Models predict planned phosphorus load reduction will make Lake Erie more toxic

Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis gr...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 376; no. 6596; pp. 1001 - 1005
Main Authors Hellweger, Ferdi L., Martin, Robbie M., Eigemann, Falk, Smith, Derek J., Dick, Gregory J., Wilhelm, Steven W.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 27.05.2022
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.abm6791

Cover

Loading…
Abstract Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations. Lake Erie receives water from important agricultural areas of Canada and the United States and is subject to high levels of nitrogen and phosphorus in runoff. These nutrients can lead to rapid growth of photosynthetic organisms, some of which produce toxins that harm aquatic animals and compromise drinking water. Recent efforts have focused on reducing phosphorus loading. With support from a large literature meta-analysis, Hellweger et al . developed an agent-based model of cyanobacterial metabolism to determine how toxin production changed under a range of nutrient and environmental conditions and defined the associated molecular mechanisms (see the Perspective by Ofiţeru and Picioreanu). They found that phosphorus reduction alone was potentially harmful, lowering total biomass but increasing toxin production. The proposed mechanism involves response to hydrogen peroxide stress and increased light transmission. —MAF A mechanistic, molecular-level model of a toxin-producing cyanobacterium explains ecology and informs management.
AbstractList Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.
Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.
Nutrient control must include nitrogenLake Erie receives water from important agricultural areas of Canada and the United States and is subject to high levels of nitrogen and phosphorus in runoff. These nutrients can lead to rapid growth of photosynthetic organisms, some of which produce toxins that harm aquatic animals and compromise drinking water. Recent efforts have focused on reducing phosphorus loading. With support from a large literature meta-analysis, Hellweger et al. developed an agent-based model of cyanobacterial metabolism to determine how toxin production changed under a range of nutrient and environmental conditions and defined the associated molecular mechanisms (see the Perspective by Ofiţeru and Picioreanu). They found that phosphorus reduction alone was potentially harmful, lowering total biomass but increasing toxin production. The proposed mechanism involves response to hydrogen peroxide stress and increased light transmission. —MAF
Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations. Lake Erie receives water from important agricultural areas of Canada and the United States and is subject to high levels of nitrogen and phosphorus in runoff. These nutrients can lead to rapid growth of photosynthetic organisms, some of which produce toxins that harm aquatic animals and compromise drinking water. Recent efforts have focused on reducing phosphorus loading. With support from a large literature meta-analysis, Hellweger et al . developed an agent-based model of cyanobacterial metabolism to determine how toxin production changed under a range of nutrient and environmental conditions and defined the associated molecular mechanisms (see the Perspective by Ofiţeru and Picioreanu). They found that phosphorus reduction alone was potentially harmful, lowering total biomass but increasing toxin production. The proposed mechanism involves response to hydrogen peroxide stress and increased light transmission. —MAF A mechanistic, molecular-level model of a toxin-producing cyanobacterium explains ecology and informs management.
Author Eigemann, Falk
Dick, Gregory J.
Martin, Robbie M.
Hellweger, Ferdi L.
Smith, Derek J.
Wilhelm, Steven W.
Author_xml – sequence: 1
  givenname: Ferdi L.
  orcidid: 0000-0001-8705-0147
  surname: Hellweger
  fullname: Hellweger, Ferdi L.
  organization: Water Quality Engineering, Technical University of Berlin, Berlin, Germany
– sequence: 2
  givenname: Robbie M.
  orcidid: 0000-0001-5284-7156
  surname: Martin
  fullname: Martin, Robbie M.
  organization: Department of Microbiology, University of Tennessee, Knoxville, TN, USA
– sequence: 3
  givenname: Falk
  orcidid: 0000-0002-4499-5682
  surname: Eigemann
  fullname: Eigemann, Falk
  organization: Water Quality Engineering, Technical University of Berlin, Berlin, Germany
– sequence: 4
  givenname: Derek J.
  orcidid: 0000-0002-0895-5712
  surname: Smith
  fullname: Smith, Derek J.
  organization: Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
– sequence: 5
  givenname: Gregory J.
  orcidid: 0000-0001-7666-6288
  surname: Dick
  fullname: Dick, Gregory J.
  organization: Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA., Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
– sequence: 6
  givenname: Steven W.
  orcidid: 0000-0001-6283-8077
  surname: Wilhelm
  fullname: Wilhelm, Steven W.
  organization: Department of Microbiology, University of Tennessee, Knoxville, TN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35617400$$D View this record in MEDLINE/PubMed
BookMark eNp1kTFv2zAQhYnAQWK7nbsVBLp0kXMUzZM1FkHaBnDgpZ0JijyhTCVRJSU0-fehEXsJkIHH4b53eHhvxRZDGIixTwI2QpR4k6ynwdLGND1WtbhgSwG1KuoS5IItASQWO6jUNVul9AiQd7W8YtdSoai2AEt2eAiOusTHSM7biY-dGQZyfPwTUn5xTrwLxvG8nu3kw8D_-67jvflLfH8cd9ET70MkPoUnbz-wy9Z0iT6e_jX7_f3u1-3PYn_4cX_7bV9YiTgVuxrBlVa1lTEKEB04kuS2NTYG261pmq1zO9FA05oShcxmJRoEI0hhrUq5Zl9f744x_JspTbr3yVKX7VOYky6xyvkoISCjX96gj2GOQ3Z3pEDsJEqZqc8nam56cnqMvjfxWZ-jyoB6BWwMKUVqtfWTOUYyReM7LUAfK9GnSvSpkqy7eaM7n35P8QIxp5CR
CitedBy_id crossref_primary_10_1111_1758_2229_13122
crossref_primary_10_1016_j_jenvman_2024_120128
crossref_primary_10_1016_j_jglr_2022_11_009
crossref_primary_10_1128_aem_02544_21
crossref_primary_10_1093_femsre_fuac029
crossref_primary_10_1016_j_hal_2023_102466
crossref_primary_10_1016_j_jglr_2022_10_001
crossref_primary_10_1007_s12190_023_01959_4
crossref_primary_10_1016_j_cjph_2023_11_025
crossref_primary_10_1016_j_envpol_2024_123878
crossref_primary_10_1088_1755_1315_1371_2_022005
crossref_primary_10_3389_fmicb_2024_1461119
crossref_primary_10_1016_j_scitotenv_2022_160474
crossref_primary_10_1126_science_add9959
crossref_primary_10_1016_j_scitotenv_2023_167102
crossref_primary_10_1016_j_watres_2025_123430
crossref_primary_10_1016_j_aquatox_2022_106327
crossref_primary_10_1021_acsestwater_3c00574
crossref_primary_10_1038_s41467_024_46968_4
crossref_primary_10_1111_jpy_70009
crossref_primary_10_5194_essd_15_3853_2023
crossref_primary_10_1016_j_gecco_2023_e02608
crossref_primary_10_1128_spectrum_01369_24
crossref_primary_10_1002_lno_12721
crossref_primary_10_3390_toxins14100684
crossref_primary_10_1016_j_jes_2024_02_025
crossref_primary_10_1021_acs_est_3c02257
crossref_primary_10_1016_j_watres_2023_120739
crossref_primary_10_1007_s11783_022_1584_x
crossref_primary_10_1016_j_hal_2023_102434
crossref_primary_10_1016_j_hal_2024_102731
crossref_primary_10_1016_j_jes_2022_11_007
crossref_primary_10_1016_j_ejrh_2023_101441
crossref_primary_10_1016_j_hal_2024_102606
crossref_primary_10_1021_acsestwater_4c00115
crossref_primary_10_1093_ismejo_wrae021
crossref_primary_10_1021_acsestwater_3c00369
crossref_primary_10_1128_aem_01585_23
crossref_primary_10_1002_lno_12719
crossref_primary_10_1016_j_chaos_2024_114615
crossref_primary_10_1038_s44221_023_00138_w
crossref_primary_10_1126_science_ade2277
crossref_primary_10_1016_j_jenvman_2024_122128
crossref_primary_10_1128_msystems_00334_24
crossref_primary_10_1016_j_jhydrol_2025_132805
crossref_primary_10_1016_j_envres_2024_118336
crossref_primary_10_1002_mlf2_12094
crossref_primary_10_1016_j_talanta_2024_125752
crossref_primary_10_1111_jpy_13519
crossref_primary_10_1002_lol2_10406
crossref_primary_10_1016_j_hal_2023_102440
crossref_primary_10_1016_j_envres_2025_121105
crossref_primary_10_1016_j_hal_2025_102841
crossref_primary_10_1007_s10750_024_05586_3
crossref_primary_10_1016_j_watres_2023_120107
crossref_primary_10_1016_j_envpol_2023_123022
crossref_primary_10_1038_s41579_024_01119_w
crossref_primary_10_1016_j_scitotenv_2022_158894
crossref_primary_10_1016_j_envpol_2023_121316
crossref_primary_10_1016_j_envpol_2024_123812
crossref_primary_10_1088_1748_9326_ad31d8
crossref_primary_10_1039_D2EM00327A
crossref_primary_10_1016_j_scitotenv_2023_167167
crossref_primary_10_1017_wat_2024_13
crossref_primary_10_1002_lol2_10294
crossref_primary_10_1111_gcb_17013
crossref_primary_10_1126_sciadv_add3783
crossref_primary_10_1016_j_jhazmat_2023_131737
crossref_primary_10_1126_science_abq0956
crossref_primary_10_3389_fmicb_2024_1464686
crossref_primary_10_1016_j_scitotenv_2024_173411
crossref_primary_10_1016_j_watres_2023_120679
crossref_primary_10_1016_j_hal_2023_102531
crossref_primary_10_1016_j_watres_2024_122835
crossref_primary_10_1016_j_scitotenv_2024_175392
crossref_primary_10_3389_fmicb_2023_1073753
crossref_primary_10_1016_j_jglr_2022_09_003
crossref_primary_10_1016_j_scitotenv_2023_162381
crossref_primary_10_1021_acs_jafc_4c12002
Cites_doi 10.1128/AEM.66.8.3387-3392.2000
10.1016/j.hal.2016.01.003
10.1128/AEM.69.3.1475-1481.2003
10.1111/j.1462-2920.2005.00752.x
10.1017/CBO9780511542145
10.1007/s10811-007-9209-0
10.1201/9780429258770
10.1126/science.1155398
10.1007/s10646-015-1456-2
10.1007/s10452-016-9571-6
10.1128/AEM.01009-14
10.1016/j.hal.2009.07.001
10.1021/acs.est.7b06532
10.1128/jb.177.4.998-1007.1995
10.1016/0041-0101(83)90233-7
10.1128/mBio.00529-20
10.1016/S0044-328X(83)80162-7
10.1016/j.hal.2007.05.012
10.1002/mbo3.393
10.1371/journal.pone.0016805
10.1128/AEM.00487-13
10.1016/j.watres.2014.01.063
10.1007/BF00395897
10.1016/S0254-6299(16)31304-7
10.1038/s43705-021-00055-7
10.1371/journal.pone.0025569
10.1128/aem.36.4.572-576.1978
10.1371/journal.pone.0017615
10.1016/j.jtbi.2007.08.020
10.1093/plankt/fbt096
10.1021/acs.est.6b02204
10.1016/j.bbabio.2006.05.013
10.1128/JB.181.6.1875-1882.1999
10.1007/s11356-020-09729-6
10.1006/jtbi.2001.2468
10.1002/lno.11744
10.1016/j.jhazmat.2014.09.053
10.4319/lo.2003.48.6.2275
10.1111/1462-2920.14445
10.1111/j.1462-2920.2009.01866.x
10.1016/j.ecolmodel.2008.09.004
10.1098/rstb.1997.0145
10.1007/s10646-010-0500-5
10.1007/s00248-011-9899-3
10.1080/14634980290001995
10.3390/toxins6123260
10.1039/C7MB00342K
10.1371/journal.pone.0042444
10.1128/AEM.02601-14
10.1111/j.1529-8817.1980.tb03065.x
10.1016/j.ecolmodel.2010.08.019
10.1046/j.1365-2672.2000.01112.x
10.1007/978-1-4613-3267-1_25
10.1023/A:1003020823129
10.1016/j.hal.2019.101732
10.1016/j.hal.2008.05.005
10.1128/AEM.02892-06
10.1007/s10750-019-04087-y
10.46488/NEPT.2021.v20i02.052
10.1111/1462-2920.12904
10.4319/lo.1981.26.4.0622
10.1007/s10452-011-9384-6
10.1128/AEM.01862-09
10.1111/j.1574-6941.2001.tb00851.x
10.1099/00221287-144-12-3275
10.1016/S0022-2836(05)80360-2
10.1016/j.hal.2018.07.008
10.1002/tox.20106
10.3389/fmicb.2020.601864
10.1007/s10811-015-0688-0
10.1128/aem.61.2.797-800.1995
10.1080/00071618900650361
10.5268/IW-4.4.710
10.1007/978-3-662-21673-6
10.1007/s10750-015-2390-2
10.1128/AEM.01253-07
10.1111/1462-2920.15429
10.3390/toxins13010047
10.1111/j.1574-6976.2008.00134.x
10.1016/j.bbamem.2006.02.015
10.1016/j.plaphy.2013.01.011
10.1371/journal.pone.0029981
10.1146/annurev.micro.57.030502.090938
10.1371/journal.pone.0016208
10.3390/microorganisms9061183
10.1016/j.hal.2016.01.010
10.1016/j.bbrc.2004.11.091
10.3389/fmars.2017.00377
10.1016/j.cbpc.2016.07.001
10.1021/acs.est.7b01498
10.1128/AEM.05246-11
10.1111/j.1529-8817.1987.tb04436.x
10.1128/aem.58.4.1321-1325.1992
10.1128/AEM.66.1.176-179.2000
10.1007/s11270-005-1774-8
10.4319/lom.2009.7.509
10.1016/j.jglr.2009.04.005
10.1111/1462-2920.13299
10.1073/pnas.0400962101
10.1038/ismej.2011.28
10.1111/j.1461-0248.2009.01383.x
10.3390/toxins6123354
10.1126/science.1116681
10.1111/j.1462-2920.2006.01218.x
10.1007/BF00003879
10.1111/j.1529-8817.2011.01056.x
10.1017/S0025315400017240
10.1111/j.0022-3646.1997.00171.x
10.1046/j.1365-2958.2002.02778.x
10.1111/1462-2920.15032
10.1111/jam.12868
10.1016/j.hal.2015.10.011
10.1111/j.1440-1835.1998.tb00266.x
10.1111/1462-2920.12072
10.1111/1462-2920.12565
10.1111/j.1529-8817.1981.tb00848.x
10.1007/BF00003579
10.1016/j.aquatox.2010.05.018
10.1128/AEM.67.1.278-283.2001
10.1111/j.1529-8817.2012.01191.x
10.1016/j.watres.2021.117048
10.1371/journal.pone.0069834
10.1111/j.1462-2920.2008.01663.x
10.1016/j.hal.2021.102002
10.1038/nrmicro.2016.62
10.1016/j.biortech.2015.01.035
10.1111/1574-6941.12019
10.4319/lo.1997.42.2.0250
10.1127/archiv-hydrobiol/150/2001/177
10.1093/plankt/fbh071
10.1016/j.toxicon.2007.11.021
10.4319/lo.1998.43.7.1604
10.1128/aem.49.5.1342-1344.1985
10.1007/s00128-014-1217-6
10.1007/BF00023379
10.1126/science.aav3751
10.1007/s00248-001-0041-9
10.1016/j.ecolmodel.2010.03.015
10.1111/1462-2920.15301
10.1080/00071618500650251
10.1146/annurev-marine-010419-010829
10.1002/mbo3.173
10.4028/0-87849-958-x.606
10.1139/m58-024
10.1073/pnas.1216006110
10.1021/es049660k
10.4319/lo.2008.53.4.1227
10.1016/j.tiv.2008.07.008
10.1021/acs.est.5b03931
10.1023/A:1020537928216
10.1002/tox.10147
10.1186/s12864-015-2275-9
10.2216/i0031-8884-39-3-212.1
10.1073/pnas.072587199
10.1098/rstb.2011.0180
10.1021/es991294v
10.1046/j.1529-8817.2000.98219.x
10.1016/j.hal.2017.05.006
10.3390/rs8030212
10.3390/toxins12010018
10.1007/s10750-006-0506-4
10.1007/BF00482714
10.1038/s41396-019-0547-0
10.1111/1462-2920.15615
10.3390/toxins8100293
10.3354/ame01665
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abm6791
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1005
ExternalDocumentID 35617400
10_1126_science_abm6791
Genre Research Support, U.S. Gov't, Non-P.H.S
Meta-Analysis
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Lake Erie
GeographicLocations_xml – name: Lake Erie
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P01 ES028939
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c366t-8960d2c5f7aa5066d0de3ed496ba6f4abb4dd81b0bfa261374036a60a1e569523
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 05:34:25 EDT 2025
Sat Aug 23 12:37:45 EDT 2025
Wed Sep 03 05:49:09 EDT 2025
Thu Apr 24 23:09:56 EDT 2025
Tue Jul 01 02:24:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6596
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-8960d2c5f7aa5066d0de3ed496ba6f4abb4dd81b0bfa261374036a60a1e569523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5284-7156
0000-0002-4499-5682
0000-0002-0895-5712
0000-0001-7666-6288
0000-0001-8705-0147
0000-0001-6283-8077
OpenAccessLink https://repository.library.noaa.gov/view/noaa/60160/noaa_60160_DS1.pdf
PMID 35617400
PQID 2670183633
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2671265110
proquest_journals_2670183633
pubmed_primary_35617400
crossref_citationtrail_10_1126_science_abm6791
crossref_primary_10_1126_science_abm6791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-27
20220527
PublicationDateYYYYMMDD 2022-05-27
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_28_2
Van der Westhuizen A. (e_1_3_2_115_2) 1986; 4
e_1_3_2_172_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_123_2
e_1_3_2_146_2
e_1_3_2_169_2
e_1_3_2_104_2
e_1_3_2_142_2
e_1_3_2_165_2
e_1_3_2_81_2
e_1_3_2_127_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_161_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_180_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_112_2
e_1_3_2_135_2
e_1_3_2_158_2
e_1_3_2_92_2
e_1_3_2_131_2
e_1_3_2_154_2
e_1_3_2_177_2
e_1_3_2_50_2
e_1_3_2_116_2
e_1_3_2_139_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_171_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_145_2
e_1_3_2_126_2
e_1_3_2_168_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_141_2
e_1_3_2_122_2
e_1_3_2_164_2
e_1_3_2_149_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_160_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_134_2
e_1_3_2_93_2
e_1_3_2_157_2
e_1_3_2_130_2
e_1_3_2_176_2
e_1_3_2_70_2
e_1_3_2_153_2
e_1_3_2_138_2
e_1_3_2_119_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_151_2
e_1_3_2_170_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_125_2
e_1_3_2_148_2
e_1_3_2_167_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_121_2
e_1_3_2_144_2
e_1_3_2_163_2
e_1_3_2_106_2
e_1_3_2_129_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_140_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_114_2
e_1_3_2_137_2
e_1_3_2_156_2
e_1_3_2_179_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_133_2
e_1_3_2_152_2
e_1_3_2_175_2
e_1_3_2_90_2
e_1_3_2_118_2
e_1_3_2_27_2
e_1_3_2_150_2
e_1_3_2_173_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_124_2
e_1_3_2_147_2
e_1_3_2_61_2
e_1_3_2_120_2
e_1_3_2_166_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_143_2
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_128_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_162_2
e_1_3_2_181_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_113_2
e_1_3_2_159_2
e_1_3_2_136_2
e_1_3_2_178_2
e_1_3_2_72_2
e_1_3_2_155_2
e_1_3_2_132_2
e_1_3_2_174_2
Ward A. K. (e_1_3_2_111_2) 1980; 90
e_1_3_2_117_2
35617381 - Science. 2022 May 27;376(6596):914-916
References_xml – ident: e_1_3_2_84_2
  doi: 10.1128/AEM.66.8.3387-3392.2000
– ident: e_1_3_2_4_2
  doi: 10.1016/j.hal.2016.01.003
– ident: e_1_3_2_12_2
  doi: 10.1128/AEM.69.3.1475-1481.2003
– ident: e_1_3_2_20_2
  doi: 10.1111/j.1462-2920.2005.00752.x
– ident: e_1_3_2_69_2
  doi: 10.1017/CBO9780511542145
– ident: e_1_3_2_74_2
  doi: 10.1007/s10811-007-9209-0
– ident: e_1_3_2_55_2
  doi: 10.1201/9780429258770
– ident: e_1_3_2_2_2
  doi: 10.1126/science.1155398
– ident: e_1_3_2_19_2
  doi: 10.1007/s10646-015-1456-2
– ident: e_1_3_2_165_2
  doi: 10.1007/s10452-016-9571-6
– ident: e_1_3_2_48_2
– ident: e_1_3_2_153_2
  doi: 10.1128/AEM.01009-14
– ident: e_1_3_2_40_2
  doi: 10.1016/j.hal.2009.07.001
– ident: e_1_3_2_87_2
  doi: 10.1021/acs.est.7b06532
– ident: e_1_3_2_51_2
  doi: 10.1128/jb.177.4.998-1007.1995
– ident: e_1_3_2_113_2
  doi: 10.1016/0041-0101(83)90233-7
– ident: e_1_3_2_22_2
  doi: 10.1128/mBio.00529-20
– ident: e_1_3_2_112_2
  doi: 10.1016/S0044-328X(83)80162-7
– ident: e_1_3_2_135_2
  doi: 10.1016/j.hal.2007.05.012
– ident: e_1_3_2_164_2
  doi: 10.1002/mbo3.393
– ident: e_1_3_2_18_2
  doi: 10.1371/journal.pone.0016805
– ident: e_1_3_2_97_2
  doi: 10.1128/AEM.00487-13
– ident: e_1_3_2_152_2
  doi: 10.1016/j.watres.2014.01.063
– ident: e_1_3_2_47_2
– ident: e_1_3_2_71_2
  doi: 10.1007/BF00395897
– ident: e_1_3_2_116_2
  doi: 10.1016/S0254-6299(16)31304-7
– ident: e_1_3_2_177_2
  doi: 10.1038/s43705-021-00055-7
– ident: e_1_3_2_8_2
  doi: 10.1371/journal.pone.0025569
– ident: e_1_3_2_68_2
  doi: 10.1128/aem.36.4.572-576.1978
– ident: e_1_3_2_10_2
  doi: 10.1371/journal.pone.0017615
– volume: 90
  start-page: 1
  year: 1980
  ident: e_1_3_2_111_2
  article-title: Interactions of light and nitrogen source among planktonic blue-green algae
  publication-title: Arch. Hydrobiol.
– ident: e_1_3_2_52_2
  doi: 10.1016/j.jtbi.2007.08.020
– ident: e_1_3_2_124_2
– ident: e_1_3_2_149_2
  doi: 10.1093/plankt/fbt096
– ident: e_1_3_2_5_2
  doi: 10.1021/acs.est.6b02204
– ident: e_1_3_2_80_2
  doi: 10.1016/j.bbabio.2006.05.013
– ident: e_1_3_2_81_2
  doi: 10.1128/JB.181.6.1875-1882.1999
– ident: e_1_3_2_170_2
  doi: 10.1007/s11356-020-09729-6
– ident: e_1_3_2_63_2
  doi: 10.1006/jtbi.2001.2468
– ident: e_1_3_2_41_2
  doi: 10.1002/lno.11744
– ident: e_1_3_2_110_2
– ident: e_1_3_2_159_2
  doi: 10.1016/j.jhazmat.2014.09.053
– ident: e_1_3_2_65_2
  doi: 10.4319/lo.2003.48.6.2275
– ident: e_1_3_2_79_2
  doi: 10.1111/1462-2920.14445
– ident: e_1_3_2_34_2
  doi: 10.1111/j.1462-2920.2009.01866.x
– ident: e_1_3_2_105_2
  doi: 10.1016/j.ecolmodel.2008.09.004
– ident: e_1_3_2_75_2
  doi: 10.1098/rstb.1997.0145
– ident: e_1_3_2_141_2
  doi: 10.1007/s10646-010-0500-5
– ident: e_1_3_2_146_2
  doi: 10.1007/s00248-011-9899-3
– ident: e_1_3_2_126_2
  doi: 10.1080/14634980290001995
– ident: e_1_3_2_150_2
  doi: 10.3390/toxins6123260
– ident: e_1_3_2_83_2
  doi: 10.1039/C7MB00342K
– ident: e_1_3_2_23_2
  doi: 10.1371/journal.pone.0042444
– ident: e_1_3_2_90_2
  doi: 10.1128/AEM.02601-14
– ident: e_1_3_2_72_2
  doi: 10.1111/j.1529-8817.1980.tb03065.x
– ident: e_1_3_2_30_2
  doi: 10.1016/j.ecolmodel.2010.08.019
– ident: e_1_3_2_37_2
  doi: 10.1046/j.1365-2672.2000.01112.x
– ident: e_1_3_2_96_2
  doi: 10.1007/978-1-4613-3267-1_25
– ident: e_1_3_2_181_2
  doi: 10.1023/A:1003020823129
– ident: e_1_3_2_70_2
  doi: 10.1016/j.hal.2019.101732
– ident: e_1_3_2_138_2
  doi: 10.1016/j.hal.2008.05.005
– ident: e_1_3_2_104_2
  doi: 10.1128/AEM.02892-06
– ident: e_1_3_2_27_2
  doi: 10.1007/s10750-019-04087-y
– ident: e_1_3_2_176_2
  doi: 10.46488/NEPT.2021.v20i02.052
– ident: e_1_3_2_53_2
– ident: e_1_3_2_89_2
  doi: 10.1111/1462-2920.12904
– ident: e_1_3_2_59_2
  doi: 10.4319/lo.1981.26.4.0622
– ident: e_1_3_2_106_2
  doi: 10.1007/s10452-011-9384-6
– ident: e_1_3_2_85_2
  doi: 10.1128/AEM.01862-09
– ident: e_1_3_2_122_2
  doi: 10.1111/j.1574-6941.2001.tb00851.x
– ident: e_1_3_2_123_2
– ident: e_1_3_2_98_2
  doi: 10.1099/00221287-144-12-3275
– ident: e_1_3_2_179_2
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_3_2_16_2
  doi: 10.1016/j.hal.2018.07.008
– ident: e_1_3_2_129_2
  doi: 10.1002/tox.20106
– ident: e_1_3_2_9_2
  doi: 10.3389/fmicb.2020.601864
– ident: e_1_3_2_161_2
  doi: 10.1007/s10811-015-0688-0
– ident: e_1_3_2_46_2
  doi: 10.1128/aem.61.2.797-800.1995
– ident: e_1_3_2_45_2
  doi: 10.1080/00071618900650361
– ident: e_1_3_2_35_2
  doi: 10.5268/IW-4.4.710
– ident: e_1_3_2_61_2
  doi: 10.1007/978-3-662-21673-6
– ident: e_1_3_2_94_2
  doi: 10.1007/s10750-015-2390-2
– ident: e_1_3_2_91_2
  doi: 10.1128/AEM.01253-07
– ident: e_1_3_2_117_2
– ident: e_1_3_2_172_2
  doi: 10.1111/1462-2920.15429
– ident: e_1_3_2_171_2
  doi: 10.3390/toxins13010047
– ident: e_1_3_2_78_2
  doi: 10.1111/j.1574-6976.2008.00134.x
– ident: e_1_3_2_82_2
  doi: 10.1016/j.bbamem.2006.02.015
– ident: e_1_3_2_148_2
  doi: 10.1016/j.plaphy.2013.01.011
– ident: e_1_3_2_145_2
  doi: 10.1371/journal.pone.0029981
– ident: e_1_3_2_77_2
  doi: 10.1146/annurev.micro.57.030502.090938
– ident: e_1_3_2_144_2
  doi: 10.1371/journal.pone.0016208
– ident: e_1_3_2_173_2
  doi: 10.3390/microorganisms9061183
– ident: e_1_3_2_7_2
  doi: 10.1016/j.hal.2016.01.010
– ident: e_1_3_2_131_2
  doi: 10.1016/j.bbrc.2004.11.091
– ident: e_1_3_2_21_2
  doi: 10.3389/fmars.2017.00377
– ident: e_1_3_2_163_2
  doi: 10.1016/j.cbpc.2016.07.001
– ident: e_1_3_2_3_2
  doi: 10.1021/acs.est.7b01498
– ident: e_1_3_2_142_2
  doi: 10.1128/AEM.05246-11
– ident: e_1_3_2_62_2
  doi: 10.1111/j.1529-8817.1987.tb04436.x
– ident: e_1_3_2_28_2
  doi: 10.1128/aem.58.4.1321-1325.1992
– ident: e_1_3_2_36_2
  doi: 10.1128/AEM.66.1.176-179.2000
– ident: e_1_3_2_130_2
  doi: 10.1007/s11270-005-1774-8
– ident: e_1_3_2_139_2
  doi: 10.4319/lom.2009.7.509
– ident: e_1_3_2_26_2
  doi: 10.1016/j.jglr.2009.04.005
– ident: e_1_3_2_6_2
– ident: e_1_3_2_13_2
  doi: 10.1111/1462-2920.13299
– ident: e_1_3_2_31_2
  doi: 10.1073/pnas.0400962101
– ident: e_1_3_2_134_2
  doi: 10.1038/ismej.2011.28
– ident: e_1_3_2_50_2
  doi: 10.1111/j.1461-0248.2009.01383.x
– ident: e_1_3_2_95_2
  doi: 10.3390/toxins6123354
– ident: e_1_3_2_14_2
  doi: 10.1126/science.1116681
– ident: e_1_3_2_88_2
  doi: 10.1111/j.1462-2920.2006.01218.x
– ident: e_1_3_2_118_2
  doi: 10.1007/BF00003879
– ident: e_1_3_2_143_2
  doi: 10.1111/j.1529-8817.2011.01056.x
– ident: e_1_3_2_66_2
  doi: 10.1017/S0025315400017240
– ident: e_1_3_2_67_2
  doi: 10.1111/j.0022-3646.1997.00171.x
– ident: e_1_3_2_56_2
  doi: 10.1046/j.1365-2958.2002.02778.x
– ident: e_1_3_2_168_2
  doi: 10.1111/1462-2920.15032
– ident: e_1_3_2_156_2
  doi: 10.1111/jam.12868
– ident: e_1_3_2_157_2
  doi: 10.1016/j.hal.2015.10.011
– ident: e_1_3_2_180_2
– ident: e_1_3_2_120_2
  doi: 10.1111/j.1440-1835.1998.tb00266.x
– ident: e_1_3_2_93_2
  doi: 10.1111/1462-2920.12072
– ident: e_1_3_2_160_2
  doi: 10.1111/1462-2920.12565
– ident: e_1_3_2_60_2
  doi: 10.1111/j.1529-8817.1981.tb00848.x
– ident: e_1_3_2_39_2
  doi: 10.1007/BF00003579
– ident: e_1_3_2_140_2
  doi: 10.1016/j.aquatox.2010.05.018
– ident: e_1_3_2_24_2
  doi: 10.1128/AEM.67.1.278-283.2001
– ident: e_1_3_2_99_2
  doi: 10.1111/j.1529-8817.2012.01191.x
– ident: e_1_3_2_175_2
  doi: 10.1016/j.watres.2021.117048
– ident: e_1_3_2_147_2
  doi: 10.1371/journal.pone.0069834
– ident: e_1_3_2_137_2
  doi: 10.1111/j.1462-2920.2008.01663.x
– ident: e_1_3_2_174_2
  doi: 10.1016/j.hal.2021.102002
– ident: e_1_3_2_15_2
  doi: 10.1038/nrmicro.2016.62
– ident: e_1_3_2_158_2
  doi: 10.1016/j.biortech.2015.01.035
– ident: e_1_3_2_32_2
  doi: 10.1111/1574-6941.12019
– ident: e_1_3_2_73_2
  doi: 10.4319/lo.1997.42.2.0250
– ident: e_1_3_2_125_2
  doi: 10.1127/archiv-hydrobiol/150/2001/177
– ident: e_1_3_2_127_2
  doi: 10.1093/plankt/fbh071
– ident: e_1_3_2_136_2
  doi: 10.1016/j.toxicon.2007.11.021
– ident: e_1_3_2_100_2
  doi: 10.4319/lo.1998.43.7.1604
– ident: e_1_3_2_114_2
  doi: 10.1128/aem.49.5.1342-1344.1985
– ident: e_1_3_2_151_2
  doi: 10.1007/s00128-014-1217-6
– ident: e_1_3_2_119_2
  doi: 10.1007/BF00023379
– ident: e_1_3_2_17_2
  doi: 10.1126/science.aav3751
– ident: e_1_3_2_25_2
  doi: 10.1007/s00248-001-0041-9
– ident: e_1_3_2_33_2
  doi: 10.1016/j.ecolmodel.2010.03.015
– ident: e_1_3_2_169_2
  doi: 10.1111/1462-2920.15301
– ident: e_1_3_2_49_2
  doi: 10.1080/00071618500650251
– ident: e_1_3_2_107_2
  doi: 10.1146/annurev-marine-010419-010829
– ident: e_1_3_2_132_2
– ident: e_1_3_2_154_2
  doi: 10.1002/mbo3.173
– ident: e_1_3_2_86_2
  doi: 10.4028/0-87849-958-x.606
– ident: e_1_3_2_109_2
  doi: 10.1139/m58-024
– ident: e_1_3_2_178_2
  doi: 10.1073/pnas.1216006110
– ident: e_1_3_2_76_2
– ident: e_1_3_2_64_2
  doi: 10.1021/es049660k
– ident: e_1_3_2_58_2
  doi: 10.4319/lo.2008.53.4.1227
– ident: e_1_3_2_92_2
  doi: 10.1016/j.tiv.2008.07.008
– ident: e_1_3_2_162_2
  doi: 10.1021/acs.est.5b03931
– ident: e_1_3_2_29_2
– ident: e_1_3_2_103_2
  doi: 10.1023/A:1020537928216
– ident: e_1_3_2_128_2
  doi: 10.1002/tox.10147
– ident: e_1_3_2_155_2
  doi: 10.1186/s12864-015-2275-9
– ident: e_1_3_2_44_2
  doi: 10.2216/i0031-8884-39-3-212.1
– volume: 4
  start-page: 108
  year: 1986
  ident: e_1_3_2_115_2
  article-title: Effect of Temperature and Light (Fluence Rate) on the Composition of the Toxin of the Cyanobacterium Microcystis Aeruginosa(UV-006)
  publication-title: Archiv fur Hydrobiologie
– ident: e_1_3_2_57_2
  doi: 10.1073/pnas.072587199
– ident: e_1_3_2_108_2
  doi: 10.1098/rstb.2011.0180
– ident: e_1_3_2_121_2
  doi: 10.1021/es991294v
– ident: e_1_3_2_38_2
  doi: 10.1046/j.1529-8817.2000.98219.x
– ident: e_1_3_2_167_2
  doi: 10.1016/j.hal.2017.05.006
– ident: e_1_3_2_43_2
  doi: 10.3390/rs8030212
– ident: e_1_3_2_102_2
  doi: 10.3390/toxins12010018
– ident: e_1_3_2_133_2
  doi: 10.1007/s10750-006-0506-4
– ident: e_1_3_2_42_2
  doi: 10.1007/BF00482714
– ident: e_1_3_2_54_2
  doi: 10.1038/s41396-019-0547-0
– ident: e_1_3_2_11_2
  doi: 10.1111/1462-2920.15615
– ident: e_1_3_2_166_2
  doi: 10.3390/toxins8100293
– ident: e_1_3_2_101_2
  doi: 10.3354/ame01665
– reference: 35617381 - Science. 2022 May 27;376(6596):914-916
SSID ssj0009593
Score 2.6317647
SecondaryResourceType review_article
Snippet Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin...
Nutrient control must include nitrogenLake Erie receives water from important agricultural areas of Canada and the United States and is subject to high levels...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1001
SubjectTerms Aquatic animals
Cyanobacteria
Drinking water
Environmental conditions
Hydrogen peroxide
Lakes
Light transmission
Meta Analysis
Microcystins - analysis
Microcystis
Molecular modelling
Nitrogen
Nutrients
Phosphorus
Photosynthesis
Reduction
Toxins
Title Models predict planned phosphorus load reduction will make Lake Erie more toxic
URI https://www.ncbi.nlm.nih.gov/pubmed/35617400
https://www.proquest.com/docview/2670183633
https://www.proquest.com/docview/2671265110
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBuXFQYyEg9DUao0Fyd57OiiAmMg6KS9RXbijqppMzWtuPxH_hPn1I4TpBUxHmo1aeykPl_OxT4XQl6FWeBIsP9t1xW-7bMstjkGAucgz4H-HIwujEb-cM7GF_67y-Cy0_nV8lrarEU_-3ljXMn_UBXOAV0xSvYWlDWDwgn4DvSFFigM7T_RGAuZFRXG-eczTEGMBYhAgbz-WlbwWW0qqyg5hqfkKkesBYpxYS34XFpn2AATlBZ62oIG-n2WtRXV-p0HBdRs6rRIabwTh8qHoHYp0N1a6wsg14pv8kohI5GAR8usNzc5DD6XQsCzmGWghBdz63R2JRd8aeBrVoFGciXnekNLr1iAsetg2JvB2KQJmbnNk7e5uE6irGSYYtwO1px0Ha_N2T1VWkZDmAVxm1Vj8qmW2IfD4GaR0iqCKftcLFgYDxrpWXsMjIdf0k-jJD17e_7-DtlzwWpxu2RveDI6SXZmgda5plpRXPUN_lSTdtg-Wx1o8oDc18YLHSok7pOOXB6Qu6qc6Y8Dsq_nsKLHOpv564fkowIp1SClGqS0ASlFkFIDUoogpQhSiiClCFKKIKVbkD4iF8np5M3Y1lU87MxjbG1HYCPnbhZMQ84DUHBzJ5eezP2YCc6mPhfCz3Mwnhwx5WDOe6EPs8OZwwcyYHHgeo9Jd1ku5SGhHDq4AyFCiVnxgkww3BXnEZMRj4Io7pF-PWlpplPcY6WVIt2aui5L9SynepZ75Nh0uFbZXXZfelRTIdUsoEpdFjogE5nn9chL8zMwaNx140tZbrbXwHBg1zg98kRRz9zLA-sF_q_z9O-DPyP3mvfoiHTXq418DrrwWrzQCPsNGCm5mg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Models+predict+planned+phosphorus+load+reduction+will+make+Lake+Erie+more+toxic&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hellweger%2C+Ferdi+L&rft.au=Martin%2C+Robbie+M&rft.au=Falk+Eigemann&rft.au=Smith%2C+Derek+J&rft.date=2022-05-27&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=376&rft.issue=6596&rft.spage=1001&rft.epage=1005&rft_id=info:doi/10.1126%2Fscience.abm6791&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon