Static and lattice vibrational energy differences between polymorphs

A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 17; no. 28; pp. 5154 - 5165
Main Authors Nyman, Jonas, Day, Graeme M.
Format Journal Article
LanguageEnglish
Published 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom–atom intermolecular model. Rigid molecule lattice dynamical calculations have also been performed to estimate the vibrational contributions to lattice free energies. Distributions of the differences in lattice energy, free energy, zero point energy, entropy and heat capacity between polymorphs are presented. Polymorphic lattice energy differences are typically very small: over half of polymorph pairs are separated by less than 2 kJ mol −1 and lattice energy differences exceed 7.2 kJ mol −1 in only 5% of cases. Unsurprisingly, vibrational contributions to polymorph free energy differences at ambient conditions are dominated by entropy differences. The distribution of vibrational energy differences is narrower than lattice energy differences, rarely exceeding 2 kJ mol −1 . However, these relatively small vibrational free energy contributions are large enough to cause a re-ranking of polymorph stability below, or at, room temperature in 9% of the polymorph pairs.
AbstractList A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom-atom intermolecular model. Rigid molecule lattice dynamical calculations have also been performed to estimate the vibrational contributions to lattice free energies. Distributions of the differences in lattice energy, free energy, zero point energy, entropy and heat capacity between polymorphs are presented. Polymorphic lattice energy differences are typically very small: over half of polymorph pairs are separated by less than 2 kJ mol super(-1) and lattice energy differences exceed 7.2 kJ mol super(-1) in only 5% of cases. Unsurprisingly, vibrational contributions to polymorph free energy differences at ambient conditions are dominated by entropy differences. The distribution of vibrational energy differences is narrower than lattice energy differences, rarely exceeding 2 kJ mol super(-1). However, these relatively small vibrational free energy contributions are large enough to cause a re-ranking of polymorph stability below, or at, room temperature in 9% of the polymorph pairs.
A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom–atom intermolecular model. Rigid molecule lattice dynamical calculations have also been performed to estimate the vibrational contributions to lattice free energies. Distributions of the differences in lattice energy, free energy, zero point energy, entropy and heat capacity between polymorphs are presented. Polymorphic lattice energy differences are typically very small: over half of polymorph pairs are separated by less than 2 kJ mol −1 and lattice energy differences exceed 7.2 kJ mol −1 in only 5% of cases. Unsurprisingly, vibrational contributions to polymorph free energy differences at ambient conditions are dominated by entropy differences. The distribution of vibrational energy differences is narrower than lattice energy differences, rarely exceeding 2 kJ mol −1 . However, these relatively small vibrational free energy contributions are large enough to cause a re-ranking of polymorph stability below, or at, room temperature in 9% of the polymorph pairs.
Author Nyman, Jonas
Day, Graeme M.
Author_xml – sequence: 1
  givenname: Jonas
  surname: Nyman
  fullname: Nyman, Jonas
  organization: School of Chemistry, University of Southampton, Southampton, UK
– sequence: 2
  givenname: Graeme M.
  orcidid: 0000-0001-8396-2771
  surname: Day
  fullname: Day, Graeme M.
  organization: School of Chemistry, University of Southampton, Southampton, UK
BookMark eNptkEtLxDAUhYOM4Mzoxl_QpQjVG9Ik7XKo4wMGXKjrkrm90UgnrUlGmX9vfYAiru7h8p0D58zYxPeeGDvmcMZBVOe1rJcAUMjFHpvyQqm8BCEmv_QBm8X4DMALzmHKLu6SSQ4z49usM2mUlL26dRifvTddRp7C4y5rnbUUyCPFbE3pjchnQ9_tNn0YnuIh27emi3T0fefs4XJ5X1_nq9urm3qxylEolfKylFRYJG4kr1CgLBEqUVhjJOoWsbLaWlSChFam0EahFtZabluoJKytmLOTr9wh9C9biqnZuIjUdcZTv40N11BpLXSpRxS-UAx9jIFsgy59lkrBuK7h0HwM1vwMNlpO_1iG4DYm7P6D3wGE-G5h
CitedBy_id crossref_primary_10_1002_anie_201909237
crossref_primary_10_1021_acs_cgd_1c00123
crossref_primary_10_1021_acs_cgd_7b01718
crossref_primary_10_1107_S2052520624007492
crossref_primary_10_1039_D3MR00019B
crossref_primary_10_1039_C9SC05689K
crossref_primary_10_3390_pr7050272
crossref_primary_10_3390_cryst6010002
crossref_primary_10_1016_j_commatsci_2019_109401
crossref_primary_10_1038_s41524_021_00638_x
crossref_primary_10_1021_acs_cgd_9b00374
crossref_primary_10_1039_D4CE01186D
crossref_primary_10_1002_ange_202303167
crossref_primary_10_1039_D3CE01306E
crossref_primary_10_1039_C9CE01100E
crossref_primary_10_1039_D0CC01050B
crossref_primary_10_1039_D4CE00700J
crossref_primary_10_1088_2515_7655_ad0d00
crossref_primary_10_1002_chem_201601340
crossref_primary_10_1098_rsta_2019_0600
crossref_primary_10_3390_org5040033
crossref_primary_10_1016_j_jct_2024_107400
crossref_primary_10_1039_D3CE00216K
crossref_primary_10_1021_acs_chemmater_1c00080
crossref_primary_10_1186_s13321_018_0298_3
crossref_primary_10_1021_acs_cgd_1c01107
crossref_primary_10_1107_S2052520616009227
crossref_primary_10_1039_D1SC06467C
crossref_primary_10_1021_acs_chemmater_2c03444
crossref_primary_10_1016_j_cpc_2019_06_010
crossref_primary_10_1021_acs_accounts_6b00404
crossref_primary_10_1039_C8SC04303E
crossref_primary_10_1039_D4SC03699A
crossref_primary_10_1107_S205225251700848X
crossref_primary_10_1021_acs_jctc_7b01200
crossref_primary_10_1021_jacs_3c09246
crossref_primary_10_1039_C8CE00843D
crossref_primary_10_1039_C8FD00010G
crossref_primary_10_1039_D0TC05463A
crossref_primary_10_1021_acs_cgd_1c01356
crossref_primary_10_1073_pnas_2300516120
crossref_primary_10_1021_acs_cgd_2c00433
crossref_primary_10_1021_acs_jctc_0c00570
crossref_primary_10_1021_jacs_8b11528
crossref_primary_10_1021_acs_cgd_9b01481
crossref_primary_10_1039_C7CC00907K
crossref_primary_10_1039_C7CS00084G
crossref_primary_10_1039_C6SM00607H
crossref_primary_10_1002_adts_201900156
crossref_primary_10_1039_C6CP02261H
crossref_primary_10_1016_j_cocom_2023_e00798
crossref_primary_10_3390_cryst10030157
crossref_primary_10_1021_acs_cgd_8b00501
crossref_primary_10_1071_CH17620
crossref_primary_10_1021_acs_cgd_0c01708
crossref_primary_10_1016_j_fpc_2021_05_001
crossref_primary_10_1002_chem_202301290
crossref_primary_10_1039_D2CE01681H
crossref_primary_10_1021_acs_cgd_7b00080
crossref_primary_10_1039_C8FD00033F
crossref_primary_10_1002_wene_389
crossref_primary_10_1039_C7CE00075H
crossref_primary_10_1021_jacs_7b03144
crossref_primary_10_1021_acs_cgd_1c01009
crossref_primary_10_1146_annurev_chembioeng_060718_030256
crossref_primary_10_1021_acs_cgd_0c01017
crossref_primary_10_1039_C9TC03174J
crossref_primary_10_3390_cryst15030274
crossref_primary_10_1021_acs_cgd_9b00162
crossref_primary_10_1039_C8CE01783B
crossref_primary_10_1039_C9CE00895K
crossref_primary_10_1039_C8CE01565A
crossref_primary_10_1016_j_apsusc_2021_151687
crossref_primary_10_1021_acsaom_4c00260
crossref_primary_10_1038_s41524_024_01355_x
crossref_primary_10_1021_jacs_0c06749
crossref_primary_10_1039_C6CE01453D
crossref_primary_10_1038_s41570_023_00487_w
crossref_primary_10_1039_D2CE01094A
crossref_primary_10_1021_acs_jpclett_3c01676
crossref_primary_10_1039_C8FD00031J
crossref_primary_10_1021_acs_jpca_0c06372
crossref_primary_10_1039_C8FD00067K
crossref_primary_10_1002_chem_202302150
crossref_primary_10_1021_acs_macromol_8b00392
crossref_primary_10_1039_C9SC04964A
crossref_primary_10_1016_j_jpcs_2020_109458
crossref_primary_10_1038_s42004_022_00705_4
crossref_primary_10_1021_acs_cgd_2c01065
crossref_primary_10_1002_adts_201900093
crossref_primary_10_1039_D1CE01564H
crossref_primary_10_1107_S2052252524002641
crossref_primary_10_1021_acs_cgd_2c01069
crossref_primary_10_1021_acs_cgd_3c00981
crossref_primary_10_1021_acs_chemmater_8b01621
crossref_primary_10_1021_acs_jctc_7b00715
crossref_primary_10_1021_acs_jpca_7b02810
crossref_primary_10_1107_S2052520616007885
crossref_primary_10_1021_acs_jctc_3c00853
crossref_primary_10_1039_D1TC04708F
crossref_primary_10_1021_jacs_0c04434
crossref_primary_10_1002_ange_202107784
crossref_primary_10_1021_acs_jctc_8b00460
crossref_primary_10_1107_S2052520621003085
crossref_primary_10_1007_s00894_015_2756_4
crossref_primary_10_1002_anie_202303167
crossref_primary_10_1021_acs_cgd_8b00918
crossref_primary_10_1021_acs_jpca_3c07732
crossref_primary_10_1039_C6CE00055J
crossref_primary_10_1021_acs_jctc_5b01112
crossref_primary_10_1039_D2SC05549J
crossref_primary_10_1039_D2SC05997E
crossref_primary_10_1021_acs_cgd_2c00992
crossref_primary_10_1039_C8ME00055G
crossref_primary_10_1021_acs_cgd_3c00964
crossref_primary_10_1021_acs_jpcc_0c11425
crossref_primary_10_1039_C7TC02553J
crossref_primary_10_1103_PhysRevMaterials_3_095002
crossref_primary_10_1021_acs_jctc_6b00397
crossref_primary_10_1016_j_molstruc_2017_11_039
crossref_primary_10_1021_acs_cgd_3c01251
crossref_primary_10_1039_D2CE01548J
crossref_primary_10_1039_C9CE00460B
crossref_primary_10_1002_mrc_4789
crossref_primary_10_1021_acs_cgd_7b01375
crossref_primary_10_1021_jacs_5b05938
crossref_primary_10_1080_00268976_2022_2138789
crossref_primary_10_1021_acs_cgd_9b00476
crossref_primary_10_1002_anie_202107784
crossref_primary_10_1039_C9CE01190K
crossref_primary_10_1038_s41467_022_30692_y
crossref_primary_10_1039_D1CE00616A
crossref_primary_10_1002_chem_201604797
crossref_primary_10_1071_CH17141
crossref_primary_10_1021_acs_cgd_0c00082
crossref_primary_10_1021_acs_chemmater_8b00679
crossref_primary_10_1186_s13065_016_0152_5
crossref_primary_10_1021_acs_jcim_9b00601
crossref_primary_10_1039_D1CE00343G
crossref_primary_10_1021_acs_cgd_5b00295
crossref_primary_10_1021_acs_jpca_2c06566
crossref_primary_10_3390_molecules22122238
crossref_primary_10_1039_D3SC03903J
crossref_primary_10_1021_acs_cgd_3c00294
crossref_primary_10_1039_D0CP06605B
crossref_primary_10_1557_s43577_022_00434_y
crossref_primary_10_1039_D3CP04691E
crossref_primary_10_1021_acs_cgd_4c00042
crossref_primary_10_1021_acs_jpca_1c00903
crossref_primary_10_1039_D2CE01402E
crossref_primary_10_1103_PhysRevMaterials_4_063601
crossref_primary_10_1107_S2052252518009995
crossref_primary_10_1021_acs_cgd_3c00706
crossref_primary_10_1021_acs_cgd_3c00948
crossref_primary_10_1021_acs_cgd_1c00520
crossref_primary_10_1021_acs_jpclett_6b02795
crossref_primary_10_1016_j_scriptamat_2017_05_030
crossref_primary_10_1021_acs_cgd_0c00676
crossref_primary_10_1021_acs_cgd_8b01098
crossref_primary_10_1039_D1TA05664F
crossref_primary_10_1021_acs_jctc_7b01152
crossref_primary_10_1039_C6CC02171A
crossref_primary_10_1021_acs_jpca_0c05006
crossref_primary_10_1016_j_mtla_2020_100804
crossref_primary_10_1021_acs_jctc_3c01082
crossref_primary_10_1021_acs_cgd_7b00582
crossref_primary_10_1021_acs_cgd_1c00527
crossref_primary_10_1021_acs_cgd_3c00027
crossref_primary_10_1021_acs_cgd_3c01358
crossref_primary_10_1021_acs_cgd_6b01341
crossref_primary_10_1021_acs_jctc_9b00481
crossref_primary_10_1021_jacs_6b01120
crossref_primary_10_1007_s11095_021_03048_2
crossref_primary_10_1021_acs_inorgchem_1c03762
crossref_primary_10_1039_D0CE00452A
crossref_primary_10_1107_S2052520616007447
crossref_primary_10_1021_jacs_3c07105
crossref_primary_10_1021_acs_molpharmaceut_8b00658
crossref_primary_10_1021_acsomega_4c04782
crossref_primary_10_1021_acs_cgd_0c00422
crossref_primary_10_1039_C6CE02527G
crossref_primary_10_1016_j_xphs_2019_06_010
crossref_primary_10_1039_D4FD00105B
crossref_primary_10_1039_C9CE00700H
crossref_primary_10_1002_ange_202406214
crossref_primary_10_1080_07370652_2021_1877851
crossref_primary_10_1021_acs_cgd_7b00210
crossref_primary_10_1021_acs_chemmater_1c04038
crossref_primary_10_3390_molecules28041876
crossref_primary_10_1107_S2052520616005382
crossref_primary_10_1021_acs_jctc_4c00402
crossref_primary_10_1038_s41524_024_01397_1
crossref_primary_10_1021_acs_cgd_9b00547
crossref_primary_10_1039_C6CE00293E
crossref_primary_10_1021_acs_cgd_2c00832
crossref_primary_10_1021_jacs_5c00569
crossref_primary_10_1039_D4CP02368D
crossref_primary_10_1039_D2CE00479H
crossref_primary_10_1039_D0SC03629C
crossref_primary_10_1039_C6SC02199A
crossref_primary_10_1021_acs_cgd_4c00134
crossref_primary_10_1039_C5CS00227C
crossref_primary_10_1039_D1QI00540E
crossref_primary_10_1146_annurev_matsci_070218_010143
crossref_primary_10_1107_S205322962001164X
crossref_primary_10_1021_acs_jcim_1c01580
crossref_primary_10_1107_S2053273324010921
crossref_primary_10_1002_adfm_201503169
crossref_primary_10_1080_03639045_2022_2061988
crossref_primary_10_3390_cryst12121738
crossref_primary_10_1021_acs_jcim_8b00279
crossref_primary_10_1039_D3SC04317G
crossref_primary_10_1107_S205252062400132X
crossref_primary_10_1039_D1CE00745A
crossref_primary_10_1039_D0RA04799F
crossref_primary_10_1039_D2CE00212D
crossref_primary_10_1016_j_molstruc_2021_130682
crossref_primary_10_3390_molecules25102386
crossref_primary_10_1016_j_pnmrs_2020_03_001
crossref_primary_10_1039_D2CP00457G
crossref_primary_10_1021_jacs_9b03908
crossref_primary_10_1039_C9ME00018F
crossref_primary_10_1016_j_molstruc_2018_10_065
crossref_primary_10_1073_pnas_2319127121
crossref_primary_10_1016_j_addr_2017_09_017
crossref_primary_10_1016_j_ejps_2021_105958
crossref_primary_10_1002_ange_201909237
crossref_primary_10_1039_C8CE01985A
crossref_primary_10_1016_j_jfluchem_2017_12_002
crossref_primary_10_1039_D0ME00007H
crossref_primary_10_1021_acs_jctc_9b00038
crossref_primary_10_1007_s00894_018_3657_0
crossref_primary_10_1039_C9SC02832C
crossref_primary_10_1039_D1MH00578B
crossref_primary_10_1021_acs_cgd_4c00480
crossref_primary_10_1021_acs_chemmater_0c00744
crossref_primary_10_1107_S2052520624002774
crossref_primary_10_1021_acs_cgd_6b00243
crossref_primary_10_1039_D2FD00115B
crossref_primary_10_1021_acs_cgd_2c00930
crossref_primary_10_1039_C7CP08609A
crossref_primary_10_3390_pharmaceutics15092299
crossref_primary_10_1021_acs_jctc_0c00232
crossref_primary_10_1002_mrc_4848
crossref_primary_10_1039_C6CP05447A
crossref_primary_10_1021_acs_jpca_2c07244
crossref_primary_10_1039_D2CE00942K
crossref_primary_10_1021_acs_jctc_7b01073
crossref_primary_10_1039_C9CE00870E
crossref_primary_10_1002_anie_202406214
crossref_primary_10_1021_acs_cgd_0c00918
crossref_primary_10_1021_acs_cgd_8b00765
crossref_primary_10_1039_C7CP04186A
crossref_primary_10_1039_C8FD00039E
crossref_primary_10_3390_cryst10010040
crossref_primary_10_1021_acs_cgd_8b00648
crossref_primary_10_1039_D0SC05765G
crossref_primary_10_1039_C7NR08890F
crossref_primary_10_1039_D2SC06770F
crossref_primary_10_1039_C6CC06799A
crossref_primary_10_1107_S2052252517001415
crossref_primary_10_1021_acs_cgd_9b01153
crossref_primary_10_1126_sciadv_aau3338
crossref_primary_10_1016_j_saa_2020_119309
crossref_primary_10_1021_acs_jctc_3c00578
crossref_primary_10_1021_acs_jctc_9b00979
crossref_primary_10_1039_D1CE01058A
crossref_primary_10_1039_D2CE01619B
crossref_primary_10_1021_acs_chemrev_5b00648
crossref_primary_10_1021_acs_cgd_9b01158
crossref_primary_10_1126_sciadv_1600225
crossref_primary_10_1021_acs_cgd_4c01078
crossref_primary_10_3390_pharmaceutics13020139
crossref_primary_10_1002_advs_202000992
crossref_primary_10_1002_wcms_1294
crossref_primary_10_1016_j_cpc_2020_107170
crossref_primary_10_1021_acs_jpcc_9b04252
crossref_primary_10_1021_acs_cgd_9b00989
crossref_primary_10_1107_S2053229618005715
crossref_primary_10_1016_j_jorganchem_2024_123075
crossref_primary_10_1103_PhysRevLett_117_115702
crossref_primary_10_1021_acs_cgd_5b01673
crossref_primary_10_1021_acs_jctc_6b00679
crossref_primary_10_1098_rsta_2017_0006
crossref_primary_10_1107_S2053229620000959
crossref_primary_10_1021_acs_jpcc_5b11115
crossref_primary_10_1103_PhysRevMaterials_2_043803
crossref_primary_10_1016_j_polymer_2019_122048
crossref_primary_10_1107_S1600576724007489
crossref_primary_10_1039_C7SC00168A
crossref_primary_10_3390_cryst9120665
crossref_primary_10_1021_acs_cgd_7b01095
crossref_primary_10_1039_D4CE01257G
crossref_primary_10_1021_acs_nanolett_7b01637
crossref_primary_10_1107_S2052252519003014
crossref_primary_10_1021_acs_cgd_6b01088
crossref_primary_10_1021_acs_jctc_7b01179
crossref_primary_10_1021_acs_cgd_9b00518
crossref_primary_10_1021_acs_cgd_6b01762
crossref_primary_10_1021_acs_jpca_3c07129
crossref_primary_10_1039_D4FD00090K
crossref_primary_10_1557_s43578_022_00698_9
crossref_primary_10_1002_chem_201904672
crossref_primary_10_1038_s41467_024_53596_5
crossref_primary_10_1107_S2052520624005043
crossref_primary_10_1021_acsenergylett_2c02698
crossref_primary_10_1021_acs_jctc_6b00304
crossref_primary_10_1107_S2052520616007708
crossref_primary_10_1039_D0SC00554A
crossref_primary_10_1039_D3CP05805K
crossref_primary_10_1021_jacs_3c13030
crossref_primary_10_1007_s11172_021_3236_x
crossref_primary_10_1039_C8SC01237G
crossref_primary_10_1039_C7SC04665K
crossref_primary_10_1039_C8FD00048D
crossref_primary_10_1107_S2052520624008679
crossref_primary_10_1021_acs_jctc_0c00119
crossref_primary_10_1002_chem_202402683
Cites_doi 10.1021/jp055439y
10.1039/B202084J
10.1002/jps.1080
10.1021/ja00154a032
10.1002/anie.200462760
10.1002/chem.200800668
10.1021/j100323a006
10.1021/cg049651n
10.1021/ja000588+
10.1063/1.2937446
10.1002/chem.201204368
10.1016/0301-0104(78)85069-1
10.1039/c1cp20249a
10.1021/cg0498148
10.1126/science.1254419
10.1021/op000023y
10.1107/S2052519213018861
10.1039/c004164e
10.1039/c1cp20927b
10.1107/S0021889802022112
10.1021/op0601060
10.1107/S0108768111042868
10.1063/1.4759079
10.1002/jps.2600840812
10.1016/j.pmatsci.2009.05.002
10.1080/0889311X.2010.517526
10.1080/00268970110089432
10.1021/ic990573g
10.1039/b206088d
10.1021/ja9930622
10.1021/cr400249d
10.1021/jp709764e
10.1002/jps.2600580802
10.1002/jcc.1074
10.1002/anie.200704247
10.1039/b926536h
10.1021/ct100597e
10.1016/j.ijpharm.2007.04.015
10.1063/1.1475333
10.1063/1.4738961
10.1107/S0108768100004584
10.1021/jz101383z
10.1107/S0108768105020021
10.1007/978-3-642-93186-4
10.1107/S002188980802308X
10.1021/jp035125f
10.1039/C4SC01132E
10.1107/S0108768109004066
10.1021/ja0383625
10.1107/S010876810101151X
10.1107/S0108768106019677
10.1023/A:1011052932607
10.1002/jcc.1047
10.1039/C3CS60279F
10.1021/ja981122i
ContentType Journal Article
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/C5CE00045A
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 5165
ExternalDocumentID 10_1039_C5CE00045A
GroupedDBID 0-7
0R~
0UZ
1TJ
29F
4.4
5GY
6J9
705
70~
71~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
E3Z
EBS
ECGLT
EE0
EEHRC
EF-
EJD
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
N9A
NDZJH
O9-
P2P
R56
R7B
RAOCF
RCLXC
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
7U5
8FD
L7M
ID FETCH-LOGICAL-c366t-885e4fce1a519c3c58c0934faa5c7dcc9f7ffc63e376a47a6c73fff1fd0950bf3
ISSN 1466-8033
IngestDate Fri Jul 11 15:55:19 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 02:20:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-885e4fce1a519c3c58c0934faa5c7dcc9f7ffc63e376a47a6c73fff1fd0950bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8396-2771
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2015/ce/c5ce00045a
PQID 1709773787
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1709773787
crossref_citationtrail_10_1039_C5CE00045A
crossref_primary_10_1039_C5CE00045A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle CrystEngComm
PublicationYear 2015
References Neumann (C5CE00045A-(cit14)/*[position()=1]) 2008; 47
Day (C5CE00045A-(cit62)/*[position()=1]) 2009; 65
Califano (C5CE00045A-(cit40)/*[position()=1]) 1981; vol. 26
Thompson (C5CE00045A-(cit48)/*[position()=1]) 2014; 5
Nyman (C5CE00045A-(cit47)/*[position()=1]) 2014
Stone (C5CE00045A-(cit26)/*[position()=1]) 2002; 100
Stone (C5CE00045A-(cit24)/*[position()=1]) 1988; 92
van Eijck (C5CE00045A-(cit50)/*[position()=1]) 2002; 4
Bardwell (C5CE00045A-(cit57)/*[position()=1]) 2011; 67
Bernstein (C5CE00045A-(cit3)/*[position()=1]) 2002
Eddleston (C5CE00045A-(cit46)/*[position()=1])
Cabri (C5CE00045A-(cit6)/*[position()=1]) 2007; 11
Haleblian (C5CE00045A-(cit1)/*[position()=1]) 1969; 58
Gu (C5CE00045A-(cit12)/*[position()=1]) 2001; 90
Yu (C5CE00045A-(cit11)/*[position()=1]) 2000; 122
Beran (C5CE00045A-(cit16)/*[position()=1]) 2010; 1
Lommerse (C5CE00045A-(cit55)/*[position()=1]) 2000; 56
Stone (C5CE00045A-(cit27)/*[position()=1])
Chickos (C5CE00045A-(cit9)/*[position()=1]) 2002; 31
Habgood (C5CE00045A-(cit51)/*[position()=1]) 2011; 13
Cruz-Cabeza (C5CE00045A-(cit22)/*[position()=1]) 2013; 114
Day (C5CE00045A-(cit41)/*[position()=1]) 2003; 107
Cruz-Cabeza (C5CE00045A-(cit52)/*[position()=1]) 2011; 13
van Eijck (C5CE00045A-(cit18)/*[position()=1]) 2001; 22
Guillory (C5CE00045A-(cit13)/*[position()=1]) 1985; 2
Price (C5CE00045A-(cit8)/*[position()=1]) 2014; 43
Karamertzanis (C5CE00045A-(cit49)/*[position()=1]) 2008; 128
van de Streek (C5CE00045A-(cit20)/*[position()=1]) 2006; 62
Cruz-Cabeza (C5CE00045A-(cit63)/*[position()=1]) 2008; 14
Chemburkar (C5CE00045A-(cit4)/*[position()=1]) 2000; 4
Bauer (C5CE00045A-(cit5)/*[position()=1]) 2001; 18
Kazantsev (C5CE00045A-(cit34)/*[position()=1]) 2011; 7
Williams (C5CE00045A-(cit30)/*[position()=1]) 2001; 22
Legendre (C5CE00045A-(cit53)/*[position()=1]) 2007; 343
Karamertzanis (C5CE00045A-(cit66)/*[position()=1]) 2008; 112
Siegrist (C5CE00045A-(cit2)/*[position()=1]) 2007
van de Streek (C5CE00045A-(cit19)/*[position()=1]) 2005; 61
Gavezzotti (C5CE00045A-(cit64)/*[position()=1]) 2000; 122
Thompson (C5CE00045A-(cit28)/*[position()=1]) 2015
Weng (C5CE00045A-(cit21)/*[position()=1]) 2008; 41
Anghel (C5CE00045A-(cit61)/*[position()=1]) 2002; 4
Spek (C5CE00045A-(cit23)/*[position()=1]) 2003; 36
Day (C5CE00045A-(cit7)/*[position()=1]) 2011; 17
Yang (C5CE00045A-(cit68)/*[position()=1]) 2014; 345
Aakeröy (C5CE00045A-(cit56)/*[position()=1]) 1998; 120
Bygrave (C5CE00045A-(cit67)/*[position()=1]) 2012; 137
Otero-de-la-Roza (C5CE00045A-(cit15)/*[position()=1]) 2012; 137
Yu (C5CE00045A-(cit10)/*[position()=1]) 1995; 84
Raiteri (C5CE00045A-(cit65)/*[position()=1]) 2005; 44
Eddleston (C5CE00045A-(cit45)/*[position()=1]) 2013; 19
Price (C5CE00045A-(cit25)/*[position()=1]) 2010; 12
Califano (C5CE00045A-(cit38)/*[position()=1]) 1975; vol. 55
Neto (C5CE00045A-(cit39)/*[position()=1]) 1978; 29
Abraha (C5CE00045A-(cit31)/*[position()=1]) 1999; 38
Li (C5CE00045A-(cit44)/*[position()=1]) 2010; 12
Day (C5CE00045A-(cit32)/*[position()=1]) 2003; 125
Day (C5CE00045A-(cit58)/*[position()=1]) 2004; 4
Kazantsev (C5CE00045A-(cit33)/*[position()=1]) 2010
Fultz (C5CE00045A-(cit36)/*[position()=1]) 2010; 55
Gavezzotti (C5CE00045A-(cit17)/*[position()=1]) 1995; 117
Born (C5CE00045A-(cit37)/*[position()=1]) 1954; vol. 188
Katrusiak (C5CE00045A-(cit54)/*[position()=1]) 2001; 57
Price (C5CE00045A-(cit60)/*[position()=1]) 2013; 69
Day (C5CE00045A-(cit43)/*[position()=1]) 2006; 110
Day (C5CE00045A-(cit59)/*[position()=1]) 2005; 5
References_xml – volume: vol. 55
  volume-title: Lattice dynamics and intermolecular forces
  year: 1975
  ident: C5CE00045A-(cit38)/*[position()=1]
– volume: 110
  start-page: 447
  year: 2006
  ident: C5CE00045A-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp055439y
– volume: 4
  start-page: 348
  year: 2002
  ident: C5CE00045A-(cit61)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/B202084J
– volume: 90
  start-page: 1277
  year: 2001
  ident: C5CE00045A-(cit12)/*[position()=1]
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.1080
– volume: 117
  start-page: 12299
  year: 1995
  ident: C5CE00045A-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00154a032
– volume: 44
  start-page: 3769
  year: 2005
  ident: C5CE00045A-(cit65)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200462760
– volume-title: CrystalOptimizer: An Efficient Algorithm for Lattice Energy Minimization of Organic Crystals Using Isolated-Molecule Quantum Mechanical Calculations
  year: 2010
  ident: C5CE00045A-(cit33)/*[position()=1]
– volume: 14
  start-page: 8830
  year: 2008
  ident: C5CE00045A-(cit63)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200800668
– volume: 92
  start-page: 3325
  year: 1988
  ident: C5CE00045A-(cit24)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100323a006
– volume-title: Distributed Multipole Analysis of Gaussian wavefunctions
  ident: C5CE00045A-(cit27)/*[position()=1]
– volume: 5
  start-page: 1023
  year: 2005
  ident: C5CE00045A-(cit59)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg049651n
– volume: 122
  start-page: 10724
  year: 2000
  ident: C5CE00045A-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja000588+
– volume: vol. 188
  volume-title: Dynamical theory of crystal lattices
  year: 1954
  ident: C5CE00045A-(cit37)/*[position()=1]
– volume: 128
  start-page: 244708
  year: 2008
  ident: C5CE00045A-(cit49)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1063/1.2937446
– volume: 2
  start-page: 28
  issue: 9
  year: 1985
  ident: C5CE00045A-(cit13)/*[position()=1]
  publication-title: Pharm. Manuf.
– volume: 19
  start-page: 7874
  year: 2013
  ident: C5CE00045A-(cit45)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201204368
– volume: 29
  start-page: 167
  year: 1978
  ident: C5CE00045A-(cit39)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(78)85069-1
– volume: 13
  start-page: 9590
  year: 2011
  ident: C5CE00045A-(cit51)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20249a
– volume: 4
  start-page: 1327
  year: 2004
  ident: C5CE00045A-(cit58)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg0498148
– volume: 345
  start-page: 640
  year: 2014
  ident: C5CE00045A-(cit68)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254419
– volume: 4
  start-page: 413
  year: 2000
  ident: C5CE00045A-(cit4)/*[position()=1]
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op000023y
– volume: 69
  start-page: 313
  year: 2013
  ident: C5CE00045A-(cit60)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
  doi: 10.1107/S2052519213018861
– volume: 12
  start-page: 8478
  year: 2010
  ident: C5CE00045A-(cit25)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c004164e
– volume: 13
  start-page: 12808
  year: 2011
  ident: C5CE00045A-(cit52)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20927b
– volume: 36
  start-page: 7
  year: 2003
  ident: C5CE00045A-(cit23)/*[position()=1]
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889802022112
– volume: 11
  start-page: 64
  year: 2007
  ident: C5CE00045A-(cit6)/*[position()=1]
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op0601060
– volume: 67
  start-page: 535
  year: 2011
  ident: C5CE00045A-(cit57)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768111042868
– volume: 137
  start-page: 164102
  year: 2012
  ident: C5CE00045A-(cit67)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1063/1.4759079
– volume: 84
  start-page: 966
  year: 1995
  ident: C5CE00045A-(cit10)/*[position()=1]
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600840812
– volume: 55
  start-page: 247
  year: 2010
  ident: C5CE00045A-(cit36)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2009.05.002
– volume: 17
  start-page: 3
  year: 2011
  ident: C5CE00045A-(cit7)/*[position()=1]
  publication-title: Crystallogr. Rev.
  doi: 10.1080/0889311X.2010.517526
– volume: 100
  start-page: 221
  year: 2002
  ident: C5CE00045A-(cit26)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970110089432
– volume: 38
  start-page: 4224
  year: 1999
  ident: C5CE00045A-(cit31)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic990573g
– volume: 4
  start-page: 4789
  year: 2002
  ident: C5CE00045A-(cit50)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b206088d
– volume: 122
  start-page: 585
  year: 2000
  ident: C5CE00045A-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9930622
– start-page: 19
  year: 2007
  ident: C5CE00045A-(cit2)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 114
  start-page: 2170
  year: 2013
  ident: C5CE00045A-(cit22)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr400249d
– volume: 112
  start-page: 4298
  year: 2008
  ident: C5CE00045A-(cit66)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp709764e
– volume: 58
  start-page: 911
  year: 1969
  ident: C5CE00045A-(cit1)/*[position()=1]
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600580802
– volume: 22
  start-page: 1154
  year: 2001
  ident: C5CE00045A-(cit30)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.1074
– volume: 47
  start-page: 2427
  year: 2008
  ident: C5CE00045A-(cit14)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200704247
– volume: 12
  start-page: 5329
  year: 2010
  ident: C5CE00045A-(cit44)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b926536h
– volume: 7
  start-page: 1998
  year: 2011
  ident: C5CE00045A-(cit34)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100597e
– volume: 343
  start-page: 41
  year: 2007
  ident: C5CE00045A-(cit53)/*[position()=1]
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.04.015
– volume: 31
  start-page: 537
  year: 2002
  ident: C5CE00045A-(cit9)/*[position()=1]
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.1475333
– volume: 137
  start-page: 054103
  year: 2012
  ident: C5CE00045A-(cit15)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4738961
– volume: 56
  start-page: 697
  year: 2000
  ident: C5CE00045A-(cit55)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768100004584
– volume: 1
  start-page: 3480
  year: 2010
  ident: C5CE00045A-(cit16)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz101383z
– volume: 61
  start-page: 504
  year: 2005
  ident: C5CE00045A-(cit19)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768105020021
– volume: vol. 26
  volume-title: Lattice dynamics of molecular crystals
  year: 1981
  ident: C5CE00045A-(cit40)/*[position()=1]
  doi: 10.1007/978-3-642-93186-4
– volume: 41
  start-page: 955
  year: 2008
  ident: C5CE00045A-(cit21)/*[position()=1]
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S002188980802308X
– volume: 107
  start-page: 10919
  year: 2003
  ident: C5CE00045A-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp035125f
– volume: 5
  start-page: 3173
  year: 2014
  ident: C5CE00045A-(cit48)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01132E
– ident: C5CE00045A-(cit46)/*[position()=1]
– volume-title: In Silico Predictions of Porous Molecular Crystals and Clathrates
  year: 2014
  ident: C5CE00045A-(cit47)/*[position()=1]
– volume: 65
  start-page: 107
  year: 2009
  ident: C5CE00045A-(cit62)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768109004066
– volume-title: Polymorphism in Molecular Crystals
  year: 2002
  ident: C5CE00045A-(cit3)/*[position()=1]
– volume: 125
  start-page: 16434
  year: 2003
  ident: C5CE00045A-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0383625
– volume: 57
  start-page: 697
  year: 2001
  ident: C5CE00045A-(cit54)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S010876810101151X
– year: 2015
  ident: C5CE00045A-(cit28)/*[position()=1]
– volume: 62
  start-page: 567
  year: 2006
  ident: C5CE00045A-(cit20)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768106019677
– volume: 18
  start-page: 859
  year: 2001
  ident: C5CE00045A-(cit5)/*[position()=1]
  publication-title: Pharm. Res.
  doi: 10.1023/A:1011052932607
– volume: 22
  start-page: 816
  year: 2001
  ident: C5CE00045A-(cit18)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.1047
– volume: 43
  start-page: 2098
  year: 2014
  ident: C5CE00045A-(cit8)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60279F
– volume: 120
  start-page: 8986
  year: 1998
  ident: C5CE00045A-(cit56)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja981122i
SSID ssj0014110
Score 2.5800905
Snippet A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 5154
SubjectTerms Crystal structure
Density functional theory
Energy distribution
Energy use
Entropy
Free energy
Lattices
State of the art
Title Static and lattice vibrational energy differences between polymorphs
URI https://www.proquest.com/docview/1709773787
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUoXOgBUdqqUKiM2ktVhSY4dpLjagmCaksvWWlvkTOxe1myiM1W2n59x7GTNSoH4GJFluWDXzTzZux5Q8gXjX67YpUIlEwxQMmUClLQaYDODdJMcB12RWE_b8TVNP4x47NNn8-uuqStzuDvo3UlL0EV5xBXUyX7DGSHTXECvxFfHBFhHJ-EsWGKTm91LlvzjO3bHxP-uvyesnV9fQ8U8_ZqeJa1mGPQj2e89Nnp-H69bPPmt6kaGbLEa5cjNXl2rwu9q3CR6la5jKrLHUTcyx0oa-9iYfSIrRbFYBATD3hXum3NG5Kf2HOVPLJ9Hv4zwyEzKqbAQXWc0XM2_QX7za_ycjqZlEU-K16RnXMk-WildkZ5cT0ZboFi5Ca9pCzLvm_2e0giHvrQjhgU-2TPMXo6svC8IVuqOSCvPZ3Ht-TCAkURKOqAoh5Q1AJFPaCoA4pugHpHppd5Mb4KXPuKAJgQbZCmXMUaVCSRJQMDnkKYsVhLySGpATKdaA2CKbTxMk6kgIRprSNdI-0NK83ek-1m0agPhEaSIbGvTe8CEfOwrpTUmQRhxBbP6wQOydf-PEpw2u6mxci87N4YsKwc83Hend3okHwe1t5ZRZNHV532x1qiwTG3SLJRi9WyjJIQYwaGhv7oCWs-kt3Nj3dMttv7lTpBGtdWnxza_wC01k6i
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+and+lattice+vibrational+energy+differences+between+polymorphs&rft.jtitle=CrystEngComm&rft.au=Nyman%2C+Jonas&rft.au=Day%2C+Graeme+M&rft.date=2015-01-01&rft.eissn=1466-8033&rft.volume=17&rft.issue=28&rft.spage=5154&rft.epage=5165&rft_id=info:doi/10.1039%2Fc5ce00045a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon