35_2 doi: 10.5268/IW-4.4.710 – ident: e_1_3_2_61_2 doi: 10.1007/978-3-662-21673-6 – ident: e_1_3_2_94_2 doi: 10.1007/s10750-015-2390-2 – ident: e_1_3_2_91_2 doi: 10.1128/AEM.01253-07 – ident: e_1_3_2_117_2 – ident: e_1_3_2_172_2 doi: 10.1111/1462-2920.15429 – ident: e_1_3_2_171_2 doi: 10.3390/toxins13010047 – ident: e_1_3_2_78_2 doi: 10.1111/j.1574-6976.2008.00134.x – ident: e_1_3_2_82_2 doi: 10.1016/j.bbamem.2006.02.015 – ident: e_1_3_2_148_2 doi: 10.1016/j.plaphy.2013.01.011 – ident: e_1_3_2_145_2 doi: 10.1371/journal.pone.0029981 – ident: e_1_3_2_77_2 doi: 10.1146/annurev.micro.57.030502.090938 – ident: e_1_3_2_144_2 doi: 10.1371/journal.pone.0016208 – ident: e_1_3_2_173_2 doi: 10.3390/microorganisms9061183 – ident: e_1_3_2_7_2 doi: 10.1016/j.hal.2016.01.010 – ident: e_1_3_2_131_2 doi: 10.1016/j.bbrc.2004.11.091 – ident: e_1_3_2_21_2 doi: 10.3389/fmars.2017.00377 – ident: e_1_3_2_163_2 doi: 10.1016/j.cbpc.2016.07.001 – ident: e_1_3_2_3_2 doi: 10.1021/acs.est.7b01498 – ident: e_1_3_2_142_2 doi: 10.1128/AEM.05246-11 – ident: e_1_3_2_62_2 doi: 10.1111/j.1529-8817.1987.tb04436.x – ident: e_1_3_2_28_2 doi: 10.1128/aem.58.4.1321-1325.1992 – ident: e_1_3_2_36_2 doi: 10.1128/AEM.66.1.176-179.2000 – ident: e_1_3_2_130_2 doi: 10.1007/s11270-005-1774-8 – ident: e_1_3_2_139_2 doi: 10.4319/lom.2009.7.509 – ident: e_1_3_2_26_2 doi: 10.1016/j.jglr.2009.04.005 – ident: e_1_3_2_6_2 – ident: e_1_3_2_13_2 doi: 10.1111/1462-2920.13299 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.0400962101 – ident: e_1_3_2_134_2 doi: 10.1038/ismej.2011.28 – ident: e_1_3_2_50_2 doi: 10.1111/j.1461-0248.2009.01383.x – ident: e_1_3_2_95_2 doi: 10.3390/toxins6123354 – ident: e_1_3_2_14_2 doi: 10.1126/science.1116681 – ident: e_1_3_2_88_2 doi: 10.1111/j.1462-2920.2006.01218.x – ident: e_1_3_2_118_2 doi: 10.1007/BF00003879 – ident: e_1_3_2_143_2 doi: 10.1111/j.1529-8817.2011.01056.x – ident: e_1_3_2_66_2 doi: 10.1017/S0025315400017240 – ident: e_1_3_2_67_2 doi: 10.1111/j.0022-3646.1997.00171.x – ident: e_1_3_2_56_2 doi: 10.1046/j.1365-2958.2002.02778.x – ident: e_1_3_2_168_2 doi: 10.1111/1462-2920.15032 – ident: e_1_3_2_156_2 doi: 10.1111/jam.12868 – ident: e_1_3_2_157_2 doi: 10.1016/j.hal.2015.10.011 – ident: e_1_3_2_180_2 – ident: e_1_3_2_120_2 doi: 10.1111/j.1440-1835.1998.tb00266.x – ident: e_1_3_2_93_2 doi: 10.1111/1462-2920.12072 – ident: e_1_3_2_160_2 doi: 10.1111/1462-2920.12565 – ident: e_1_3_2_60_2 doi: 10.1111/j.1529-8817.1981.tb00848.x – ident: e_1_3_2_39_2 doi: 10.1007/BF00003579 – ident: e_1_3_2_140_2 doi: 10.1016/j.aquatox.2010.05.018 – ident: e_1_3_2_24_2 doi: 10.1128/AEM.67.1.278-283.2001 – ident: e_1_3_2_99_2 doi: 10.1111/j.1529-8817.2012.01191.x – ident: e_1_3_2_175_2 doi: 10.1016/j.watres.2021.117048 – ident: e_1_3_2_147_2 doi: 10.1371/journal.pone.0069834 – ident: e_1_3_2_137_2 doi: 10.1111/j.1462-2920.2008.01663.x – ident: e_1_3_2_174_2 doi: 10.1016/j.hal.2021.102002 – ident: e_1_3_2_15_2 doi: 10.1038/nrmicro.2016.62 – ident: e_1_3_2_158_2 doi: 10.1016/j.biortech.2015.01.035 – ident: e_1_3_2_32_2 doi: 10.1111/1574-6941.12019 – ident: e_1_3_2_73_2 doi: 10.4319/lo.1997.42.2.0250 – ident: e_1_3_2_125_2 doi: 10.1127/archiv-hydrobiol/150/2001/177 – ident: e_1_3_2_127_2 doi: 10.1093/plankt/fbh071 – ident: e_1_3_2_136_2 doi: 10.1016/j.toxicon.2007.11.021 – ident: e_1_3_2_100_2 doi: 10.4319/lo.1998.43.7.1604 – ident: e_1_3_2_114_2 doi: 10.1128/aem.49.5.1342-1344.1985 – ident: e_1_3_2_151_2 doi: 10.1007/s00128-014-1217-6 – ident: e_1_3_2_119_2 doi: 10.1007/BF00023379 – ident: e_1_3_2_17_2 doi: 10.1126/science.aav3751 – ident: e_1_3_2_25_2 doi: 10.1007/s00248-001-0041-9 – ident: e_1_3_2_33_2 doi: 10.1016/j.ecolmodel.2010.03.015 – ident: e_1_3_2_169_2 doi: 10.1111/1462-2920.15301 – ident: e_1_3_2_49_2 doi: 10.1080/00071618500650251 – ident: e_1_3_2_107_2 doi: 10.1146/annurev-marine-010419-010829 – ident: e_1_3_2_132_2 – ident: e_1_3_2_154_2 doi: 10.1002/mbo3.173 – ident: e_1_3_2_86_2 doi: 10.4028/0-87849-958-x.606 – ident: e_1_3_2_109_2 doi: 10.1139/m58-024 – ident: e_1_3_2_178_2 doi: 10.1073/pnas.1216006110 – ident: e_1_3_2_76_2 – ident: e_1_3_2_64_2 doi: 10.1021/es049660k – ident: e_1_3_2_58_2 doi: 10.4319/lo.2008.53.4.1227 – ident: e_1_3_2_92_2 doi: 10.1016/j.tiv.2008.07.008 – ident: e_1_3_2_162_2 doi: 10.1021/acs.est.5b03931 – ident: e_1_3_2_29_2 – ident: e_1_3_2_103_2 doi: 10.1023/A:1020537928216 – ident: e_1_3_2_128_2 doi: 10.1002/tox.10147 – ident: e_1_3_2_155_2 doi: 10.1186/s12864-015-2275-9 – ident: e_1_3_2_44_2 doi: 10.2216/i0031-8884-39-3-212.1 – volume: 4 start-page: 108 year: 1986 ident: e_1_3_2_115_2 article-title: Effect of Temperature and Light (Fluence Rate) on the Composition of the Toxin of the Cyanobacterium Microcystis Aeruginosa(UV-006) publication-title: Archiv fur Hydrobiologie – ident: e_1_3_2_57_2 doi: 10.1073/pnas.072587199 – ident: e_1_3_2_108_2 doi: 10.1098/rstb.2011.0180 – ident: e_1_3_2_121_2 doi: 10.1021/es991294v – ident: e_1_3_2_38_2 doi: 10.1046/j.1529-8817.2000.98219.x – ident: e_1_3_2_167_2 doi: 10.1016/j.hal.2017.05.006 – ident: e_1_3_2_43_2 doi: 10.3390/rs8030212 – ident: e_1_3_2_102_2 doi: 10.3390/toxins12010018 – ident: e_1_3_2_133_2 doi: 10.1007/s10750-006-0506-4 – ident: e_1_3_2_42_2 doi: 10.1007/BF00482714 – ident: e_1_3_2_54_2 doi: 10.1038/s41396-019-0547-0 – ident: e_1_3_2_11_2 doi: 10.1111/1462-2920.15615 – ident: e_1_3_2_166_2 doi: 10.3390/toxins8100293 – ident: e_1_3_2_101_2 doi: 10.3354/ame01665 – reference: 35617381 - Science. 2022 May 27;376(6596):914-916 |
SSID | ssj0009593 |
Score | 2.6317647 |
SecondaryResourceType | review_article |
Snippet | Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin... Nutrient control must include nitrogenLake Erie receives water from important agricultural areas of Canada and the United States and is subject to high levels... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1001 |
SubjectTerms | Aquatic animals Cyanobacteria Drinking water Environmental conditions Hydrogen peroxide Lakes Light transmission Meta Analysis Microcystins - analysis Microcystis Molecular modelling Nitrogen Nutrients Phosphorus Photosynthesis Reduction Toxins |
Title | Models predict planned phosphorus load reduction will make Lake Erie more toxic |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35617400 https://www.proquest.com/docview/2670183633 https://www.proquest.com/docview/2671265110 |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBuXFQYyEg9DUao0Fyd57OiiAmMg6KS9RXbijqppMzWtuPxH_hPn1I4TpBUxHmo1aeykPl_OxT4XQl6FWeBIsP9t1xW-7bMstjkGAucgz4H-HIwujEb-cM7GF_67y-Cy0_nV8lrarEU_-3ljXMn_UBXOAV0xSvYWlDWDwgn4DvSFFigM7T_RGAuZFRXG-eczTEGMBYhAgbz-WlbwWW0qqyg5hqfkKkesBYpxYS34XFpn2AATlBZ62oIG-n2WtRXV-p0HBdRs6rRIabwTh8qHoHYp0N1a6wsg14pv8kohI5GAR8usNzc5DD6XQsCzmGWghBdz63R2JRd8aeBrVoFGciXnekNLr1iAsetg2JvB2KQJmbnNk7e5uE6irGSYYtwO1px0Ha_N2T1VWkZDmAVxm1Vj8qmW2IfD4GaR0iqCKftcLFgYDxrpWXsMjIdf0k-jJD17e_7-DtlzwWpxu2RveDI6SXZmgda5plpRXPUN_lSTdtg-Wx1o8oDc18YLHSok7pOOXB6Qu6qc6Y8Dsq_nsKLHOpv564fkowIp1SClGqS0ASlFkFIDUoogpQhSiiClCFKKIKVbkD4iF8np5M3Y1lU87MxjbG1HYCPnbhZMQ84DUHBzJ5eezP2YCc6mPhfCz3Mwnhwx5WDOe6EPs8OZwwcyYHHgeo9Jd1ku5SGhHDq4AyFCiVnxgkww3BXnEZMRj4Io7pF-PWlpplPcY6WVIt2aui5L9SynepZ75Nh0uFbZXXZfelRTIdUsoEpdFjogE5nn9chL8zMwaNx140tZbrbXwHBg1zg98kRRz9zLA-sF_q_z9O-DPyP3mvfoiHTXq418DrrwWrzQCPsNGCm5mg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Models+predict+planned+phosphorus+load+reduction+will+make+Lake+Erie+more+toxic&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hellweger%2C+Ferdi+L&rft.au=Martin%2C+Robbie+M&rft.au=Falk+Eigemann&rft.au=Smith%2C+Derek+J&rft.date=2022-05-27&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=376&rft.issue=6596&rft.spage=1001&rft.epage=1005&rft_id=info:doi/10.1126%2Fscience.abm6791&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |