Sequential operators in computability logic

Computability logic (CL) is a semantical platform and research program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth which it has more traditionally been. Formulas in CL stand for (interactive) computational problems, understood as games between...

Full description

Saved in:
Bibliographic Details
Published inInformation and computation Vol. 206; no. 12; pp. 1443 - 1475
Main Author Japaridze, Giorgi
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.12.2008
Elsevier
Subjects
Online AccessGet full text
ISSN0890-5401
1090-2651
DOI10.1016/j.ic.2008.10.001

Cover

Loading…
Abstract Computability logic (CL) is a semantical platform and research program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth which it has more traditionally been. Formulas in CL stand for (interactive) computational problems, understood as games between a machine and its environment; logical operators represent operations on such entities; and “truth” is understood as existence of an effective solution, i.e., of an algorithmic winning strategy. The formalism of CL is open-ended, and may undergo series of extensions as the study of the subject advances. The main groups of operators on which CL has been focused so far are the parallel, choice, branching, and blind operators, with the logical behaviors of the first three groups resembling those of the multiplicatives, additives and exponentials of linear logic, respectively. The present paper introduces a new important group of operators, called sequential. The latter come in the form of sequential conjunction and disjunction, sequential quantifiers, and sequential recurrences (“exponentials”). As the name may suggest, the algorithmic intuitions associated with this group are those of sequential computations, as opposed to the intuitions of parallel computations associated with the parallel group of operations. Specifically, while playing a parallel combination of games means playing all components of the combination simultaneously, playing a sequential combination means playing the components in a sequential fashion, one after one. The main technical result of the present paper is a sound and complete axiomatization of the propositional fragment of computability logic whose vocabulary, together with negation, includes all three — parallel, choice and sequential — sorts of conjunction and disjunction. An extension of this result to the first-order level is also outlined.
AbstractList Computability logic (CL) is a semantical platform and research program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth which it has more traditionally been. Formulas in CL stand for (interactive) computational problems, understood as games between a machine and its environment; logical operators represent operations on such entities; and “truth” is understood as existence of an effective solution, i.e., of an algorithmic winning strategy. The formalism of CL is open-ended, and may undergo series of extensions as the study of the subject advances. The main groups of operators on which CL has been focused so far are the parallel, choice, branching, and blind operators, with the logical behaviors of the first three groups resembling those of the multiplicatives, additives and exponentials of linear logic, respectively. The present paper introduces a new important group of operators, called sequential. The latter come in the form of sequential conjunction and disjunction, sequential quantifiers, and sequential recurrences (“exponentials”). As the name may suggest, the algorithmic intuitions associated with this group are those of sequential computations, as opposed to the intuitions of parallel computations associated with the parallel group of operations. Specifically, while playing a parallel combination of games means playing all components of the combination simultaneously, playing a sequential combination means playing the components in a sequential fashion, one after one. The main technical result of the present paper is a sound and complete axiomatization of the propositional fragment of computability logic whose vocabulary, together with negation, includes all three — parallel, choice and sequential — sorts of conjunction and disjunction. An extension of this result to the first-order level is also outlined.
Author Japaridze, Giorgi
Author_xml – sequence: 1
  givenname: Giorgi
  surname: Japaridze
  fullname: Japaridze, Giorgi
  email: giorgi.japaridze@villanova.edu
  organization: Department of Computing Sciences, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21031210$$DView record in Pascal Francis
BookMark eNp9kM1Lw0AQxRepYK3ePebiSRJnN8k29SbFLyh4UM_LZLKRKWlSd7dC_3s3VDwIepmPx_sNvDkVk37orRAXEjIJUl-vM6ZMAVRxzQDkkZhKWECqdCknYgpVnMsC5Ik49X4dDbIs9FRcvdiPne0DY5cMW-swDM4n3Cc0bLa7gDV3HPZJN7wznYnjFjtvz7_7TLzd370uH9PV88PT8naVUq51SOet1aooCVRjCctaVqVSSLWVCnUDQLVqiiZvdNRRK8S61bZtq7mkCFaLfCYuD3e36Am71mFP7M3W8Qbd3igJuRzLTMDBR27w3tn2xyLBjE8xa8NkxqeMSswcEf0LIQ4YeOiDQ-7-A28OoI3BP9k644ltT7ZhZymYZuC_4S8Y0Xyn
CODEN INFCEC
CitedBy_id crossref_primary_10_1587_transfun_E97_A_1385
crossref_primary_10_1587_transinf_2015EDL8141
crossref_primary_10_1007_s00153_012_0313_8
crossref_primary_10_1007_s00153_012_0314_7
crossref_primary_10_1016_j_jcss_2009_10_008
crossref_primary_10_2168_LMCS_7_2_1_2011
crossref_primary_10_1016_j_tcs_2010_11_037
crossref_primary_10_1007_s10849_024_09423_7
crossref_primary_10_1587_transinf_E96_D_2036
crossref_primary_10_1016_j_apal_2011_11_009
crossref_primary_10_1016_j_aml_2011_11_023
crossref_primary_10_1093_logcom_exr009
crossref_primary_10_1016_j_apal_2014_01_003
crossref_primary_10_3745_KIPSTA_2012_19A_1_069
crossref_primary_10_1080_11663081_2021_2010954
crossref_primary_10_1587_transinf_2013EDL8047
crossref_primary_10_1016_j_ic_2011_07_002
crossref_primary_10_1007_s11225_009_9164_7
crossref_primary_10_1587_transinf_2022FCL0001
crossref_primary_10_2178_jsl_1268917495
Cites_doi 10.2307/2275407
10.1016/j.apal.2007.05.001
10.1016/0168-0072(92)90073-9
10.2178/jsl/1174668394
10.4064/fm-77-2-151-166
10.1145/1131313.1131318
10.1007/s11225-009-9164-7
10.1016/S0168-0072(01)00123-3
10.1016/j.tcs.2006.03.014
10.1093/logcom/exl005
10.1145/1131313.1131319
10.1016/S0168-0072(03)00023-X
10.1093/logcom/exn019
10.1007/BF01186549
10.1016/j.tcs.2007.01.004
ContentType Journal Article
Copyright 2008 Elsevier Inc.
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: 2009 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.ic.2008.10.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
Applied Sciences
EISSN 1090-2651
EndPage 1475
ExternalDocumentID 21031210
10_1016_j_ic_2008_10_001
S0890540108001235
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E3Z
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
LX9
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
ZU3
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c366t-7fe6245c02deca5b18522acbe12a6d00cb2d4d3d6852a62aabf6eff871ce62893
IEDL.DBID AIKHN
ISSN 0890-5401
IngestDate Mon Jul 21 09:15:33 EDT 2025
Tue Jul 01 00:50:56 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
Fri Feb 23 02:25:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Linear logic
Interactive computation
Computability logic
Game semantics
Constructive logics
Branching
Recurrence
Logical operator
Computer theory
Negation
Recurrence relation
Algorithmics
Research
Computability
Disjunction
Sequential computation
Sequential method
First order
Environment
Parallel computation
Quantifier
Behavior
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-7fe6245c02deca5b18522acbe12a6d00cb2d4d3d6852a62aabf6eff871ce62893
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0890540108001235
PageCount 33
ParticipantIDs pascalfrancis_primary_21031210
crossref_primary_10_1016_j_ic_2008_10_001
crossref_citationtrail_10_1016_j_ic_2008_10_001
elsevier_sciencedirect_doi_10_1016_j_ic_2008_10_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Information and computation
PublicationYear 2008
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Blass (bib2) 1972; 77
Japaridze (bib8) 2006; 357
Japaridze (bib10) 2006
Japaridze (bib14) 2007; 147
Japaridze (bib16) 2009
Japaridze (bib6) 2006; 7
G. Japaridze, Many concepts and two logics of algorithmic reduction, Studia Logica, in press.
Japaridze (bib4) 2002; 117
Kolmogorov (bib18) 1932; 35
Abramsky, Jagadeesan (bib1) 1994; 59
Japaridze (bib5) 2003; 123
Japaridze (bib7) 2006; 7
Blass (bib3) 1992; 56
Japaridze (bib11) 2007; 72
Japaridze (bib9) 2006; 16
Japaridze (bib15) 2008; 18
Japaridze (bib12) 2007; 379
Japaridze (bib13) 2007; 18
Japaridze (10.1016/j.ic.2008.10.001_bib14) 2007; 147
Japaridze (10.1016/j.ic.2008.10.001_bib15) 2008; 18
10.1016/j.ic.2008.10.001_bib17
Blass (10.1016/j.ic.2008.10.001_bib2) 1972; 77
Japaridze (10.1016/j.ic.2008.10.001_bib13) 2007; 18
Japaridze (10.1016/j.ic.2008.10.001_bib8) 2006; 357
Japaridze (10.1016/j.ic.2008.10.001_bib10) 2006
Japaridze (10.1016/j.ic.2008.10.001_bib7) 2006; 7
Japaridze (10.1016/j.ic.2008.10.001_bib9) 2006; 16
Japaridze (10.1016/j.ic.2008.10.001_bib16) 2009
Japaridze (10.1016/j.ic.2008.10.001_bib12) 2007; 379
Japaridze (10.1016/j.ic.2008.10.001_bib11) 2007; 72
Kolmogorov (10.1016/j.ic.2008.10.001_bib18) 1932; 35
Abramsky (10.1016/j.ic.2008.10.001_bib1) 1994; 59
Blass (10.1016/j.ic.2008.10.001_bib3) 1992; 56
Japaridze (10.1016/j.ic.2008.10.001_bib6) 2006; 7
Japaridze (10.1016/j.ic.2008.10.001_bib4) 2002; 117
Japaridze (10.1016/j.ic.2008.10.001_bib5) 2003; 123
References_xml – volume: 7
  start-page: 331
  year: 2006
  end-page: 362
  ident: bib7
  article-title: Propositional computability logic II
  publication-title: ACM Transactions on Computational Logic
– volume: 77
  start-page: 151
  year: 1972
  end-page: 166
  ident: bib2
  article-title: Degrees of indeterminacy of games
  publication-title: Fundamenta Mathematicae
– volume: 35
  start-page: 58
  year: 1932
  end-page: 65
  ident: bib18
  article-title: Zur Deutung der intuitionistischen Logik
  publication-title: Mathematische Zeitschrift
– start-page: 249
  year: 2009
  end-page: 350
  ident: bib16
  article-title: In the beginning was game semantics
  publication-title: Games: Unifying Logic, Language and Philosophy
– volume: 16
  start-page: 489
  year: 2006
  end-page: 532
  ident: bib9
  article-title: Introduction to cirquent calculus and abstract resource semantics
  publication-title: Journal of Logic and Computation
– volume: 147
  start-page: 187
  year: 2007
  end-page: 227
  ident: bib14
  article-title: The intuitionistic fragment of computability logic at the propositional level
  publication-title: Annals of Pure and Applied Logic
– start-page: 183
  year: 2006
  end-page: 223
  ident: bib10
  article-title: Computability logic: a formal theory of interaction
  publication-title: Interactive Computation: The New Paradigm
– volume: 123
  start-page: 1
  year: 2003
  end-page: 99
  ident: bib5
  article-title: Introduction to computability logic
  publication-title: Annals of Pure and Applied Logic
– volume: 59
  start-page: 543
  year: 1994
  end-page: 574
  ident: bib1
  article-title: Games and full completeness for multiplicative linear logic
  publication-title: Journal of Symbolic Logic
– volume: 56
  start-page: 183
  year: 1992
  end-page: 220
  ident: bib3
  article-title: A game semantics for linear logic
  publication-title: Annals of Pure and Applied Logic
– volume: 18
  start-page: 983
  year: 2008
  end-page: 1028
  ident: bib15
  article-title: Cirquent calculus deepened
  publication-title: Journal of Logic and Computation
– volume: 357
  start-page: 100
  year: 2006
  end-page: 135
  ident: bib8
  article-title: From truth to computability I
  publication-title: Theoretical Computer Science
– volume: 379
  start-page: 20
  year: 2007
  end-page: 52
  ident: bib12
  article-title: From truth to computability II
  publication-title: Theoretical Computer Science
– volume: 7
  start-page: 302
  year: 2006
  end-page: 330
  ident: bib6
  article-title: Propositional computability logic I
  publication-title: ACM Transactions on Computational Logic
– reference: G. Japaridze, Many concepts and two logics of algorithmic reduction, Studia Logica, in press.
– volume: 18
  start-page: 77
  year: 2007
  end-page: 113
  ident: bib13
  article-title: Intuitionistic computability logic
  publication-title: Acta Cybernetica
– volume: 117
  start-page: 263
  year: 2002
  end-page: 295
  ident: bib4
  article-title: The logic of tasks
  publication-title: Annals of Pure and Applied Logic
– volume: 72
  start-page: 243
  year: 2007
  end-page: 276
  ident: bib11
  article-title: The logic of interactive Turing reduction
  publication-title: Journal of Symbolic Logic
– volume: 59
  start-page: 543
  issue: 2
  year: 1994
  ident: 10.1016/j.ic.2008.10.001_bib1
  article-title: Games and full completeness for multiplicative linear logic
  publication-title: Journal of Symbolic Logic
  doi: 10.2307/2275407
– volume: 147
  start-page: 187
  issue: 3
  year: 2007
  ident: 10.1016/j.ic.2008.10.001_bib14
  article-title: The intuitionistic fragment of computability logic at the propositional level
  publication-title: Annals of Pure and Applied Logic
  doi: 10.1016/j.apal.2007.05.001
– volume: 56
  start-page: 183
  year: 1992
  ident: 10.1016/j.ic.2008.10.001_bib3
  article-title: A game semantics for linear logic
  publication-title: Annals of Pure and Applied Logic
  doi: 10.1016/0168-0072(92)90073-9
– volume: 72
  start-page: 243
  issue: 1
  year: 2007
  ident: 10.1016/j.ic.2008.10.001_bib11
  article-title: The logic of interactive Turing reduction
  publication-title: Journal of Symbolic Logic
  doi: 10.2178/jsl/1174668394
– start-page: 249
  year: 2009
  ident: 10.1016/j.ic.2008.10.001_bib16
  article-title: In the beginning was game semantics
– volume: 77
  start-page: 151
  year: 1972
  ident: 10.1016/j.ic.2008.10.001_bib2
  article-title: Degrees of indeterminacy of games
  publication-title: Fundamenta Mathematicae
  doi: 10.4064/fm-77-2-151-166
– volume: 7
  start-page: 302
  issue: 2
  year: 2006
  ident: 10.1016/j.ic.2008.10.001_bib6
  article-title: Propositional computability logic I
  publication-title: ACM Transactions on Computational Logic
  doi: 10.1145/1131313.1131318
– ident: 10.1016/j.ic.2008.10.001_bib17
  doi: 10.1007/s11225-009-9164-7
– volume: 117
  start-page: 263
  year: 2002
  ident: 10.1016/j.ic.2008.10.001_bib4
  article-title: The logic of tasks
  publication-title: Annals of Pure and Applied Logic
  doi: 10.1016/S0168-0072(01)00123-3
– volume: 357
  start-page: 100
  year: 2006
  ident: 10.1016/j.ic.2008.10.001_bib8
  article-title: From truth to computability I
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2006.03.014
– volume: 16
  start-page: 489
  year: 2006
  ident: 10.1016/j.ic.2008.10.001_bib9
  article-title: Introduction to cirquent calculus and abstract resource semantics
  publication-title: Journal of Logic and Computation
  doi: 10.1093/logcom/exl005
– volume: 7
  start-page: 331
  issue: 2
  year: 2006
  ident: 10.1016/j.ic.2008.10.001_bib7
  article-title: Propositional computability logic II
  publication-title: ACM Transactions on Computational Logic
  doi: 10.1145/1131313.1131319
– volume: 123
  start-page: 1
  year: 2003
  ident: 10.1016/j.ic.2008.10.001_bib5
  article-title: Introduction to computability logic
  publication-title: Annals of Pure and Applied Logic
  doi: 10.1016/S0168-0072(03)00023-X
– volume: 18
  start-page: 983
  issue: 6
  year: 2008
  ident: 10.1016/j.ic.2008.10.001_bib15
  article-title: Cirquent calculus deepened
  publication-title: Journal of Logic and Computation
  doi: 10.1093/logcom/exn019
– start-page: 183
  year: 2006
  ident: 10.1016/j.ic.2008.10.001_bib10
  article-title: Computability logic: a formal theory of interaction
– volume: 35
  start-page: 58
  year: 1932
  ident: 10.1016/j.ic.2008.10.001_bib18
  article-title: Zur Deutung der intuitionistischen Logik
  publication-title: Mathematische Zeitschrift
  doi: 10.1007/BF01186549
– volume: 379
  start-page: 20
  year: 2007
  ident: 10.1016/j.ic.2008.10.001_bib12
  article-title: From truth to computability II
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2007.01.004
– volume: 18
  start-page: 77
  issue: 1
  year: 2007
  ident: 10.1016/j.ic.2008.10.001_bib13
  article-title: Intuitionistic computability logic
  publication-title: Acta Cybernetica
SSID ssj0011546
Score 2.0130074
Snippet Computability logic (CL) is a semantical platform and research program for redeveloping logic as a formal theory of computability, as opposed to the formal...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1443
SubjectTerms Applied sciences
Computability logic
Computer science; control theory; systems
Constructive logics
Exact sciences and technology
Game semantics
General logic
Interactive computation
Linear logic
Logic and foundations
Mathematical logic, foundations, set theory
Mathematics
Miscellaneous
Model theory
Recursion theory
Sciences and techniques of general use
Theoretical computing
Title Sequential operators in computability logic
URI https://dx.doi.org/10.1016/j.ic.2008.10.001
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sYAQjwKiPKoMLAwhseOYdiwVVQuiC1TqFvkVKahqK1oGFn4758Sp2oEOLJFi-RLrbH8-6767A7jlhsWh1MTnCm86TBrpC8WIL7RRlCnr67SBwq8jPhiz50k8qUCvjIWxtEqH_QWm52jtWgKnzWCRZcFb2O5Ye8OS5PKIzyrUadThuLTr3eHLYLR2JhAXr4P9LQ-AOG9lQfPKVEGozCle5K_T6WAhlqiztCh2sXEC9Y_h0JmOXrcY3QlUzKwBR2VZBs_t0gbsb-QYPAVEA0uWxo089eYLk3vVl14281QuWKTp_vZyCDyDcf_pvTfwXYUEX0Wcr_yH1HDKYhVSVK2IpY2EpkJJQ6jgOgyVpJrpSHNsF5wKIVNu0hQvSQoF0VQ5h9psPjMX4LXTDjdGoTkk2oykVFJqNFFtwbToIBI0ISg1kyiXPtxWsZgmJU_sI8lUUdWS2JSjpAl3a4lFkTpjR9-oVHayNf0JIvsOqdbWvKx_Q23xCnxc_uuzV7CXs0Jy0so11FafX-YGTY-VbEH1_oe03ALDt-Hk8ReUi9hV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgBCPAqI8igZWBhCYtcx6YgqqgJtF1qpW2Q7jhRUpREtAwu_Hb9StQMMLBksXxKdfZ_Puu_uAG6pJFHIU-RToW46hEvuM0GQz1IpMBE61qkThYcj2p-Ql2k0rUG3yoXRtEqH_RbTDVq7kcBpMyjzPHgL4472NzRJzmR8bsE2UearrfP-e8Xz0OVmTMBSzdYsAORilZbklQtLpzQEL_Tb2bRfsoXSWGZbXaydP70jOHCOo_do_-0YarJowGHVlMFzNtqAvbUKgyegsEBTpZUZz7x5KU1MfeHlhSeMoC3S_eUZADyFSe9p3O37rj-CL9qULv2HTFJMIhFipVgWcZ0HjZngEmFG0zAUHKckbadUjTOKGeMZlVmmrkhCCSpH5QzqxbyQ5-DFWYdKKZQzxGKCMswxlikSMSMp6ygcaEJQaSYRrni47mExSyqW2HuSC9vTEumCo6gJdyuJ0hbO-GNuu1J2srH4icL1P6RaG-uy-gzWrSvU4-Jfr72Bnf54OEgGz6PXS9g1_BBDX7mC-vLjU14rJ2TJW2aT_QBAqtgV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+operators+in+computability+logic&rft.jtitle=Information+and+computation&rft.au=Japaridze%2C+Giorgi&rft.date=2008-12-01&rft.issn=0890-5401&rft.volume=206&rft.issue=12&rft.spage=1443&rft.epage=1475&rft_id=info:doi/10.1016%2Fj.ic.2008.10.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ic_2008_10_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-5401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-5401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-5401&client=summon