Graph neural network for traffic forecasting: A survey

Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and recurrent neural networks, have been extensively applied in traffic forecasting problems to model spatial and temporal dependencies. In recent years...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 207; p. 117921
Main Authors Jiang, Weiwei, Luo, Jiayun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and recurrent neural networks, have been extensively applied in traffic forecasting problems to model spatial and temporal dependencies. In recent years, to model the graph structures in transportation systems as well as contextual information, graph neural networks have been introduced and have achieved state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of research using different graph neural networks, e.g. graph convolutional and graph attention networks, in various traffic forecasting problems, e.g. road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, and demand forecasting in ride-hailing platforms. We also present a comprehensive list of open data and source codes for each problem and identify future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public GitHub repository where the latest papers, open data, and source codes will be updated. •The latest application of graph neural network in traffic forecasting is presented.•The often-ignored implementation and reproducibility in other surveys are examined.•The future directions along with the research frontiers are pointed out.
AbstractList Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and recurrent neural networks, have been extensively applied in traffic forecasting problems to model spatial and temporal dependencies. In recent years, to model the graph structures in transportation systems as well as contextual information, graph neural networks have been introduced and have achieved state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of research using different graph neural networks, e.g. graph convolutional and graph attention networks, in various traffic forecasting problems, e.g. road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, and demand forecasting in ride-hailing platforms. We also present a comprehensive list of open data and source codes for each problem and identify future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public GitHub repository where the latest papers, open data, and source codes will be updated. •The latest application of graph neural network in traffic forecasting is presented.•The often-ignored implementation and reproducibility in other surveys are examined.•The future directions along with the research frontiers are pointed out.
ArticleNumber 117921
Author Jiang, Weiwei
Luo, Jiayun
Author_xml – sequence: 1
  givenname: Weiwei
  orcidid: 0000-0003-0953-5047
  surname: Jiang
  fullname: Jiang, Weiwei
  email: jww@bupt.edu.cn
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
– sequence: 2
  givenname: Jiayun
  surname: Luo
  fullname: Luo, Jiayun
  email: luoj0028@e.ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore
BookMark eNp9kMFKAzEQhoNUsK2-gKd9gV1nsptkV7yUolUoeNFzSNNEU-tuSdKWvr1ZticPPf0DwzfM90_IqO1aQ8g9QoGA_GFTmHBUBQVKC0TRULwiY6xFmXPRlCMyhoaJvEJR3ZBJCBsAFABiTPjCq9131pq9V9sU8dj5n8x2PoteWet0PxutQnTt12M2y8LeH8zpllxbtQ3m7pxT8vny_DF_zZfvi7f5bJnrkvOYC6NWSnNb05UQnFesMaymtBFIkdn1ijNbWoY87dN_qkJWAYUSOGhQtMZySuhwV_suBG-s3Hn3q_xJIsjeXG5kby57czmYJ6j-B2kXVXRdm5zc9jL6NKAmSR2c8TJoZ1pt1i61EOW6c5fwP16xdKo
CitedBy_id crossref_primary_10_1177_03611981231170004
crossref_primary_10_1016_j_autcon_2023_105140
crossref_primary_10_1109_JIOT_2023_3332848
crossref_primary_10_1016_j_engappai_2023_107217
crossref_primary_10_1016_j_tra_2024_104344
crossref_primary_10_3390_fi16060189
crossref_primary_10_1016_j_trc_2021_103526
crossref_primary_10_1080_13658816_2023_2234959
crossref_primary_10_3390_app142411477
crossref_primary_10_1016_j_eswa_2024_124138
crossref_primary_10_1109_JSAC_2022_3229422
crossref_primary_10_1016_j_trc_2022_103820
crossref_primary_10_3390_technologies12080128
crossref_primary_10_1016_j_aej_2024_10_022
crossref_primary_10_1080_21680566_2022_2116125
crossref_primary_10_1007_s42979_024_03543_4
crossref_primary_10_1109_ACCESS_2024_3501572
crossref_primary_10_1080_23249935_2023_2264949
crossref_primary_10_1007_s12273_023_1041_1
crossref_primary_10_1016_j_simpat_2025_103066
crossref_primary_10_1177_23998083231204689
crossref_primary_10_1016_j_engstruct_2024_119161
crossref_primary_10_1016_j_coastaleng_2024_104619
crossref_primary_10_1051_e3sconf_202125703065
crossref_primary_10_1016_j_eswa_2025_126747
crossref_primary_10_3390_s22249684
crossref_primary_10_1109_JIOT_2024_3474855
crossref_primary_10_1016_j_jocs_2024_102523
crossref_primary_10_1016_j_compeleceng_2023_108687
crossref_primary_10_1109_ACCESS_2024_3396062
crossref_primary_10_1007_s00521_024_09827_3
crossref_primary_10_3390_info15070377
crossref_primary_10_3390_ijgi12030100
crossref_primary_10_3390_s25010282
crossref_primary_10_1109_ACCESS_2025_3549035
crossref_primary_10_1016_j_asoc_2025_112966
crossref_primary_10_3389_fenrg_2024_1418907
crossref_primary_10_1016_j_knosys_2024_112158
crossref_primary_10_1109_TCYB_2024_3412149
crossref_primary_10_1088_1674_1056_acb9fa
crossref_primary_10_1631_FITEE_2200515
crossref_primary_10_3390_app14010412
crossref_primary_10_1016_j_engappai_2023_106202
crossref_primary_10_1049_esi2_12139
crossref_primary_10_32604_iasc_2023_040517
crossref_primary_10_1016_j_eswa_2023_122729
crossref_primary_10_1088_1361_6501_ad9ac1
crossref_primary_10_1016_j_knosys_2025_113336
crossref_primary_10_3390_drones7020078
crossref_primary_10_1186_s40537_024_00967_w
crossref_primary_10_3390_s24248106
crossref_primary_10_1007_s11390_024_2828_y
crossref_primary_10_1016_j_eswa_2023_122962
crossref_primary_10_1016_j_ymssp_2024_112025
crossref_primary_10_1109_TKDE_2024_3419036
crossref_primary_10_1016_j_eswa_2024_124187
crossref_primary_10_1109_TITS_2024_3447282
crossref_primary_10_1016_j_ins_2023_03_057
crossref_primary_10_1111_mice_13131
crossref_primary_10_1145_3664649
crossref_primary_10_1016_j_ese_2024_100514
crossref_primary_10_1016_j_jobe_2024_111133
crossref_primary_10_1371_journal_pone_0302327
crossref_primary_10_4028_p_FZ0iNi
crossref_primary_10_1109_JIOT_2024_3496795
crossref_primary_10_3390_app13127271
crossref_primary_10_3390_math11010224
crossref_primary_10_1007_s10462_023_10577_2
crossref_primary_10_1007_s10707_024_00532_w
crossref_primary_10_3390_a16030154
crossref_primary_10_1016_j_physa_2024_130244
crossref_primary_10_1109_ACCESS_2022_3217236
crossref_primary_10_3390_su142114049
crossref_primary_10_3390_fi15080251
crossref_primary_10_1016_j_tre_2024_103445
crossref_primary_10_1109_TPAMI_2024_3443141
crossref_primary_10_1007_s11280_025_01328_0
crossref_primary_10_3390_app14198642
crossref_primary_10_3390_s24216894
crossref_primary_10_1007_s10489_023_04492_w
crossref_primary_10_1038_s41598_024_60337_7
crossref_primary_10_1007_s00500_025_10464_8
crossref_primary_10_1038_s41598_024_78148_1
crossref_primary_10_1109_JIOT_2024_3369655
crossref_primary_10_1016_j_ymssp_2025_112449
crossref_primary_10_1016_j_jer_2024_08_006
crossref_primary_10_1016_j_eswa_2025_126799
crossref_primary_10_1016_j_physa_2023_128650
crossref_primary_10_3390_s22207994
crossref_primary_10_1016_j_apenergy_2025_125320
crossref_primary_10_1007_s00521_024_10248_5
crossref_primary_10_1109_ACCESS_2023_3283436
crossref_primary_10_1016_j_tws_2024_112851
crossref_primary_10_1007_s10489_023_04976_9
crossref_primary_10_1016_j_joi_2025_101639
crossref_primary_10_1016_j_comnet_2023_109695
crossref_primary_10_1177_03611981241247050
crossref_primary_10_1007_s10489_024_05815_1
crossref_primary_10_1109_TIM_2022_3219475
crossref_primary_10_1016_j_scitotenv_2023_167591
crossref_primary_10_1177_03611981241274645
crossref_primary_10_1016_j_neucom_2024_129193
crossref_primary_10_3390_bioengineering11070671
crossref_primary_10_1016_j_autcon_2025_106079
crossref_primary_10_1007_s10489_024_05724_3
crossref_primary_10_1016_j_ress_2025_110928
crossref_primary_10_1109_TITS_2024_3375936
crossref_primary_10_3390_app13158673
crossref_primary_10_1016_j_eswa_2023_121313
crossref_primary_10_1109_OJITS_2023_3334393
crossref_primary_10_1109_TITS_2024_3478816
crossref_primary_10_1007_s42421_024_00104_2
crossref_primary_10_1016_j_ijimpeng_2024_105123
crossref_primary_10_3390_ijgi12030083
crossref_primary_10_1088_1674_1056_ad3349
crossref_primary_10_1016_j_apenergy_2023_122151
crossref_primary_10_1016_j_jclepro_2024_143543
crossref_primary_10_1038_s41598_024_82759_z
crossref_primary_10_1029_2023WR036741
crossref_primary_10_1016_j_engappai_2025_110476
crossref_primary_10_1016_j_xcrp_2024_102292
crossref_primary_10_1109_TKDE_2024_3374773
crossref_primary_10_1016_j_engappai_2024_109190
crossref_primary_10_1145_3660523
crossref_primary_10_3390_info14040228
crossref_primary_10_3390_s24154796
crossref_primary_10_1145_3703915
crossref_primary_10_1016_j_jbi_2024_104616
crossref_primary_10_3390_app13169304
crossref_primary_10_1016_j_engappai_2023_106741
crossref_primary_10_1016_j_comcom_2024_02_005
crossref_primary_10_1177_03611981231172961
crossref_primary_10_3934_math_2024617
crossref_primary_10_1016_j_inffus_2024_102291
crossref_primary_10_1007_s00521_022_07380_5
crossref_primary_10_1016_j_tre_2024_103525
crossref_primary_10_1109_JSEN_2024_3394846
crossref_primary_10_1016_j_dsm_2024_11_001
crossref_primary_10_1109_OJCOMS_2024_3506214
crossref_primary_10_1109_TSUSC_2024_3351282
crossref_primary_10_1007_s12273_024_1125_6
crossref_primary_10_1016_j_enpol_2023_113845
crossref_primary_10_3390_app13063989
crossref_primary_10_1016_j_engappai_2023_106754
crossref_primary_10_3390_app13063987
crossref_primary_10_1007_s00034_024_02877_x
crossref_primary_10_1109_TETC_2024_3374581
crossref_primary_10_1016_j_eswa_2023_119587
crossref_primary_10_1140_epjs_s11734_024_01368_z
crossref_primary_10_1007_s12273_024_1136_3
crossref_primary_10_1007_s10489_025_06348_x
crossref_primary_10_3390_ijgi10120821
crossref_primary_10_1016_j_eswa_2023_121548
crossref_primary_10_1016_j_autcon_2025_106040
crossref_primary_10_1016_j_eswa_2023_120333
crossref_primary_10_1016_j_neunet_2024_106484
crossref_primary_10_3390_app13179729
crossref_primary_10_1016_j_tranpol_2025_01_025
crossref_primary_10_3390_asi5010023
crossref_primary_10_3390_math11163446
crossref_primary_10_3390_s23177534
crossref_primary_10_1002_qre_3651
crossref_primary_10_1016_j_procs_2023_11_089
crossref_primary_10_3390_s23041975
crossref_primary_10_3390_sym16091183
crossref_primary_10_3390_s22197457
crossref_primary_10_32604_iasc_2023_039132
crossref_primary_10_1016_j_engappai_2024_109042
crossref_primary_10_1038_s41598_024_78335_0
crossref_primary_10_1016_j_eswa_2023_122449
crossref_primary_10_1016_j_ins_2022_12_086
crossref_primary_10_1109_OJCS_2025_3525560
crossref_primary_10_1007_s11036_024_02306_y
crossref_primary_10_1016_j_engappai_2025_110304
crossref_primary_10_1007_s13177_024_00453_w
crossref_primary_10_1115_1_4065612
crossref_primary_10_1109_TITS_2024_3436930
crossref_primary_10_3390_w17010012
crossref_primary_10_1007_s00521_024_09675_1
crossref_primary_10_54097_hset_v44i_7198
crossref_primary_10_1007_s00521_024_10606_3
crossref_primary_10_1109_TITS_2024_3443887
crossref_primary_10_1016_j_knosys_2024_112929
crossref_primary_10_3233_JIFS_231133
crossref_primary_10_1016_j_apenergy_2024_124236
crossref_primary_10_1016_j_ymssp_2023_110534
crossref_primary_10_1016_j_jlp_2024_105396
crossref_primary_10_1080_03081060_2023_2245389
crossref_primary_10_1016_j_tre_2023_103320
crossref_primary_10_1109_ACCESS_2023_3338223
crossref_primary_10_1145_3696413
crossref_primary_10_1145_3696411
crossref_primary_10_14778_3641204_3641217
crossref_primary_10_1016_j_eswa_2023_120035
crossref_primary_10_1109_ACCESS_2023_3335196
crossref_primary_10_3390_vehicles6010005
crossref_primary_10_1007_s00521_024_10672_7
crossref_primary_10_1007_s10586_023_04140_5
crossref_primary_10_1109_TSMC_2024_3407948
crossref_primary_10_1109_TMC_2023_3296501
crossref_primary_10_1016_j_measurement_2024_116308
crossref_primary_10_15446_dyna_v92n235_115909
crossref_primary_10_32604_cmc_2024_047836
crossref_primary_10_1007_s40747_024_01669_9
crossref_primary_10_3390_ijgi11020102
crossref_primary_10_1016_j_physa_2024_129891
crossref_primary_10_1007_s00521_024_10508_4
crossref_primary_10_3390_app13020711
crossref_primary_10_1109_ACCESS_2023_3268212
crossref_primary_10_1016_j_knosys_2024_111813
crossref_primary_10_1016_j_trc_2022_103921
crossref_primary_10_1007_s10044_024_01382_w
crossref_primary_10_1016_j_pdisas_2025_100405
crossref_primary_10_2139_ssrn_4692194
crossref_primary_10_1109_TVT_2023_3328144
crossref_primary_10_1007_s10618_024_01038_7
crossref_primary_10_1109_ACCESS_2024_3403516
crossref_primary_10_3390_electronics13193816
crossref_primary_10_1016_j_eswa_2023_120259
crossref_primary_10_1145_3648358
crossref_primary_10_1049_2024_8639981
crossref_primary_10_32604_cmes_2024_057774
crossref_primary_10_1007_s10489_023_04651_z
crossref_primary_10_1016_j_aei_2024_102519
crossref_primary_10_3390_fi15120377
crossref_primary_10_1016_j_jnca_2025_104108
crossref_primary_10_1016_j_ins_2024_120482
crossref_primary_10_1016_j_inffus_2024_102228
crossref_primary_10_1145_3711121
crossref_primary_10_1145_3711122
crossref_primary_10_1016_j_eswa_2023_121394
crossref_primary_10_1007_s11116_024_10504_6
crossref_primary_10_1016_j_apenergy_2023_120928
crossref_primary_10_1016_j_inffus_2024_102241
crossref_primary_10_1016_j_eswa_2023_121280
crossref_primary_10_1109_TSP_2024_3435935
crossref_primary_10_1016_j_knosys_2024_111637
crossref_primary_10_1108_DTA_09_2022_0378
crossref_primary_10_1109_TITS_2022_3202089
crossref_primary_10_1007_s10618_022_00903_7
crossref_primary_10_1109_TITS_2023_3257759
crossref_primary_10_32604_cmc_2023_039274
crossref_primary_10_3934_era_2023133
crossref_primary_10_1007_s13177_025_00480_1
crossref_primary_10_23919_JSEE_2023_000083
crossref_primary_10_3390_sym15051036
crossref_primary_10_1007_s41019_024_00246_x
crossref_primary_10_1016_j_cjche_2024_05_029
crossref_primary_10_3390_app14177793
crossref_primary_10_1016_j_neunet_2024_106787
crossref_primary_10_1007_s40747_024_01663_1
crossref_primary_10_30518_jav_1307741
crossref_primary_10_1007_s00289_023_05117_5
crossref_primary_10_1109_TNSE_2024_3521429
crossref_primary_10_3390_e25081136
crossref_primary_10_1177_03611981231213878
crossref_primary_10_1007_s13042_024_02435_6
crossref_primary_10_1007_s10489_024_05656_y
crossref_primary_10_1016_j_eswa_2024_125921
crossref_primary_10_1016_j_inffus_2024_102466
crossref_primary_10_3390_fi16080270
crossref_primary_10_3390_math12213338
crossref_primary_10_1016_j_autcon_2023_104984
crossref_primary_10_3390_rs15143611
crossref_primary_10_1016_j_neunet_2023_01_023
crossref_primary_10_1016_j_eswa_2024_125950
crossref_primary_10_1016_j_ces_2024_121147
crossref_primary_10_1007_s10707_024_00517_9
crossref_primary_10_1016_j_mfglet_2024_09_172
crossref_primary_10_1007_s10661_024_12443_2
crossref_primary_10_1016_j_neucom_2023_127018
crossref_primary_10_1007_s10994_024_06725_6
crossref_primary_10_1109_OJVT_2024_3369691
crossref_primary_10_1007_s11518_024_5594_z
crossref_primary_10_1016_j_future_2024_107515
crossref_primary_10_7717_peerj_cs_2391
crossref_primary_10_1016_j_eswa_2024_123884
crossref_primary_10_1109_ACCESS_2023_3236261
crossref_primary_10_1016_j_neunet_2024_106228
crossref_primary_10_1016_j_trc_2025_105107
crossref_primary_10_1049_itr2_12371
crossref_primary_10_1016_j_compeleceng_2024_110046
crossref_primary_10_1371_journal_pone_0298684
crossref_primary_10_62329_TUVN1118
crossref_primary_10_3390_app12189156
crossref_primary_10_1016_j_multra_2025_100207
crossref_primary_10_1007_s00521_024_10591_7
crossref_primary_10_1088_1742_6596_2711_1_012012
crossref_primary_10_1109_JIOT_2023_3317190
crossref_primary_10_1016_j_enbuild_2024_114901
crossref_primary_10_1016_j_tre_2025_104011
crossref_primary_10_1177_03611981241233569
crossref_primary_10_3390_aerospace11050371
crossref_primary_10_1109_TITS_2022_3224039
crossref_primary_10_1016_j_neunet_2024_106793
crossref_primary_10_1007_s00500_025_10501_6
crossref_primary_10_3390_ijgi14010011
crossref_primary_10_1016_j_eswa_2023_122143
crossref_primary_10_1016_j_oceaneng_2024_118927
crossref_primary_10_1016_j_eswa_2024_123543
crossref_primary_10_1016_j_inffus_2024_102265
crossref_primary_10_3390_s23146527
crossref_primary_10_1109_OJITS_2023_3251564
crossref_primary_10_1007_s10707_024_00527_7
crossref_primary_10_1016_j_neunet_2024_106207
crossref_primary_10_1016_j_engappai_2024_109575
crossref_primary_10_1016_j_knosys_2024_112875
crossref_primary_10_1016_j_knosys_2024_112874
crossref_primary_10_1007_s10462_024_10931_y
crossref_primary_10_3390_math12101493
crossref_primary_10_1016_j_trc_2024_104861
crossref_primary_10_1109_TITS_2024_3367754
crossref_primary_10_1016_j_dcan_2023_01_016
crossref_primary_10_1109_TITS_2023_3325817
crossref_primary_10_1016_j_neunet_2024_106938
crossref_primary_10_1016_j_ijforecast_2024_11_004
crossref_primary_10_1002_spe_3386
crossref_primary_10_1016_j_ins_2024_120648
crossref_primary_10_1016_j_cma_2024_117458
crossref_primary_10_1016_j_eswa_2024_123448
crossref_primary_10_3390_a17040166
crossref_primary_10_1007_s11227_024_06539_2
crossref_primary_10_1016_j_asoc_2023_110052
crossref_primary_10_1038_s41598_024_60598_2
crossref_primary_10_1016_j_asoc_2023_110175
crossref_primary_10_3390_buildings13102504
crossref_primary_10_1016_j_adhoc_2022_103016
crossref_primary_10_3390_s22239492
crossref_primary_10_3390_en17174296
crossref_primary_10_1145_3627816
crossref_primary_10_3390_a15100376
crossref_primary_10_1142_S0218126624502736
crossref_primary_10_1016_j_eswa_2024_125534
crossref_primary_10_3390_s24206659
crossref_primary_10_3390_electronics13152897
crossref_primary_10_1016_j_knosys_2024_111689
crossref_primary_10_3390_make6040139
crossref_primary_10_3390_smartcities6050114
crossref_primary_10_3390_math10193507
crossref_primary_10_1109_OJCOMS_2024_3407708
crossref_primary_10_1016_j_knosys_2023_111170
crossref_primary_10_1016_j_asoc_2023_110059
crossref_primary_10_1016_j_inffus_2024_102845
crossref_primary_10_1016_j_rsma_2025_104088
crossref_primary_10_1109_TAI_2024_3459857
crossref_primary_10_1016_j_dsp_2023_104156
crossref_primary_10_1016_j_eswa_2024_124431
crossref_primary_10_1016_j_eswa_2023_122072
crossref_primary_10_1007_s11869_023_01369_2
crossref_primary_10_1088_1361_6501_ad3016
crossref_primary_10_1016_j_knosys_2025_112967
crossref_primary_10_1109_TITS_2023_3308594
crossref_primary_10_3390_su14127431
crossref_primary_10_1088_1361_6501_ad6f33
crossref_primary_10_1007_s44196_024_00602_9
crossref_primary_10_1680_jtran_24_00024
crossref_primary_10_1016_j_eswa_2024_124430
crossref_primary_10_1016_j_ins_2024_121845
crossref_primary_10_1016_j_eswa_2024_124466
crossref_primary_10_3390_s23229225
crossref_primary_10_1016_j_eswa_2023_123091
crossref_primary_10_1109_ACCESS_2023_3345795
crossref_primary_10_1145_3689430
crossref_primary_10_1142_S0218348X23400777
crossref_primary_10_3390_asi5060121
crossref_primary_10_1016_j_eswa_2022_119311
crossref_primary_10_1109_TII_2022_3216238
crossref_primary_10_1109_TKDE_2023_3333824
crossref_primary_10_1016_j_engappai_2023_107265
crossref_primary_10_1145_3565973
crossref_primary_10_1016_j_neucom_2024_128225
crossref_primary_10_3934_math_2025096
crossref_primary_10_1016_j_chaos_2024_115437
crossref_primary_10_1177_03611981231198851
crossref_primary_10_1007_s00521_024_10732_y
crossref_primary_10_1080_1206212X_2024_2442699
crossref_primary_10_1109_TITS_2024_3450846
crossref_primary_10_1002_cpe_7827
crossref_primary_10_3390_su16219239
crossref_primary_10_1109_THMS_2023_3319356
crossref_primary_10_1016_j_inffus_2023_102146
crossref_primary_10_1080_15715124_2024_2329243
crossref_primary_10_1145_3607191
crossref_primary_10_1016_j_cie_2024_110761
crossref_primary_10_1016_j_energy_2024_132144
crossref_primary_10_1016_j_jnca_2024_104034
crossref_primary_10_61186_jgst_14_2_1
crossref_primary_10_1007_s13177_024_00414_3
crossref_primary_10_3390_math10244734
crossref_primary_10_1016_j_eswa_2025_126937
crossref_primary_10_1007_s42001_024_00340_0
crossref_primary_10_3390_s22229024
crossref_primary_10_1007_s12530_024_09624_2
crossref_primary_10_1007_s42488_025_00141_8
crossref_primary_10_1016_j_ins_2024_120215
crossref_primary_10_1061_JTEPBS_TEENG_8416
crossref_primary_10_1016_j_eswa_2024_124693
crossref_primary_10_1007_s13177_024_00425_0
crossref_primary_10_1109_OJITS_2025_3544301
crossref_primary_10_1109_TNNLS_2024_3379735
crossref_primary_10_1007_s11227_024_06670_0
crossref_primary_10_1016_j_ijtst_2023_04_006
crossref_primary_10_1109_TITS_2025_3533560
crossref_primary_10_1145_3625820
crossref_primary_10_3390_electronics12081885
crossref_primary_10_1029_2023GH000784
crossref_primary_10_1007_s10489_024_05301_8
crossref_primary_10_1016_j_inffus_2024_102404
crossref_primary_10_1145_3641277
crossref_primary_10_1016_j_neunet_2024_106950
crossref_primary_10_1007_s12530_024_09637_x
crossref_primary_10_1061_JTEPBS_TEENG_8207
crossref_primary_10_1016_j_eswa_2024_124354
crossref_primary_10_4018_JOEUC_370912
crossref_primary_10_1016_j_eswa_2024_123268
crossref_primary_10_1016_j_inffus_2024_102542
crossref_primary_10_3390_atmos14030467
crossref_primary_10_1016_j_asoc_2025_112892
crossref_primary_10_1007_s10489_024_05970_5
crossref_primary_10_1038_s41598_025_93179_y
crossref_primary_10_1016_j_neucom_2024_128256
crossref_primary_10_1109_MITS_2024_3400679
crossref_primary_10_1109_TVT_2023_3239054
crossref_primary_10_1016_j_engappai_2023_106044
crossref_primary_10_1109_MITS_2023_3315329
crossref_primary_10_1109_TITS_2024_3375267
crossref_primary_10_1155_2023_3208535
crossref_primary_10_1016_j_epsr_2023_109873
crossref_primary_10_3390_healthcare11121762
Cites_doi 10.3390/app10041509
10.1007/s42421-020-00020-1
10.1155/2020/7586154
10.1109/ACCESS.2020.3027375
10.1609/aaai.v34i01.5477
10.1109/ACCESS.2019.2958380
10.1145/3395260.3395266
10.1371/journal.pone.0220782
10.1145/3381005
10.1007/s11277-020-07612-8
10.1016/j.comnet.2020.107530
10.1155/2020/8859538
10.1177/0361198120919399
10.1080/13658816.2019.1697879
10.1109/CVPR.2019.01103
10.1145/3292500.3330884
10.1145/3397536.3422257
10.1016/j.aiopen.2021.01.001
10.1609/aaai.v35i5.16591
10.1007/978-3-030-67670-4_27
10.1109/ACCESS.2020.2994415
10.1609/aaai.v33i01.33013656
10.1177/0361198120930010
10.1016/j.neucom.2020.06.001
10.1145/3340531.3411874
10.1111/mice.12450
10.1609/aaai.v35i10.17114
10.1109/ACCESS.2020.3018452
10.1145/3340531.3411940
10.1609/aaai.v33i01.3301485
10.1109/ACCESS.2020.3038380
10.26599/TST.2018.9010033
10.1145/3292500.3330877
10.1109/ACCESS.2021.3062114
10.1145/3357384.3358097
10.1016/j.comcom.2021.12.015
10.1145/3274895.3274896
10.1142/S0218194019400187
10.1063/1.5117180
10.1145/3340531.3412054
10.1145/3347146.3359094
10.1609/aaai.v34i01.5470
10.1609/aaai.v34i01.5471
10.1016/j.comnet.2020.107484
10.1016/j.trc.2018.03.001
10.1109/TSIPN.2020.3040042
10.1016/j.inffus.2020.01.002
10.1016/j.trc.2019.08.010
10.1109/TKDE.2020.3001195
10.3390/s20133776
10.1109/TITS.2019.2910560
10.1155/2020/6939328
10.1609/aaai.v35i5.16542
10.1109/TNN.2008.2005605
10.3390/ijgi8060243
10.1016/j.trc.2020.02.013
10.1049/iet-its.2019.0778
10.1016/j.adhoc.2020.102224
10.1016/j.trc.2020.01.010
10.1007/s11390-020-9970-y
10.1145/3340531.3411941
10.1609/aaai.v34i01.5438
10.1609/aaai.v34i04.5758
10.1609/aaai.v33i01.3301922
10.1111/tgis.12641
10.1111/tgis.12644
10.1609/aaai.v33i01.3301890
10.1609/aaai.v31i1.10735
10.1609/aaai.v34i01.5480
10.3390/ijgi8090414
10.1145/3340531.3411965
10.1609/aaai.v34i04.5915
10.3390/ijgi10070485
10.1145/3340531.3411894
10.24963/ijcai.2019/402
10.1016/j.trc.2019.05.039
10.1049/iet-its.2019.0873
10.1109/TITS.2022.3220089
10.1063/5.0007174
10.1016/j.trc.2018.10.011
10.1109/ACCESS.2021.3071174
10.1186/s12544-019-0345-9
10.1145/1869790.1869807
10.1145/3219819.3219895
10.1145/3409501.3409539
10.1145/3366423.3380101
10.1145/3340531.3411873
10.1145/3340531.3417411
10.1016/j.ins.2020.01.043
10.1109/ACCESS.2019.2953888
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.117921
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_117921
S0957417422011654
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c366t-7eabac6f82b7766459e5822971215fdb65f3f51682b957a41540203060c0a2813
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Apr 24 22:52:27 EDT 2025
Tue Jul 01 04:06:02 EDT 2025
Fri Feb 23 02:38:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Graph neural networks
Traffic forecasting
Graph convolution network
Graph attention network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-7eabac6f82b7766459e5822971215fdb65f3f51682b957a41540203060c0a2813
ORCID 0000-0003-0953-5047
ParticipantIDs crossref_primary_10_1016_j_eswa_2022_117921
crossref_citationtrail_10_1016_j_eswa_2022_117921
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-30
PublicationDateYYYYMMDD 2022-11-30
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-30
  day: 30
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Geng, Wu, Zhang, Yang, Liu, Ye (b48) 2019
Sun, Li, Lv, Dong (b157) 2020; 14
Li, Axhausen (b97) 2020; 1
Shleifer, McCreery, Chitters (b154) 2019
Lee, Rhee (b95) 2022; 134
Shi, Yao, Guo, Li, Zhang, Ye (b151) 2020
Varghese, Chikaraishi, Urata (b164) 2020
Du, Hu, Sun, Liu, Qiao, Lv (b36) 2020
Fukuda, Uchida, Fujii, Yamada (b43) 2020
Mallick, Balaprakash, Rask, Macfarlane (b124) 2020
Zhu, Luo, Liu, Fan, Song, Yu (b257) 2019; 29
Bai, Yao, Kanhere, Wang, Sheng (b5) 2019
Xin, Y., Miao, D., Zhu, M., Jin, C., & Lu, X. (2020). InterNet: Multistep traffic forecasting by interacting spatial and temporal features. In
Wu, Tan, Qin, Ran, Jiang (b186) 2018; 90
Zhang, Wang, Chen, Cao (b240) 2019
Zhou, Wang, Xie, Chen, Zhu (b253) 2020
(pp. 1227–1235).
Ren, Xie (b145) 2019
Wang, Guan, Cao, Zhang, Wu (b168) 2020; 119
Zheng, Hu, Ming, Hu, Chen, Zheng (b248) 2020
Huang, Zhang, Wen, Chen (b74) 2020
Zhao, Yang, Wang, Wang, Su (b246) 2020
Han, Shen, Yang, Kong (b62) 2020; 121
(pp. 715–724).
Li, C., Bai, L., Liu, W., Yao, L., & Waller, S. T. (2020). Knowledge adaption for demand prediction based on multi-task memory neural network. In
Wang, Luo, Zhang, Yuan, Bertozzi, Brantingham (b171) 2018
Wright, Ehlers, Horowitz (b181) 2019
Chen, Rossi, Mahadik, Eldardiry (b25) 2020
(pp. 1853–1862).
Wang, Xu, Liu, Zhou, Zhao (b175) 2020
Zhang, Cheng, Ren (b223) 2019; 34
.
Xiong, Ozbay, Jin, Feng (b195) 2020
Yu, Lee, Sohn (b215) 2020; 114
Guo, Jiang, Huang, Tao, Wang, Li (b55) 2019
(pp. 2293–2296).
Ge, Li, Liu, Zhou (b45) 2019
Li, Yang, Tang, Xia (b107) 2020
Ye, J., Sun, L., Du, B., Fu, Y., & Xiong, H. (2021). Coupled layer-wise graph convolution for transportation demand prediction. In
George, Santra (b49) 2020; 115
Wu, Pan, Long, Jiang, Zhang (b185) 2019
Bai, Zhu, Song, Zhao, Hou, Du (b7) 2021; 10
Li, L., Yan, J., Yang, X., & Jin, Y. (2019). Learning interpretable deep state space model for probabilistic time series forecasting. In
Chen, F., Chen, Z., Biswas, S., Lei, S., Ramakrishnan, N., & Lu, C.-T. (2020). Graph convolutional networks with Kalman filtering for traffic prediction. In
Luca, Barlacchi, Lepri, Pappalardo (b120) 2020
Yu, Yin, Zhu (b218) 2019
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b148) 2008; 20
Guo, Yuan (b58) 2020
(pp. 1025–1034).
Qiu, Zheng, Msahli, Memmi, Qiu, Lu (b142) 2020
Kipf, Welling (b90) 2017
(pp. 1720–1730).
Jia, Wu, Zhang (b79) 2020
Mena-Oreja, Gozalvez (b127) 2020; 8
Jin, Cui, Zeng, Tang, Feng, Huang (b82) 2020; 117
Liu, Chen, Wu, Zhen, Li, Lin (b112) 2020
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b165) 2017; 30
Zhang, Zhang, Jin (b241) 2020
Chen, Zhao, Wang, Duan, Zhao (b27) 2020; 20
Kim, Chung, Kim (b87) 2020
Jepsen, T. S., Jensen, C. S., & Nielsen, T. D. (2019). Graph convolutional networks for road networks. In
Liu, Ong, Chen (b113) 2020
Song, C., Lin, Y., Guo, S., & Wan, H. (2020). Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In
Agafonov (b1) 2020
Yin, Wu, Wei, Shen, Qi, Yin (b209) 2020
Xu, Li (b199) 2019; 8
Li, Yu, Shahabi, Liu (b108) 2018
Bai, Yao, Li, Wang, Wang (b6) 2020
Song, Ming, Hu, Niu, Gao (b156) 2020
Zhang, Dong, Shang, Zhang, Wang (b226) 2020
(pp. 460–463).
Li, Xiong, Tian, Lv, Chen, Hui (b105) 2020
Chen, Chen, Lai, Jin, Liu, Li (b20) 2020; 8
Hong, Lin, Yang, Li, Fu, Wang (b70) 2020
Mohanty, Pozdnukhov, Cassidy (b129) 2020; 116
Zhang, Lu, Li (b238) 2020; 2020
(pp. 218–223).
Lu, Lv, Xie, Du, Huang (b118) 2019
Cui, Henrickson, Ke, Wang (b29) 2019
Wu, M., Zhu, C., & Chen, L. (2020). Multi-task spatial-temporal graph attention network for taxi demand prediction. In
(pp. 1555–1564).
Xie, Lv, Huang, Lu, Du, Huang (b191) 2019
Bai, L., Yao, L., Kanhere, S. S., Wang, X., Liu, W., & Yang, Z. (2019). Spatio-temporal graph convolutional and recurrent networks for citywide passenger demand prediction. In
Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., & Feng, X. (2020). Multi-range attentive bicomponent graph convolutional network for traffic forecasting. In
(pp. 4189–4196).
Zhou, Yang, Zhang, Trajcevski, Zhong, Khokhar (b254) 2020
Lu, B., Gan, X., Jin, H., Fu, L., & Zhang, H. (2020). Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In
Lv, Hong, Chen, Chen, Zhu, Ji (b122) 2020
Heglund, Taleongpong, Hu, Tran (b68) 2020
Zhang, W., Liu, H., Liu, Y., Zhou, J., & Xiong, H. (2020). Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction. In
Bogaerts, Masegosa, Angarita-Zapata, Onieva, Hellinckx (b11) 2020; 112
(pp. 1655–1661).
Guopeng, Knoop, van Lint (b59) 2020
Sun, Wang, Fu, Wang, Zhang, Ye (b158) 2021
Fang, Huang, Wang, Zeng, Liang, Wang (b38) 2020
(pp. 3656–3663).
Pan, Zhang, Liang, Zhang, Yu, Zhang (b134) 2020
Hu, Guo, Yang, Jensen, Chen (b71) 2018
Zhang, James, Liu (b231) 2019; 7
Haghighat, Ravichandra-Mouli, Chakraborty, Esfandiari, Arabi, Sharma (b60) 2020; 2
(pp. 2901–2908).
Cui, Ke, Pu, Ma, Wang (b30) 2020; 115
Kipf, Welling (b89) 2016
Cao, Wang, Duan, Zhang, Zhu, Huang (b17) 2020; 33
Gilmer, Schoenholz, Riley, Vinyals, Dahl (b50) 2017
Jepsen, Jensen, Nielsen (b78) 2020
Lee, Jung, Cheon, Kim, You (b93) 2019
Li, Li, Peng, Tao (b99) 2020
Wang, Q., Guo, B., Ouyang, Y., Shu, K., Yu, Z., & Liu, H. (2020). Spatial community-informed evolving graphs for demand prediction. In
Zhang, Guo (b228) 2020
Xu, Zheng, Feng, Chen (b201) 2020
Li, Y., & Moura, J. M. (2020). Forecaster: A graph transformer for forecasting spatial and time-dependent data. In
Zhu, Wang, Tao, Deng, Zhao, Li (b258) 2021; 9
Zhu, Xie, He, Sun, Zhu, Zhou (b259) 2020; 2020
Zhao, Song, Zhang, Liu, Wang, Lin (b245) 2019
Xie, Li, Liu, Du, Yang, Zhang (b190) 2020; 59
Atwood, Towsley (b3) 2016
Ke, Feng, Zhu, Yang, Ye (b85) 2021; 127
Zhang, X., Huang, C., Xu, Y., & Xia, L. (2020). Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting. In
Xiao, Wang, Zhang, Ni (b188) 2020
Wang, Ma, Wang, Jin, Wang, Tang (b172) 2020
Lu, Lv, Cao, Xie, Peng, Du (b117) 2020
Zhang, Q., Chang, J., Meng, G., Xiang, S., & Pan, C. (2020). Spatio-temporal graph structure learning for traffic forecasting. In
Ge, Li, Wang, Chang, Wu (b46) 2020; 10
Guo, Hu, Qian, Sun, Gao, Yin (b54) 2020
Xu, Kang, Cao, Li (b198) 2020
Fang, Zhang, Meng, Xiang, Pan (b40) 2019
Zhou, Cui, Hu, Zhang, Yang, Liu (b249) 2020; 1
Guo, Song, Wang (b57) 2019
Pavlyuk (b136) 2019; 11
Zhang, Chen, Cui, Guo, Zhu (b221) 2020
Arjovsky, Chintala, Bottou (b2) 2017
Lewenfus, Martins, Chatzinotas, Ottersten (b96) 2020
Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., & Ye, J., et al. (2019). Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In
Oreshkin, B. N., Amini, A., Coyle, L., & Coates, M. (2021). FC-GAGA: Fully connected gated graph architecture for spatio-temporal traffic forecasting. In
Zhou, Gu, Ling, Li, Zhuang, Wang (b250) 2020; 35
Qu, Zhu, Zang, Xu, Yu (b143) 2020
Zhang, Liu, Liu, Zhou, Xu, Xiong (b236) 2020
He, S., & Shin, K. G. (2020a). Dynamic flow distribution prediction for urban dockless E-scooter sharing reconfiguration. In
Guo, Hu, Qian, Sun, Gao, Yin (b53) 2020
(pp. 922–929).
(pp. 4617–4625).
(pp. 397–400).
Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., & Hoffmann, H. (2019). Explainability methods for graph convolutional neural networks. In
Shen, Jin, Hua (b150) 2020
Chai, D., Wang, L., & Yang, Q. (2018). Bike flow prediction with multi-graph convolutional networks. In
Li, Wang, Zhang, Wu (b103) 2020
Chen, Zhang, Du, Fang, Ren, Bian (b26) 2020
Wang, Peng, Wang, Meng, Wu, Sun (b174) 2020; 115
Chen, Han, Yin, Cao (b22) 2020
Zhang, J., Zheng, Y., & Qi, D. (2017). Deep spatio-temporal residual networks for citywide crowd flows prediction. In
Wang, Chen, Min, He, Yang, Zhang (b167) 2018
He, Zhao, Wang, Tsui (b67) 2020
Shin, Yoon (b153) 2020
Mohanty, Pozdnukhov (b128) 2018
Xu, Dai, Liu, Gao, Lin, Qi (b196) 2020
Hamilton, Ying, Leskovec (b61) 2017
(pp. 3477–3480).
(pp. 99–108).
Zhang, Li, Lin, Wang, He (b234) 2019; 105
Liao, B., Zhang, J., Wu, C., McIlwraith, D., Chen, T., & Yang, S., et al. (2018). Deep sequence learning with auxiliary information for traffic prediction. In
Jiang, Zhang (b81) 2018; 24
Henaff, Bruna, LeCun (b69) 2015
Wang, Kong, Huang, Xiao (b170) 2021; 47
Yu, Gu (b214) 2019; 20
Sun, Zhang, Li, Yi, Liang, Zheng (b159) 2020
Xie, Xiong, Zhu (b193) 2020
Manibardo, Laña, Del Ser (b126) 2021
Zhang, Liu, Tang, Xiong (b237) 2020
Hu, Yang, Guo, Jensen, Xiong (b72) 2020
Cai, Janowicz, Mai, Yan, Zhu (b16) 2020
(pp. 224–228).
Feng, Wu, Zhang, Wu (b41) 2020; 8
Lee, Eo, Jung, Yoon, Rhee (b92) 2021; 9
Zhang, Jin, Chang, Xiang, Pan (b232) 2018
Dai, Xu, Gu, Ji, Liu (b32) 2020
Yao, Gao, Zhu, Manley, Wang, Liu (b204) 2020
Luo, Du, Klemmer, Zhu, Ferhatosmanoglu, Wen (b121) 2020; 4
Zhu, Han, Deng, Tao, Zhao, Wang (b256) 2022
Kim, Lee, Sohn (b88) 2019; 14
Chen, C., Li, K., Teo, S. G., Zou, X., Wang, K., & Wang, J., et al. (2019). Gated residual recurrent graph neural networks for traffic prediction. In
Qin, Xu, Kang, Kwan (b141) 2020
Jin, Xi, Sha, Feng, Huang (b83) 2020
Ye, Zhao, Ye, Xu (b206) 2020
Xu, Dai, Wang, Peng, Xuan, Guo (b197) 2019; 29
Tian, Guo, Ye, Xu (b163) 2020
Wei, Yu, Jin, Xie, Huang, Cai (b180) 2019
Boukerche, Wang (b13) 2020; 181
Fan, Xiang, Gong, He, Qu, Amirgholipour (b37) 2020
(pp. 133–143).
Kong, Xing, Wei, Bao, Zhang, Lu (b91) 2020
Hasanzadeh, Liu, Duffield, Narayanan (b64) 2019
Li, M., & Zhu, Z. (2021). Spatial-temporal fusion graph neural networks for traffic flow forecasting. In
(pp. 537–546).
Qin, Liu, Wu, Tong, Zhao (b140) 2020
Tang, Sun, Sun (b160) 2020
Wang, Zhang, Wang, Chen (b178) 2020
(pp. 3844–3852).
Xu, Wei, Peng, Xuan, Guo (b200) 2020; 117
Lu, Zhang, Liu, Xiong (b119) 2019
Ying, Bourgeois, You, Zitnik, Leskovec (b211) 2019
Liu, Zhou, Long, Jiang, Zhang (b115) 2019
(pp. 914–921).
Tedjopurnomo, Bao, Zheng, Choudhury, Qin (b162) 2020
Bing, Zhifeng, Yangjie, Jinxing, Zhanwu (b10) 2020; 2020
Xie, Xiong, Zhu (b192) 2020
Baldassarre, Azizpour (b8) 2019
Wu, Chen, Wan (b182) 2018
Davis, Raina, Jagannathan (b33) 2020
Pian, Wu (b138) 2020
Kang, Xu, Hu, Pei (b84) 2019
Yu, Du, Hu, Sun, Han, Lv (b213) 2020
Zhou, Z., Wang, Y., Xie, X., Chen, L.,
Boukerche (10.1016/j.eswa.2022.117921_b14) 2020
Lu (10.1016/j.eswa.2022.117921_b117) 2020
Chen (10.1016/j.eswa.2022.117921_b25) 2020
Wu (10.1016/j.eswa.2022.117921_b184) 2020
Kong (10.1016/j.eswa.2022.117921_b91) 2020
Zhou (10.1016/j.eswa.2022.117921_b251) 2019
Xu (10.1016/j.eswa.2022.117921_b196) 2020
Li (10.1016/j.eswa.2022.117921_b107) 2020
10.1016/j.eswa.2022.117921_b155
Tang (10.1016/j.eswa.2022.117921_b160) 2020
Gilmer (10.1016/j.eswa.2022.117921_b50) 2017
10.1016/j.eswa.2022.117921_b77
Guo (10.1016/j.eswa.2022.117921_b57) 2019
Pavlyuk (10.1016/j.eswa.2022.117921_b136) 2019; 11
Zhang (10.1016/j.eswa.2022.117921_b231) 2019; 7
Huang (10.1016/j.eswa.2022.117921_b73) 2020
Qiu (10.1016/j.eswa.2022.117921_b142) 2020
Song (10.1016/j.eswa.2022.117921_b156) 2020
Xiong (10.1016/j.eswa.2022.117921_b195) 2020
Luca (10.1016/j.eswa.2022.117921_b120) 2020
10.1016/j.eswa.2022.117921_b169
Yu (10.1016/j.eswa.2022.117921_b218) 2019
Xiao (10.1016/j.eswa.2022.117921_b188) 2020
Zhu (10.1016/j.eswa.2022.117921_b259) 2020; 2020
Ge (10.1016/j.eswa.2022.117921_b44) 2019
Vaswani (10.1016/j.eswa.2022.117921_b165) 2017; 30
Wang (10.1016/j.eswa.2022.117921_b171) 2018
10.1016/j.eswa.2022.117921_b65
Ye (10.1016/j.eswa.2022.117921_b206) 2020
Guo (10.1016/j.eswa.2022.117921_b58) 2020
Yu (10.1016/j.eswa.2022.117921_b213) 2020
Cao (10.1016/j.eswa.2022.117921_b17) 2020; 33
Veličković (10.1016/j.eswa.2022.117921_b166) 2018
10.1016/j.eswa.2022.117921_b139
10.1016/j.eswa.2022.117921_b135
Xie (10.1016/j.eswa.2022.117921_b190) 2020; 59
Lee (10.1016/j.eswa.2022.117921_b93) 2019
Wu (10.1016/j.eswa.2022.117921_b186) 2018; 90
10.1016/j.eswa.2022.117921_b131
10.1016/j.eswa.2022.117921_b252
10.1016/j.eswa.2022.117921_b133
10.1016/j.eswa.2022.117921_b132
10.1016/j.eswa.2022.117921_b56
Guo (10.1016/j.eswa.2022.117921_b52) 2020
Lewenfus (10.1016/j.eswa.2022.117921_b96) 2020
Hu (10.1016/j.eswa.2022.117921_b72) 2020
Ge (10.1016/j.eswa.2022.117921_b45) 2019
Henaff (10.1016/j.eswa.2022.117921_b69) 2015
Lee (10.1016/j.eswa.2022.117921_b94) 2019
10.1016/j.eswa.2022.117921_b149
Liu (10.1016/j.eswa.2022.117921_b112) 2020
10.1016/j.eswa.2022.117921_b47
Wu (10.1016/j.eswa.2022.117921_b185) 2019
Zhang (10.1016/j.eswa.2022.117921_b236) 2020
Zhao (10.1016/j.eswa.2022.117921_b243) 2020
Xu (10.1016/j.eswa.2022.117921_b199) 2019; 8
Hamilton (10.1016/j.eswa.2022.117921_b61) 2017
10.1016/j.eswa.2022.117921_b194
Manibardo (10.1016/j.eswa.2022.117921_b126) 2021
Shen (10.1016/j.eswa.2022.117921_b150) 2020
Luo (10.1016/j.eswa.2022.117921_b121) 2020; 4
Zhang (10.1016/j.eswa.2022.117921_b234) 2019; 105
Guo (10.1016/j.eswa.2022.117921_b53) 2020
Zhang (10.1016/j.eswa.2022.117921_b227) 2019
Dai (10.1016/j.eswa.2022.117921_b32) 2020
Agafonov (10.1016/j.eswa.2022.117921_b1) 2020
10.1016/j.eswa.2022.117921_b35
Ying (10.1016/j.eswa.2022.117921_b211) 2019
Chen (10.1016/j.eswa.2022.117921_b26) 2020
10.1016/j.eswa.2022.117921_b34
Bruna (10.1016/j.eswa.2022.117921_b15) 2014
Li (10.1016/j.eswa.2022.117921_b97) 2020; 1
Jepsen (10.1016/j.eswa.2022.117921_b78) 2020
Zhang (10.1016/j.eswa.2022.117921_b232) 2018
Lee (10.1016/j.eswa.2022.117921_b92) 2021; 9
Satorras (10.1016/j.eswa.2022.117921_b147) 2018
Cui (10.1016/j.eswa.2022.117921_b29) 2019
Lee (10.1016/j.eswa.2022.117921_b95) 2022; 134
Zhou (10.1016/j.eswa.2022.117921_b255) 2020
Yin (10.1016/j.eswa.2022.117921_b210) 2021
Goodfellow (10.1016/j.eswa.2022.117921_b51) 2014; 27
10.1016/j.eswa.2022.117921_b173
Zhang (10.1016/j.eswa.2022.117921_b229) 2020
10.1016/j.eswa.2022.117921_b23
Cui (10.1016/j.eswa.2022.117921_b31) 2020; 117
10.1016/j.eswa.2022.117921_b21
Scarselli (10.1016/j.eswa.2022.117921_b148) 2008; 20
Xu (10.1016/j.eswa.2022.117921_b197) 2019; 29
Li (10.1016/j.eswa.2022.117921_b108) 2018
Yoshida (10.1016/j.eswa.2022.117921_b212) 2019
Li (10.1016/j.eswa.2022.117921_b105) 2020
Maas (10.1016/j.eswa.2022.117921_b123) 2020
Wang (10.1016/j.eswa.2022.117921_b168) 2020; 119
Chen (10.1016/j.eswa.2022.117921_b24) 2020
Peng (10.1016/j.eswa.2022.117921_b137) 2020; 521
Xu (10.1016/j.eswa.2022.117921_b200) 2020; 117
Zhou (10.1016/j.eswa.2022.117921_b254) 2020
Haghighat (10.1016/j.eswa.2022.117921_b60) 2020; 2
Wang (10.1016/j.eswa.2022.117921_b178) 2020
Tang (10.1016/j.eswa.2022.117921_b161) 2020; 8
10.1016/j.eswa.2022.117921_b19
Xu (10.1016/j.eswa.2022.117921_b201) 2020
10.1016/j.eswa.2022.117921_b177
10.1016/j.eswa.2022.117921_b18
Zhang (10.1016/j.eswa.2022.117921_b228) 2020
Feng (10.1016/j.eswa.2022.117921_b41) 2020; 8
Guo (10.1016/j.eswa.2022.117921_b55) 2019
Barredo-Arrieta (10.1016/j.eswa.2022.117921_b9) 2019
Yang (10.1016/j.eswa.2022.117921_b203) 2019; 107
Boukerche (10.1016/j.eswa.2022.117921_b12) 2020; 182
10.1016/j.eswa.2022.117921_b189
Kipf (10.1016/j.eswa.2022.117921_b90) 2017
Zhou (10.1016/j.eswa.2022.117921_b253) 2020
10.1016/j.eswa.2022.117921_b187
Fang (10.1016/j.eswa.2022.117921_b39) 2020
Zhang (10.1016/j.eswa.2022.117921_b233) 2019
Chen (10.1016/j.eswa.2022.117921_b22) 2020
Lv (10.1016/j.eswa.2022.117921_b122) 2020
Arjovsky (10.1016/j.eswa.2022.117921_b2) 2017
Qin (10.1016/j.eswa.2022.117921_b140) 2020
Zhang (10.1016/j.eswa.2022.117921_b238) 2020; 2020
Pian (10.1016/j.eswa.2022.117921_b138) 2020
Yu (10.1016/j.eswa.2022.117921_b214) 2019; 20
Wang (10.1016/j.eswa.2022.117921_b167) 2018
Wei (10.1016/j.eswa.2022.117921_b180) 2019
Xie (10.1016/j.eswa.2022.117921_b192) 2020
Chen (10.1016/j.eswa.2022.117921_b20) 2020; 8
Baldassarre (10.1016/j.eswa.2022.117921_b8) 2019
Sun (10.1016/j.eswa.2022.117921_b159) 2020
Hasanzadeh (10.1016/j.eswa.2022.117921_b64) 2019
Guo (10.1016/j.eswa.2022.117921_b54) 2020
Bai (10.1016/j.eswa.2022.117921_b5) 2019
Wang (10.1016/j.eswa.2022.117921_b170) 2021; 47
Kim (10.1016/j.eswa.2022.117921_b87) 2020
Ke (10.1016/j.eswa.2022.117921_b85) 2021; 127
Zhang (10.1016/j.eswa.2022.117921_b240) 2019
10.1016/j.eswa.2022.117921_b205
Guopeng (10.1016/j.eswa.2022.117921_b59) 2020
Zhang (10.1016/j.eswa.2022.117921_b226) 2020
Zhou (10.1016/j.eswa.2022.117921_b249) 2020; 1
Ren (10.1016/j.eswa.2022.117921_b145) 2019
Jiang (10.1016/j.eswa.2022.117921_b80) 2022; 185
Sánchez (10.1016/j.eswa.2022.117921_b146) 2020
Bing (10.1016/j.eswa.2022.117921_b10) 2020; 2020
Bai (10.1016/j.eswa.2022.117921_b6) 2020
Chen (10.1016/j.eswa.2022.117921_b27) 2020; 20
Wang (10.1016/j.eswa.2022.117921_b175) 2020
Jin (10.1016/j.eswa.2022.117921_b82) 2020; 117
Li (10.1016/j.eswa.2022.117921_b104) 2019
Wei (10.1016/j.eswa.2022.117921_b179) 2020
Zhang (10.1016/j.eswa.2022.117921_b225) 2020
Kim (10.1016/j.eswa.2022.117921_b88) 2019; 14
James (10.1016/j.eswa.2022.117921_b75) 2019
Atwood (10.1016/j.eswa.2022.117921_b3) 2016
Kipf (10.1016/j.eswa.2022.117921_b89) 2016
Sun (10.1016/j.eswa.2022.117921_b158) 2021
Zheng (10.1016/j.eswa.2022.117921_b248) 2020
Liu (10.1016/j.eswa.2022.117921_b113) 2020
Heglund (10.1016/j.eswa.2022.117921_b68) 2020
Mallick (10.1016/j.eswa.2022.117921_b125) 2021
Fukuda (10.1016/j.eswa.2022.117921_b43) 2020
Shi (10.1016/j.eswa.2022.117921_b152) 2018
Pan (10.1016/j.eswa.2022.117921_b134) 2020
Ramadan (10.1016/j.eswa.2022.117921_b144) 2020
Bai (10.1016/j.eswa.2022.117921_b7) 2021; 10
10.1016/j.eswa.2022.117921_b4
James (10.1016/j.eswa.2022.117921_b76) 2020
Shleifer (10.1016/j.eswa.2022.117921_b154) 2019
Bogaerts (10.1016/j.eswa.2022.117921_b11) 2020; 112
Zhu (10.1016/j.eswa.2022.117921_b258) 2021; 9
Shi (10.1016/j.eswa.2022.117921_b151) 2020
Xu (10.1016/j.eswa.2022.117921_b198) 2020
Han (10.1016/j.eswa.2022.117921_b63) 2019; 8
Qu (10.1016/j.eswa.2022.117921_b143) 2020
Mohanty (10.1016/j.eswa.2022.117921_b128) 2018
Tedjopurnomo (10.1016/j.eswa.2022.117921_b162) 2020
Jia (10.1016/j.eswa.2022.117921_b79) 2020
Fang (10.1016/j.eswa.2022.117921_b38) 2020
Li (10.1016/j.eswa.2022.117921_b103) 2020
Yu (10.1016/j.eswa.2022.117921_b215) 2020; 114
Zhang (10.1016/j.eswa.2022.117921_b241) 2020
Han (10.1016/j.eswa.2022.117921_b62) 2020; 121
Lin (10.1016/j.eswa.2022.117921_b111) 2018; 97
Wang (10.1016/j.eswa.2022.117921_b176) 2020; 30
Zhang (10.1016/j.eswa.2022.117921_b237) 2020
Zhou (10.1016/j.eswa.2022.117921_b250) 2020; 35
Cai (10.1016/j.eswa.2022.117921_b16) 2020
Davis (10.1016/j.eswa.2022.117921_b33) 2020
10.1016/j.eswa.2022.117921_b116
Yu (10.1016/j.eswa.2022.117921_b217) 2018
Hong (10.1016/j.eswa.2022.117921_b70) 2020
Wang (10.1016/j.eswa.2022.117921_b174) 2020; 115
10.1016/j.eswa.2022.117921_b114
10.1016/j.eswa.2022.117921_b235
10.1016/j.eswa.2022.117921_b230
Xie (10.1016/j.eswa.2022.117921_b191) 2019
10.1016/j.eswa.2022.117921_b110
Ye (10.1016/j.eswa.2022.117921_b207) 2020
He (10.1016/j.eswa.2022.117921_b67) 2020
Cirstea (10.1016/j.eswa.2022.117921_b28) 2019
Zhao (10.1016/j.eswa.2022.117921_b244) 2021
Zhao (10.1016/j.eswa.2022.117921_b245) 2019
Hu (10.1016/j.eswa.2022.117921_b71) 2018
Mena-Oreja (10.1016/j.eswa.2022.117921_b127) 2020; 8
Varghese (10.1016/j.eswa.2022.117921_b164) 2020
Fu (10.1016/j.eswa.2022.117921_b42) 2020
Jin (10.1016/j.eswa.2022.117921_b83) 2020
Qin (10.1016/j.eswa.2022.117921_b141) 2020
Wu (10.1016/j.eswa.2022.117921_b183) 2020
10.1016/j.eswa.2022.117921_b247
Ke (10.1016/j.eswa.2022.117921_b86) 2021; 122
Mallick (10.1016/j.eswa.2022.117921_b124) 2020
Yeghikyan (10.1016/j.eswa.2022.117921_b208) 2020
Zhu (10.1016/j.eswa.2022.117921_b257) 2019; 29
10.1016/j.eswa.2022.117921_b242
Zhu (10.1016/j.eswa.2022.117921_b256) 2022
Tian (10.1016/j.eswa.2022.117921_b163) 2020
Zhang (10.1016/j.eswa.2022.117921_b222) 2020
Zhang (10.1016/j.eswa.2022.117921_b224) 2020; 34
Lu (10.1016/j.eswa.2022.117921_b118) 2019
Fan (10.1016/j.eswa.2022.117921_b37) 2020
He (10.1016/j.eswa.2022.117921_b66) 2020
Du (10.1016/j.eswa.2022.117921_b36) 2020
Fang (10.1016/j.eswa.2022.117921_b40) 2019
George (10.1016/j.eswa.2022.117921_b49) 2020; 115
Wang (10.1016/j.eswa.2022.117921_b172) 2020
Wu (10.1016/j.eswa.2022.117921_b182) 2018
Geng (10.1016/j.eswa.2022.117921_b48) 2019
Sun (10.1016/j.eswa.2022.117921_b157) 2020; 14
Yu (10.1016/j.eswa.2022.117921_b216) 2019
Huang (10.1016/j.eswa.2022.117921_b74) 2020
10.1016/j.eswa.2022.117921_b219
Li (10.1016/j.eswa.2022.117921_b99) 2020
Ge (10.1016/j.eswa.2022.117921_b46) 2020; 10
Mohanty (10.1016/j.eswa.2022.117921_b129) 2020; 116
Liu (10.1016/j.eswa.2022.117921_b115) 2019
Boukerche (10.1016/j.eswa.2022.117921_b13) 2020; 181
Li (10.1016/j.eswa.2022.117921_b
References_xml – volume: 127
  year: 2021
  ident: b85
  article-title: Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 1
  year: 2020
  end-page: 8
  ident: b107
  article-title: SDCN: Sparsity and diversity driven correlation networks for traffic demand forecasting
  publication-title: 2020 international joint conference on neural networks (IJCNN)
– start-page: 3634
  year: 2018
  end-page: 3640
  ident: b217
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
  publication-title: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI-18
– reference: (pp. 4189–4196).
– year: 2020
  ident: b138
  article-title: Spatial-temporal dynamic graph attention networks for ride-hailing demand prediction
– year: 2018
  ident: b128
  article-title: Graph cnn+ lstm framework for dynamic macroscopic traffic congestion prediction
  publication-title: International workshop on mining and learning with graphs
– start-page: 29
  year: 2018
  end-page: 36
  ident: b101
  article-title: Graph CNNs for urban traffic passenger flows prediction
  publication-title: 2018 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)
– volume: 29
  year: 2019
  ident: b197
  article-title: Road traffic state prediction based on a graph embedding recurrent neural network under the SCATS
  publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science
– reference: Song, C., Lin, Y., Guo, S., & Wan, H. (2020). Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In
– year: 2016
  ident: b89
  article-title: Variational graph auto-encoders
– year: 2020
  ident: b79
  article-title: Dynamic spatiotemporal graph neural network with tensor network
– start-page: 1251
  year: 2019
  end-page: 1258
  ident: b212
  article-title: Practical end-to-end repositioning algorithm for managing bike-sharing system
  publication-title: 2019 IEEE international conference on big data (Big data)
– volume: 105
  start-page: 297
  year: 2019
  end-page: 322
  ident: b234
  article-title: Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 4
  start-page: 1
  year: 2020
  end-page: 21
  ident: b121
  article-title: D3P: Data-driven demand prediction for fast expanding electric vehicle sharing systems
  publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
– volume: 30
  year: 2020
  ident: b176
  article-title: An urban commuters’ OD hybrid prediction method based on big GPS data
  publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science
– reference: Li, L., Yan, J., Yang, X., & Jin, Y. (2019). Learning interpretable deep state space model for probabilistic time series forecasting. In
– year: 2020
  ident: b248
  article-title: Spatial-temporal demand forecasting and competitive supply via graph convolutional networks
– year: 2019
  ident: b216
  article-title: 3D graph convolutional networks with temporal graphs: A spatial information free framework for traffic forecasting
– reference: (pp. 1655–1661).
– year: 2021
  ident: b244
  article-title: Data augmentation for graph neural networks
  publication-title: Proceedings of the 30th international joint conference on artificial intelligence
– reference: (pp. 1720–1730).
– reference: Li, Z., Sergin, N. D., Yan, H., Zhang, C., & Tsung, F. (2020). Tensor completion for weakly-dependent data on graph for metro passenger flow prediction. In
– volume: 115
  year: 2020
  ident: b174
  article-title: Evaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approach
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 14
  year: 2020
  ident: b157
  article-title: Traffic flow prediction model based on spatio-temporal dilated graph convolution
  publication-title: KSII Transactions on Internet & Information Systems
– start-page: 2570
  year: 2019
  end-page: 2576
  ident: b84
  article-title: Learning dynamic graph embedding for traffic flow forecasting: A graph self-attentive method
  publication-title: 2019 IEEE intelligent transportation systems conference (ITSC)
– volume: 20
  start-page: 3940
  year: 2019
  end-page: 3951
  ident: b214
  article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 122
  year: 2021
  ident: b86
  article-title: Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 241
  year: 2018
  end-page: 245
  ident: b182
  article-title: Graph attention LSTM network: A new model for traffic flow forecasting
  publication-title: 2018 5th international conference on information science and control engineering (ICISCE)
– year: 2018
  ident: b108
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: International conference on learning representations (ICLR ’18)
– year: 2020
  ident: b142
  article-title: Topological graph convolutional network-based urban traffic flow and density prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 2195
  year: 2019
  end-page: 2200
  ident: b233
  article-title: Link speed prediction for signalized urban traffic network using a hybrid deep learning approach
  publication-title: 2019 IEEE intelligent transportation systems conference (ITSC)
– reference: (pp. 537–546).
– reference: Zhang, X., Huang, C., Xu, Y., & Xia, L. (2020). Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting. In
– start-page: 1
  year: 2020
  end-page: 6
  ident: b68
  article-title: Railway delay prediction with spatial-temporal graph convolutional networks
  publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC)
– reference: (pp. 1555–1564).
– year: 2020
  ident: b33
  article-title: Grids versus graphs: Partitioning space for improved taxi demand-supply forecasts
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2015
  ident: b69
  article-title: Deep convolutional networks on graph-structured data
– year: 2019
  ident: b130
  article-title: Spatio-temporal deep graph infomax
  publication-title: Representation learning on graphs and manifolds, ICLR 2019 workshop
– start-page: 1929
  year: 2019
  end-page: 1933
  ident: b104
  article-title: A hybrid deep learning approach with GCN and LSTM for traffic flow prediction
  publication-title: 2019 IEEE intelligent transportation systems conference (ITSC)
– start-page: 1039
  year: 2019
  end-page: 1050
  ident: b115
  article-title: Learning to propagate for graph meta-learning
  publication-title: Advances in neural information processing systems
– start-page: 1263
  year: 2017
  end-page: 1272
  ident: b50
  article-title: Neural message passing for quantum chemistry
  publication-title: International conference on machine learning
– start-page: 3483
  year: 2021
  end-page: 3490
  ident: b158
  article-title: Constructing geographic and long-term temporal graph for traffic forecasting
  publication-title: 2020 25th international conference on pattern recognition (ICPR)
– volume: 185
  start-page: 40
  year: 2022
  end-page: 54
  ident: b80
  article-title: Graph-based deep learning for communication networks: A survey
  publication-title: Computer Communications
– volume: 20
  start-page: 61
  year: 2008
  end-page: 80
  ident: b148
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
– year: 2020
  ident: b123
  article-title: Uncertainty intervals for graph-based spatio-temporal traffic prediction
– start-page: 2232
  year: 2019
  end-page: 2237
  ident: b9
  article-title: What Lies beneath: A note on the explainability of black-box machine learning models for road traffic forecasting
  publication-title: 2019 IEEE intelligent transportation systems conference (ITSC)
– year: 2020
  ident: b76
  article-title: Citywide traffic speed prediction: A geometric deep learning approach
  publication-title: Knowledge-Based Systems
– reference: Zhang, J., Zheng, Y., & Qi, D. (2017). Deep spatio-temporal residual networks for citywide crowd flows prediction. In
– volume: 117
  year: 2020
  ident: b200
  article-title: GE-GAN: A novel deep learning framework for road traffic state estimation
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 1417
  year: 2020
  end-page: 1428
  ident: b72
  article-title: Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks
  publication-title: 2020 IEEE 36th international conference on data engineering (ICDE)
– volume: 2020
  year: 2020
  ident: b238
  article-title: Urban traffic flow forecast based on FastGCRNN
  publication-title: Journal of Advanced Transportation
– start-page: 91
  year: 2020
  end-page: 95
  ident: b1
  article-title: Traffic flow prediction using graph convolution neural networks
  publication-title: 2020 10th international conference on information science and technology (ICIST)
– volume: 33
  year: 2020
  ident: b17
  article-title: Spectral temporal graph neural network for multivariate time-series forecasting
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2020
  end-page: 6
  ident: b156
  article-title: Graph attention convolutional network: Spatiotemporal modeling for urban traffic prediction
  publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC)
– year: 2020
  ident: b122
  article-title: Temporal multi-graph convolutional network for traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Wang, S., Miao, H., Chen, H., & Huang, Z. (2020). Multi-task adversarial spatial-temporal networks for crowd flow prediction. In
– start-page: 522
  year: 2019
  end-page: 529
  ident: b45
  article-title: Traffic speed prediction with missing data based on TGCN
  publication-title: 2019 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)
– year: 2020
  ident: b183
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 2020
  year: 2020
  ident: b10
  article-title: Integrating semantic zoning information with the prediction of road link speed based on taxi GPS data
  publication-title: Complexity
– reference: Zhou, Z., Wang, Y., Xie, X., Chen, L., & Liu, H. (2020). RiskOracle: A minute-level citywide traffic accident forecasting framework. In
– reference: (pp. 3844–3852).
– volume: 134
  year: 2022
  ident: b95
  article-title: DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 7
  start-page: 166246
  year: 2019
  end-page: 166256
  ident: b231
  article-title: Spatial-temporal graph attention networks: A deep learning approach for traffic forecasting
  publication-title: IEEE Access
– year: 2020
  ident: b120
  article-title: Deep learning for human mobility: a survey on data and models
– year: 2020
  ident: b209
  article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction
  publication-title: Neurocomputing
– year: 2020
  ident: b253
  article-title: Foresee urban sparse traffic accidents: A spatiotemporal multi-granularity perspective
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 117
  year: 2020
  ident: b82
  article-title: Urban ride-hailing demand prediction with multiple spatio-temporal information fusion network
  publication-title: Transportation Research Part C (Emerging Technologies)
– year: 2020
  ident: b113
  article-title: GraphSAGE-based traffic speed forecasting for segment network with sparse data
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Jepsen, T. S., Jensen, C. S., & Nielsen, T. D. (2019). Graph convolutional networks for road networks. In
– reference: Wang, Y., Yin, H., Chen, H., Wo, T., Xu, J., & Zheng, K. (2019). Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling. In
– volume: 117
  year: 2020
  ident: b31
  article-title: Graph Markov network for traffic forecasting with missing data
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 2020
  year: 2020
  ident: b259
  article-title: A novel traffic flow forecasting method based on RNN-GCN and BRB
  publication-title: Journal of Advanced Transportation
– volume: 47
  start-page: 1
  year: 2021
  end-page: 12
  ident: b170
  article-title: Survey of graph neural network
  publication-title: Computer Engineering
– volume: 27
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: b51
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– reference: (pp. 99–108).
– year: 2019
  ident: b227
  article-title: A hybrid traffic speed forecasting approach integrating wavelet transform and motif-based graph convolutional recurrent neural network
– reference: Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., & Ye, J., et al. (2019). Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In
– reference: (pp. 224–228).
– volume: 59
  start-page: 1
  year: 2020
  end-page: 12
  ident: b190
  article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey
  publication-title: Information Fusion
– year: 2020
  ident: b134
  article-title: Spatio-temporal meta learning for urban traffic prediction
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1
  year: 2020
  end-page: 6
  ident: b144
  article-title: Traffic forecasting using temporal line graph convolutional network: Case study
  publication-title: ICC 2020-2020 IEEE international conference on communications (ICC)
– reference: (pp. 218–223).
– start-page: 208
  year: 2019
  end-page: 219
  ident: b145
  article-title: Transfer knowledge between sub-regions for traffic prediction using deep learning method
  publication-title: International conference on intelligent data engineering and automated learning
– year: 2014
  ident: b15
  article-title: Spectral networks and deep locally connected networks on graphs
  publication-title: 2nd international conference on learning representations, ICLR 2014
– volume: 121
  year: 2020
  ident: b62
  article-title: Congestion recognition for hybrid urban road systems via digraph convolutional network
  publication-title: Transportation Research Part C (Emerging Technologies)
– reference: Liu, R., Zhao, S., Cheng, B., Yang, H., Tang, H., & Yang, F. (2020). ST-MFM: A spatiotemporal multi-modal fusion model for urban anomalies prediction. In
– year: 2020
  ident: b150
  article-title: TTPNet: A neural network for travel time prediction based on tensor decomposition and graph embedding
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2018
  ident: b71
  article-title: Recurrent multi-graph neural networks for travel cost prediction
– year: 2018
  ident: b166
  article-title: Graph attention networks
  publication-title: International conference on learning representations
– year: 2020
  ident: b78
  article-title: Relational fusion networks: Graph convolutional networks for road networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Wu, M., Zhu, C., & Chen, L. (2020). Multi-task spatial-temporal graph attention network for taxi demand prediction. In
– start-page: 2697
  year: 2020
  end-page: 2705
  ident: b38
  article-title: Constgat: Contextual spatial-temporal graph attention network for travel time estimation at baidu maps
  publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining
– start-page: 1
  year: 2020
  end-page: 5
  ident: b160
  article-title: Dynamic spatial-temporal graph attention graph convolutional network for short-term traffic flow forecasting
  publication-title: 2020 IEEE international symposium on circuits and systems (ISCAS)
– volume: 14
  year: 2019
  ident: b88
  article-title: Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects
  publication-title: PLOS ONE
– year: 2020
  ident: b91
  article-title: STGAT: Spatial-temporal graph attention networks for traffic flow forecasting
  publication-title: IEEE Access
– volume: 114
  start-page: 189
  year: 2020
  end-page: 204
  ident: b215
  article-title: Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 2355
  year: 2020
  end-page: 2361
  ident: b73
  article-title: LSGCN: Long short-term traffic prediction with graph convolutional networks
  publication-title: Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20
– year: 2020
  ident: b36
  article-title: Traffic demand prediction based on dynamic transition convolutional neural network
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2020
  ident: b162
  article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2020
  ident: b112
  article-title: Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1
  year: 2019
  end-page: 8
  ident: b240
  article-title: GCGAN: Generative adversarial nets with graph CNN for network-scale traffic prediction
  publication-title: 2019 international joint conference on neural networks (IJCNN)
– year: 2020
  ident: b146
  article-title: GANNSTER: Graph-augmented neural network spatio-temporal reasoner for traffic forecasting
  publication-title: International workshop on advanced analysis and learning on temporal data (AALTD)
– start-page: 251
  year: 2020
  end-page: 256
  ident: b201
  article-title: Traffic flow forecasting with spatial-temporal graph convolutional networks in edge-computing systems
  publication-title: 2020 international conference on wireless communications and signal processing (WCSP)
– year: 2020
  ident: b202
  article-title: Relational state-space model for stochastic multi-object systems
  publication-title: International conference on learning representations
– year: 2020
  ident: b58
  article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks
  publication-title: Neurocomputing
– volume: 8
  start-page: 153731
  year: 2020
  end-page: 153741
  ident: b161
  article-title: A general traffic flow prediction approach based on spatial-temporal graph attention
  publication-title: IEEE Access
– year: 2018
  ident: b171
  article-title: Graph-based deep modeling and real time forecasting of sparse spatio-temporal data
– volume: 112
  start-page: 62
  year: 2020
  end-page: 77
  ident: b11
  article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data
  publication-title: Transportation Research Part C (Emerging Technologies)
– year: 2020
  ident: b195
  article-title: Dynamic origin–destination matrix prediction with line graph neural networks and Kalman filter
  publication-title: Transportation Research Record
– start-page: 1
  year: 2020
  end-page: 19
  ident: b229
  article-title: Graph attention temporal convolutional network for traffic speed forecasting on road networks
  publication-title: Transportmetrica B: Transport Dynamics
– reference: Xin, Y., Miao, D., Zhu, M., Jin, C., & Lu, X. (2020). InterNet: Multistep traffic forecasting by interacting spatial and temporal features. In
– start-page: 438
  year: 2020
  end-page: 449
  ident: b22
  article-title: GDCRN: Global diffusion convolutional residual network for traffic flow prediction
  publication-title: International conference on knowledge science, engineering and management
– reference: Li, M., & Zhu, Z. (2021). Spatial-temporal fusion graph neural networks for traffic flow forecasting. In
– reference: Park, C., Lee, C., Bahng, H., Tae, Y., Jin, S., & Kim, K., et al. (2020). ST-GRAT: A novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed. In
– year: 2020
  ident: b105
  article-title: A multi-stream feature fusion approach for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 24
  start-page: 52
  year: 2018
  end-page: 64
  ident: b81
  article-title: Geospatial data to images: A deep-learning framework for traffic forecasting
  publication-title: Tsinghua Science and Technology
– volume: 35
  start-page: 338
  year: 2020
  end-page: 352
  ident: b250
  article-title: Exploiting multiple correlations among Urban regions for crowd flow prediction
  publication-title: Journal of Computer Science and Technology
– start-page: 1082
  year: 2020
  end-page: 1092
  ident: b172
  article-title: Traffic flow prediction via spatial temporal graph neural network
  publication-title: Proceedings of the web conference 2020
– volume: 8
  start-page: 414
  year: 2019
  ident: b199
  article-title: Incorporating graph attention and recurrent architectures for city-wide taxi demand prediction
  publication-title: ISPRS International Journal of Geo-Information
– start-page: 159
  year: 2020
  end-page: 168
  ident: b74
  article-title: Short-term traffic flow prediction based on graph convolutional network embedded LSTM
  publication-title: International conference on transportation and development 2020
– reference: (pp. 2901–2908).
– reference: (pp. 922–929).
– year: 2019
  ident: b218
  article-title: ST-UNet: A spatio-temporal U-network for graph-structured time series modeling
– start-page: 414
  year: 2020
  end-page: 429
  ident: b143
  article-title: Modeling local and global flow aggregation for traffic flow forecasting
  publication-title: International conference on web information systems engineering
– year: 2019
  ident: b28
  article-title: Graph attention recurrent neural networks for correlated time series forecasting
  publication-title: MileTS19@KDD
– start-page: 10367
  year: 2021
  end-page: 10374
  ident: b125
  article-title: Transfer learning with graph neural networks for short-term highway traffic forecasting
  publication-title: 2020 25th international conference on pattern recognition (ICPR)
– year: 2017
  ident: b2
  article-title: Wasserstein gan
– start-page: 1024
  year: 2017
  end-page: 1034
  ident: b61
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in neural information processing systems
– start-page: 1
  year: 2020
  end-page: 6
  ident: b246
  article-title: Attention based graph bi-LSTM networks for traffic forecasting
  publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC)
– volume: 9
  start-page: 54739
  year: 2021
  end-page: 54756
  ident: b92
  article-title: Short-term traffic prediction with deep neural networks: A survey
  publication-title: IEEE Access
– year: 2020
  ident: b222
  article-title: Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit
  publication-title: IET Intelligent Transport Systems
– year: 2020
  ident: b179
  article-title: Spatial-temporal graph attention networks for traffic flow forecasting
  publication-title: IOP conference series: Earth and environmental science, Vol. 587
– reference: (pp. 890–897).
– reference: Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In
– year: 2019
  ident: b8
  article-title: Explainability techniques for graph convolutional networks
  publication-title: International conference on machine learning (ICML) workshops, 2019 workshop on learning and reasoning with graph-structured representations
– reference: Chen, C., Li, K., Teo, S. G., Zou, X., Wang, K., & Wang, J., et al. (2019). Gated residual recurrent graph neural networks for traffic prediction. In
– volume: 181
  year: 2020
  ident: b13
  article-title: Machine learning-based traffic prediction models for intelligent transportation systems
  publication-title: Computer Networks
– reference: He, S., & Shin, K. G. (2020a). Dynamic flow distribution prediction for urban dockless E-scooter sharing reconfiguration. In
– reference: (pp. 1025–1034).
– volume: 30
  start-page: 5998
  year: 2017
  end-page: 6008
  ident: b165
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– reference: Liao, B., Zhang, J., Wu, C., McIlwraith, D., Chen, T., & Yang, S., et al. (2018). Deep sequence learning with auxiliary information for traffic prediction. In
– year: 2020
  ident: b236
  article-title: Semi-supervised city-wide parking availability prediction via hierarchical recurrent graph neural network
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Diao, Z., Wang, X., Zhang, D., Liu, Y., Xie, K., & He, S. (2019). Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting. In
– year: 2020
  ident: b117
  article-title: LSTM variants meet graph neural networks for road speed prediction
  publication-title: Neurocomputing
– reference: Ye, J., Sun, L., Du, B., Fu, Y., & Xiong, H. (2021). Coupled layer-wise graph convolution for transportation demand prediction. In
– year: 2020
  ident: b225
  article-title: Deep learning on graphs: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 460–463).
– start-page: 753
  year: 2020
  end-page: 763
  ident: b184
  article-title: Connecting the dots: Multivariate time series forecasting with graph neural networks
  publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining
– reference: (pp. 1185–1194).
– reference: Zhang, Q., Chang, J., Meng, G., Xiang, S., & Pan, C. (2020). Spatio-temporal graph structure learning for traffic forecasting. In
– reference: (pp. 3477–3480).
– start-page: 1
  year: 2020
  end-page: 22
  ident: b164
  article-title: Deep learning in transport studies: A meta-analysis on the prediction accuracy
  publication-title: Journal of Big Data Analytics in Transportation
– start-page: 1
  year: 2020
  end-page: 19
  ident: b188
  article-title: Demand prediction for a public bike sharing program based on spatio-temporal graph convolutional networks
  publication-title: Multimedia Tools and Applications
– volume: 10
  start-page: 1509
  year: 2020
  ident: b46
  article-title: Global spatial-temporal graph convolutional network for urban traffic speed prediction
  publication-title: Applied Sciences
– reference: (pp. 1665–1674).
– year: 2020
  ident: b96
  article-title: Joint forecasting and interpolation of time-varying graph signals using deep learning
  publication-title: IEEE Transactions on Signal and Information Processing over Networks
– year: 2019
  ident: b191
  article-title: Sequential graph neural network for urban road traffic speed prediction
  publication-title: IEEE Access
– volume: 34
  start-page: 877
  year: 2019
  end-page: 896
  ident: b223
  article-title: A graph deep learning method for short-term traffic forecasting on large road networks
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– reference: .
– volume: 10
  start-page: 485
  year: 2021
  ident: b7
  article-title: A3T-GCN: attention temporal graph convolutional network for traffic forecasting
  publication-title: ISPRS International Journal of Geo-Information
– volume: 8
  start-page: 91188
  year: 2020
  end-page: 91212
  ident: b127
  article-title: A comprehensive evaluation of deep learning-based techniques for traffic prediction
  publication-title: IEEE Access
– volume: 20
  start-page: 3776
  year: 2020
  ident: b27
  article-title: Multitask learning and GCN-based taxi demand prediction for a traffic road network
  publication-title: Sensors
– start-page: 9244
  year: 2019
  end-page: 9255
  ident: b211
  article-title: Gnnexplainer: Generating explanations for graph neural networks
  publication-title: Advances in neural information processing systems
– reference: (pp. 2293–2296).
– reference: (pp. 10772–10781).
– year: 2019
  ident: b29
  article-title: Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 11
  start-page: 6
  year: 2019
  ident: b136
  article-title: Feature selection and extraction in spatiotemporal traffic forecasting: a systematic literature review
  publication-title: European Transport Research Review
– reference: Zhang, W., Liu, H., Liu, Y., Zhou, J., & Xiong, H. (2020). Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction. In
– start-page: 355
  year: 2020
  end-page: 362
  ident: b99
  article-title: A two-stream graph convolutional neural network for dynamic traffic flow forecasting
  publication-title: 2020 IEEE 32nd international conference on tools with artificial intelligence (ICTAI)
– year: 2020
  ident: b206
  article-title: How to build a graph-based deep learning architecture in traffic domain: A survey
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Wang, Q., Guo, B., Ouyang, Y., Shu, K., Yu, Z., & Liu, H. (2020). Spatial community-informed evolving graphs for demand prediction. In
– start-page: 707
  year: 2020
  end-page: 714
  ident: b193
  article-title: SAST-GNN: A self-attention based spatio-temporal graph neural network for traffic prediction
  publication-title: International conference on database systems for advanced applications
– volume: 90
  start-page: 166
  year: 2018
  end-page: 180
  ident: b186
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 182
  year: 2020
  ident: b12
  article-title: Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems
  publication-title: Computer Networks
– year: 2019
  ident: b251
  article-title: Revisiting flow information for traffic prediction
– reference: Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., & Feng, X. (2020). Multi-range attentive bicomponent graph convolutional network for traffic forecasting. In
– reference: Li, Y., & Moura, J. M. (2020). Forecaster: A graph transformer for forecasting spatial and time-dependent data. In
– start-page: 57
  year: 2020
  end-page: 64
  ident: b208
  article-title: Learning mobility flows from urban features with spatial interaction models and neural networks
  publication-title: 2020 IEEE international conference on smart computing (SMARTCOMP)
– year: 2020
  ident: b39
  article-title: Meta-MSNet: Meta-learning based multi-source data fusion for traffic flow prediction
  publication-title: IEEE Signal Processing Letters
– volume: 2
  start-page: 115
  year: 2020
  end-page: 145
  ident: b60
  article-title: Applications of deep learning in intelligent transportation systems
  publication-title: Journal of Big Data Analytics in Transportation
– start-page: 3898
  year: 2019
  end-page: 3905
  ident: b181
  article-title: Neural-attention-based deep learning architectures for modeling traffic dynamics on lane graphs
  publication-title: 2019 IEEE intelligent transportation systems conference (ITSC)
– start-page: 1
  year: 2020
  end-page: 4
  ident: b87
  article-title: Urban traffic prediction using congestion diffusion model
  publication-title: 2020 IEEE international conference on consumer electronics-Asia (ICCE-Asia)
– reference: Li, C., Bai, L., Liu, W., Yao, L., & Waller, S. T. (2020). Knowledge adaption for demand prediction based on multi-task memory neural network. In
– reference: Pan, Z., Liang, Y., Wang, W., Yu, Y., Zheng, Y., & Zhang, J. (2019). Urban traffic prediction from spatio-temporal data using deep meta learning. In
– year: 2018
  ident: b152
  article-title: Machine learning for spatiotemporal sequence forecasting: A survey
– start-page: 999
  year: 2020
  end-page: 1003
  ident: b241
  article-title: Spatial-temporal graph attention model on traffic forecasting
  publication-title: 2020 13th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI)
– year: 2022
  ident: b256
  article-title: KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: (pp. 715–724).
– reference: (pp. 1227–1235).
– volume: 8
  start-page: 243
  year: 2019
  ident: b63
  article-title: Predicting station-level short-term passenger flow in a citywide metro network using spatiotemporal graph convolutional neural networks
  publication-title: ISPRS International Journal of Geo-Information
– start-page: 210
  year: 2020
  end-page: 217
  ident: b140
  article-title: RESGCN: Residual graph convolutional network based free dock prediction in bike sharing system
  publication-title: 2020 21st IEEE international conference on mobile data management (MDM)
– year: 2020
  ident: b26
  article-title: TSSRGCN: Temporal spectral spatial retrieval graph convolutional network for traffic flow forecasting
  publication-title: 2020 IEEE international conference on data mining (ICDM)
– start-page: 1604
  year: 2020
  end-page: 1609
  ident: b24
  article-title: GST-GCN: A geographic-semantic-temporal graph convolutional network for context-aware traffic flow prediction on graph sequences
  publication-title: 2020 IEEE international conference on systems, man, and cybernetics (SMC)
– start-page: 3779
  year: 2019
  end-page: 3788
  ident: b64
  article-title: Piecewise stationary modeling of random processes over graphs with an application to traffic prediction
  publication-title: 2019 IEEE international conference on big data (Big data)
– start-page: 2286
  year: 2019
  end-page: 2293
  ident: b40
  article-title: GSTNet: Global spatial-temporal network for traffic flow prediction
  publication-title: Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19
– year: 2021
  ident: b126
  article-title: Deep learning for road traffic forecasting: Does it make a difference?
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2020
  ident: b196
  article-title: Spatial-temporal transformer networks for traffic flow forecasting
– reference: (pp. 397–400).
– year: 2020
  ident: b204
  article-title: Spatial origin-destination flow imputation using graph convolutional networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2020
  ident: b213
  article-title: Deep spatio-temporal graph convolutional network for traffic accident prediction
  publication-title: Neurocomputing
– year: 2020
  ident: b192
  article-title: ISTD-GCN: Iterative spatial-temporal diffusion graph convolutional network for traffic speed forecasting
– start-page: 2466
  year: 2019
  end-page: 2471
  ident: b57
  article-title: A multi-step traffic speed forecasting model based on graph convolutional LSTM
  publication-title: 2019 Chinese automation congress (CAC)
– year: 2020
  ident: b228
  article-title: Graph attention LSTM: A spatio-temperal approach for traffic flow forecasting
  publication-title: IEEE Intelligent Transportation Systems Magazine
– year: 2020
  ident: b255
  article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 686
  year: 2019
  end-page: 693
  ident: b55
  article-title: BikeNet: Accurate bike demand prediction using graph neural networks for station rebalancing
  publication-title: 2019 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)
– volume: 34
  start-page: 969
  year: 2020
  end-page: 995
  ident: b224
  article-title: A novel residual graph convolution deep learning model for short-term network-based traffic forecasting
  publication-title: International Journal of Geographical Information Science
– volume: 1
  start-page: 1
  year: 2020
  end-page: 14
  ident: b97
  article-title: Short-term traffic demand prediction using graph convolutional neural networks
  publication-title: AGILE: GIScience Series
– reference: (pp. 3656–3663).
– start-page: 88
  year: 2020
  end-page: 98
  ident: b66
  article-title: Towards fine-grained flow forecasting: A graph attention approach for bike sharing systems
  publication-title: Proceedings of the web conference 2020
– volume: 8
  start-page: 209296
  year: 2020
  end-page: 209307
  ident: b41
  article-title: Dynamic global-local spatial-temporal network for traffic speed prediction
  publication-title: IEEE Access
– year: 2019
  ident: b154
  article-title: Incrementally improving graph WaveNet performance on traffic prediction
– year: 2020
  ident: b16
  article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting
  publication-title: Transactions in GIS
– year: 2020
  ident: b83
  article-title: Deep multi-view spatiotemporal virtual graph neural network for significant citywide ride-hailing demand prediction
– year: 2020
  ident: b153
  article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1
  year: 2020
  end-page: 9
  ident: b226
  article-title: A multi-modal graph neural network approach to traffic risk forecasting in smart urban sensing
  publication-title: 2020 17th annual IEEE international conference on sensing, communication, and networking (SECON)
– start-page: 1
  year: 2020
  end-page: 6
  ident: b67
  article-title: GC-LSTM: A deep spatiotemporal model for passenger flow forecasting of high-speed rail network
  publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC)
– volume: 9
  start-page: 35973
  year: 2021
  end-page: 35983
  ident: b258
  article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting
  publication-title: IEEE Access
– volume: 521
  start-page: 277
  year: 2020
  end-page: 290
  ident: b137
  article-title: Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting
  publication-title: Information Sciences
– reference: Ou, J., Sun, J., Zhu, Y., Jin, H., Liu, Y., & Zhang, F., et al. (2020). STP-TrellisNets: Spatial-temporal parallel TrellisNets for metro station passenger flow prediction. In
– reference: Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., & Hoffmann, H. (2019). Explainability methods for graph convolutional neural networks. In
– volume: 119
  year: 2020
  ident: b168
  article-title: Forecast network-wide traffic states for multiple steps ahead: A deep learning approach considering dynamic non-local spatial correlation and non-stationary temporal dependency
  publication-title: Transportation Research Part C (Emerging Technologies)
– year: 2019
  ident: b119
  article-title: Graph hierarchical convolutional recurrent neural network (GHCRNN) for vehicle condition prediction
– start-page: 3074
  year: 2020
  end-page: 3082
  ident: b32
  article-title: Hybrid spatio-temporal graph convolutional network: Improving traffic prediction with navigation data
  publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining
– volume: 8
  start-page: 185136
  year: 2020
  end-page: 185145
  ident: b20
  article-title: Dynamic spatio-temporal graph-based CNNs for traffic flow prediction
  publication-title: IEEE Access
– year: 2020
  ident: b198
  article-title: Spatiotemporal graph convolution multifusion network for urban vehicle emission prediction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 107
  start-page: 248
  year: 2019
  end-page: 265
  ident: b203
  article-title: A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 2444
  year: 2020
  end-page: 2454
  ident: b70
  article-title: Heteta: Heterogeneous information network embedding for estimating time of arrival
  publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining
– reference: (pp. 914–921).
– year: 2020
  ident: b52
  article-title: Optimized graph convolution recurrent neural network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In
– volume: 115
  start-page: 1047
  year: 2020
  end-page: 1106
  ident: b49
  article-title: Traffic prediction using multifaceted techniques: A survey
  publication-title: Wireless Personal Communications
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  ident: b249
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
– year: 2020
  ident: b25
  article-title: A context integrated relational spatio-temporal model for demand and supply forecasting
– start-page: 714
  year: 2020
  end-page: 721
  ident: b163
  article-title: ST-MGAT: Spatial-temporal multi-head graph attention networks for traffic forecasting
  publication-title: 2020 IEEE 32nd international conference on tools with artificial intelligence (ICTAI)
– reference: Zheng, C., Fan, X., Wang, C., & Qi, J. (2020). Gman: A graph multi-attention network for traffic prediction. In
– reference: Lu, B., Gan, X., Jin, H., Fu, L., & Zhang, H. (2020). Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In
– start-page: 435
  year: 2020
  end-page: 451
  ident: b175
  article-title: MTGCN: A multitask deep learning model for traffic flow prediction
  publication-title: International conference on database systems for advanced applications
– year: 2020
  ident: b141
  article-title: A graph convolutional network model for evaluating potential congestion spots based on local urban built environments
  publication-title: Transactions in GIS
– reference: (pp. 1853–1862).
– year: 2020
  ident: b221
  article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Bai, L., Yao, L., Kanhere, S. S., Wang, X., Liu, W., & Yang, Z. (2019). Spatio-temporal graph convolutional and recurrent networks for citywide passenger demand prediction. In
– year: 2021
  ident: b210
  article-title: Deep learning on traffic prediction: Methods, analysis and future directions
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2020
  ident: b6
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
  publication-title: Advances in neural information processing systems
– reference: Chai, D., Wang, L., & Yang, Q. (2018). Bike flow prediction with multi-graph convolutional networks. In
– start-page: 1
  year: 2020
  end-page: 6
  ident: b59
  article-title: Dynamic graph filters networks: A gray-box model for multistep traffic forecasting
  publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC)
– start-page: 1
  year: 2020
  end-page: 8
  ident: b207
  article-title: Multi-STGCnet: A graph convolution based spatial-temporal framework for subway passenger flow forecasting
  publication-title: 2020 international joint conference on neural networks (IJCNN)
– year: 2019
  ident: b94
  article-title: Graph convolutional modules for traffic forecasting
– start-page: 4024
  year: 2019
  end-page: 4029
  ident: b75
  article-title: Online traffic speed estimation for urban road networks with few data: A transfer learning approach
  publication-title: 2019 IEEE intelligent transportation systems conference (ITSC)
– year: 2016
  ident: b3
  article-title: Diffusion-convolutional neural networks
  publication-title: NIPS
– start-page: 1818
  year: 2020
  end-page: 1821
  ident: b151
  article-title: Predicting origin-destination flow via multi-perspective graph convolutional network
  publication-title: 2020 IEEE 36th international conference on data engineering (ICDE)
– year: 2019
  ident: b180
  article-title: Dual graph for traffic forecasting
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  ident: b159
  article-title: Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2018
  ident: b167
  article-title: Efficient metropolitan traffic prediction based on graph recurrent neural network
– reference: (pp. 133–143).
– reference: (pp. 4617–4625).
– reference: Oreshkin, B. N., Amini, A., Coyle, L., & Coates, M. (2021). FC-GAGA: Fully connected gated graph architecture for spatio-temporal traffic forecasting. In
– volume: 29
  start-page: 1727
  year: 2019
  end-page: 1740
  ident: b257
  article-title: Multistep flow prediction on car-sharing systems: A multi-graph convolutional neural network with attention mechanism
  publication-title: International Journal of Software Engineering and Knowledge Engineering
– start-page: 1981
  year: 2019
  end-page: 1987
  ident: b5
  article-title: Stg2seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting
  publication-title: Proceedings of the 28th international joint conference on artificial intelligence
– start-page: 1018
  year: 2018
  end-page: 1023
  ident: b232
  article-title: Kernel-weighted graph convolutional network: A deep learning approach for traffic forecasting
  publication-title: 2018 24th international conference on pattern recognition (ICPR)
– reference: Chen, F., Chen, Z., Biswas, S., Lei, S., Ramakrishnan, N., & Lu, C.-T. (2020). Graph convolutional networks with Kalman filtering for traffic prediction. In
– year: 2020
  ident: b124
  article-title: Graph-partitioning-based diffusion convolution recurrent neural network for large-scale traffic forecasting
  publication-title: Transportation Research Record
– year: 2019
  ident: b48
  article-title: Multi-modal graph interaction for multi-graph convolution network in urban spatiotemporal forecasting
– year: 2018
  ident: b239
  article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs
  publication-title: 34th conference on uncertainty in artificial intelligence 2018, UAI 2018
– reference: (pp. 9233–9241).
– year: 2020
  ident: b53
  article-title: Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2020
  ident: b254
  article-title: Reinforced spatio-temporal attentive graph neural networks for traffic forecasting
  publication-title: IEEE Internet of Things Journal
– year: 2020
  ident: b54
  article-title: An optimized temporal-spatial gated graph convolution network for traffic forecasting
  publication-title: IEEE Intelligent Transportation Systems Magazine
– volume: 97
  start-page: 258
  year: 2018
  end-page: 276
  ident: b111
  article-title: Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach
  publication-title: Transportation Research Part C (Emerging Technologies)
– reference: Xie, Q., Guo, T., Chen, Y., Xiao, Y., Wang, X., & Zhao, B. Y. (2020). Deep graph convolutional networks for incident-driven traffic speed prediction. In
– volume: 115
  year: 2020
  ident: b30
  article-title: Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction
  publication-title: Transportation Research Part C (Emerging Technologies)
– year: 2020
  ident: b42
  article-title: Bayesian spatio-temporal graph convolutional network for traffic forecasting
– reference: Shao, K., Wang, K., Chen, L., & Zhou, Z. (2020). Estimation of urban travel time with sparse traffic surveillance data. In
– reference: (pp. 1215–1224).
– year: 2019
  ident: b245
  article-title: T-gcn: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 558
  year: 2020
  end-page: 563
  ident: b237
  article-title: Attention based graph covolution networks for intelligent traffic flow analysis
  publication-title: 2020 IEEE 16th international conference on automation science and engineering (CASE)
– year: 2020
  ident: b243
  article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction
  publication-title: IEEE Access
– start-page: 1907
  year: 2019
  end-page: 1913
  ident: b185
  article-title: Graph WaveNet for deep spatial-temporal graph modeling
  publication-title: Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19
– year: 2018
  ident: b147
  article-title: Few-shot learning with graph neural networks
  publication-title: International conference on learning representations
– year: 2020
  ident: b43
  article-title: Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation
  publication-title: IET Intelligent Transport Systems
– reference: (pp. 485–492).
– year: 2019
  ident: b93
  article-title: Demand forecasting from spatiotemporal data with graph networks and temporal-guided embedding
– start-page: 1
  year: 2020
  end-page: 21
  ident: b37
  article-title: Deep learning for intelligent traffic sensing and prediction: recent advances and future challenges
  publication-title: CCF Transactions on Pervasive Computing and Interaction
– start-page: 74
  year: 2019
  end-page: 81
  ident: b118
  article-title: Leveraging graph neural network with LSTM for traffic speed prediction
  publication-title: 2019 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)
– year: 2020
  ident: b103
  article-title: Traffic flow prediction over muti-sensor data correlation with graph convolution network
  publication-title: Neurocomputing
– year: 2017
  ident: b90
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: International conference on learning representations (ICLR ’17)
– reference: (pp. 135–138).
– year: 2020
  ident: b178
  article-title: Auto-STGCN: Autonomous spatial-temporal graph convolutional network search based on reinforcement learning and existing research results
– year: 2020
  ident: b14
  article-title: A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid machine learning-based model
  publication-title: Ad Hoc Networks
– start-page: 234
  year: 2019
  end-page: 242
  ident: b44
  article-title: Temporal graph convolutional networks for traffic speed prediction considering external factors
  publication-title: 2019 20th IEEE international conference on mobile data management (MDM)
– volume: 116
  year: 2020
  ident: b129
  article-title: Region-wide congestion prediction and control using deep learning
  publication-title: Transportation Research Part C (Emerging Technologies)
– reference: Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., & Sun, G., et al. (2010). T-drive: driving directions based on taxi trajectories. In
– volume: 10
  start-page: 1509
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b46
  article-title: Global spatial-temporal graph convolutional network for urban traffic speed prediction
  publication-title: Applied Sciences
  doi: 10.3390/app10041509
– volume: 2
  start-page: 115
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b60
  article-title: Applications of deep learning in intelligent transportation systems
  publication-title: Journal of Big Data Analytics in Transportation
  doi: 10.1007/s42421-020-00020-1
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b156
  article-title: Graph attention convolutional network: Spatiotemporal modeling for urban traffic prediction
– start-page: 88
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b66
  article-title: Towards fine-grained flow forecasting: A graph attention approach for bike sharing systems
– start-page: 714
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b163
  article-title: ST-MGAT: Spatial-temporal multi-head graph attention networks for traffic forecasting
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b159
  article-title: Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 2020
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b259
  article-title: A novel traffic flow forecasting method based on RNN-GCN and BRB
  publication-title: Journal of Advanced Transportation
  doi: 10.1155/2020/7586154
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b218
– volume: 116
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b129
  article-title: Region-wide congestion prediction and control using deep learning
  publication-title: Transportation Research Part C (Emerging Technologies)
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b191
  article-title: Sequential graph neural network for urban road traffic speed prediction
  publication-title: IEEE Access
– start-page: 208
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b145
  article-title: Transfer knowledge between sub-regions for traffic prediction using deep learning method
– volume: 8
  start-page: 185136
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b20
  article-title: Dynamic spatio-temporal graph-based CNNs for traffic flow prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3027375
– start-page: 210
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b140
  article-title: RESGCN: Residual graph convolutional network based free dock prediction in bike sharing system
– volume: 121
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b62
  article-title: Congestion recognition for hybrid urban road systems via digraph convolutional network
  publication-title: Transportation Research Part C (Emerging Technologies)
– ident: 10.1016/j.eswa.2022.117921_b247
  doi: 10.1609/aaai.v34i01.5477
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b180
  article-title: Dual graph for traffic forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2958380
– ident: 10.1016/j.eswa.2022.117921_b187
  doi: 10.1145/3395260.3395266
– volume: 14
  issue: 9
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b88
  article-title: Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0220782
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b28
  article-title: Graph attention recurrent neural networks for correlated time series forecasting
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b188
  article-title: Demand prediction for a public bike sharing program based on spatio-temporal graph convolutional networks
  publication-title: Multimedia Tools and Applications
– start-page: 3074
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b32
  article-title: Hybrid spatio-temporal graph convolutional network: Improving traffic prediction with navigation data
– start-page: 241
  year: 2018
  ident: 10.1016/j.eswa.2022.117921_b182
  article-title: Graph attention LSTM network: A new model for traffic flow forecasting
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b150
  article-title: TTPNet: A neural network for travel time prediction based on tensor decomposition and graph embedding
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b53
  article-title: Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b37
  article-title: Deep learning for intelligent traffic sensing and prediction: recent advances and future challenges
  publication-title: CCF Transactions on Pervasive Computing and Interaction
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b39
  article-title: Meta-MSNet: Meta-learning based multi-source data fusion for traffic flow prediction
  publication-title: IEEE Signal Processing Letters
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b76
  article-title: Citywide traffic speed prediction: A geometric deep learning approach
  publication-title: Knowledge-Based Systems
– year: 2018
  ident: 10.1016/j.eswa.2022.117921_b239
  article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b246
  article-title: Attention based graph bi-LSTM networks for traffic forecasting
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b154
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b254
  article-title: Reinforced spatio-temporal attentive graph neural networks for traffic forecasting
  publication-title: IEEE Internet of Things Journal
– volume: 4
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b121
  article-title: D3P: Data-driven demand prediction for fast expanding electric vehicle sharing systems
  publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
  doi: 10.1145/3381005
– start-page: 1604
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b24
  article-title: GST-GCN: A geographic-semantic-temporal graph convolutional network for context-aware traffic flow prediction on graph sequences
– volume: 115
  start-page: 1047
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b49
  article-title: Traffic prediction using multifaceted techniques: A survey
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-020-07612-8
– volume: 117
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b200
  article-title: GE-GAN: A novel deep learning framework for road traffic state estimation
  publication-title: Transportation Research Part C (Emerging Technologies)
– year: 2018
  ident: 10.1016/j.eswa.2022.117921_b167
– volume: 181
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b13
  article-title: Machine learning-based traffic prediction models for intelligent transportation systems
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107530
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b25
– volume: 2020
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b238
  article-title: Urban traffic flow forecast based on FastGCRNN
  publication-title: Journal of Advanced Transportation
  doi: 10.1155/2020/8859538
– year: 2021
  ident: 10.1016/j.eswa.2022.117921_b244
  article-title: Data augmentation for graph neural networks
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b195
  article-title: Dynamic origin–destination matrix prediction with line graph neural networks and Kalman filter
  publication-title: Transportation Research Record
  doi: 10.1177/0361198120919399
– volume: 34
  start-page: 969
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b224
  article-title: A novel residual graph convolution deep learning model for short-term network-based traffic forecasting
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/13658816.2019.1697879
– ident: 10.1016/j.eswa.2022.117921_b139
  doi: 10.1109/CVPR.2019.01103
– ident: 10.1016/j.eswa.2022.117921_b133
  doi: 10.1145/3292500.3330884
– start-page: 1929
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b104
  article-title: A hybrid deep learning approach with GCN and LSTM for traffic flow prediction
– start-page: 1818
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b151
  article-title: Predicting origin-destination flow via multi-perspective graph convolutional network
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b227
– ident: 10.1016/j.eswa.2022.117921_b19
  doi: 10.1145/3397536.3422257
– volume: 1
  start-page: 57
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b249
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– ident: 10.1016/j.eswa.2022.117921_b205
  doi: 10.1609/aaai.v35i5.16591
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b26
  article-title: TSSRGCN: Temporal spectral spatial retrieval graph convolutional network for traffic flow forecasting
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b236
  article-title: Semi-supervised city-wide parking availability prediction via hierarchical recurrent graph neural network
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b240
  article-title: GCGAN: Generative adversarial nets with graph CNN for network-scale traffic prediction
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b228
  article-title: Graph attention LSTM: A spatio-temperal approach for traffic flow forecasting
  publication-title: IEEE Intelligent Transportation Systems Magazine
– ident: 10.1016/j.eswa.2022.117921_b34
– start-page: 438
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b22
  article-title: GDCRN: Global diffusion convolutional residual network for traffic flow prediction
– volume: 33
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b17
  article-title: Spectral temporal graph neural network for multivariate time-series forecasting
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
  ident: 10.1016/j.eswa.2022.117921_b15
  article-title: Spectral networks and deep locally connected networks on graphs
– ident: 10.1016/j.eswa.2022.117921_b169
  doi: 10.1007/978-3-030-67670-4_27
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b192
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b253
  article-title: Foresee urban sparse traffic accidents: A spatiotemporal multi-granularity perspective
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 8
  start-page: 91188
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b127
  article-title: A comprehensive evaluation of deep learning-based techniques for traffic prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994415
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b6
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
– ident: 10.1016/j.eswa.2022.117921_b47
  doi: 10.1609/aaai.v33i01.33013656
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b124
  article-title: Graph-partitioning-based diffusion convolution recurrent neural network for large-scale traffic forecasting
  publication-title: Transportation Research Record
  doi: 10.1177/0361198120930010
– start-page: 753
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b184
  article-title: Connecting the dots: Multivariate time series forecasting with graph neural networks
– start-page: 707
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b193
  article-title: SAST-GNN: A self-attention based spatio-temporal graph neural network for traffic prediction
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b153
  article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 2355
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b73
  article-title: LSGCN: Long short-term traffic prediction with graph convolutional networks
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b196
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b93
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b58
  article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.001
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b83
– ident: 10.1016/j.eswa.2022.117921_b132
  doi: 10.1145/3340531.3411874
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b248
– start-page: 91
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b1
  article-title: Traffic flow prediction using graph convolution neural networks
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b144
  article-title: Traffic forecasting using temporal line graph convolutional network: Case study
– start-page: 251
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b201
  article-title: Traffic flow forecasting with spatial-temporal graph convolutional networks in edge-computing systems
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b113
  article-title: GraphSAGE-based traffic speed forecasting for segment network with sparse data
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 34
  start-page: 877
  issue: 10
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b223
  article-title: A graph deep learning method for short-term traffic forecasting on large road networks
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12450
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b160
  article-title: Dynamic spatial-temporal graph attention graph convolutional network for short-term traffic flow forecasting
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b52
  article-title: Optimized graph convolution recurrent neural network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 4024
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b75
  article-title: Online traffic speed estimation for urban road networks with few data: A transfer learning approach
– ident: 10.1016/j.eswa.2022.117921_b131
  doi: 10.1609/aaai.v35i10.17114
– volume: 8
  start-page: 153731
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b161
  article-title: A general traffic flow prediction approach based on spatial-temporal graph attention
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3018452
– ident: 10.1016/j.eswa.2022.117921_b135
  doi: 10.1145/3340531.3411940
– year: 2016
  ident: 10.1016/j.eswa.2022.117921_b3
  article-title: Diffusion-convolutional neural networks
– ident: 10.1016/j.eswa.2022.117921_b23
  doi: 10.1609/aaai.v33i01.3301485
– volume: 8
  start-page: 209296
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b41
  article-title: Dynamic global-local spatial-temporal network for traffic speed prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3038380
– start-page: 558
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b237
  article-title: Attention based graph covolution networks for intelligent traffic flow analysis
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b179
  article-title: Spatial-temporal graph attention networks for traffic flow forecasting
– start-page: 1981
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b5
  article-title: Stg2seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting
– volume: 24
  start-page: 52
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.117921_b81
  article-title: Geospatial data to images: A deep-learning framework for traffic forecasting
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2018.9010033
– volume: 115
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b174
  article-title: Evaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approach
  publication-title: Transportation Research Part C (Emerging Technologies)
– ident: 10.1016/j.eswa.2022.117921_b177
  doi: 10.1145/3292500.3330877
– start-page: 1024
  year: 2017
  ident: 10.1016/j.eswa.2022.117921_b61
  article-title: Inductive representation learning on large graphs
– volume: 9
  start-page: 35973
  year: 2021
  ident: 10.1016/j.eswa.2022.117921_b258
  article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062114
– ident: 10.1016/j.eswa.2022.117921_b4
  doi: 10.1145/3357384.3358097
– volume: 185
  start-page: 40
  year: 2022
  ident: 10.1016/j.eswa.2022.117921_b80
  article-title: Graph-based deep learning for communication networks: A survey
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2021.12.015
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b164
  article-title: Deep learning in transport studies: A meta-analysis on the prediction accuracy
  publication-title: Journal of Big Data Analytics in Transportation
– start-page: 435
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b175
  article-title: MTGCN: A multitask deep learning model for traffic flow prediction
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b67
  article-title: GC-LSTM: A deep spatiotemporal model for passenger flow forecasting of high-speed rail network
– start-page: 1417
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b72
  article-title: Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks
– ident: 10.1016/j.eswa.2022.117921_b18
  doi: 10.1145/3274895.3274896
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b204
  article-title: Spatial origin-destination flow imputation using graph convolutional networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2017
  ident: 10.1016/j.eswa.2022.117921_b2
– start-page: 29
  year: 2018
  ident: 10.1016/j.eswa.2022.117921_b101
  article-title: Graph CNNs for urban traffic passenger flows prediction
– volume: 29
  start-page: 1727
  issue: 11n12
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b257
  article-title: Multistep flow prediction on car-sharing systems: A multi-graph convolutional neural network with attention mechanism
  publication-title: International Journal of Software Engineering and Knowledge Engineering
  doi: 10.1142/S0218194019400187
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b33
  article-title: Grids versus graphs: Partitioning space for improved taxi demand-supply forecasts
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b78
  article-title: Relational fusion networks: Graph convolutional networks for road networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 10367
  year: 2021
  ident: 10.1016/j.eswa.2022.117921_b125
  article-title: Transfer learning with graph neural networks for short-term highway traffic forecasting
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b91
  article-title: STGAT: Spatial-temporal graph attention networks for traffic flow forecasting
  publication-title: IEEE Access
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b245
  article-title: T-gcn: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b119
– volume: 29
  issue: 10
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b197
  article-title: Road traffic state prediction based on a graph embedding recurrent neural network under the SCATS
  publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science
  doi: 10.1063/1.5117180
– ident: 10.1016/j.eswa.2022.117921_b173
  doi: 10.1145/3340531.3412054
– ident: 10.1016/j.eswa.2022.117921_b77
  doi: 10.1145/3347146.3359094
– start-page: 1251
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b212
  article-title: Practical end-to-end repositioning algorithm for managing bike-sharing system
– ident: 10.1016/j.eswa.2022.117921_b220
  doi: 10.1609/aaai.v34i01.5470
– ident: 10.1016/j.eswa.2022.117921_b235
  doi: 10.1609/aaai.v34i01.5471
– volume: 182
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b12
  article-title: Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107484
– volume: 90
  start-page: 166
  year: 2018
  ident: 10.1016/j.eswa.2022.117921_b186
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2018.03.001
– start-page: 686
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b55
  article-title: BikeNet: Accurate bike demand prediction using graph neural networks for station rebalancing
– year: 2018
  ident: 10.1016/j.eswa.2022.117921_b166
  article-title: Graph attention networks
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b59
  article-title: Dynamic graph filters networks: A gray-box model for multistep traffic forecasting
– start-page: 2195
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b233
  article-title: Link speed prediction for signalized urban traffic network using a hybrid deep learning approach
– volume: 122
  year: 2021
  ident: 10.1016/j.eswa.2022.117921_b86
  article-title: Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network
  publication-title: Transportation Research Part C (Emerging Technologies)
– ident: 10.1016/j.eswa.2022.117921_b100
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b8
  article-title: Explainability techniques for graph convolutional networks
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b96
  article-title: Joint forecasting and interpolation of time-varying graph signals using deep learning
  publication-title: IEEE Transactions on Signal and Information Processing over Networks
  doi: 10.1109/TSIPN.2020.3040042
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b130
  article-title: Spatio-temporal deep graph infomax
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b79
– start-page: 999
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b241
  article-title: Spatial-temporal graph attention model on traffic forecasting
– volume: 1
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b97
  article-title: Short-term traffic demand prediction using graph convolutional neural networks
  publication-title: AGILE: GIScience Series
– volume: 47
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2022.117921_b170
  article-title: Survey of graph neural network
  publication-title: Computer Engineering
– start-page: 3898
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b181
  article-title: Neural-attention-based deep learning architectures for modeling traffic dynamics on lane graphs
– volume: 59
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b190
  article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.01.002
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b36
  article-title: Traffic demand prediction based on dynamic transition convolutional neural network
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 107
  start-page: 248
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b203
  article-title: A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2019.08.010
– volume: 127
  year: 2021
  ident: 10.1016/j.eswa.2022.117921_b85
  article-title: Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 3779
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b64
  article-title: Piecewise stationary modeling of random processes over graphs with an application to traffic prediction
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b162
  article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2020.3001195
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b103
  article-title: Traffic flow prediction over muti-sensor data correlation with graph convolution network
  publication-title: Neurocomputing
– start-page: 2697
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b38
  article-title: Constgat: Contextual spatial-temporal graph attention network for travel time estimation at baidu maps
– volume: 134
  year: 2022
  ident: 10.1016/j.eswa.2022.117921_b95
  article-title: DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting
  publication-title: Transportation Research Part C (Emerging Technologies)
– year: 2018
  ident: 10.1016/j.eswa.2022.117921_b152
– volume: 20
  start-page: 3776
  issue: 13
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b27
  article-title: Multitask learning and GCN-based taxi demand prediction for a traffic road network
  publication-title: Sensors
  doi: 10.3390/s20133776
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b42
– start-page: 57
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b208
  article-title: Learning mobility flows from urban features with spatial interaction models and neural networks
– year: 2018
  ident: 10.1016/j.eswa.2022.117921_b71
– volume: 20
  start-page: 3940
  issue: 10
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b214
  article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2019.2910560
– year: 2017
  ident: 10.1016/j.eswa.2022.117921_b90
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b138
– volume: 2020
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b10
  article-title: Integrating semantic zoning information with the prediction of road link speed based on taxi GPS data
  publication-title: Complexity
  doi: 10.1155/2020/6939328
– year: 2015
  ident: 10.1016/j.eswa.2022.117921_b69
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b120
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b226
  article-title: A multi-modal graph neural network approach to traffic risk forecasting in smart urban sensing
– ident: 10.1016/j.eswa.2022.117921_b109
  doi: 10.1609/aaai.v35i5.16542
– start-page: 2444
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b70
  article-title: Heteta: Heterogeneous information network embedding for estimating time of arrival
– volume: 117
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b82
  article-title: Urban ride-hailing demand prediction with multiple spatio-temporal information fusion network
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 2570
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b84
  article-title: Learning dynamic graph embedding for traffic flow forecasting: A graph self-attentive method
– volume: 20
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2022.117921_b148
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2005605
– start-page: 355
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b99
  article-title: A two-stream graph convolutional neural network for dynamic traffic flow forecasting
– start-page: 1907
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b185
  article-title: Graph WaveNet for deep spatial-temporal graph modeling
– volume: 14
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b157
  article-title: Traffic flow prediction model based on spatio-temporal dilated graph convolution
  publication-title: KSII Transactions on Internet & Information Systems
– volume: 8
  start-page: 243
  issue: 6
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b63
  article-title: Predicting station-level short-term passenger flow in a citywide metro network using spatiotemporal graph convolutional neural networks
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi8060243
– volume: 114
  start-page: 189
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b215
  article-title: Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2020.02.013
– start-page: 414
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b143
  article-title: Modeling local and global flow aggregation for traffic flow forecasting
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b206
  article-title: How to build a graph-based deep learning architecture in traffic domain: A survey
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b43
  article-title: Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/iet-its.2019.0778
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b213
  article-title: Deep spatio-temporal graph convolutional network for traffic accident prediction
  publication-title: Neurocomputing
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b29
  article-title: Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2018
  ident: 10.1016/j.eswa.2022.117921_b171
– year: 2018
  ident: 10.1016/j.eswa.2022.117921_b128
  article-title: Graph cnn+ lstm framework for dynamic macroscopic traffic congestion prediction
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b14
  article-title: A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid machine learning-based model
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2020.102224
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b243
  article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction
  publication-title: IEEE Access
– volume: 27
  start-page: 2672
  year: 2014
  ident: 10.1016/j.eswa.2022.117921_b51
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– start-page: 9244
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b211
  article-title: Gnnexplainer: Generating explanations for graph neural networks
– volume: 112
  start-page: 62
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b11
  article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2020.01.010
– volume: 35
  start-page: 338
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b250
  article-title: Exploiting multiple correlations among Urban regions for crowd flow prediction
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-020-9970-y
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b107
  article-title: SDCN: Sparsity and diversity driven correlation networks for traffic demand forecasting
– volume: 30
  start-page: 5998
  year: 2017
  ident: 10.1016/j.eswa.2022.117921_b165
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– start-page: 3483
  year: 2021
  ident: 10.1016/j.eswa.2022.117921_b158
  article-title: Constructing geographic and long-term temporal graph for traffic forecasting
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b54
  article-title: An optimized temporal-spatial gated graph convolution network for traffic forecasting
  publication-title: IEEE Intelligent Transportation Systems Magazine
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b146
  article-title: GANNSTER: Graph-augmented neural network spatio-temporal reasoner for traffic forecasting
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b229
  article-title: Graph attention temporal convolutional network for traffic speed forecasting on road networks
  publication-title: Transportmetrica B: Transport Dynamics
– ident: 10.1016/j.eswa.2022.117921_b230
  doi: 10.1145/3340531.3411941
– start-page: 159
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b74
  article-title: Short-term traffic flow prediction based on graph convolutional network embedded LSTM
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b122
  article-title: Temporal multi-graph convolutional network for traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– ident: 10.1016/j.eswa.2022.117921_b155
  doi: 10.1609/aaai.v34i01.5438
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b178
– start-page: 2466
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b57
  article-title: A multi-step traffic speed forecasting model based on graph convolutional LSTM
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b105
  article-title: A multi-stream feature fusion approach for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2021
  ident: 10.1016/j.eswa.2022.117921_b210
  article-title: Deep learning on traffic prediction: Methods, analysis and future directions
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b216
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b142
  article-title: Topological graph convolutional network-based urban traffic flow and density prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– ident: 10.1016/j.eswa.2022.117921_b21
  doi: 10.1609/aaai.v34i04.5758
– ident: 10.1016/j.eswa.2022.117921_b56
  doi: 10.1609/aaai.v33i01.3301922
– start-page: 1018
  year: 2018
  ident: 10.1016/j.eswa.2022.117921_b232
  article-title: Kernel-weighted graph convolutional network: A deep learning approach for traffic forecasting
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b141
  article-title: A graph convolutional network model for evaluating potential congestion spots based on local urban built environments
  publication-title: Transactions in GIS
  doi: 10.1111/tgis.12641
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b16
  article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting
  publication-title: Transactions in GIS
  doi: 10.1111/tgis.12644
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b68
  article-title: Railway delay prediction with spatial-temporal graph convolutional networks
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b134
  article-title: Spatio-temporal meta learning for urban traffic prediction
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 2232
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b9
  article-title: What Lies beneath: A note on the explainability of black-box machine learning models for road traffic forecasting
– ident: 10.1016/j.eswa.2022.117921_b35
  doi: 10.1609/aaai.v33i01.3301890
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b183
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– ident: 10.1016/j.eswa.2022.117921_b242
  doi: 10.1609/aaai.v31i1.10735
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b207
  article-title: Multi-STGCnet: A graph convolution based spatial-temporal framework for subway passenger flow forecasting
– ident: 10.1016/j.eswa.2022.117921_b252
  doi: 10.1609/aaai.v34i01.5480
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b225
  article-title: Deep learning on graphs: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 119
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b168
  article-title: Forecast network-wide traffic states for multiple steps ahead: A deep learning approach considering dynamic non-local spatial correlation and non-stationary temporal dependency
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b87
  article-title: Urban traffic prediction using congestion diffusion model
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b117
  article-title: LSTM variants meet graph neural networks for road speed prediction
  publication-title: Neurocomputing
– volume: 8
  start-page: 414
  issue: 9
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b199
  article-title: Incorporating graph attention and recurrent architectures for city-wide taxi demand prediction
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi8090414
– ident: 10.1016/j.eswa.2022.117921_b98
  doi: 10.1145/3340531.3411965
– start-page: 3634
  year: 2018
  ident: 10.1016/j.eswa.2022.117921_b217
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
– start-page: 1082
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b172
  article-title: Traffic flow prediction via spatial temporal graph neural network
– ident: 10.1016/j.eswa.2022.117921_b102
  doi: 10.1609/aaai.v34i04.5915
– volume: 10
  start-page: 485
  issue: 7
  year: 2021
  ident: 10.1016/j.eswa.2022.117921_b7
  article-title: A3T-GCN: attention temporal graph convolutional network for traffic forecasting
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi10070485
– start-page: 2286
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b40
  article-title: GSTNet: Global spatial-temporal network for traffic flow prediction
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b251
– ident: 10.1016/j.eswa.2022.117921_b116
  doi: 10.1145/3340531.3411894
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b94
– ident: 10.1016/j.eswa.2022.117921_b106
  doi: 10.24963/ijcai.2019/402
– volume: 105
  start-page: 297
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b234
  article-title: Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2019.05.039
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b221
  article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1049/iet-its.2019.0873
– year: 2022
  ident: 10.1016/j.eswa.2022.117921_b256
  article-title: KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2022.3220089
– volume: 30
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b176
  article-title: An urban commuters’ OD hybrid prediction method based on big GPS data
  publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science
  doi: 10.1063/5.0007174
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b209
  article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction
  publication-title: Neurocomputing
– volume: 97
  start-page: 258
  year: 2018
  ident: 10.1016/j.eswa.2022.117921_b111
  article-title: Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2018.10.011
– volume: 9
  start-page: 54739
  year: 2021
  ident: 10.1016/j.eswa.2022.117921_b92
  article-title: Short-term traffic prediction with deep neural networks: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071174
– year: 2021
  ident: 10.1016/j.eswa.2022.117921_b126
  article-title: Deep learning for road traffic forecasting: Does it make a difference?
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 11
  start-page: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b136
  article-title: Feature selection and extraction in spatiotemporal traffic forecasting: a systematic literature review
  publication-title: European Transport Research Review
  doi: 10.1186/s12544-019-0345-9
– ident: 10.1016/j.eswa.2022.117921_b219
  doi: 10.1145/1869790.1869807
– year: 2019
  ident: 10.1016/j.eswa.2022.117921_b48
– ident: 10.1016/j.eswa.2022.117921_b110
  doi: 10.1145/3219819.3219895
– start-page: 1263
  year: 2017
  ident: 10.1016/j.eswa.2022.117921_b50
  article-title: Neural message passing for quantum chemistry
– year: 2016
  ident: 10.1016/j.eswa.2022.117921_b89
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b202
  article-title: Relational state-space model for stochastic multi-object systems
– volume: 115
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b30
  article-title: Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction
  publication-title: Transportation Research Part C (Emerging Technologies)
– ident: 10.1016/j.eswa.2022.117921_b149
  doi: 10.1145/3409501.3409539
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b222
  article-title: Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/iet-its.2019.0873
– ident: 10.1016/j.eswa.2022.117921_b65
  doi: 10.1145/3366423.3380101
– ident: 10.1016/j.eswa.2022.117921_b189
  doi: 10.1145/3340531.3411873
– year: 2018
  ident: 10.1016/j.eswa.2022.117921_b147
  article-title: Few-shot learning with graph neural networks
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b255
  article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 234
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b44
  article-title: Temporal graph convolutional networks for traffic speed prediction considering external factors
– ident: 10.1016/j.eswa.2022.117921_b194
  doi: 10.1145/3340531.3417411
– start-page: 74
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b118
  article-title: Leveraging graph neural network with LSTM for traffic speed prediction
– volume: 521
  start-page: 277
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b137
  article-title: Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.01.043
– start-page: 522
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b45
  article-title: Traffic speed prediction with missing data based on TGCN
– volume: 117
  year: 2020
  ident: 10.1016/j.eswa.2022.117921_b31
  article-title: Graph Markov network for traffic forecasting with missing data
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 7
  start-page: 166246
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b231
  article-title: Spatial-temporal graph attention networks: A deep learning approach for traffic forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953888
– year: 2018
  ident: 10.1016/j.eswa.2022.117921_b108
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b198
  article-title: Spatiotemporal graph convolution multifusion network for urban vehicle emission prediction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– ident: 10.1016/j.eswa.2022.117921_b114
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b123
– year: 2020
  ident: 10.1016/j.eswa.2022.117921_b112
  article-title: Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1039
  year: 2019
  ident: 10.1016/j.eswa.2022.117921_b115
  article-title: Learning to propagate for graph meta-learning
SSID ssj0017007
Score 2.744609
SecondaryResourceType review_article
Snippet Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117921
SubjectTerms Deep learning
Graph attention network
Graph convolution network
Graph neural networks
Traffic forecasting
Title Graph neural network for traffic forecasting: A survey
URI https://dx.doi.org/10.1016/j.eswa.2022.117921
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEIBPVVlYeCOelQc2FJqHYzdsVUUpILpApW6R4zhSEQpVm4JY-O3c1U4FEurAlocdORf7HsrdZ4ALqZUvpYk9lQjt8bzIPQzBclx4aLt4lkeFoOLkx6EYjPj9OB43oFfXwlBapdP9VqcvtbW70nbSbE8nk_YTOgdoDjG0C5cMGWKCci5pll99rdI8CD8nLW9PetTaFc7YHC8z_yD2UBjSv8skDP42Tj8MTn8HtpynyLp2MLvQMOUebNe7MDC3KPdB3BJzmhGYEpuXNq2boS_KqpkiQAQdG63mlOB8zbpsvpi9m88DGPVvnnsDz-2G4OlIiMqTRmVKi6ITZlIKYsCYmGjtkvgQRZ6JuIiKOBB4H99VoWGm0BAjAl_7KuwE0SE0y7fSHAHzDT4rFjxIZM65iVQSGLRRSa55Fvmd5BiCWgypdqhw2rHiNa1zwl5SEl1Kokut6I7hctVnakEZa1vHtXTTX587RU2-pt_JP_udwiadWWbjGTSr2cKcozdRZa3ldGnBRvfuYTD8BsQQxo0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CLb7E-c_AmoXnuNt5Ksab2cbGF3pbNZgMViaUPxX_vTLMpCtKDt5CdCdkv2XmwM98C3HElHc51aMuIKTtIs9TGFCzFhYe-K0hSP2PUnDwYsngcPE_CSQXaZS8MlVUa21_Y9LW1NncaBs3GbDptvGBwgO4QUztvzSET7ECN2KnCKtRa3V483GwmcKfomkZ5mxRM70xR5qUXn0Q_5Hm0fRl57t_-6YfP6RzCvgkWrVbxPkdQ0fkxHJQHMVhmXZ4AeyLaaYu4KVE8Lyq7LQxHreVcEkcEXWslF1Tj_GC1rMVq_qG_TmHceRy1Y9sciGArn7GlzbVMpGJZ00s4Z0QDo0MibOdEEZGlCQszPwtdhuM4V4m-mbJDTAoc5Uiv6fpnUM3fc30OlqPxWSEL3IinQaB9Gbka3VSUqiDxnWZUB7eEQSjDFk6HVryJsizsVRB0gqATBXR1uN_ozAqujK3SYYmu-PXFBRrzLXoX_9S7hd14NOiLfnfYu4Q9GikoHK-gupyv9DUGF8vkxvw8367-yT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+neural+network+for+traffic+forecasting%3A+A+survey&rft.jtitle=Expert+systems+with+applications&rft.au=Jiang%2C+Weiwei&rft.au=Luo%2C+Jiayun&rft.date=2022-11-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=207&rft_id=info:doi/10.1016%2Fj.eswa.2022.117921&rft.externalDocID=S0957417422011654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon