Static and lattice vibrational energy differences between polymorphs
A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom...
Saved in:
Published in | CrystEngComm Vol. 17; no. 28; pp. 5154 - 5165 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom–atom intermolecular model. Rigid molecule lattice dynamical calculations have also been performed to estimate the vibrational contributions to lattice free energies. Distributions of the differences in lattice energy, free energy, zero point energy, entropy and heat capacity between polymorphs are presented. Polymorphic lattice energy differences are typically very small: over half of polymorph pairs are separated by less than 2 kJ mol
−1
and lattice energy differences exceed 7.2 kJ mol
−1
in only 5% of cases. Unsurprisingly, vibrational contributions to polymorph free energy differences at ambient conditions are dominated by entropy differences. The distribution of vibrational energy differences is narrower than lattice energy differences, rarely exceeding 2 kJ mol
−1
. However, these relatively small vibrational free energy contributions are large enough to cause a re-ranking of polymorph stability below, or at, room temperature in 9% of the polymorph pairs. |
---|---|
AbstractList | A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom-atom intermolecular model. Rigid molecule lattice dynamical calculations have also been performed to estimate the vibrational contributions to lattice free energies. Distributions of the differences in lattice energy, free energy, zero point energy, entropy and heat capacity between polymorphs are presented. Polymorphic lattice energy differences are typically very small: over half of polymorph pairs are separated by less than 2 kJ mol super(-1) and lattice energy differences exceed 7.2 kJ mol super(-1) in only 5% of cases. Unsurprisingly, vibrational contributions to polymorph free energy differences at ambient conditions are dominated by entropy differences. The distribution of vibrational energy differences is narrower than lattice energy differences, rarely exceeding 2 kJ mol super(-1). However, these relatively small vibrational free energy contributions are large enough to cause a re-ranking of polymorph stability below, or at, room temperature in 9% of the polymorph pairs. A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom–atom intermolecular model. Rigid molecule lattice dynamical calculations have also been performed to estimate the vibrational contributions to lattice free energies. Distributions of the differences in lattice energy, free energy, zero point energy, entropy and heat capacity between polymorphs are presented. Polymorphic lattice energy differences are typically very small: over half of polymorph pairs are separated by less than 2 kJ mol −1 and lattice energy differences exceed 7.2 kJ mol −1 in only 5% of cases. Unsurprisingly, vibrational contributions to polymorph free energy differences at ambient conditions are dominated by entropy differences. The distribution of vibrational energy differences is narrower than lattice energy differences, rarely exceeding 2 kJ mol −1 . However, these relatively small vibrational free energy contributions are large enough to cause a re-ranking of polymorph stability below, or at, room temperature in 9% of the polymorph pairs. |
Author | Nyman, Jonas Day, Graeme M. |
Author_xml | – sequence: 1 givenname: Jonas surname: Nyman fullname: Nyman, Jonas organization: School of Chemistry, University of Southampton, Southampton, UK – sequence: 2 givenname: Graeme M. orcidid: 0000-0001-8396-2771 surname: Day fullname: Day, Graeme M. organization: School of Chemistry, University of Southampton, Southampton, UK |
BookMark | eNptkEtLxDAUhYOM4Mzoxl_QpQjVG9Ik7XKo4wMGXKjrkrm90UgnrUlGmX9vfYAiru7h8p0D58zYxPeeGDvmcMZBVOe1rJcAUMjFHpvyQqm8BCEmv_QBm8X4DMALzmHKLu6SSQ4z49usM2mUlL26dRifvTddRp7C4y5rnbUUyCPFbE3pjchnQ9_tNn0YnuIh27emi3T0fefs4XJ5X1_nq9urm3qxylEolfKylFRYJG4kr1CgLBEqUVhjJOoWsbLaWlSChFam0EahFtZabluoJKytmLOTr9wh9C9biqnZuIjUdcZTv40N11BpLXSpRxS-UAx9jIFsgy59lkrBuK7h0HwM1vwMNlpO_1iG4DYm7P6D3wGE-G5h |
CitedBy_id | crossref_primary_10_1002_anie_201909237 crossref_primary_10_1021_acs_cgd_1c00123 crossref_primary_10_1021_acs_cgd_7b01718 crossref_primary_10_1107_S2052520624007492 crossref_primary_10_1039_D3MR00019B crossref_primary_10_1039_C9SC05689K crossref_primary_10_3390_pr7050272 crossref_primary_10_3390_cryst6010002 crossref_primary_10_1016_j_commatsci_2019_109401 crossref_primary_10_1038_s41524_021_00638_x crossref_primary_10_1021_acs_cgd_9b00374 crossref_primary_10_1039_D4CE01186D crossref_primary_10_1002_ange_202303167 crossref_primary_10_1039_D3CE01306E crossref_primary_10_1039_C9CE01100E crossref_primary_10_1039_D0CC01050B crossref_primary_10_1039_D4CE00700J crossref_primary_10_1088_2515_7655_ad0d00 crossref_primary_10_1002_chem_201601340 crossref_primary_10_1098_rsta_2019_0600 crossref_primary_10_3390_org5040033 crossref_primary_10_1016_j_jct_2024_107400 crossref_primary_10_1039_D3CE00216K crossref_primary_10_1021_acs_chemmater_1c00080 crossref_primary_10_1186_s13321_018_0298_3 crossref_primary_10_1021_acs_cgd_1c01107 crossref_primary_10_1107_S2052520616009227 crossref_primary_10_1039_D1SC06467C crossref_primary_10_1021_acs_chemmater_2c03444 crossref_primary_10_1016_j_cpc_2019_06_010 crossref_primary_10_1021_acs_accounts_6b00404 crossref_primary_10_1039_C8SC04303E crossref_primary_10_1039_D4SC03699A crossref_primary_10_1107_S205225251700848X crossref_primary_10_1021_acs_jctc_7b01200 crossref_primary_10_1021_jacs_3c09246 crossref_primary_10_1039_C8CE00843D crossref_primary_10_1039_C8FD00010G crossref_primary_10_1039_D0TC05463A crossref_primary_10_1021_acs_cgd_1c01356 crossref_primary_10_1073_pnas_2300516120 crossref_primary_10_1021_acs_cgd_2c00433 crossref_primary_10_1021_acs_jctc_0c00570 crossref_primary_10_1021_jacs_8b11528 crossref_primary_10_1021_acs_cgd_9b01481 crossref_primary_10_1039_C7CC00907K crossref_primary_10_1039_C7CS00084G crossref_primary_10_1039_C6SM00607H crossref_primary_10_1002_adts_201900156 crossref_primary_10_1039_C6CP02261H crossref_primary_10_1016_j_cocom_2023_e00798 crossref_primary_10_3390_cryst10030157 crossref_primary_10_1021_acs_cgd_8b00501 crossref_primary_10_1071_CH17620 crossref_primary_10_1021_acs_cgd_0c01708 crossref_primary_10_1016_j_fpc_2021_05_001 crossref_primary_10_1002_chem_202301290 crossref_primary_10_1039_D2CE01681H crossref_primary_10_1021_acs_cgd_7b00080 crossref_primary_10_1039_C8FD00033F crossref_primary_10_1002_wene_389 crossref_primary_10_1039_C7CE00075H crossref_primary_10_1021_jacs_7b03144 crossref_primary_10_1021_acs_cgd_1c01009 crossref_primary_10_1146_annurev_chembioeng_060718_030256 crossref_primary_10_1021_acs_cgd_0c01017 crossref_primary_10_1039_C9TC03174J crossref_primary_10_3390_cryst15030274 crossref_primary_10_1021_acs_cgd_9b00162 crossref_primary_10_1039_C8CE01783B crossref_primary_10_1039_C9CE00895K crossref_primary_10_1039_C8CE01565A crossref_primary_10_1016_j_apsusc_2021_151687 crossref_primary_10_1021_acsaom_4c00260 crossref_primary_10_1038_s41524_024_01355_x crossref_primary_10_1021_jacs_0c06749 crossref_primary_10_1039_C6CE01453D crossref_primary_10_1038_s41570_023_00487_w crossref_primary_10_1039_D2CE01094A crossref_primary_10_1021_acs_jpclett_3c01676 crossref_primary_10_1039_C8FD00031J crossref_primary_10_1021_acs_jpca_0c06372 crossref_primary_10_1039_C8FD00067K crossref_primary_10_1002_chem_202302150 crossref_primary_10_1021_acs_macromol_8b00392 crossref_primary_10_1039_C9SC04964A crossref_primary_10_1016_j_jpcs_2020_109458 crossref_primary_10_1038_s42004_022_00705_4 crossref_primary_10_1021_acs_cgd_2c01065 crossref_primary_10_1002_adts_201900093 crossref_primary_10_1039_D1CE01564H crossref_primary_10_1107_S2052252524002641 crossref_primary_10_1021_acs_cgd_2c01069 crossref_primary_10_1021_acs_cgd_3c00981 crossref_primary_10_1021_acs_chemmater_8b01621 crossref_primary_10_1021_acs_jctc_7b00715 crossref_primary_10_1021_acs_jpca_7b02810 crossref_primary_10_1107_S2052520616007885 crossref_primary_10_1021_acs_jctc_3c00853 crossref_primary_10_1039_D1TC04708F crossref_primary_10_1021_jacs_0c04434 crossref_primary_10_1002_ange_202107784 crossref_primary_10_1021_acs_jctc_8b00460 crossref_primary_10_1107_S2052520621003085 crossref_primary_10_1007_s00894_015_2756_4 crossref_primary_10_1002_anie_202303167 crossref_primary_10_1021_acs_cgd_8b00918 crossref_primary_10_1021_acs_jpca_3c07732 crossref_primary_10_1039_C6CE00055J crossref_primary_10_1021_acs_jctc_5b01112 crossref_primary_10_1039_D2SC05549J crossref_primary_10_1039_D2SC05997E crossref_primary_10_1021_acs_cgd_2c00992 crossref_primary_10_1039_C8ME00055G crossref_primary_10_1021_acs_cgd_3c00964 crossref_primary_10_1021_acs_jpcc_0c11425 crossref_primary_10_1039_C7TC02553J crossref_primary_10_1103_PhysRevMaterials_3_095002 crossref_primary_10_1021_acs_jctc_6b00397 crossref_primary_10_1016_j_molstruc_2017_11_039 crossref_primary_10_1021_acs_cgd_3c01251 crossref_primary_10_1039_D2CE01548J crossref_primary_10_1039_C9CE00460B crossref_primary_10_1002_mrc_4789 crossref_primary_10_1021_acs_cgd_7b01375 crossref_primary_10_1021_jacs_5b05938 crossref_primary_10_1080_00268976_2022_2138789 crossref_primary_10_1021_acs_cgd_9b00476 crossref_primary_10_1002_anie_202107784 crossref_primary_10_1039_C9CE01190K crossref_primary_10_1038_s41467_022_30692_y crossref_primary_10_1039_D1CE00616A crossref_primary_10_1002_chem_201604797 crossref_primary_10_1071_CH17141 crossref_primary_10_1021_acs_cgd_0c00082 crossref_primary_10_1021_acs_chemmater_8b00679 crossref_primary_10_1186_s13065_016_0152_5 crossref_primary_10_1021_acs_jcim_9b00601 crossref_primary_10_1039_D1CE00343G crossref_primary_10_1021_acs_cgd_5b00295 crossref_primary_10_1021_acs_jpca_2c06566 crossref_primary_10_3390_molecules22122238 crossref_primary_10_1039_D3SC03903J crossref_primary_10_1021_acs_cgd_3c00294 crossref_primary_10_1039_D0CP06605B crossref_primary_10_1557_s43577_022_00434_y crossref_primary_10_1039_D3CP04691E crossref_primary_10_1021_acs_cgd_4c00042 crossref_primary_10_1021_acs_jpca_1c00903 crossref_primary_10_1039_D2CE01402E crossref_primary_10_1103_PhysRevMaterials_4_063601 crossref_primary_10_1107_S2052252518009995 crossref_primary_10_1021_acs_cgd_3c00706 crossref_primary_10_1021_acs_cgd_3c00948 crossref_primary_10_1021_acs_cgd_1c00520 crossref_primary_10_1021_acs_jpclett_6b02795 crossref_primary_10_1016_j_scriptamat_2017_05_030 crossref_primary_10_1021_acs_cgd_0c00676 crossref_primary_10_1021_acs_cgd_8b01098 crossref_primary_10_1039_D1TA05664F crossref_primary_10_1021_acs_jctc_7b01152 crossref_primary_10_1039_C6CC02171A crossref_primary_10_1021_acs_jpca_0c05006 crossref_primary_10_1016_j_mtla_2020_100804 crossref_primary_10_1021_acs_jctc_3c01082 crossref_primary_10_1021_acs_cgd_7b00582 crossref_primary_10_1021_acs_cgd_1c00527 crossref_primary_10_1021_acs_cgd_3c00027 crossref_primary_10_1021_acs_cgd_3c01358 crossref_primary_10_1021_acs_cgd_6b01341 crossref_primary_10_1021_acs_jctc_9b00481 crossref_primary_10_1021_jacs_6b01120 crossref_primary_10_1007_s11095_021_03048_2 crossref_primary_10_1021_acs_inorgchem_1c03762 crossref_primary_10_1039_D0CE00452A crossref_primary_10_1107_S2052520616007447 crossref_primary_10_1021_jacs_3c07105 crossref_primary_10_1021_acs_molpharmaceut_8b00658 crossref_primary_10_1021_acsomega_4c04782 crossref_primary_10_1021_acs_cgd_0c00422 crossref_primary_10_1039_C6CE02527G crossref_primary_10_1016_j_xphs_2019_06_010 crossref_primary_10_1039_D4FD00105B crossref_primary_10_1039_C9CE00700H crossref_primary_10_1002_ange_202406214 crossref_primary_10_1080_07370652_2021_1877851 crossref_primary_10_1021_acs_cgd_7b00210 crossref_primary_10_1021_acs_chemmater_1c04038 crossref_primary_10_3390_molecules28041876 crossref_primary_10_1107_S2052520616005382 crossref_primary_10_1021_acs_jctc_4c00402 crossref_primary_10_1038_s41524_024_01397_1 crossref_primary_10_1021_acs_cgd_9b00547 crossref_primary_10_1039_C6CE00293E crossref_primary_10_1021_acs_cgd_2c00832 crossref_primary_10_1021_jacs_5c00569 crossref_primary_10_1039_D4CP02368D crossref_primary_10_1039_D2CE00479H crossref_primary_10_1039_D0SC03629C crossref_primary_10_1039_C6SC02199A crossref_primary_10_1021_acs_cgd_4c00134 crossref_primary_10_1039_C5CS00227C crossref_primary_10_1039_D1QI00540E crossref_primary_10_1146_annurev_matsci_070218_010143 crossref_primary_10_1107_S205322962001164X crossref_primary_10_1021_acs_jcim_1c01580 crossref_primary_10_1107_S2053273324010921 crossref_primary_10_1002_adfm_201503169 crossref_primary_10_1080_03639045_2022_2061988 crossref_primary_10_3390_cryst12121738 crossref_primary_10_1021_acs_jcim_8b00279 crossref_primary_10_1039_D3SC04317G crossref_primary_10_1107_S205252062400132X crossref_primary_10_1039_D1CE00745A crossref_primary_10_1039_D0RA04799F crossref_primary_10_1039_D2CE00212D crossref_primary_10_1016_j_molstruc_2021_130682 crossref_primary_10_3390_molecules25102386 crossref_primary_10_1016_j_pnmrs_2020_03_001 crossref_primary_10_1039_D2CP00457G crossref_primary_10_1021_jacs_9b03908 crossref_primary_10_1039_C9ME00018F crossref_primary_10_1016_j_molstruc_2018_10_065 crossref_primary_10_1073_pnas_2319127121 crossref_primary_10_1016_j_addr_2017_09_017 crossref_primary_10_1016_j_ejps_2021_105958 crossref_primary_10_1002_ange_201909237 crossref_primary_10_1039_C8CE01985A crossref_primary_10_1016_j_jfluchem_2017_12_002 crossref_primary_10_1039_D0ME00007H crossref_primary_10_1021_acs_jctc_9b00038 crossref_primary_10_1007_s00894_018_3657_0 crossref_primary_10_1039_C9SC02832C crossref_primary_10_1039_D1MH00578B crossref_primary_10_1021_acs_cgd_4c00480 crossref_primary_10_1021_acs_chemmater_0c00744 crossref_primary_10_1107_S2052520624002774 crossref_primary_10_1021_acs_cgd_6b00243 crossref_primary_10_1039_D2FD00115B crossref_primary_10_1021_acs_cgd_2c00930 crossref_primary_10_1039_C7CP08609A crossref_primary_10_3390_pharmaceutics15092299 crossref_primary_10_1021_acs_jctc_0c00232 crossref_primary_10_1002_mrc_4848 crossref_primary_10_1039_C6CP05447A crossref_primary_10_1021_acs_jpca_2c07244 crossref_primary_10_1039_D2CE00942K crossref_primary_10_1021_acs_jctc_7b01073 crossref_primary_10_1039_C9CE00870E crossref_primary_10_1002_anie_202406214 crossref_primary_10_1021_acs_cgd_0c00918 crossref_primary_10_1021_acs_cgd_8b00765 crossref_primary_10_1039_C7CP04186A crossref_primary_10_1039_C8FD00039E crossref_primary_10_3390_cryst10010040 crossref_primary_10_1021_acs_cgd_8b00648 crossref_primary_10_1039_D0SC05765G crossref_primary_10_1039_C7NR08890F crossref_primary_10_1039_D2SC06770F crossref_primary_10_1039_C6CC06799A crossref_primary_10_1107_S2052252517001415 crossref_primary_10_1021_acs_cgd_9b01153 crossref_primary_10_1126_sciadv_aau3338 crossref_primary_10_1016_j_saa_2020_119309 crossref_primary_10_1021_acs_jctc_3c00578 crossref_primary_10_1021_acs_jctc_9b00979 crossref_primary_10_1039_D1CE01058A crossref_primary_10_1039_D2CE01619B crossref_primary_10_1021_acs_chemrev_5b00648 crossref_primary_10_1021_acs_cgd_9b01158 crossref_primary_10_1126_sciadv_1600225 crossref_primary_10_1021_acs_cgd_4c01078 crossref_primary_10_3390_pharmaceutics13020139 crossref_primary_10_1002_advs_202000992 crossref_primary_10_1002_wcms_1294 crossref_primary_10_1016_j_cpc_2020_107170 crossref_primary_10_1021_acs_jpcc_9b04252 crossref_primary_10_1021_acs_cgd_9b00989 crossref_primary_10_1107_S2053229618005715 crossref_primary_10_1016_j_jorganchem_2024_123075 crossref_primary_10_1103_PhysRevLett_117_115702 crossref_primary_10_1021_acs_cgd_5b01673 crossref_primary_10_1021_acs_jctc_6b00679 crossref_primary_10_1098_rsta_2017_0006 crossref_primary_10_1107_S2053229620000959 crossref_primary_10_1021_acs_jpcc_5b11115 crossref_primary_10_1103_PhysRevMaterials_2_043803 crossref_primary_10_1016_j_polymer_2019_122048 crossref_primary_10_1107_S1600576724007489 crossref_primary_10_1039_C7SC00168A crossref_primary_10_3390_cryst9120665 crossref_primary_10_1021_acs_cgd_7b01095 crossref_primary_10_1039_D4CE01257G crossref_primary_10_1021_acs_nanolett_7b01637 crossref_primary_10_1107_S2052252519003014 crossref_primary_10_1021_acs_cgd_6b01088 crossref_primary_10_1021_acs_jctc_7b01179 crossref_primary_10_1021_acs_cgd_9b00518 crossref_primary_10_1021_acs_cgd_6b01762 crossref_primary_10_1021_acs_jpca_3c07129 crossref_primary_10_1039_D4FD00090K crossref_primary_10_1557_s43578_022_00698_9 crossref_primary_10_1002_chem_201904672 crossref_primary_10_1038_s41467_024_53596_5 crossref_primary_10_1107_S2052520624005043 crossref_primary_10_1021_acsenergylett_2c02698 crossref_primary_10_1021_acs_jctc_6b00304 crossref_primary_10_1107_S2052520616007708 crossref_primary_10_1039_D0SC00554A crossref_primary_10_1039_D3CP05805K crossref_primary_10_1021_jacs_3c13030 crossref_primary_10_1007_s11172_021_3236_x crossref_primary_10_1039_C8SC01237G crossref_primary_10_1039_C7SC04665K crossref_primary_10_1039_C8FD00048D crossref_primary_10_1107_S2052520624008679 crossref_primary_10_1021_acs_jctc_0c00119 crossref_primary_10_1002_chem_202402683 |
Cites_doi | 10.1021/jp055439y 10.1039/B202084J 10.1002/jps.1080 10.1021/ja00154a032 10.1002/anie.200462760 10.1002/chem.200800668 10.1021/j100323a006 10.1021/cg049651n 10.1021/ja000588+ 10.1063/1.2937446 10.1002/chem.201204368 10.1016/0301-0104(78)85069-1 10.1039/c1cp20249a 10.1021/cg0498148 10.1126/science.1254419 10.1021/op000023y 10.1107/S2052519213018861 10.1039/c004164e 10.1039/c1cp20927b 10.1107/S0021889802022112 10.1021/op0601060 10.1107/S0108768111042868 10.1063/1.4759079 10.1002/jps.2600840812 10.1016/j.pmatsci.2009.05.002 10.1080/0889311X.2010.517526 10.1080/00268970110089432 10.1021/ic990573g 10.1039/b206088d 10.1021/ja9930622 10.1021/cr400249d 10.1021/jp709764e 10.1002/jps.2600580802 10.1002/jcc.1074 10.1002/anie.200704247 10.1039/b926536h 10.1021/ct100597e 10.1016/j.ijpharm.2007.04.015 10.1063/1.1475333 10.1063/1.4738961 10.1107/S0108768100004584 10.1021/jz101383z 10.1107/S0108768105020021 10.1007/978-3-642-93186-4 10.1107/S002188980802308X 10.1021/jp035125f 10.1039/C4SC01132E 10.1107/S0108768109004066 10.1021/ja0383625 10.1107/S010876810101151X 10.1107/S0108768106019677 10.1023/A:1011052932607 10.1002/jcc.1047 10.1039/C3CS60279F 10.1021/ja981122i |
ContentType | Journal Article |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/C5CE00045A |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 5165 |
ExternalDocumentID | 10_1039_C5CE00045A |
GroupedDBID | 0-7 0R~ 0UZ 1TJ 29F 4.4 5GY 6J9 705 70~ 71~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 E3Z EBS ECGLT EE0 EEHRC EF- EJD FEDTE GGIMP GNO H13 HVGLF HZ~ H~N IDY IDZ J3G J3H J3I L-8 M4U N9A NDZJH O9- P2P R56 R7B RAOCF RCLXC RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SLH VH6 7U5 8FD L7M |
ID | FETCH-LOGICAL-c366t-885e4fce1a519c3c58c0934faa5c7dcc9f7ffc63e376a47a6c73fff1fd0950bf3 |
ISSN | 1466-8033 |
IngestDate | Fri Jul 11 15:55:19 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 02:20:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-885e4fce1a519c3c58c0934faa5c7dcc9f7ffc63e376a47a6c73fff1fd0950bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8396-2771 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2015/ce/c5ce00045a |
PQID | 1709773787 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1709773787 crossref_citationtrail_10_1039_C5CE00045A crossref_primary_10_1039_C5CE00045A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | CrystEngComm |
PublicationYear | 2015 |
References | Neumann (C5CE00045A-(cit14)/*[position()=1]) 2008; 47 Day (C5CE00045A-(cit62)/*[position()=1]) 2009; 65 Califano (C5CE00045A-(cit40)/*[position()=1]) 1981; vol. 26 Thompson (C5CE00045A-(cit48)/*[position()=1]) 2014; 5 Nyman (C5CE00045A-(cit47)/*[position()=1]) 2014 Stone (C5CE00045A-(cit26)/*[position()=1]) 2002; 100 Stone (C5CE00045A-(cit24)/*[position()=1]) 1988; 92 van Eijck (C5CE00045A-(cit50)/*[position()=1]) 2002; 4 Bardwell (C5CE00045A-(cit57)/*[position()=1]) 2011; 67 Bernstein (C5CE00045A-(cit3)/*[position()=1]) 2002 Eddleston (C5CE00045A-(cit46)/*[position()=1]) Cabri (C5CE00045A-(cit6)/*[position()=1]) 2007; 11 Haleblian (C5CE00045A-(cit1)/*[position()=1]) 1969; 58 Gu (C5CE00045A-(cit12)/*[position()=1]) 2001; 90 Yu (C5CE00045A-(cit11)/*[position()=1]) 2000; 122 Beran (C5CE00045A-(cit16)/*[position()=1]) 2010; 1 Lommerse (C5CE00045A-(cit55)/*[position()=1]) 2000; 56 Stone (C5CE00045A-(cit27)/*[position()=1]) Chickos (C5CE00045A-(cit9)/*[position()=1]) 2002; 31 Habgood (C5CE00045A-(cit51)/*[position()=1]) 2011; 13 Cruz-Cabeza (C5CE00045A-(cit22)/*[position()=1]) 2013; 114 Day (C5CE00045A-(cit41)/*[position()=1]) 2003; 107 Cruz-Cabeza (C5CE00045A-(cit52)/*[position()=1]) 2011; 13 van Eijck (C5CE00045A-(cit18)/*[position()=1]) 2001; 22 Guillory (C5CE00045A-(cit13)/*[position()=1]) 1985; 2 Price (C5CE00045A-(cit8)/*[position()=1]) 2014; 43 Karamertzanis (C5CE00045A-(cit49)/*[position()=1]) 2008; 128 van de Streek (C5CE00045A-(cit20)/*[position()=1]) 2006; 62 Cruz-Cabeza (C5CE00045A-(cit63)/*[position()=1]) 2008; 14 Chemburkar (C5CE00045A-(cit4)/*[position()=1]) 2000; 4 Bauer (C5CE00045A-(cit5)/*[position()=1]) 2001; 18 Kazantsev (C5CE00045A-(cit34)/*[position()=1]) 2011; 7 Williams (C5CE00045A-(cit30)/*[position()=1]) 2001; 22 Legendre (C5CE00045A-(cit53)/*[position()=1]) 2007; 343 Karamertzanis (C5CE00045A-(cit66)/*[position()=1]) 2008; 112 Siegrist (C5CE00045A-(cit2)/*[position()=1]) 2007 van de Streek (C5CE00045A-(cit19)/*[position()=1]) 2005; 61 Gavezzotti (C5CE00045A-(cit64)/*[position()=1]) 2000; 122 Thompson (C5CE00045A-(cit28)/*[position()=1]) 2015 Weng (C5CE00045A-(cit21)/*[position()=1]) 2008; 41 Anghel (C5CE00045A-(cit61)/*[position()=1]) 2002; 4 Spek (C5CE00045A-(cit23)/*[position()=1]) 2003; 36 Day (C5CE00045A-(cit7)/*[position()=1]) 2011; 17 Yang (C5CE00045A-(cit68)/*[position()=1]) 2014; 345 Aakeröy (C5CE00045A-(cit56)/*[position()=1]) 1998; 120 Bygrave (C5CE00045A-(cit67)/*[position()=1]) 2012; 137 Otero-de-la-Roza (C5CE00045A-(cit15)/*[position()=1]) 2012; 137 Yu (C5CE00045A-(cit10)/*[position()=1]) 1995; 84 Raiteri (C5CE00045A-(cit65)/*[position()=1]) 2005; 44 Eddleston (C5CE00045A-(cit45)/*[position()=1]) 2013; 19 Price (C5CE00045A-(cit25)/*[position()=1]) 2010; 12 Califano (C5CE00045A-(cit38)/*[position()=1]) 1975; vol. 55 Neto (C5CE00045A-(cit39)/*[position()=1]) 1978; 29 Abraha (C5CE00045A-(cit31)/*[position()=1]) 1999; 38 Li (C5CE00045A-(cit44)/*[position()=1]) 2010; 12 Day (C5CE00045A-(cit32)/*[position()=1]) 2003; 125 Day (C5CE00045A-(cit58)/*[position()=1]) 2004; 4 Kazantsev (C5CE00045A-(cit33)/*[position()=1]) 2010 Fultz (C5CE00045A-(cit36)/*[position()=1]) 2010; 55 Gavezzotti (C5CE00045A-(cit17)/*[position()=1]) 1995; 117 Born (C5CE00045A-(cit37)/*[position()=1]) 1954; vol. 188 Katrusiak (C5CE00045A-(cit54)/*[position()=1]) 2001; 57 Price (C5CE00045A-(cit60)/*[position()=1]) 2013; 69 Day (C5CE00045A-(cit43)/*[position()=1]) 2006; 110 Day (C5CE00045A-(cit59)/*[position()=1]) 2005; 5 |
References_xml | – volume: vol. 55 volume-title: Lattice dynamics and intermolecular forces year: 1975 ident: C5CE00045A-(cit38)/*[position()=1] – volume: 110 start-page: 447 year: 2006 ident: C5CE00045A-(cit43)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp055439y – volume: 4 start-page: 348 year: 2002 ident: C5CE00045A-(cit61)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/B202084J – volume: 90 start-page: 1277 year: 2001 ident: C5CE00045A-(cit12)/*[position()=1] publication-title: J. Pharm. Sci. doi: 10.1002/jps.1080 – volume: 117 start-page: 12299 year: 1995 ident: C5CE00045A-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00154a032 – volume: 44 start-page: 3769 year: 2005 ident: C5CE00045A-(cit65)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200462760 – volume-title: CrystalOptimizer: An Efficient Algorithm for Lattice Energy Minimization of Organic Crystals Using Isolated-Molecule Quantum Mechanical Calculations year: 2010 ident: C5CE00045A-(cit33)/*[position()=1] – volume: 14 start-page: 8830 year: 2008 ident: C5CE00045A-(cit63)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200800668 – volume: 92 start-page: 3325 year: 1988 ident: C5CE00045A-(cit24)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100323a006 – volume-title: Distributed Multipole Analysis of Gaussian wavefunctions ident: C5CE00045A-(cit27)/*[position()=1] – volume: 5 start-page: 1023 year: 2005 ident: C5CE00045A-(cit59)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg049651n – volume: 122 start-page: 10724 year: 2000 ident: C5CE00045A-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja000588+ – volume: vol. 188 volume-title: Dynamical theory of crystal lattices year: 1954 ident: C5CE00045A-(cit37)/*[position()=1] – volume: 128 start-page: 244708 year: 2008 ident: C5CE00045A-(cit49)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1063/1.2937446 – volume: 2 start-page: 28 issue: 9 year: 1985 ident: C5CE00045A-(cit13)/*[position()=1] publication-title: Pharm. Manuf. – volume: 19 start-page: 7874 year: 2013 ident: C5CE00045A-(cit45)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201204368 – volume: 29 start-page: 167 year: 1978 ident: C5CE00045A-(cit39)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(78)85069-1 – volume: 13 start-page: 9590 year: 2011 ident: C5CE00045A-(cit51)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20249a – volume: 4 start-page: 1327 year: 2004 ident: C5CE00045A-(cit58)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg0498148 – volume: 345 start-page: 640 year: 2014 ident: C5CE00045A-(cit68)/*[position()=1] publication-title: Science doi: 10.1126/science.1254419 – volume: 4 start-page: 413 year: 2000 ident: C5CE00045A-(cit4)/*[position()=1] publication-title: Org. Process Res. Dev. doi: 10.1021/op000023y – volume: 69 start-page: 313 year: 2013 ident: C5CE00045A-(cit60)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. doi: 10.1107/S2052519213018861 – volume: 12 start-page: 8478 year: 2010 ident: C5CE00045A-(cit25)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c004164e – volume: 13 start-page: 12808 year: 2011 ident: C5CE00045A-(cit52)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20927b – volume: 36 start-page: 7 year: 2003 ident: C5CE00045A-(cit23)/*[position()=1] publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889802022112 – volume: 11 start-page: 64 year: 2007 ident: C5CE00045A-(cit6)/*[position()=1] publication-title: Org. Process Res. Dev. doi: 10.1021/op0601060 – volume: 67 start-page: 535 year: 2011 ident: C5CE00045A-(cit57)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768111042868 – volume: 137 start-page: 164102 year: 2012 ident: C5CE00045A-(cit67)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1063/1.4759079 – volume: 84 start-page: 966 year: 1995 ident: C5CE00045A-(cit10)/*[position()=1] publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600840812 – volume: 55 start-page: 247 year: 2010 ident: C5CE00045A-(cit36)/*[position()=1] publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2009.05.002 – volume: 17 start-page: 3 year: 2011 ident: C5CE00045A-(cit7)/*[position()=1] publication-title: Crystallogr. Rev. doi: 10.1080/0889311X.2010.517526 – volume: 100 start-page: 221 year: 2002 ident: C5CE00045A-(cit26)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268970110089432 – volume: 38 start-page: 4224 year: 1999 ident: C5CE00045A-(cit31)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic990573g – volume: 4 start-page: 4789 year: 2002 ident: C5CE00045A-(cit50)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b206088d – volume: 122 start-page: 585 year: 2000 ident: C5CE00045A-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9930622 – start-page: 19 year: 2007 ident: C5CE00045A-(cit2)/*[position()=1] publication-title: Adv. Mater. – volume: 114 start-page: 2170 year: 2013 ident: C5CE00045A-(cit22)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400249d – volume: 112 start-page: 4298 year: 2008 ident: C5CE00045A-(cit66)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp709764e – volume: 58 start-page: 911 year: 1969 ident: C5CE00045A-(cit1)/*[position()=1] publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600580802 – volume: 22 start-page: 1154 year: 2001 ident: C5CE00045A-(cit30)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.1074 – volume: 47 start-page: 2427 year: 2008 ident: C5CE00045A-(cit14)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200704247 – volume: 12 start-page: 5329 year: 2010 ident: C5CE00045A-(cit44)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b926536h – volume: 7 start-page: 1998 year: 2011 ident: C5CE00045A-(cit34)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100597e – volume: 343 start-page: 41 year: 2007 ident: C5CE00045A-(cit53)/*[position()=1] publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2007.04.015 – volume: 31 start-page: 537 year: 2002 ident: C5CE00045A-(cit9)/*[position()=1] publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.1475333 – volume: 137 start-page: 054103 year: 2012 ident: C5CE00045A-(cit15)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4738961 – volume: 56 start-page: 697 year: 2000 ident: C5CE00045A-(cit55)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768100004584 – volume: 1 start-page: 3480 year: 2010 ident: C5CE00045A-(cit16)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101383z – volume: 61 start-page: 504 year: 2005 ident: C5CE00045A-(cit19)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768105020021 – volume: vol. 26 volume-title: Lattice dynamics of molecular crystals year: 1981 ident: C5CE00045A-(cit40)/*[position()=1] doi: 10.1007/978-3-642-93186-4 – volume: 41 start-page: 955 year: 2008 ident: C5CE00045A-(cit21)/*[position()=1] publication-title: J. Appl. Crystallogr. doi: 10.1107/S002188980802308X – volume: 107 start-page: 10919 year: 2003 ident: C5CE00045A-(cit41)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp035125f – volume: 5 start-page: 3173 year: 2014 ident: C5CE00045A-(cit48)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC01132E – ident: C5CE00045A-(cit46)/*[position()=1] – volume-title: In Silico Predictions of Porous Molecular Crystals and Clathrates year: 2014 ident: C5CE00045A-(cit47)/*[position()=1] – volume: 65 start-page: 107 year: 2009 ident: C5CE00045A-(cit62)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768109004066 – volume-title: Polymorphism in Molecular Crystals year: 2002 ident: C5CE00045A-(cit3)/*[position()=1] – volume: 125 start-page: 16434 year: 2003 ident: C5CE00045A-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0383625 – volume: 57 start-page: 697 year: 2001 ident: C5CE00045A-(cit54)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S010876810101151X – year: 2015 ident: C5CE00045A-(cit28)/*[position()=1] – volume: 62 start-page: 567 year: 2006 ident: C5CE00045A-(cit20)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768106019677 – volume: 18 start-page: 859 year: 2001 ident: C5CE00045A-(cit5)/*[position()=1] publication-title: Pharm. Res. doi: 10.1023/A:1011052932607 – volume: 22 start-page: 816 year: 2001 ident: C5CE00045A-(cit18)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.1047 – volume: 43 start-page: 2098 year: 2014 ident: C5CE00045A-(cit8)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60279F – volume: 120 start-page: 8986 year: 1998 ident: C5CE00045A-(cit56)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja981122i |
SSID | ssj0014110 |
Score | 2.5800905 |
Snippet | A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 5154 |
SubjectTerms | Crystal structure Density functional theory Energy distribution Energy use Entropy Free energy Lattices State of the art |
Title | Static and lattice vibrational energy differences between polymorphs |
URI | https://www.proquest.com/docview/1709773787 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUoXOgBUdqqUKiM2ktVhSY4dpLjagmCaksvWWlvkTOxe1myiM1W2n59x7GTNSoH4GJFluWDXzTzZux5Q8gXjX67YpUIlEwxQMmUClLQaYDODdJMcB12RWE_b8TVNP4x47NNn8-uuqStzuDvo3UlL0EV5xBXUyX7DGSHTXECvxFfHBFhHJ-EsWGKTm91LlvzjO3bHxP-uvyesnV9fQ8U8_ZqeJa1mGPQj2e89Nnp-H69bPPmt6kaGbLEa5cjNXl2rwu9q3CR6la5jKrLHUTcyx0oa-9iYfSIrRbFYBATD3hXum3NG5Kf2HOVPLJ9Hv4zwyEzKqbAQXWc0XM2_QX7za_ycjqZlEU-K16RnXMk-WildkZ5cT0ZboFi5Ca9pCzLvm_2e0giHvrQjhgU-2TPMXo6svC8IVuqOSCvPZ3Ht-TCAkURKOqAoh5Q1AJFPaCoA4pugHpHppd5Mb4KXPuKAJgQbZCmXMUaVCSRJQMDnkKYsVhLySGpATKdaA2CKbTxMk6kgIRprSNdI-0NK83ek-1m0agPhEaSIbGvTe8CEfOwrpTUmQRhxBbP6wQOydf-PEpw2u6mxci87N4YsKwc83Hend3okHwe1t5ZRZNHV532x1qiwTG3SLJRi9WyjJIQYwaGhv7oCWs-kt3Nj3dMttv7lTpBGtdWnxza_wC01k6i |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+and+lattice+vibrational+energy+differences+between+polymorphs&rft.jtitle=CrystEngComm&rft.au=Nyman%2C+Jonas&rft.au=Day%2C+Graeme+M&rft.date=2015-01-01&rft.eissn=1466-8033&rft.volume=17&rft.issue=28&rft.spage=5154&rft.epage=5165&rft_id=info:doi/10.1039%2Fc5ce00045a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |