Preparation of FeOOH supported by melamine sponge and its application for efficient phosphate removal
Water eutrophication caused by the excessive discharge of phosphate has been a topic theme in decades and phosphate removal from aqueous solution is of great significance. Adsorbents of iron (hydroxyl)oxides particles exhibited its great potential in environmental pollution remediation. However, iro...
Saved in:
Published in | Journal of environmental chemical engineering Vol. 10; no. 4; p. 108064 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2213-3437 |
DOI | 10.1016/j.jece.2022.108064 |
Cover
Abstract | Water eutrophication caused by the excessive discharge of phosphate has been a topic theme in decades and phosphate removal from aqueous solution is of great significance. Adsorbents of iron (hydroxyl)oxides particles exhibited its great potential in environmental pollution remediation. However, iron (hydroxyl)oxides are easy to aggregate, resulting in the decreased reactivity. In this study, we immobilized FeOOH on the surface of melamine sponge (MS). The characterization results of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) revealed that FeOOH was well-dispersed on melamine sponge. Further phosphate removal experiments results elucidated that the maximum phosphate adsorption capacity of the synthesized material (FeOOH@MS) was 115.5 mg P/g when the theoretical mass ratio of Fe to MS was 5:1. Meanwhile, the physical adsorption with electrostatic attraction and chemical adsorption with the formation inner-sphere complex were involved for phosphate treated by FeOOH@MS without pH adjustment. Subsequently, we investigated the phosphate removal performance of FeOOH@MS in a packed column, and found that capacity of phosphate removed by FeOOH@MS reached 11.3 mg/g, and the packed column with FeOOH@MS would be penetrated at 1201 BVs around 41 h, suggesting that application of FeOOH@MS to treat phosphate-contained wastewater was feasible. Moreover, when the phosphate-containing lake water was treated with FeOOH@MS, the algae growth in the treated water was significantly inhibited, indicating that FeOOH@MS could be utilized to control the water eutrophication. Overall, this study provided a promising adsorbent for phosphate-contained water treatment.
•FeOOH@MS was prepared with FeOOH loaded on melamine sponge.•The adsorption capacity of FeOOH@MS for PO43- was 115.5 mg P/g.•FeOOH@MS column kept PO43- below 0.05 mg/L in 41 h at 10 mg/L initial concentration.•The lake water treated by FeOOH@MS could inhibited the algae growth. |
---|---|
AbstractList | Water eutrophication caused by the excessive discharge of phosphate has been a topic theme in decades and phosphate removal from aqueous solution is of great significance. Adsorbents of iron (hydroxyl)oxides particles exhibited its great potential in environmental pollution remediation. However, iron (hydroxyl)oxides are easy to aggregate, resulting in the decreased reactivity. In this study, we immobilized FeOOH on the surface of melamine sponge (MS). The characterization results of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) revealed that FeOOH was well-dispersed on melamine sponge. Further phosphate removal experiments results elucidated that the maximum phosphate adsorption capacity of the synthesized material (FeOOH@MS) was 115.5 mg P/g when the theoretical mass ratio of Fe to MS was 5:1. Meanwhile, the physical adsorption with electrostatic attraction and chemical adsorption with the formation inner-sphere complex were involved for phosphate treated by FeOOH@MS without pH adjustment. Subsequently, we investigated the phosphate removal performance of FeOOH@MS in a packed column, and found that capacity of phosphate removed by FeOOH@MS reached 11.3 mg/g, and the packed column with FeOOH@MS would be penetrated at 1201 BVs around 41 h, suggesting that application of FeOOH@MS to treat phosphate-contained wastewater was feasible. Moreover, when the phosphate-containing lake water was treated with FeOOH@MS, the algae growth in the treated water was significantly inhibited, indicating that FeOOH@MS could be utilized to control the water eutrophication. Overall, this study provided a promising adsorbent for phosphate-contained water treatment.
•FeOOH@MS was prepared with FeOOH loaded on melamine sponge.•The adsorption capacity of FeOOH@MS for PO43- was 115.5 mg P/g.•FeOOH@MS column kept PO43- below 0.05 mg/L in 41 h at 10 mg/L initial concentration.•The lake water treated by FeOOH@MS could inhibited the algae growth. |
ArticleNumber | 108064 |
Author | Qu, Mengjie Quan, Fengjiao Mei, Yunjun Zhang, Shunxi Shen, Wenjuan Tao, Ruidong Zhang, Meng |
Author_xml | – sequence: 1 givenname: Ruidong surname: Tao fullname: Tao, Ruidong – sequence: 2 givenname: Mengjie surname: Qu fullname: Qu, Mengjie – sequence: 3 givenname: Shunxi surname: Zhang fullname: Zhang, Shunxi – sequence: 4 givenname: Fengjiao surname: Quan fullname: Quan, Fengjiao – sequence: 5 givenname: Meng surname: Zhang fullname: Zhang, Meng – sequence: 6 givenname: Wenjuan surname: Shen fullname: Shen, Wenjuan email: wenjuan_shen@whpu.edu.cn – sequence: 7 givenname: Yunjun surname: Mei fullname: Mei, Yunjun email: Meiyunjun_2000@163.com |
BookMark | eNp9kLFOwzAQhj0UiVL6Akx-gRTbSdxYYkEVpUiVygCz5Tpn6iiJLdtU6tuTECaG3nLSSd_p_787NOtdDwg9ULKihPLHZtWAhhUjjA2HivBihuaM0TzLi3x9i5YxNmQYIWjJ6RzBewCvgkrW9dgZvIXDYYfjt_cuJKjx8YI7aFVne8DRu_4LsOprbFPEyvvW6ok0LmAwxmoLfcL-5KI_qQQ4QOfOqr1HN0a1EZZ_e4E-ty8fm122P7y-bZ73mc45T9kaak1AFEzkVBlec1MXx2KthRBGmMocKwMlZ6RgSuiaasJLoEoB0EKXFdB8garprw4uxgBGapt-E6agbCspkaMl2cjRkhwtycnSgLJ_qA-2U-FyHXqaIBhKnS0EGUcDGmobQCdZO3sN_wEAzYbw |
CitedBy_id | crossref_primary_10_1007_s11270_024_07235_w crossref_primary_10_1049_mna2_12142 crossref_primary_10_1016_j_jwpe_2023_104253 crossref_primary_10_1016_j_surfin_2022_102575 crossref_primary_10_3390_ijms241814300 crossref_primary_10_1016_j_scitotenv_2024_172025 crossref_primary_10_1016_j_talanta_2025_127887 crossref_primary_10_1016_j_colsurfa_2023_131042 crossref_primary_10_1016_j_jclepro_2024_144269 crossref_primary_10_1016_j_cej_2024_151244 crossref_primary_10_1021_acsanm_2c04622 crossref_primary_10_1039_D4NJ01114G crossref_primary_10_3390_polym15081918 crossref_primary_10_1080_10643389_2023_2242227 crossref_primary_10_1016_j_mineng_2022_107890 crossref_primary_10_1016_j_jhazmat_2024_134668 crossref_primary_10_1016_j_ces_2023_119238 crossref_primary_10_1016_j_seppur_2024_127273 crossref_primary_10_1016_j_clay_2024_107430 crossref_primary_10_1039_D4EW00696H crossref_primary_10_3390_inorganics11050210 crossref_primary_10_1007_s11270_025_07827_0 crossref_primary_10_1016_j_jece_2024_113183 crossref_primary_10_1007_s11356_023_30293_2 |
Cites_doi | 10.1016/j.jhazmat.2007.11.048 10.1016/j.jclepro.2017.01.069 10.1039/C5RA24565F 10.1039/c1cc10659g 10.1039/C6TA04619C 10.1016/j.cej.2013.09.021 10.1016/j.cej.2015.08.114 10.1002/chem.201200864 10.1016/j.biortech.2014.09.071 10.1016/j.powtec.2011.11.030 10.1021/ct300143a 10.1016/j.jhazmat.2010.10.044 10.1016/j.chemosphere.2019.01.158 10.1016/j.watres.2013.05.044 10.1021/acs.est.9b07944 10.1021/acs.est.6b05623 10.1016/j.cej.2017.01.066 10.1080/10643389.2012.741311 10.1016/j.jhazmat.2020.122626 10.1016/j.biortech.2016.07.003 10.1021/acs.est.9b05569 10.1081/CSS-200056954 10.1002/wer.1469 10.1016/j.biortech.2019.03.113 10.1016/j.biortech.2016.07.072 10.1002/pi.5074 10.1016/S0032-3861(00)00632-7 10.1021/acs.est.9b03456 10.1016/j.desal.2010.12.046 10.1016/j.biortech.2014.07.047 10.1016/j.micromeso.2012.09.036 10.1016/j.cej.2008.06.024 10.1021/acs.est.8b04642 10.1021/acssuschemeng.5b01187 10.1021/acssuschemeng.5b00384 10.1016/j.chemosphere.2015.10.015 10.1016/j.watres.2016.06.022 10.1016/j.cej.2013.09.053 10.1016/j.psep.2017.03.009 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jece.2022.108064 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jece_2022_108064 S221334372200937X |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV EBS EFJIC EJD ENUVR FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ KCYFY KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSG SSH SSJ SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c366t-7edc0e942931af6d6fd4b47c999f9f8fb8fe562042a9cd1c065e1aaee14c58e13 |
IEDL.DBID | AIKHN |
ISSN | 2213-3437 |
IngestDate | Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 03:04:49 EDT 2025 Sun Apr 06 06:53:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | FeOOH Phosphate removal Melamine sponge |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-7edc0e942931af6d6fd4b47c999f9f8fb8fe562042a9cd1c065e1aaee14c58e13 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jece_2022_108064 crossref_primary_10_1016_j_jece_2022_108064 elsevier_sciencedirect_doi_10_1016_j_jece_2022_108064 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of environmental chemical engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Khan, Yasmin, Xi, Xiaoe, Zhenli (bib27) 2016; 218 Sundaram, Viswanathan, Meenakshi (bib39) 2008; 155 Wan, Li (bib26) 2015; 3 Knoerr, Brendlé, Lebeau, Demais (bib11) 2013; 169 Yang, Yi, Wang (bib15) 2015; 3 Mezenner, Bensmaili (bib29) 2009; 147 Lin, Chang, Chen (bib18) 2016; 4 Lyngsie, Katika, Fabricius, Hansen, Borggaard (bib12) 2019; 222 Wang, Xie, Chen, Huang, Yang (bib35) 2020; 396 Li, Wang, Zhou, Zhang, Liu, Lei, Xiao (bib5) 2017; 147 Ashekuzzaman, Jiang (bib30) 2017; 107 Hussain, Aziz, Isa, Ahmad, Leeuwen, Zou, Beecham, Umar (bib1) 2011; 271 Beaudry, Sengupta (bib14) 2020; 93 M.A. B, V.S. P (bib21) 2001; 42 Su, Cui, Li, Gao, Shang (bib38) 2013; 47 H. Freundlich, Uber die adsorption in lusungen, 1985. Ren, Li, Li, An, Zhao, Ren (bib31) 2015; 178 Liu, Sun, Qiao, Guan (bib36) 2019; 53 Wu, Wan, Zhang, Pan, Lo (bib3) 2019; 54 Chen, He, He, Wang, Su, Jin (bib23) 2012; 227 Chen, Zhu, Chen (bib20) 2019; 53 Wu, Yamauchi, Hong, Yang, Liang, Funatsu, Tsunoda (bib16) 2011; 47 Lalley, Han, Li, Dionysiou, Nadagouda (bib24) 2016; 284 Liu, Deng, Wang, Kang, Yang, Ng, Cai, Wang (bib25) 2012; 18 Nguyen, Ngo, Guo, Zhang, Liang, Lee, Nguyen, Bui (bib4) 2014; 169 Liu, Lv, Jin, Zhao (bib22) 2016; 6 Yoon, Lee, Park, Kim, Kim, Lee, Choi (bib8) 2014; 236 Li, Gao, Zhang, Zhang (bib32) 2014; 235 Xu, Zhang, Mortimer, Pan (bib7) 2017; 51 Wang, Feng, Chen, Wang, Yan (bib6) 2017; 316 Liu, Shen, He, Chi, Wang (bib40) 2020; 421 Ye, Ngo, Guo, Liu, Zhang, Guo, Ni, Chang, Nguyen (bib2) 2016; 218 Zhang, Yan, Yu, Yan, Li (bib13) 2019; 284 Hua, Salo, Schmit, Hay (bib42) 2016; 102 Costanzo, Silvestrelli, Ancilotto (bib34) 2012; 8 Ganvir, Das (bib41) 2010; 185 Nafie (bib19) 1900 Wang, Lin, Wu, Kong (bib10) 2016; 144 Loganathan, Vigneswaran, Kandasamy, Bolan (bib37) 2014; 44 He, Honeycutt (bib17) 2005; 36 Brockgreitens, Heidari, Abbas (bib9) 2020; 54 Omer Suat Taskin, Aksu, Kiskan, Balkis, Yagic (bib33) 2016; 65 Sundaram (10.1016/j.jece.2022.108064_bib39) 2008; 155 Ye (10.1016/j.jece.2022.108064_bib2) 2016; 218 Liu (10.1016/j.jece.2022.108064_bib25) 2012; 18 Omer Suat Taskin (10.1016/j.jece.2022.108064_bib33) 2016; 65 M.A. B (10.1016/j.jece.2022.108064_bib21) 2001; 42 Yoon (10.1016/j.jece.2022.108064_bib8) 2014; 236 Wu (10.1016/j.jece.2022.108064_bib16) 2011; 47 Zhang (10.1016/j.jece.2022.108064_bib13) 2019; 284 Chen (10.1016/j.jece.2022.108064_bib23) 2012; 227 Hussain (10.1016/j.jece.2022.108064_bib1) 2011; 271 Wang (10.1016/j.jece.2022.108064_bib10) 2016; 144 Knoerr (10.1016/j.jece.2022.108064_bib11) 2013; 169 Beaudry (10.1016/j.jece.2022.108064_bib14) 2020; 93 Ren (10.1016/j.jece.2022.108064_bib31) 2015; 178 Nguyen (10.1016/j.jece.2022.108064_bib4) 2014; 169 Brockgreitens (10.1016/j.jece.2022.108064_bib9) 2020; 54 Loganathan (10.1016/j.jece.2022.108064_bib37) 2014; 44 Wu (10.1016/j.jece.2022.108064_bib3) 2019; 54 He (10.1016/j.jece.2022.108064_bib17) 2005; 36 Lin (10.1016/j.jece.2022.108064_bib18) 2016; 4 Nafie (10.1016/j.jece.2022.108064_bib19) 1900 Wang (10.1016/j.jece.2022.108064_bib6) 2017; 316 Li (10.1016/j.jece.2022.108064_bib5) 2017; 147 Ganvir (10.1016/j.jece.2022.108064_bib41) 2010; 185 Wang (10.1016/j.jece.2022.108064_bib35) 2020; 396 Lalley (10.1016/j.jece.2022.108064_bib24) 2016; 284 Su (10.1016/j.jece.2022.108064_bib38) 2013; 47 Liu (10.1016/j.jece.2022.108064_bib40) 2020; 421 Chen (10.1016/j.jece.2022.108064_bib20) 2019; 53 Liu (10.1016/j.jece.2022.108064_bib22) 2016; 6 Mezenner (10.1016/j.jece.2022.108064_bib29) 2009; 147 Khan (10.1016/j.jece.2022.108064_bib27) 2016; 218 Yang (10.1016/j.jece.2022.108064_bib15) 2015; 3 Costanzo (10.1016/j.jece.2022.108064_bib34) 2012; 8 10.1016/j.jece.2022.108064_bib28 Ashekuzzaman (10.1016/j.jece.2022.108064_bib30) 2017; 107 Hua (10.1016/j.jece.2022.108064_bib42) 2016; 102 Wan (10.1016/j.jece.2022.108064_bib26) 2015; 3 Xu (10.1016/j.jece.2022.108064_bib7) 2017; 51 Li (10.1016/j.jece.2022.108064_bib32) 2014; 235 Liu (10.1016/j.jece.2022.108064_bib36) 2019; 53 Lyngsie (10.1016/j.jece.2022.108064_bib12) 2019; 222 |
References_xml | – volume: 102 start-page: 180 year: 2016 end-page: 189 ident: bib42 article-title: Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters publication-title: Water Res. – volume: 284 start-page: 1386 year: 2016 end-page: 1396 ident: bib24 article-title: Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests publication-title: Chem. Eng. J. – volume: 236 start-page: 341 year: 2014 end-page: 347 ident: bib8 article-title: Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles publication-title: Chem. Eng. J. – volume: 218 start-page: 1123 year: 2016 end-page: 1132 ident: bib27 article-title: Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata publication-title: Bioresour. Technol. – volume: 44 start-page: 847 year: 2014 end-page: 907 ident: bib37 article-title: Removal and recovery of phosphate from water using sorption publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 185 start-page: 1287 year: 2010 end-page: 1294 ident: bib41 article-title: Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash publication-title: J. Hazard. Mater. – reference: H. Freundlich, Uber die adsorption in lusungen, 1985. – volume: 178 start-page: 119 year: 2015 end-page: 125 ident: bib31 article-title: Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water publication-title: Bioresour. Technol. – year: 1900 ident: bib19 publication-title: J. Raman Spectrosc., Wiley Heyden – volume: 93 start-page: 774 year: 2020 end-page: 786 ident: bib14 article-title: Phosphorus recovery from wastewater using pyridine‐based ion‐exchange resins: role of impregnated iron oxide nanoparticles and preloaded Lewis acid (Cu publication-title: Water Environ. Res. – volume: 235 start-page: 124 year: 2014 end-page: 131 ident: bib32 article-title: Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides publication-title: Chem. Eng. J. – volume: 155 start-page: 206 year: 2008 end-page: 215 ident: bib39 article-title: Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies publication-title: J. Hazard. Mater. – volume: 147 start-page: 87 year: 2009 end-page: 96 ident: bib29 article-title: Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste publication-title: Chem. Eng. J. – volume: 54 start-page: 9034 year: 2020 end-page: 9043 ident: bib9 article-title: Versatile process for the preparation of nanocomposite sorbents: phosphorus and arsenic removal publication-title: Environ. Sci. Technol. – volume: 222 start-page: 884 year: 2019 end-page: 890 ident: bib12 article-title: Phosphate removal by iron oxide-coated diatomite: laboratory test of a new method for cleaning drainage water publication-title: Chemosphere – volume: 6 start-page: 11240 year: 2016 end-page: 11249 ident: bib22 article-title: Defluoridation by rice spike-like akaganeite anchored graphene oxide publication-title: RSC Adv. – volume: 53 start-page: 1509 year: 2019 end-page: 1517 ident: bib20 article-title: Durable superhydrophobic/superoleophilic graphene-based foam for high-efficiency oil spill cleanups and recovery publication-title: Environ. Sci. Technol. – volume: 54 start-page: 50 year: 2019 end-page: 66 ident: bib3 article-title: Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms publication-title: Environ. Sci. Technol. – volume: 65 start-page: 439 year: 2016 end-page: 445 ident: bib33 article-title: Melamine-based microporous polymer for highly efficient removal of copper(II) from aqueous solution publication-title: Polym. Int. – volume: 396 year: 2020 ident: bib35 article-title: Biochar-loaded Ce publication-title: J. Hazard. Mater. – volume: 144 start-page: 1290 year: 2016 end-page: 1298 ident: bib10 article-title: Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture publication-title: Chemosphere – volume: 227 start-page: 3 year: 2012 end-page: 8 ident: bib23 article-title: Fe-Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism publication-title: Powder Technol. – volume: 271 start-page: 265 year: 2011 end-page: 272 ident: bib1 article-title: Orthophosphate removal from domestic wastewater using limestone and granular activated carbon publication-title: Desalin – volume: 47 start-page: 5018 year: 2013 end-page: 5026 ident: bib38 article-title: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles publication-title: Water Res. – volume: 51 start-page: 3418 year: 2017 end-page: 3425 ident: bib7 article-title: Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite: implication for eutrophication control publication-title: Environ. Sci. Technol. – volume: 47 start-page: 5232 year: 2011 end-page: 5234 ident: bib16 article-title: Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery publication-title: Chem. Commun. – volume: 53 start-page: 10227 year: 2019 end-page: 10235 ident: bib36 article-title: Influence of pyrophosphate on the generation of soluble Mn(III) from reactions involving Mn oxides and Mn(VII) publication-title: Environ. Sci. Technol. – volume: 42 start-page: 2501 year: 2001 end-page: 2512 ident: bib21 article-title: Photochemical bromination of polyolefin surfaces publication-title: Polymer – volume: 316 start-page: 33 year: 2017 end-page: 40 ident: bib6 article-title: Adsorption mechanism of phosphate by polyaniline/TiO publication-title: Chem. Eng. J. – volume: 169 start-page: 185 year: 2013 end-page: 191 ident: bib11 article-title: Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution publication-title: Microporous Mesoporous Mater. – volume: 36 start-page: 1373 year: 2005 end-page: 1383 ident: bib17 article-title: A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates publication-title: Commun. Soil Sci. Plant Anal. – volume: 4 start-page: 13611 year: 2016 end-page: 13625 ident: bib18 article-title: Multi-functional MOF-derived magnetic carbon sponge publication-title: J. Mater. Chem. A – volume: 147 start-page: 96 year: 2017 end-page: 107 ident: bib5 article-title: Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment publication-title: J. Clean. Prod. – volume: 218 start-page: 874 year: 2016 end-page: 881 ident: bib2 article-title: Insight into biological phosphate recovery from sewage publication-title: Bioresour. Technol. – volume: 3 start-page: 2142 year: 2015 end-page: 2152 ident: bib26 article-title: Facile synthesis of well-dispersed superparamagnetic γ-Fe publication-title: ACS Sustain. Chem. Eng. – volume: 169 start-page: 750 year: 2014 end-page: 762 ident: bib4 article-title: Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles publication-title: Bioresour. Technol. – volume: 18 start-page: 13418 year: 2012 end-page: 13426 ident: bib25 article-title: Synthesis and characterization of nanostructured Fe publication-title: Chem. Eur. J. – volume: 107 start-page: 454 year: 2017 end-page: 462 ident: bib30 article-title: Strategic phosphate removal/recovery by a re-usable Mg–Fe–Cl layered double hydroxide publication-title: Process Saf. Environ. Prot. – volume: 284 start-page: 65 year: 2019 end-page: 71 ident: bib13 article-title: Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: fast removal and mechanistic studies publication-title: Bioresour. Technol. – volume: 3 start-page: 3012 year: 2015 end-page: 3018 ident: bib15 article-title: Oil absorbents based on melamine/lignin by a dip adsorbing method publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 1288 year: 2012 end-page: 1294 ident: bib34 article-title: Physisorption, diffusion, and chemisorption pathways of H publication-title: J. Chem. Theory Comput. – volume: 421 year: 2020 ident: bib40 article-title: Efficient macroporous adsorbent for phosphate removal based on hydrate aluminum-functionalized melamine sponge publication-title: Chem. Eng. J. – volume: 155 start-page: 206 year: 2008 ident: 10.1016/j.jece.2022.108064_bib39 article-title: Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.11.048 – volume: 147 start-page: 96 year: 2017 ident: 10.1016/j.jece.2022.108064_bib5 article-title: Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.01.069 – volume: 6 start-page: 11240 year: 2016 ident: 10.1016/j.jece.2022.108064_bib22 article-title: Defluoridation by rice spike-like akaganeite anchored graphene oxide publication-title: RSC Adv. doi: 10.1039/C5RA24565F – volume: 47 start-page: 5232 year: 2011 ident: 10.1016/j.jece.2022.108064_bib16 article-title: Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery publication-title: Chem. Commun. doi: 10.1039/c1cc10659g – volume: 4 start-page: 13611 year: 2016 ident: 10.1016/j.jece.2022.108064_bib18 article-title: Multi-functional MOF-derived magnetic carbon sponge publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04619C – volume: 235 start-page: 124 year: 2014 ident: 10.1016/j.jece.2022.108064_bib32 article-title: Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.021 – volume: 284 start-page: 1386 year: 2016 ident: 10.1016/j.jece.2022.108064_bib24 article-title: Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.114 – volume: 18 start-page: 13418 year: 2012 ident: 10.1016/j.jece.2022.108064_bib25 article-title: Synthesis and characterization of nanostructured Fe3O4 micron‐spheres and their application in removing toxic Cr ions from polluted water publication-title: Chem. Eur. J. doi: 10.1002/chem.201200864 – volume: 178 start-page: 119 year: 2015 ident: 10.1016/j.jece.2022.108064_bib31 article-title: Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.09.071 – volume: 421 year: 2020 ident: 10.1016/j.jece.2022.108064_bib40 article-title: Efficient macroporous adsorbent for phosphate removal based on hydrate aluminum-functionalized melamine sponge publication-title: Chem. Eng. J. – volume: 227 start-page: 3 year: 2012 ident: 10.1016/j.jece.2022.108064_bib23 article-title: Fe-Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.11.030 – volume: 8 start-page: 1288 year: 2012 ident: 10.1016/j.jece.2022.108064_bib34 article-title: Physisorption, diffusion, and chemisorption pathways of H2 molecule on graphene and on (2, 2) carbon nanotube by first principles calculations publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300143a – volume: 185 start-page: 1287 year: 2010 ident: 10.1016/j.jece.2022.108064_bib41 article-title: Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.044 – volume: 222 start-page: 884 year: 2019 ident: 10.1016/j.jece.2022.108064_bib12 article-title: Phosphate removal by iron oxide-coated diatomite: laboratory test of a new method for cleaning drainage water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.158 – volume: 47 start-page: 5018 year: 2013 ident: 10.1016/j.jece.2022.108064_bib38 article-title: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles publication-title: Water Res. doi: 10.1016/j.watres.2013.05.044 – volume: 54 start-page: 9034 year: 2020 ident: 10.1016/j.jece.2022.108064_bib9 article-title: Versatile process for the preparation of nanocomposite sorbents: phosphorus and arsenic removal publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07944 – volume: 51 start-page: 3418 year: 2017 ident: 10.1016/j.jece.2022.108064_bib7 article-title: Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite: implication for eutrophication control publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05623 – volume: 316 start-page: 33 year: 2017 ident: 10.1016/j.jece.2022.108064_bib6 article-title: Adsorption mechanism of phosphate by polyaniline/TiO2 composite from wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.01.066 – volume: 44 start-page: 847 year: 2014 ident: 10.1016/j.jece.2022.108064_bib37 article-title: Removal and recovery of phosphate from water using sorption publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2012.741311 – ident: 10.1016/j.jece.2022.108064_bib28 – volume: 396 year: 2020 ident: 10.1016/j.jece.2022.108064_bib35 article-title: Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122626 – volume: 218 start-page: 874 year: 2016 ident: 10.1016/j.jece.2022.108064_bib2 article-title: Insight into biological phosphate recovery from sewage publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.07.003 – volume: 54 start-page: 50 year: 2019 ident: 10.1016/j.jece.2022.108064_bib3 article-title: Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05569 – volume: 36 start-page: 1373 year: 2005 ident: 10.1016/j.jece.2022.108064_bib17 article-title: A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1081/CSS-200056954 – year: 1900 ident: 10.1016/j.jece.2022.108064_bib19 publication-title: J. Raman Spectrosc., Wiley Heyden – volume: 93 start-page: 774 year: 2020 ident: 10.1016/j.jece.2022.108064_bib14 article-title: Phosphorus recovery from wastewater using pyridine‐based ion‐exchange resins: role of impregnated iron oxide nanoparticles and preloaded Lewis acid (Cu2+) publication-title: Water Environ. Res. doi: 10.1002/wer.1469 – volume: 284 start-page: 65 year: 2019 ident: 10.1016/j.jece.2022.108064_bib13 article-title: Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: fast removal and mechanistic studies publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.113 – volume: 218 start-page: 1123 year: 2016 ident: 10.1016/j.jece.2022.108064_bib27 article-title: Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.07.072 – volume: 65 start-page: 439 year: 2016 ident: 10.1016/j.jece.2022.108064_bib33 article-title: Melamine-based microporous polymer for highly efficient removal of copper(II) from aqueous solution publication-title: Polym. Int. doi: 10.1002/pi.5074 – volume: 42 start-page: 2501 year: 2001 ident: 10.1016/j.jece.2022.108064_bib21 article-title: Photochemical bromination of polyolefin surfaces publication-title: Polymer doi: 10.1016/S0032-3861(00)00632-7 – volume: 53 start-page: 10227 year: 2019 ident: 10.1016/j.jece.2022.108064_bib36 article-title: Influence of pyrophosphate on the generation of soluble Mn(III) from reactions involving Mn oxides and Mn(VII) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03456 – volume: 271 start-page: 265 year: 2011 ident: 10.1016/j.jece.2022.108064_bib1 article-title: Orthophosphate removal from domestic wastewater using limestone and granular activated carbon publication-title: Desalin doi: 10.1016/j.desal.2010.12.046 – volume: 169 start-page: 750 year: 2014 ident: 10.1016/j.jece.2022.108064_bib4 article-title: Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.07.047 – volume: 169 start-page: 185 year: 2013 ident: 10.1016/j.jece.2022.108064_bib11 article-title: Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.09.036 – volume: 147 start-page: 87 year: 2009 ident: 10.1016/j.jece.2022.108064_bib29 article-title: Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.06.024 – volume: 53 start-page: 1509 year: 2019 ident: 10.1016/j.jece.2022.108064_bib20 article-title: Durable superhydrophobic/superoleophilic graphene-based foam for high-efficiency oil spill cleanups and recovery publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04642 – volume: 3 start-page: 3012 year: 2015 ident: 10.1016/j.jece.2022.108064_bib15 article-title: Oil absorbents based on melamine/lignin by a dip adsorbing method publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01187 – volume: 3 start-page: 2142 year: 2015 ident: 10.1016/j.jece.2022.108064_bib26 article-title: Facile synthesis of well-dispersed superparamagnetic γ-Fe2O3 nanoparticles encapsulated in three-dimensional architectures of cellulose aerogels and their applications for Cr(VI) removal from contaminated water publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00384 – volume: 144 start-page: 1290 year: 2016 ident: 10.1016/j.jece.2022.108064_bib10 article-title: Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.10.015 – volume: 102 start-page: 180 year: 2016 ident: 10.1016/j.jece.2022.108064_bib42 article-title: Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters publication-title: Water Res. doi: 10.1016/j.watres.2016.06.022 – volume: 236 start-page: 341 year: 2014 ident: 10.1016/j.jece.2022.108064_bib8 article-title: Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.053 – volume: 107 start-page: 454 year: 2017 ident: 10.1016/j.jece.2022.108064_bib30 article-title: Strategic phosphate removal/recovery by a re-usable Mg–Fe–Cl layered double hydroxide publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2017.03.009 |
SSID | ssj0000991561 |
Score | 2.3999918 |
Snippet | Water eutrophication caused by the excessive discharge of phosphate has been a topic theme in decades and phosphate removal from aqueous solution is of great... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108064 |
SubjectTerms | FeOOH Melamine sponge Phosphate removal |
Title | Preparation of FeOOH supported by melamine sponge and its application for efficient phosphate removal |
URI | https://dx.doi.org/10.1016/j.jece.2022.108064 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB2FcKEHVL7U0IL20Ftlkl3v2s4RRUShVQlSQcrN2o_ZEkRsKwkHLvz2zsZOFCTEoUdbfpI1O5p5szvzFuC7SoVV3FGl2ksxkiblkeHhwJHYs_aZ7vk4DAr_vklG9_LnRE1aMFjPwoS2yib21zF9Fa2bN93Gmt1qOu3-EYLqq3DsFDb443SyA7si7ieqDbuX179GN5utFiJBVKWE0itAooBpxmfqTq9HtEEwU4hVw10i309RW2ln-Bn2G77ILutfOoAWFofwaUtF8Ajwdo61gndZsNKzIY7HI7Z4rlaa5Y6ZFzZDWnhCsNAQ-xeZLhybLhds6_iaEXtluBKUoDzEqodyUT0QEWVznJXkjsdwP7y6G4yi5vaEyMZJsoxSdLaHfco3Mdc-cYl30sjUEiP0fZ95k3lUQY1e6L513BIXQa41IpdWZcjjE2gXZYFfgPVcLHWsXEpoaVNjUAhtM2UMsUm0sgN8bbDcNtLi4YaLp3zdQ_aYByPnwch5beQO_NhgqlpY48Ov1Xod8jfukVPk_wB3-p-4r7AXnupOv2_QXs6f8YzYx9Kcw87FKz9vfOwf1A7Zlg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOQAHBAuI7vLwYW8oap3YSXpEiCq8ChIg9Rb5MYYiSKI-Dvvvd9ykqEiIA9cknxSNRzPf2DOfAf7KJDSSW6pUuwkGQic80NwfOBJ7Vi5VXRf5QeHbQZw9iauhHK7A-WIWxrdVNrG_junzaN086TTW7FSjUechDKm-8sdOfoM_SoarsCYkVXstWDu7vM4GH1stRIKoSvGll4cEHtOMz9SdXq9ovGBmGM4b7mLxdYpaSjv9bdhq-CI7q39pB1aw-AWbSyqCu4D3Y6wVvMuClY718e4uY5NZNdcst0z_Y-9IC08I5htin5GpwrLRdMKWjq8ZsVeGc0EJykOseikn1QsRUTbG95LccQ-e-heP51nQ3J4QmCiOp0GC1nSxR_km4srFNnZWaJEYYoSu51KnU4fSq9GHqmcsN8RFkCuFyIWRKfJoH1pFWeABsK6NhIqkTQgtTKI1hqEyqdSa2CQa0Qa-MFhuGmlxf8PFW77oIXvNvZFzb-S8NnIbTj8wVS2s8e3XcrEO-Sf3yCnyf4P7_UPcCaxnj7c3-c3l4PoPbPg3ddffIbSm4xkeEROZ6uPG0_4DDijbhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+FeOOH+supported+by+melamine+sponge+and+its+application+for+efficient+phosphate+removal&rft.jtitle=Journal+of+environmental+chemical+engineering&rft.au=Tao%2C+Ruidong&rft.au=Qu%2C+Mengjie&rft.au=Zhang%2C+Shunxi&rft.au=Quan%2C+Fengjiao&rft.date=2022-08-01&rft.issn=2213-3437&rft.volume=10&rft.issue=4&rft.spage=108064&rft_id=info:doi/10.1016%2Fj.jece.2022.108064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jece_2022_108064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-3437&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-3437&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-3437&client=summon |