Sequential operators in computability logic
Computability logic (CL) is a semantical platform and research program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth which it has more traditionally been. Formulas in CL stand for (interactive) computational problems, understood as games between...
Saved in:
Published in | Information and computation Vol. 206; no. 12; pp. 1443 - 1475 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.12.2008
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0890-5401 1090-2651 |
DOI | 10.1016/j.ic.2008.10.001 |
Cover
Loading…
Abstract | Computability logic (CL) is a semantical platform and research program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth which it has more traditionally been. Formulas in CL stand for (interactive) computational problems, understood as games between a machine and its environment; logical operators represent operations on such entities; and “truth” is understood as existence of an effective solution, i.e., of an algorithmic winning strategy.
The formalism of CL is open-ended, and may undergo series of extensions as the study of the subject advances. The main groups of operators on which CL has been focused so far are the
parallel,
choice,
branching, and
blind operators, with the logical behaviors of the first three groups resembling those of the multiplicatives, additives and exponentials of linear logic, respectively. The present paper introduces a new important group of operators, called
sequential. The latter come in the form of sequential conjunction and disjunction, sequential quantifiers, and sequential recurrences (“exponentials”). As the name may suggest, the algorithmic intuitions associated with this group are those of sequential computations, as opposed to the intuitions of parallel computations associated with the parallel group of operations. Specifically, while playing a parallel combination of games means playing all components of the combination simultaneously, playing a sequential combination means playing the components in a sequential fashion, one after one.
The main technical result of the present paper is a sound and complete axiomatization of the propositional fragment of computability logic whose vocabulary, together with negation, includes all three — parallel, choice and sequential — sorts of conjunction and disjunction. An extension of this result to the first-order level is also outlined. |
---|---|
AbstractList | Computability logic (CL) is a semantical platform and research program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth which it has more traditionally been. Formulas in CL stand for (interactive) computational problems, understood as games between a machine and its environment; logical operators represent operations on such entities; and “truth” is understood as existence of an effective solution, i.e., of an algorithmic winning strategy.
The formalism of CL is open-ended, and may undergo series of extensions as the study of the subject advances. The main groups of operators on which CL has been focused so far are the
parallel,
choice,
branching, and
blind operators, with the logical behaviors of the first three groups resembling those of the multiplicatives, additives and exponentials of linear logic, respectively. The present paper introduces a new important group of operators, called
sequential. The latter come in the form of sequential conjunction and disjunction, sequential quantifiers, and sequential recurrences (“exponentials”). As the name may suggest, the algorithmic intuitions associated with this group are those of sequential computations, as opposed to the intuitions of parallel computations associated with the parallel group of operations. Specifically, while playing a parallel combination of games means playing all components of the combination simultaneously, playing a sequential combination means playing the components in a sequential fashion, one after one.
The main technical result of the present paper is a sound and complete axiomatization of the propositional fragment of computability logic whose vocabulary, together with negation, includes all three — parallel, choice and sequential — sorts of conjunction and disjunction. An extension of this result to the first-order level is also outlined. |
Author | Japaridze, Giorgi |
Author_xml | – sequence: 1 givenname: Giorgi surname: Japaridze fullname: Japaridze, Giorgi email: giorgi.japaridze@villanova.edu organization: Department of Computing Sciences, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21031210$$DView record in Pascal Francis |
BookMark | eNp9kM1Lw0AQxRepYK3ePebiSRJnN8k29SbFLyh4UM_LZLKRKWlSd7dC_3s3VDwIepmPx_sNvDkVk37orRAXEjIJUl-vM6ZMAVRxzQDkkZhKWECqdCknYgpVnMsC5Ik49X4dDbIs9FRcvdiPne0DY5cMW-swDM4n3Cc0bLa7gDV3HPZJN7wznYnjFjtvz7_7TLzd370uH9PV88PT8naVUq51SOet1aooCVRjCctaVqVSSLWVCnUDQLVqiiZvdNRRK8S61bZtq7mkCFaLfCYuD3e36Am71mFP7M3W8Qbd3igJuRzLTMDBR27w3tn2xyLBjE8xa8NkxqeMSswcEf0LIQ4YeOiDQ-7-A28OoI3BP9k644ltT7ZhZymYZuC_4S8Y0Xyn |
CODEN | INFCEC |
CitedBy_id | crossref_primary_10_1587_transfun_E97_A_1385 crossref_primary_10_1587_transinf_2015EDL8141 crossref_primary_10_1007_s00153_012_0313_8 crossref_primary_10_1007_s00153_012_0314_7 crossref_primary_10_1016_j_jcss_2009_10_008 crossref_primary_10_2168_LMCS_7_2_1_2011 crossref_primary_10_1016_j_tcs_2010_11_037 crossref_primary_10_1007_s10849_024_09423_7 crossref_primary_10_1587_transinf_E96_D_2036 crossref_primary_10_1016_j_apal_2011_11_009 crossref_primary_10_1016_j_aml_2011_11_023 crossref_primary_10_1093_logcom_exr009 crossref_primary_10_1016_j_apal_2014_01_003 crossref_primary_10_3745_KIPSTA_2012_19A_1_069 crossref_primary_10_1080_11663081_2021_2010954 crossref_primary_10_1587_transinf_2013EDL8047 crossref_primary_10_1016_j_ic_2011_07_002 crossref_primary_10_1007_s11225_009_9164_7 crossref_primary_10_1587_transinf_2022FCL0001 crossref_primary_10_2178_jsl_1268917495 |
Cites_doi | 10.2307/2275407 10.1016/j.apal.2007.05.001 10.1016/0168-0072(92)90073-9 10.2178/jsl/1174668394 10.4064/fm-77-2-151-166 10.1145/1131313.1131318 10.1007/s11225-009-9164-7 10.1016/S0168-0072(01)00123-3 10.1016/j.tcs.2006.03.014 10.1093/logcom/exl005 10.1145/1131313.1131319 10.1016/S0168-0072(03)00023-X 10.1093/logcom/exn019 10.1007/BF01186549 10.1016/j.tcs.2007.01.004 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Inc. 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 Elsevier Inc. – notice: 2009 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW |
DOI | 10.1016/j.ic.2008.10.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Mathematics Applied Sciences |
EISSN | 1090-2651 |
EndPage | 1475 |
ExternalDocumentID | 21031210 10_1016_j_ic_2008_10_001 S0890540108001235 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 E3Z EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 LX9 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ZU3 ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c366t-7fe6245c02deca5b18522acbe12a6d00cb2d4d3d6852a62aabf6eff871ce62893 |
IEDL.DBID | AIKHN |
ISSN | 0890-5401 |
IngestDate | Mon Jul 21 09:15:33 EDT 2025 Tue Jul 01 00:50:56 EDT 2025 Thu Apr 24 22:55:59 EDT 2025 Fri Feb 23 02:25:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Linear logic Interactive computation Computability logic Game semantics Constructive logics Branching Recurrence Logical operator Computer theory Negation Recurrence relation Algorithmics Research Computability Disjunction Sequential computation Sequential method First order Environment Parallel computation Quantifier Behavior |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-7fe6245c02deca5b18522acbe12a6d00cb2d4d3d6852a62aabf6eff871ce62893 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0890540108001235 |
PageCount | 33 |
ParticipantIDs | pascalfrancis_primary_21031210 crossref_primary_10_1016_j_ic_2008_10_001 crossref_citationtrail_10_1016_j_ic_2008_10_001 elsevier_sciencedirect_doi_10_1016_j_ic_2008_10_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-01 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Information and computation |
PublicationYear | 2008 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Blass (bib2) 1972; 77 Japaridze (bib8) 2006; 357 Japaridze (bib10) 2006 Japaridze (bib14) 2007; 147 Japaridze (bib16) 2009 Japaridze (bib6) 2006; 7 G. Japaridze, Many concepts and two logics of algorithmic reduction, Studia Logica, in press. Japaridze (bib4) 2002; 117 Kolmogorov (bib18) 1932; 35 Abramsky, Jagadeesan (bib1) 1994; 59 Japaridze (bib5) 2003; 123 Japaridze (bib7) 2006; 7 Blass (bib3) 1992; 56 Japaridze (bib11) 2007; 72 Japaridze (bib9) 2006; 16 Japaridze (bib15) 2008; 18 Japaridze (bib12) 2007; 379 Japaridze (bib13) 2007; 18 Japaridze (10.1016/j.ic.2008.10.001_bib14) 2007; 147 Japaridze (10.1016/j.ic.2008.10.001_bib15) 2008; 18 10.1016/j.ic.2008.10.001_bib17 Blass (10.1016/j.ic.2008.10.001_bib2) 1972; 77 Japaridze (10.1016/j.ic.2008.10.001_bib13) 2007; 18 Japaridze (10.1016/j.ic.2008.10.001_bib8) 2006; 357 Japaridze (10.1016/j.ic.2008.10.001_bib10) 2006 Japaridze (10.1016/j.ic.2008.10.001_bib7) 2006; 7 Japaridze (10.1016/j.ic.2008.10.001_bib9) 2006; 16 Japaridze (10.1016/j.ic.2008.10.001_bib16) 2009 Japaridze (10.1016/j.ic.2008.10.001_bib12) 2007; 379 Japaridze (10.1016/j.ic.2008.10.001_bib11) 2007; 72 Kolmogorov (10.1016/j.ic.2008.10.001_bib18) 1932; 35 Abramsky (10.1016/j.ic.2008.10.001_bib1) 1994; 59 Blass (10.1016/j.ic.2008.10.001_bib3) 1992; 56 Japaridze (10.1016/j.ic.2008.10.001_bib6) 2006; 7 Japaridze (10.1016/j.ic.2008.10.001_bib4) 2002; 117 Japaridze (10.1016/j.ic.2008.10.001_bib5) 2003; 123 |
References_xml | – volume: 7 start-page: 331 year: 2006 end-page: 362 ident: bib7 article-title: Propositional computability logic II publication-title: ACM Transactions on Computational Logic – volume: 77 start-page: 151 year: 1972 end-page: 166 ident: bib2 article-title: Degrees of indeterminacy of games publication-title: Fundamenta Mathematicae – volume: 35 start-page: 58 year: 1932 end-page: 65 ident: bib18 article-title: Zur Deutung der intuitionistischen Logik publication-title: Mathematische Zeitschrift – start-page: 249 year: 2009 end-page: 350 ident: bib16 article-title: In the beginning was game semantics publication-title: Games: Unifying Logic, Language and Philosophy – volume: 16 start-page: 489 year: 2006 end-page: 532 ident: bib9 article-title: Introduction to cirquent calculus and abstract resource semantics publication-title: Journal of Logic and Computation – volume: 147 start-page: 187 year: 2007 end-page: 227 ident: bib14 article-title: The intuitionistic fragment of computability logic at the propositional level publication-title: Annals of Pure and Applied Logic – start-page: 183 year: 2006 end-page: 223 ident: bib10 article-title: Computability logic: a formal theory of interaction publication-title: Interactive Computation: The New Paradigm – volume: 123 start-page: 1 year: 2003 end-page: 99 ident: bib5 article-title: Introduction to computability logic publication-title: Annals of Pure and Applied Logic – volume: 59 start-page: 543 year: 1994 end-page: 574 ident: bib1 article-title: Games and full completeness for multiplicative linear logic publication-title: Journal of Symbolic Logic – volume: 56 start-page: 183 year: 1992 end-page: 220 ident: bib3 article-title: A game semantics for linear logic publication-title: Annals of Pure and Applied Logic – volume: 18 start-page: 983 year: 2008 end-page: 1028 ident: bib15 article-title: Cirquent calculus deepened publication-title: Journal of Logic and Computation – volume: 357 start-page: 100 year: 2006 end-page: 135 ident: bib8 article-title: From truth to computability I publication-title: Theoretical Computer Science – volume: 379 start-page: 20 year: 2007 end-page: 52 ident: bib12 article-title: From truth to computability II publication-title: Theoretical Computer Science – volume: 7 start-page: 302 year: 2006 end-page: 330 ident: bib6 article-title: Propositional computability logic I publication-title: ACM Transactions on Computational Logic – reference: G. Japaridze, Many concepts and two logics of algorithmic reduction, Studia Logica, in press. – volume: 18 start-page: 77 year: 2007 end-page: 113 ident: bib13 article-title: Intuitionistic computability logic publication-title: Acta Cybernetica – volume: 117 start-page: 263 year: 2002 end-page: 295 ident: bib4 article-title: The logic of tasks publication-title: Annals of Pure and Applied Logic – volume: 72 start-page: 243 year: 2007 end-page: 276 ident: bib11 article-title: The logic of interactive Turing reduction publication-title: Journal of Symbolic Logic – volume: 59 start-page: 543 issue: 2 year: 1994 ident: 10.1016/j.ic.2008.10.001_bib1 article-title: Games and full completeness for multiplicative linear logic publication-title: Journal of Symbolic Logic doi: 10.2307/2275407 – volume: 147 start-page: 187 issue: 3 year: 2007 ident: 10.1016/j.ic.2008.10.001_bib14 article-title: The intuitionistic fragment of computability logic at the propositional level publication-title: Annals of Pure and Applied Logic doi: 10.1016/j.apal.2007.05.001 – volume: 56 start-page: 183 year: 1992 ident: 10.1016/j.ic.2008.10.001_bib3 article-title: A game semantics for linear logic publication-title: Annals of Pure and Applied Logic doi: 10.1016/0168-0072(92)90073-9 – volume: 72 start-page: 243 issue: 1 year: 2007 ident: 10.1016/j.ic.2008.10.001_bib11 article-title: The logic of interactive Turing reduction publication-title: Journal of Symbolic Logic doi: 10.2178/jsl/1174668394 – start-page: 249 year: 2009 ident: 10.1016/j.ic.2008.10.001_bib16 article-title: In the beginning was game semantics – volume: 77 start-page: 151 year: 1972 ident: 10.1016/j.ic.2008.10.001_bib2 article-title: Degrees of indeterminacy of games publication-title: Fundamenta Mathematicae doi: 10.4064/fm-77-2-151-166 – volume: 7 start-page: 302 issue: 2 year: 2006 ident: 10.1016/j.ic.2008.10.001_bib6 article-title: Propositional computability logic I publication-title: ACM Transactions on Computational Logic doi: 10.1145/1131313.1131318 – ident: 10.1016/j.ic.2008.10.001_bib17 doi: 10.1007/s11225-009-9164-7 – volume: 117 start-page: 263 year: 2002 ident: 10.1016/j.ic.2008.10.001_bib4 article-title: The logic of tasks publication-title: Annals of Pure and Applied Logic doi: 10.1016/S0168-0072(01)00123-3 – volume: 357 start-page: 100 year: 2006 ident: 10.1016/j.ic.2008.10.001_bib8 article-title: From truth to computability I publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2006.03.014 – volume: 16 start-page: 489 year: 2006 ident: 10.1016/j.ic.2008.10.001_bib9 article-title: Introduction to cirquent calculus and abstract resource semantics publication-title: Journal of Logic and Computation doi: 10.1093/logcom/exl005 – volume: 7 start-page: 331 issue: 2 year: 2006 ident: 10.1016/j.ic.2008.10.001_bib7 article-title: Propositional computability logic II publication-title: ACM Transactions on Computational Logic doi: 10.1145/1131313.1131319 – volume: 123 start-page: 1 year: 2003 ident: 10.1016/j.ic.2008.10.001_bib5 article-title: Introduction to computability logic publication-title: Annals of Pure and Applied Logic doi: 10.1016/S0168-0072(03)00023-X – volume: 18 start-page: 983 issue: 6 year: 2008 ident: 10.1016/j.ic.2008.10.001_bib15 article-title: Cirquent calculus deepened publication-title: Journal of Logic and Computation doi: 10.1093/logcom/exn019 – start-page: 183 year: 2006 ident: 10.1016/j.ic.2008.10.001_bib10 article-title: Computability logic: a formal theory of interaction – volume: 35 start-page: 58 year: 1932 ident: 10.1016/j.ic.2008.10.001_bib18 article-title: Zur Deutung der intuitionistischen Logik publication-title: Mathematische Zeitschrift doi: 10.1007/BF01186549 – volume: 379 start-page: 20 year: 2007 ident: 10.1016/j.ic.2008.10.001_bib12 article-title: From truth to computability II publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2007.01.004 – volume: 18 start-page: 77 issue: 1 year: 2007 ident: 10.1016/j.ic.2008.10.001_bib13 article-title: Intuitionistic computability logic publication-title: Acta Cybernetica |
SSID | ssj0011546 |
Score | 2.0130074 |
Snippet | Computability logic (CL) is a semantical platform and research program for redeveloping logic as a formal theory of computability, as opposed to the formal... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 1443 |
SubjectTerms | Applied sciences Computability logic Computer science; control theory; systems Constructive logics Exact sciences and technology Game semantics General logic Interactive computation Linear logic Logic and foundations Mathematical logic, foundations, set theory Mathematics Miscellaneous Model theory Recursion theory Sciences and techniques of general use Theoretical computing |
Title | Sequential operators in computability logic |
URI | https://dx.doi.org/10.1016/j.ic.2008.10.001 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sYAQjwKiPKoMLAwhseOYdiwVVQuiC1TqFvkVKahqK1oGFn4758Sp2oEOLJFi-RLrbH8-6767A7jlhsWh1MTnCm86TBrpC8WIL7RRlCnr67SBwq8jPhiz50k8qUCvjIWxtEqH_QWm52jtWgKnzWCRZcFb2O5Ye8OS5PKIzyrUadThuLTr3eHLYLR2JhAXr4P9LQ-AOG9lQfPKVEGozCle5K_T6WAhlqiztCh2sXEC9Y_h0JmOXrcY3QlUzKwBR2VZBs_t0gbsb-QYPAVEA0uWxo089eYLk3vVl14281QuWKTp_vZyCDyDcf_pvTfwXYUEX0Wcr_yH1HDKYhVSVK2IpY2EpkJJQ6jgOgyVpJrpSHNsF5wKIVNu0hQvSQoF0VQ5h9psPjMX4LXTDjdGoTkk2oykVFJqNFFtwbToIBI0ISg1kyiXPtxWsZgmJU_sI8lUUdWS2JSjpAl3a4lFkTpjR9-oVHayNf0JIvsOqdbWvKx_Q23xCnxc_uuzV7CXs0Jy0so11FafX-YGTY-VbEH1_oe03ALDt-Hk8ReUi9hV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgBCPAqI8igZWBhCYtcx6YgqqgJtF1qpW2Q7jhRUpREtAwu_Hb9StQMMLBksXxKdfZ_Puu_uAG6pJFHIU-RToW46hEvuM0GQz1IpMBE61qkThYcj2p-Ql2k0rUG3yoXRtEqH_RbTDVq7kcBpMyjzPHgL4472NzRJzmR8bsE2UearrfP-e8Xz0OVmTMBSzdYsAORilZbklQtLpzQEL_Tb2bRfsoXSWGZbXaydP70jOHCOo_do_-0YarJowGHVlMFzNtqAvbUKgyegsEBTpZUZz7x5KU1MfeHlhSeMoC3S_eUZADyFSe9p3O37rj-CL9qULv2HTFJMIhFipVgWcZ0HjZngEmFG0zAUHKckbadUjTOKGeMZlVmmrkhCCSpH5QzqxbyQ5-DFWYdKKZQzxGKCMswxlikSMSMp6ygcaEJQaSYRrni47mExSyqW2HuSC9vTEumCo6gJdyuJ0hbO-GNuu1J2srH4icL1P6RaG-uy-gzWrSvU4-Jfr72Bnf54OEgGz6PXS9g1_BBDX7mC-vLjU14rJ2TJW2aT_QBAqtgV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+operators+in+computability+logic&rft.jtitle=Information+and+computation&rft.au=Japaridze%2C+Giorgi&rft.date=2008-12-01&rft.issn=0890-5401&rft.volume=206&rft.issue=12&rft.spage=1443&rft.epage=1475&rft_id=info:doi/10.1016%2Fj.ic.2008.10.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ic_2008_10_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-5401&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-5401&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-5401&client=summon |