Graph neural network for traffic forecasting: A survey
Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and recurrent neural networks, have been extensively applied in traffic forecasting problems to model spatial and temporal dependencies. In recent years...
Saved in:
Published in | Expert systems with applications Vol. 207; p. 117921 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and recurrent neural networks, have been extensively applied in traffic forecasting problems to model spatial and temporal dependencies. In recent years, to model the graph structures in transportation systems as well as contextual information, graph neural networks have been introduced and have achieved state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of research using different graph neural networks, e.g. graph convolutional and graph attention networks, in various traffic forecasting problems, e.g. road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, and demand forecasting in ride-hailing platforms. We also present a comprehensive list of open data and source codes for each problem and identify future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public GitHub repository where the latest papers, open data, and source codes will be updated.
•The latest application of graph neural network in traffic forecasting is presented.•The often-ignored implementation and reproducibility in other surveys are examined.•The future directions along with the research frontiers are pointed out. |
---|---|
AbstractList | Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and recurrent neural networks, have been extensively applied in traffic forecasting problems to model spatial and temporal dependencies. In recent years, to model the graph structures in transportation systems as well as contextual information, graph neural networks have been introduced and have achieved state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of research using different graph neural networks, e.g. graph convolutional and graph attention networks, in various traffic forecasting problems, e.g. road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, and demand forecasting in ride-hailing platforms. We also present a comprehensive list of open data and source codes for each problem and identify future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public GitHub repository where the latest papers, open data, and source codes will be updated.
•The latest application of graph neural network in traffic forecasting is presented.•The often-ignored implementation and reproducibility in other surveys are examined.•The future directions along with the research frontiers are pointed out. |
ArticleNumber | 117921 |
Author | Jiang, Weiwei Luo, Jiayun |
Author_xml | – sequence: 1 givenname: Weiwei orcidid: 0000-0003-0953-5047 surname: Jiang fullname: Jiang, Weiwei email: jww@bupt.edu.cn organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China – sequence: 2 givenname: Jiayun surname: Luo fullname: Luo, Jiayun email: luoj0028@e.ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore |
BookMark | eNp9kMFKAzEQhoNUsK2-gKd9gV1nsptkV7yUolUoeNFzSNNEU-tuSdKWvr1ZticPPf0DwzfM90_IqO1aQ8g9QoGA_GFTmHBUBQVKC0TRULwiY6xFmXPRlCMyhoaJvEJR3ZBJCBsAFABiTPjCq9131pq9V9sU8dj5n8x2PoteWet0PxutQnTt12M2y8LeH8zpllxbtQ3m7pxT8vny_DF_zZfvi7f5bJnrkvOYC6NWSnNb05UQnFesMaymtBFIkdn1ijNbWoY87dN_qkJWAYUSOGhQtMZySuhwV_suBG-s3Hn3q_xJIsjeXG5kby57czmYJ6j-B2kXVXRdm5zc9jL6NKAmSR2c8TJoZ1pt1i61EOW6c5fwP16xdKo |
CitedBy_id | crossref_primary_10_1177_03611981231170004 crossref_primary_10_1016_j_autcon_2023_105140 crossref_primary_10_1109_JIOT_2023_3332848 crossref_primary_10_1016_j_engappai_2023_107217 crossref_primary_10_1016_j_tra_2024_104344 crossref_primary_10_3390_fi16060189 crossref_primary_10_1016_j_trc_2021_103526 crossref_primary_10_1080_13658816_2023_2234959 crossref_primary_10_3390_app142411477 crossref_primary_10_1016_j_eswa_2024_124138 crossref_primary_10_1109_JSAC_2022_3229422 crossref_primary_10_1016_j_trc_2022_103820 crossref_primary_10_3390_technologies12080128 crossref_primary_10_1016_j_aej_2024_10_022 crossref_primary_10_1080_21680566_2022_2116125 crossref_primary_10_1007_s42979_024_03543_4 crossref_primary_10_1109_ACCESS_2024_3501572 crossref_primary_10_1080_23249935_2023_2264949 crossref_primary_10_1007_s12273_023_1041_1 crossref_primary_10_1016_j_simpat_2025_103066 crossref_primary_10_1177_23998083231204689 crossref_primary_10_1016_j_engstruct_2024_119161 crossref_primary_10_1016_j_coastaleng_2024_104619 crossref_primary_10_1051_e3sconf_202125703065 crossref_primary_10_1016_j_eswa_2025_126747 crossref_primary_10_3390_s22249684 crossref_primary_10_1109_JIOT_2024_3474855 crossref_primary_10_1016_j_jocs_2024_102523 crossref_primary_10_1016_j_compeleceng_2023_108687 crossref_primary_10_1109_ACCESS_2024_3396062 crossref_primary_10_1007_s00521_024_09827_3 crossref_primary_10_3390_info15070377 crossref_primary_10_3390_ijgi12030100 crossref_primary_10_3390_s25010282 crossref_primary_10_1109_ACCESS_2025_3549035 crossref_primary_10_1016_j_asoc_2025_112966 crossref_primary_10_3389_fenrg_2024_1418907 crossref_primary_10_1016_j_knosys_2024_112158 crossref_primary_10_1109_TCYB_2024_3412149 crossref_primary_10_1088_1674_1056_acb9fa crossref_primary_10_1631_FITEE_2200515 crossref_primary_10_3390_app14010412 crossref_primary_10_1016_j_engappai_2023_106202 crossref_primary_10_1049_esi2_12139 crossref_primary_10_32604_iasc_2023_040517 crossref_primary_10_1016_j_eswa_2023_122729 crossref_primary_10_1088_1361_6501_ad9ac1 crossref_primary_10_1016_j_knosys_2025_113336 crossref_primary_10_3390_drones7020078 crossref_primary_10_1186_s40537_024_00967_w crossref_primary_10_3390_s24248106 crossref_primary_10_1007_s11390_024_2828_y crossref_primary_10_1016_j_eswa_2023_122962 crossref_primary_10_1016_j_ymssp_2024_112025 crossref_primary_10_1109_TKDE_2024_3419036 crossref_primary_10_1016_j_eswa_2024_124187 crossref_primary_10_1109_TITS_2024_3447282 crossref_primary_10_1016_j_ins_2023_03_057 crossref_primary_10_1111_mice_13131 crossref_primary_10_1145_3664649 crossref_primary_10_1016_j_ese_2024_100514 crossref_primary_10_1016_j_jobe_2024_111133 crossref_primary_10_1371_journal_pone_0302327 crossref_primary_10_4028_p_FZ0iNi crossref_primary_10_1109_JIOT_2024_3496795 crossref_primary_10_3390_app13127271 crossref_primary_10_3390_math11010224 crossref_primary_10_1007_s10462_023_10577_2 crossref_primary_10_1007_s10707_024_00532_w crossref_primary_10_3390_a16030154 crossref_primary_10_1016_j_physa_2024_130244 crossref_primary_10_1109_ACCESS_2022_3217236 crossref_primary_10_3390_su142114049 crossref_primary_10_3390_fi15080251 crossref_primary_10_1016_j_tre_2024_103445 crossref_primary_10_1109_TPAMI_2024_3443141 crossref_primary_10_1007_s11280_025_01328_0 crossref_primary_10_3390_app14198642 crossref_primary_10_3390_s24216894 crossref_primary_10_1007_s10489_023_04492_w crossref_primary_10_1038_s41598_024_60337_7 crossref_primary_10_1007_s00500_025_10464_8 crossref_primary_10_1038_s41598_024_78148_1 crossref_primary_10_1109_JIOT_2024_3369655 crossref_primary_10_1016_j_ymssp_2025_112449 crossref_primary_10_1016_j_jer_2024_08_006 crossref_primary_10_1016_j_eswa_2025_126799 crossref_primary_10_1016_j_physa_2023_128650 crossref_primary_10_3390_s22207994 crossref_primary_10_1016_j_apenergy_2025_125320 crossref_primary_10_1007_s00521_024_10248_5 crossref_primary_10_1109_ACCESS_2023_3283436 crossref_primary_10_1016_j_tws_2024_112851 crossref_primary_10_1007_s10489_023_04976_9 crossref_primary_10_1016_j_joi_2025_101639 crossref_primary_10_1016_j_comnet_2023_109695 crossref_primary_10_1177_03611981241247050 crossref_primary_10_1007_s10489_024_05815_1 crossref_primary_10_1109_TIM_2022_3219475 crossref_primary_10_1016_j_scitotenv_2023_167591 crossref_primary_10_1177_03611981241274645 crossref_primary_10_1016_j_neucom_2024_129193 crossref_primary_10_3390_bioengineering11070671 crossref_primary_10_1016_j_autcon_2025_106079 crossref_primary_10_1007_s10489_024_05724_3 crossref_primary_10_1016_j_ress_2025_110928 crossref_primary_10_1109_TITS_2024_3375936 crossref_primary_10_3390_app13158673 crossref_primary_10_1016_j_eswa_2023_121313 crossref_primary_10_1109_OJITS_2023_3334393 crossref_primary_10_1109_TITS_2024_3478816 crossref_primary_10_1007_s42421_024_00104_2 crossref_primary_10_1016_j_ijimpeng_2024_105123 crossref_primary_10_3390_ijgi12030083 crossref_primary_10_1088_1674_1056_ad3349 crossref_primary_10_1016_j_apenergy_2023_122151 crossref_primary_10_1016_j_jclepro_2024_143543 crossref_primary_10_1038_s41598_024_82759_z crossref_primary_10_1029_2023WR036741 crossref_primary_10_1016_j_engappai_2025_110476 crossref_primary_10_1016_j_xcrp_2024_102292 crossref_primary_10_1109_TKDE_2024_3374773 crossref_primary_10_1016_j_engappai_2024_109190 crossref_primary_10_1145_3660523 crossref_primary_10_3390_info14040228 crossref_primary_10_3390_s24154796 crossref_primary_10_1145_3703915 crossref_primary_10_1016_j_jbi_2024_104616 crossref_primary_10_3390_app13169304 crossref_primary_10_1016_j_engappai_2023_106741 crossref_primary_10_1016_j_comcom_2024_02_005 crossref_primary_10_1177_03611981231172961 crossref_primary_10_3934_math_2024617 crossref_primary_10_1016_j_inffus_2024_102291 crossref_primary_10_1007_s00521_022_07380_5 crossref_primary_10_1016_j_tre_2024_103525 crossref_primary_10_1109_JSEN_2024_3394846 crossref_primary_10_1016_j_dsm_2024_11_001 crossref_primary_10_1109_OJCOMS_2024_3506214 crossref_primary_10_1109_TSUSC_2024_3351282 crossref_primary_10_1007_s12273_024_1125_6 crossref_primary_10_1016_j_enpol_2023_113845 crossref_primary_10_3390_app13063989 crossref_primary_10_1016_j_engappai_2023_106754 crossref_primary_10_3390_app13063987 crossref_primary_10_1007_s00034_024_02877_x crossref_primary_10_1109_TETC_2024_3374581 crossref_primary_10_1016_j_eswa_2023_119587 crossref_primary_10_1140_epjs_s11734_024_01368_z crossref_primary_10_1007_s12273_024_1136_3 crossref_primary_10_1007_s10489_025_06348_x crossref_primary_10_3390_ijgi10120821 crossref_primary_10_1016_j_eswa_2023_121548 crossref_primary_10_1016_j_autcon_2025_106040 crossref_primary_10_1016_j_eswa_2023_120333 crossref_primary_10_1016_j_neunet_2024_106484 crossref_primary_10_3390_app13179729 crossref_primary_10_1016_j_tranpol_2025_01_025 crossref_primary_10_3390_asi5010023 crossref_primary_10_3390_math11163446 crossref_primary_10_3390_s23177534 crossref_primary_10_1002_qre_3651 crossref_primary_10_1016_j_procs_2023_11_089 crossref_primary_10_3390_s23041975 crossref_primary_10_3390_sym16091183 crossref_primary_10_3390_s22197457 crossref_primary_10_32604_iasc_2023_039132 crossref_primary_10_1016_j_engappai_2024_109042 crossref_primary_10_1038_s41598_024_78335_0 crossref_primary_10_1016_j_eswa_2023_122449 crossref_primary_10_1016_j_ins_2022_12_086 crossref_primary_10_1109_OJCS_2025_3525560 crossref_primary_10_1007_s11036_024_02306_y crossref_primary_10_1016_j_engappai_2025_110304 crossref_primary_10_1007_s13177_024_00453_w crossref_primary_10_1115_1_4065612 crossref_primary_10_1109_TITS_2024_3436930 crossref_primary_10_3390_w17010012 crossref_primary_10_1007_s00521_024_09675_1 crossref_primary_10_54097_hset_v44i_7198 crossref_primary_10_1007_s00521_024_10606_3 crossref_primary_10_1109_TITS_2024_3443887 crossref_primary_10_1016_j_knosys_2024_112929 crossref_primary_10_3233_JIFS_231133 crossref_primary_10_1016_j_apenergy_2024_124236 crossref_primary_10_1016_j_ymssp_2023_110534 crossref_primary_10_1016_j_jlp_2024_105396 crossref_primary_10_1080_03081060_2023_2245389 crossref_primary_10_1016_j_tre_2023_103320 crossref_primary_10_1109_ACCESS_2023_3338223 crossref_primary_10_1145_3696413 crossref_primary_10_1145_3696411 crossref_primary_10_14778_3641204_3641217 crossref_primary_10_1016_j_eswa_2023_120035 crossref_primary_10_1109_ACCESS_2023_3335196 crossref_primary_10_3390_vehicles6010005 crossref_primary_10_1007_s00521_024_10672_7 crossref_primary_10_1007_s10586_023_04140_5 crossref_primary_10_1109_TSMC_2024_3407948 crossref_primary_10_1109_TMC_2023_3296501 crossref_primary_10_1016_j_measurement_2024_116308 crossref_primary_10_15446_dyna_v92n235_115909 crossref_primary_10_32604_cmc_2024_047836 crossref_primary_10_1007_s40747_024_01669_9 crossref_primary_10_3390_ijgi11020102 crossref_primary_10_1016_j_physa_2024_129891 crossref_primary_10_1007_s00521_024_10508_4 crossref_primary_10_3390_app13020711 crossref_primary_10_1109_ACCESS_2023_3268212 crossref_primary_10_1016_j_knosys_2024_111813 crossref_primary_10_1016_j_trc_2022_103921 crossref_primary_10_1007_s10044_024_01382_w crossref_primary_10_1016_j_pdisas_2025_100405 crossref_primary_10_2139_ssrn_4692194 crossref_primary_10_1109_TVT_2023_3328144 crossref_primary_10_1007_s10618_024_01038_7 crossref_primary_10_1109_ACCESS_2024_3403516 crossref_primary_10_3390_electronics13193816 crossref_primary_10_1016_j_eswa_2023_120259 crossref_primary_10_1145_3648358 crossref_primary_10_1049_2024_8639981 crossref_primary_10_32604_cmes_2024_057774 crossref_primary_10_1007_s10489_023_04651_z crossref_primary_10_1016_j_aei_2024_102519 crossref_primary_10_3390_fi15120377 crossref_primary_10_1016_j_jnca_2025_104108 crossref_primary_10_1016_j_ins_2024_120482 crossref_primary_10_1016_j_inffus_2024_102228 crossref_primary_10_1145_3711121 crossref_primary_10_1145_3711122 crossref_primary_10_1016_j_eswa_2023_121394 crossref_primary_10_1007_s11116_024_10504_6 crossref_primary_10_1016_j_apenergy_2023_120928 crossref_primary_10_1016_j_inffus_2024_102241 crossref_primary_10_1016_j_eswa_2023_121280 crossref_primary_10_1109_TSP_2024_3435935 crossref_primary_10_1016_j_knosys_2024_111637 crossref_primary_10_1108_DTA_09_2022_0378 crossref_primary_10_1109_TITS_2022_3202089 crossref_primary_10_1007_s10618_022_00903_7 crossref_primary_10_1109_TITS_2023_3257759 crossref_primary_10_32604_cmc_2023_039274 crossref_primary_10_3934_era_2023133 crossref_primary_10_1007_s13177_025_00480_1 crossref_primary_10_23919_JSEE_2023_000083 crossref_primary_10_3390_sym15051036 crossref_primary_10_1007_s41019_024_00246_x crossref_primary_10_1016_j_cjche_2024_05_029 crossref_primary_10_3390_app14177793 crossref_primary_10_1016_j_neunet_2024_106787 crossref_primary_10_1007_s40747_024_01663_1 crossref_primary_10_30518_jav_1307741 crossref_primary_10_1007_s00289_023_05117_5 crossref_primary_10_1109_TNSE_2024_3521429 crossref_primary_10_3390_e25081136 crossref_primary_10_1177_03611981231213878 crossref_primary_10_1007_s13042_024_02435_6 crossref_primary_10_1007_s10489_024_05656_y crossref_primary_10_1016_j_eswa_2024_125921 crossref_primary_10_1016_j_inffus_2024_102466 crossref_primary_10_3390_fi16080270 crossref_primary_10_3390_math12213338 crossref_primary_10_1016_j_autcon_2023_104984 crossref_primary_10_3390_rs15143611 crossref_primary_10_1016_j_neunet_2023_01_023 crossref_primary_10_1016_j_eswa_2024_125950 crossref_primary_10_1016_j_ces_2024_121147 crossref_primary_10_1007_s10707_024_00517_9 crossref_primary_10_1016_j_mfglet_2024_09_172 crossref_primary_10_1007_s10661_024_12443_2 crossref_primary_10_1016_j_neucom_2023_127018 crossref_primary_10_1007_s10994_024_06725_6 crossref_primary_10_1109_OJVT_2024_3369691 crossref_primary_10_1007_s11518_024_5594_z crossref_primary_10_1016_j_future_2024_107515 crossref_primary_10_7717_peerj_cs_2391 crossref_primary_10_1016_j_eswa_2024_123884 crossref_primary_10_1109_ACCESS_2023_3236261 crossref_primary_10_1016_j_neunet_2024_106228 crossref_primary_10_1016_j_trc_2025_105107 crossref_primary_10_1049_itr2_12371 crossref_primary_10_1016_j_compeleceng_2024_110046 crossref_primary_10_1371_journal_pone_0298684 crossref_primary_10_62329_TUVN1118 crossref_primary_10_3390_app12189156 crossref_primary_10_1016_j_multra_2025_100207 crossref_primary_10_1007_s00521_024_10591_7 crossref_primary_10_1088_1742_6596_2711_1_012012 crossref_primary_10_1109_JIOT_2023_3317190 crossref_primary_10_1016_j_enbuild_2024_114901 crossref_primary_10_1016_j_tre_2025_104011 crossref_primary_10_1177_03611981241233569 crossref_primary_10_3390_aerospace11050371 crossref_primary_10_1109_TITS_2022_3224039 crossref_primary_10_1016_j_neunet_2024_106793 crossref_primary_10_1007_s00500_025_10501_6 crossref_primary_10_3390_ijgi14010011 crossref_primary_10_1016_j_eswa_2023_122143 crossref_primary_10_1016_j_oceaneng_2024_118927 crossref_primary_10_1016_j_eswa_2024_123543 crossref_primary_10_1016_j_inffus_2024_102265 crossref_primary_10_3390_s23146527 crossref_primary_10_1109_OJITS_2023_3251564 crossref_primary_10_1007_s10707_024_00527_7 crossref_primary_10_1016_j_neunet_2024_106207 crossref_primary_10_1016_j_engappai_2024_109575 crossref_primary_10_1016_j_knosys_2024_112875 crossref_primary_10_1016_j_knosys_2024_112874 crossref_primary_10_1007_s10462_024_10931_y crossref_primary_10_3390_math12101493 crossref_primary_10_1016_j_trc_2024_104861 crossref_primary_10_1109_TITS_2024_3367754 crossref_primary_10_1016_j_dcan_2023_01_016 crossref_primary_10_1109_TITS_2023_3325817 crossref_primary_10_1016_j_neunet_2024_106938 crossref_primary_10_1016_j_ijforecast_2024_11_004 crossref_primary_10_1002_spe_3386 crossref_primary_10_1016_j_ins_2024_120648 crossref_primary_10_1016_j_cma_2024_117458 crossref_primary_10_1016_j_eswa_2024_123448 crossref_primary_10_3390_a17040166 crossref_primary_10_1007_s11227_024_06539_2 crossref_primary_10_1016_j_asoc_2023_110052 crossref_primary_10_1038_s41598_024_60598_2 crossref_primary_10_1016_j_asoc_2023_110175 crossref_primary_10_3390_buildings13102504 crossref_primary_10_1016_j_adhoc_2022_103016 crossref_primary_10_3390_s22239492 crossref_primary_10_3390_en17174296 crossref_primary_10_1145_3627816 crossref_primary_10_3390_a15100376 crossref_primary_10_1142_S0218126624502736 crossref_primary_10_1016_j_eswa_2024_125534 crossref_primary_10_3390_s24206659 crossref_primary_10_3390_electronics13152897 crossref_primary_10_1016_j_knosys_2024_111689 crossref_primary_10_3390_make6040139 crossref_primary_10_3390_smartcities6050114 crossref_primary_10_3390_math10193507 crossref_primary_10_1109_OJCOMS_2024_3407708 crossref_primary_10_1016_j_knosys_2023_111170 crossref_primary_10_1016_j_asoc_2023_110059 crossref_primary_10_1016_j_inffus_2024_102845 crossref_primary_10_1016_j_rsma_2025_104088 crossref_primary_10_1109_TAI_2024_3459857 crossref_primary_10_1016_j_dsp_2023_104156 crossref_primary_10_1016_j_eswa_2024_124431 crossref_primary_10_1016_j_eswa_2023_122072 crossref_primary_10_1007_s11869_023_01369_2 crossref_primary_10_1088_1361_6501_ad3016 crossref_primary_10_1016_j_knosys_2025_112967 crossref_primary_10_1109_TITS_2023_3308594 crossref_primary_10_3390_su14127431 crossref_primary_10_1088_1361_6501_ad6f33 crossref_primary_10_1007_s44196_024_00602_9 crossref_primary_10_1680_jtran_24_00024 crossref_primary_10_1016_j_eswa_2024_124430 crossref_primary_10_1016_j_ins_2024_121845 crossref_primary_10_1016_j_eswa_2024_124466 crossref_primary_10_3390_s23229225 crossref_primary_10_1016_j_eswa_2023_123091 crossref_primary_10_1109_ACCESS_2023_3345795 crossref_primary_10_1145_3689430 crossref_primary_10_1142_S0218348X23400777 crossref_primary_10_3390_asi5060121 crossref_primary_10_1016_j_eswa_2022_119311 crossref_primary_10_1109_TII_2022_3216238 crossref_primary_10_1109_TKDE_2023_3333824 crossref_primary_10_1016_j_engappai_2023_107265 crossref_primary_10_1145_3565973 crossref_primary_10_1016_j_neucom_2024_128225 crossref_primary_10_3934_math_2025096 crossref_primary_10_1016_j_chaos_2024_115437 crossref_primary_10_1177_03611981231198851 crossref_primary_10_1007_s00521_024_10732_y crossref_primary_10_1080_1206212X_2024_2442699 crossref_primary_10_1109_TITS_2024_3450846 crossref_primary_10_1002_cpe_7827 crossref_primary_10_3390_su16219239 crossref_primary_10_1109_THMS_2023_3319356 crossref_primary_10_1016_j_inffus_2023_102146 crossref_primary_10_1080_15715124_2024_2329243 crossref_primary_10_1145_3607191 crossref_primary_10_1016_j_cie_2024_110761 crossref_primary_10_1016_j_energy_2024_132144 crossref_primary_10_1016_j_jnca_2024_104034 crossref_primary_10_61186_jgst_14_2_1 crossref_primary_10_1007_s13177_024_00414_3 crossref_primary_10_3390_math10244734 crossref_primary_10_1016_j_eswa_2025_126937 crossref_primary_10_1007_s42001_024_00340_0 crossref_primary_10_3390_s22229024 crossref_primary_10_1007_s12530_024_09624_2 crossref_primary_10_1007_s42488_025_00141_8 crossref_primary_10_1016_j_ins_2024_120215 crossref_primary_10_1061_JTEPBS_TEENG_8416 crossref_primary_10_1016_j_eswa_2024_124693 crossref_primary_10_1007_s13177_024_00425_0 crossref_primary_10_1109_OJITS_2025_3544301 crossref_primary_10_1109_TNNLS_2024_3379735 crossref_primary_10_1007_s11227_024_06670_0 crossref_primary_10_1016_j_ijtst_2023_04_006 crossref_primary_10_1109_TITS_2025_3533560 crossref_primary_10_1145_3625820 crossref_primary_10_3390_electronics12081885 crossref_primary_10_1029_2023GH000784 crossref_primary_10_1007_s10489_024_05301_8 crossref_primary_10_1016_j_inffus_2024_102404 crossref_primary_10_1145_3641277 crossref_primary_10_1016_j_neunet_2024_106950 crossref_primary_10_1007_s12530_024_09637_x crossref_primary_10_1061_JTEPBS_TEENG_8207 crossref_primary_10_1016_j_eswa_2024_124354 crossref_primary_10_4018_JOEUC_370912 crossref_primary_10_1016_j_eswa_2024_123268 crossref_primary_10_1016_j_inffus_2024_102542 crossref_primary_10_3390_atmos14030467 crossref_primary_10_1016_j_asoc_2025_112892 crossref_primary_10_1007_s10489_024_05970_5 crossref_primary_10_1038_s41598_025_93179_y crossref_primary_10_1016_j_neucom_2024_128256 crossref_primary_10_1109_MITS_2024_3400679 crossref_primary_10_1109_TVT_2023_3239054 crossref_primary_10_1016_j_engappai_2023_106044 crossref_primary_10_1109_MITS_2023_3315329 crossref_primary_10_1109_TITS_2024_3375267 crossref_primary_10_1155_2023_3208535 crossref_primary_10_1016_j_epsr_2023_109873 crossref_primary_10_3390_healthcare11121762 |
Cites_doi | 10.3390/app10041509 10.1007/s42421-020-00020-1 10.1155/2020/7586154 10.1109/ACCESS.2020.3027375 10.1609/aaai.v34i01.5477 10.1109/ACCESS.2019.2958380 10.1145/3395260.3395266 10.1371/journal.pone.0220782 10.1145/3381005 10.1007/s11277-020-07612-8 10.1016/j.comnet.2020.107530 10.1155/2020/8859538 10.1177/0361198120919399 10.1080/13658816.2019.1697879 10.1109/CVPR.2019.01103 10.1145/3292500.3330884 10.1145/3397536.3422257 10.1016/j.aiopen.2021.01.001 10.1609/aaai.v35i5.16591 10.1007/978-3-030-67670-4_27 10.1109/ACCESS.2020.2994415 10.1609/aaai.v33i01.33013656 10.1177/0361198120930010 10.1016/j.neucom.2020.06.001 10.1145/3340531.3411874 10.1111/mice.12450 10.1609/aaai.v35i10.17114 10.1109/ACCESS.2020.3018452 10.1145/3340531.3411940 10.1609/aaai.v33i01.3301485 10.1109/ACCESS.2020.3038380 10.26599/TST.2018.9010033 10.1145/3292500.3330877 10.1109/ACCESS.2021.3062114 10.1145/3357384.3358097 10.1016/j.comcom.2021.12.015 10.1145/3274895.3274896 10.1142/S0218194019400187 10.1063/1.5117180 10.1145/3340531.3412054 10.1145/3347146.3359094 10.1609/aaai.v34i01.5470 10.1609/aaai.v34i01.5471 10.1016/j.comnet.2020.107484 10.1016/j.trc.2018.03.001 10.1109/TSIPN.2020.3040042 10.1016/j.inffus.2020.01.002 10.1016/j.trc.2019.08.010 10.1109/TKDE.2020.3001195 10.3390/s20133776 10.1109/TITS.2019.2910560 10.1155/2020/6939328 10.1609/aaai.v35i5.16542 10.1109/TNN.2008.2005605 10.3390/ijgi8060243 10.1016/j.trc.2020.02.013 10.1049/iet-its.2019.0778 10.1016/j.adhoc.2020.102224 10.1016/j.trc.2020.01.010 10.1007/s11390-020-9970-y 10.1145/3340531.3411941 10.1609/aaai.v34i01.5438 10.1609/aaai.v34i04.5758 10.1609/aaai.v33i01.3301922 10.1111/tgis.12641 10.1111/tgis.12644 10.1609/aaai.v33i01.3301890 10.1609/aaai.v31i1.10735 10.1609/aaai.v34i01.5480 10.3390/ijgi8090414 10.1145/3340531.3411965 10.1609/aaai.v34i04.5915 10.3390/ijgi10070485 10.1145/3340531.3411894 10.24963/ijcai.2019/402 10.1016/j.trc.2019.05.039 10.1049/iet-its.2019.0873 10.1109/TITS.2022.3220089 10.1063/5.0007174 10.1016/j.trc.2018.10.011 10.1109/ACCESS.2021.3071174 10.1186/s12544-019-0345-9 10.1145/1869790.1869807 10.1145/3219819.3219895 10.1145/3409501.3409539 10.1145/3366423.3380101 10.1145/3340531.3411873 10.1145/3340531.3417411 10.1016/j.ins.2020.01.043 10.1109/ACCESS.2019.2953888 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2022.117921 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2022_117921 S0957417422011654 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c366t-7eabac6f82b7766459e5822971215fdb65f3f51682b957a41540203060c0a2813 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Thu Apr 24 22:52:27 EDT 2025 Tue Jul 01 04:06:02 EDT 2025 Fri Feb 23 02:38:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Graph neural networks Traffic forecasting Graph convolution network Graph attention network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-7eabac6f82b7766459e5822971215fdb65f3f51682b957a41540203060c0a2813 |
ORCID | 0000-0003-0953-5047 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2022_117921 crossref_citationtrail_10_1016_j_eswa_2022_117921 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-30 |
PublicationDateYYYYMMDD | 2022-11-30 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Geng, Wu, Zhang, Yang, Liu, Ye (b48) 2019 Sun, Li, Lv, Dong (b157) 2020; 14 Li, Axhausen (b97) 2020; 1 Shleifer, McCreery, Chitters (b154) 2019 Lee, Rhee (b95) 2022; 134 Shi, Yao, Guo, Li, Zhang, Ye (b151) 2020 Varghese, Chikaraishi, Urata (b164) 2020 Du, Hu, Sun, Liu, Qiao, Lv (b36) 2020 Fukuda, Uchida, Fujii, Yamada (b43) 2020 Mallick, Balaprakash, Rask, Macfarlane (b124) 2020 Zhu, Luo, Liu, Fan, Song, Yu (b257) 2019; 29 Bai, Yao, Kanhere, Wang, Sheng (b5) 2019 Xin, Y., Miao, D., Zhu, M., Jin, C., & Lu, X. (2020). InterNet: Multistep traffic forecasting by interacting spatial and temporal features. In Wu, Tan, Qin, Ran, Jiang (b186) 2018; 90 Zhang, Wang, Chen, Cao (b240) 2019 Zhou, Wang, Xie, Chen, Zhu (b253) 2020 (pp. 1227–1235). Ren, Xie (b145) 2019 Wang, Guan, Cao, Zhang, Wu (b168) 2020; 119 Zheng, Hu, Ming, Hu, Chen, Zheng (b248) 2020 Huang, Zhang, Wen, Chen (b74) 2020 Zhao, Yang, Wang, Wang, Su (b246) 2020 Han, Shen, Yang, Kong (b62) 2020; 121 (pp. 715–724). Li, C., Bai, L., Liu, W., Yao, L., & Waller, S. T. (2020). Knowledge adaption for demand prediction based on multi-task memory neural network. In Wang, Luo, Zhang, Yuan, Bertozzi, Brantingham (b171) 2018 Wright, Ehlers, Horowitz (b181) 2019 Chen, Rossi, Mahadik, Eldardiry (b25) 2020 (pp. 1853–1862). Wang, Xu, Liu, Zhou, Zhao (b175) 2020 Zhang, Cheng, Ren (b223) 2019; 34 . Xiong, Ozbay, Jin, Feng (b195) 2020 Yu, Lee, Sohn (b215) 2020; 114 Guo, Jiang, Huang, Tao, Wang, Li (b55) 2019 (pp. 2293–2296). Ge, Li, Liu, Zhou (b45) 2019 Li, Yang, Tang, Xia (b107) 2020 Ye, J., Sun, L., Du, B., Fu, Y., & Xiong, H. (2021). Coupled layer-wise graph convolution for transportation demand prediction. In George, Santra (b49) 2020; 115 Wu, Pan, Long, Jiang, Zhang (b185) 2019 Bai, Zhu, Song, Zhao, Hou, Du (b7) 2021; 10 Li, L., Yan, J., Yang, X., & Jin, Y. (2019). Learning interpretable deep state space model for probabilistic time series forecasting. In Chen, F., Chen, Z., Biswas, S., Lei, S., Ramakrishnan, N., & Lu, C.-T. (2020). Graph convolutional networks with Kalman filtering for traffic prediction. In Luca, Barlacchi, Lepri, Pappalardo (b120) 2020 Yu, Yin, Zhu (b218) 2019 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b148) 2008; 20 Guo, Yuan (b58) 2020 (pp. 1025–1034). Qiu, Zheng, Msahli, Memmi, Qiu, Lu (b142) 2020 Kipf, Welling (b90) 2017 (pp. 1720–1730). Jia, Wu, Zhang (b79) 2020 Mena-Oreja, Gozalvez (b127) 2020; 8 Jin, Cui, Zeng, Tang, Feng, Huang (b82) 2020; 117 Liu, Chen, Wu, Zhen, Li, Lin (b112) 2020 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b165) 2017; 30 Zhang, Zhang, Jin (b241) 2020 Chen, Zhao, Wang, Duan, Zhao (b27) 2020; 20 Kim, Chung, Kim (b87) 2020 Jepsen, T. S., Jensen, C. S., & Nielsen, T. D. (2019). Graph convolutional networks for road networks. In Liu, Ong, Chen (b113) 2020 Song, C., Lin, Y., Guo, S., & Wan, H. (2020). Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In Agafonov (b1) 2020 Yin, Wu, Wei, Shen, Qi, Yin (b209) 2020 Xu, Li (b199) 2019; 8 Li, Yu, Shahabi, Liu (b108) 2018 Bai, Yao, Li, Wang, Wang (b6) 2020 Song, Ming, Hu, Niu, Gao (b156) 2020 Zhang, Dong, Shang, Zhang, Wang (b226) 2020 (pp. 460–463). Li, Xiong, Tian, Lv, Chen, Hui (b105) 2020 Chen, Chen, Lai, Jin, Liu, Li (b20) 2020; 8 Hong, Lin, Yang, Li, Fu, Wang (b70) 2020 Mohanty, Pozdnukhov, Cassidy (b129) 2020; 116 Zhang, Lu, Li (b238) 2020; 2020 (pp. 218–223). Lu, Lv, Xie, Du, Huang (b118) 2019 Cui, Henrickson, Ke, Wang (b29) 2019 Wu, M., Zhu, C., & Chen, L. (2020). Multi-task spatial-temporal graph attention network for taxi demand prediction. In (pp. 1555–1564). Xie, Lv, Huang, Lu, Du, Huang (b191) 2019 Bai, L., Yao, L., Kanhere, S. S., Wang, X., Liu, W., & Yang, Z. (2019). Spatio-temporal graph convolutional and recurrent networks for citywide passenger demand prediction. In Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., & Feng, X. (2020). Multi-range attentive bicomponent graph convolutional network for traffic forecasting. In (pp. 4189–4196). Zhou, Yang, Zhang, Trajcevski, Zhong, Khokhar (b254) 2020 Lu, B., Gan, X., Jin, H., Fu, L., & Zhang, H. (2020). Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In Lv, Hong, Chen, Chen, Zhu, Ji (b122) 2020 Heglund, Taleongpong, Hu, Tran (b68) 2020 Zhang, W., Liu, H., Liu, Y., Zhou, J., & Xiong, H. (2020). Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction. In Bogaerts, Masegosa, Angarita-Zapata, Onieva, Hellinckx (b11) 2020; 112 (pp. 1655–1661). Guopeng, Knoop, van Lint (b59) 2020 Sun, Wang, Fu, Wang, Zhang, Ye (b158) 2021 Fang, Huang, Wang, Zeng, Liang, Wang (b38) 2020 (pp. 3656–3663). Pan, Zhang, Liang, Zhang, Yu, Zhang (b134) 2020 Hu, Guo, Yang, Jensen, Chen (b71) 2018 Zhang, James, Liu (b231) 2019; 7 Haghighat, Ravichandra-Mouli, Chakraborty, Esfandiari, Arabi, Sharma (b60) 2020; 2 (pp. 2901–2908). Cui, Ke, Pu, Ma, Wang (b30) 2020; 115 Kipf, Welling (b89) 2016 Cao, Wang, Duan, Zhang, Zhu, Huang (b17) 2020; 33 Gilmer, Schoenholz, Riley, Vinyals, Dahl (b50) 2017 Jepsen, Jensen, Nielsen (b78) 2020 Lee, Jung, Cheon, Kim, You (b93) 2019 Li, Li, Peng, Tao (b99) 2020 Wang, Q., Guo, B., Ouyang, Y., Shu, K., Yu, Z., & Liu, H. (2020). Spatial community-informed evolving graphs for demand prediction. In Zhang, Guo (b228) 2020 Xu, Zheng, Feng, Chen (b201) 2020 Li, Y., & Moura, J. M. (2020). Forecaster: A graph transformer for forecasting spatial and time-dependent data. In Zhu, Wang, Tao, Deng, Zhao, Li (b258) 2021; 9 Zhu, Xie, He, Sun, Zhu, Zhou (b259) 2020; 2020 Zhao, Song, Zhang, Liu, Wang, Lin (b245) 2019 Xie, Li, Liu, Du, Yang, Zhang (b190) 2020; 59 Atwood, Towsley (b3) 2016 Ke, Feng, Zhu, Yang, Ye (b85) 2021; 127 Zhang, X., Huang, C., Xu, Y., & Xia, L. (2020). Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting. In Xiao, Wang, Zhang, Ni (b188) 2020 Wang, Ma, Wang, Jin, Wang, Tang (b172) 2020 Lu, Lv, Cao, Xie, Peng, Du (b117) 2020 Zhang, Q., Chang, J., Meng, G., Xiang, S., & Pan, C. (2020). Spatio-temporal graph structure learning for traffic forecasting. In Ge, Li, Wang, Chang, Wu (b46) 2020; 10 Guo, Hu, Qian, Sun, Gao, Yin (b54) 2020 Xu, Kang, Cao, Li (b198) 2020 Fang, Zhang, Meng, Xiang, Pan (b40) 2019 Zhou, Cui, Hu, Zhang, Yang, Liu (b249) 2020; 1 Guo, Song, Wang (b57) 2019 Pavlyuk (b136) 2019; 11 Zhang, Chen, Cui, Guo, Zhu (b221) 2020 Arjovsky, Chintala, Bottou (b2) 2017 Lewenfus, Martins, Chatzinotas, Ottersten (b96) 2020 Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., & Ye, J., et al. (2019). Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In Oreshkin, B. N., Amini, A., Coyle, L., & Coates, M. (2021). FC-GAGA: Fully connected gated graph architecture for spatio-temporal traffic forecasting. In Zhou, Gu, Ling, Li, Zhuang, Wang (b250) 2020; 35 Qu, Zhu, Zang, Xu, Yu (b143) 2020 Zhang, Liu, Liu, Zhou, Xu, Xiong (b236) 2020 He, S., & Shin, K. G. (2020a). Dynamic flow distribution prediction for urban dockless E-scooter sharing reconfiguration. In Guo, Hu, Qian, Sun, Gao, Yin (b53) 2020 (pp. 922–929). (pp. 4617–4625). (pp. 397–400). Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., & Hoffmann, H. (2019). Explainability methods for graph convolutional neural networks. In Shen, Jin, Hua (b150) 2020 Chai, D., Wang, L., & Yang, Q. (2018). Bike flow prediction with multi-graph convolutional networks. In Li, Wang, Zhang, Wu (b103) 2020 Chen, Zhang, Du, Fang, Ren, Bian (b26) 2020 Wang, Peng, Wang, Meng, Wu, Sun (b174) 2020; 115 Chen, Han, Yin, Cao (b22) 2020 Zhang, J., Zheng, Y., & Qi, D. (2017). Deep spatio-temporal residual networks for citywide crowd flows prediction. In Wang, Chen, Min, He, Yang, Zhang (b167) 2018 He, Zhao, Wang, Tsui (b67) 2020 Shin, Yoon (b153) 2020 Mohanty, Pozdnukhov (b128) 2018 Xu, Dai, Liu, Gao, Lin, Qi (b196) 2020 Hamilton, Ying, Leskovec (b61) 2017 (pp. 3477–3480). (pp. 99–108). Zhang, Li, Lin, Wang, He (b234) 2019; 105 Liao, B., Zhang, J., Wu, C., McIlwraith, D., Chen, T., & Yang, S., et al. (2018). Deep sequence learning with auxiliary information for traffic prediction. In Jiang, Zhang (b81) 2018; 24 Henaff, Bruna, LeCun (b69) 2015 Wang, Kong, Huang, Xiao (b170) 2021; 47 Yu, Gu (b214) 2019; 20 Sun, Zhang, Li, Yi, Liang, Zheng (b159) 2020 Xie, Xiong, Zhu (b193) 2020 Manibardo, Laña, Del Ser (b126) 2021 Zhang, Liu, Tang, Xiong (b237) 2020 Hu, Yang, Guo, Jensen, Xiong (b72) 2020 Cai, Janowicz, Mai, Yan, Zhu (b16) 2020 (pp. 224–228). Feng, Wu, Zhang, Wu (b41) 2020; 8 Lee, Eo, Jung, Yoon, Rhee (b92) 2021; 9 Zhang, Jin, Chang, Xiang, Pan (b232) 2018 Dai, Xu, Gu, Ji, Liu (b32) 2020 Yao, Gao, Zhu, Manley, Wang, Liu (b204) 2020 Luo, Du, Klemmer, Zhu, Ferhatosmanoglu, Wen (b121) 2020; 4 Zhu, Han, Deng, Tao, Zhao, Wang (b256) 2022 Kim, Lee, Sohn (b88) 2019; 14 Chen, C., Li, K., Teo, S. G., Zou, X., Wang, K., & Wang, J., et al. (2019). Gated residual recurrent graph neural networks for traffic prediction. In Qin, Xu, Kang, Kwan (b141) 2020 Jin, Xi, Sha, Feng, Huang (b83) 2020 Ye, Zhao, Ye, Xu (b206) 2020 Xu, Dai, Wang, Peng, Xuan, Guo (b197) 2019; 29 Tian, Guo, Ye, Xu (b163) 2020 Wei, Yu, Jin, Xie, Huang, Cai (b180) 2019 Boukerche, Wang (b13) 2020; 181 Fan, Xiang, Gong, He, Qu, Amirgholipour (b37) 2020 (pp. 133–143). Kong, Xing, Wei, Bao, Zhang, Lu (b91) 2020 Hasanzadeh, Liu, Duffield, Narayanan (b64) 2019 Li, M., & Zhu, Z. (2021). Spatial-temporal fusion graph neural networks for traffic flow forecasting. In (pp. 537–546). Qin, Liu, Wu, Tong, Zhao (b140) 2020 Tang, Sun, Sun (b160) 2020 Wang, Zhang, Wang, Chen (b178) 2020 (pp. 3844–3852). Xu, Wei, Peng, Xuan, Guo (b200) 2020; 117 Lu, Zhang, Liu, Xiong (b119) 2019 Ying, Bourgeois, You, Zitnik, Leskovec (b211) 2019 Liu, Zhou, Long, Jiang, Zhang (b115) 2019 (pp. 914–921). Tedjopurnomo, Bao, Zheng, Choudhury, Qin (b162) 2020 Bing, Zhifeng, Yangjie, Jinxing, Zhanwu (b10) 2020; 2020 Xie, Xiong, Zhu (b192) 2020 Baldassarre, Azizpour (b8) 2019 Wu, Chen, Wan (b182) 2018 Davis, Raina, Jagannathan (b33) 2020 Pian, Wu (b138) 2020 Kang, Xu, Hu, Pei (b84) 2019 Yu, Du, Hu, Sun, Han, Lv (b213) 2020 Zhou, Z., Wang, Y., Xie, X., Chen, L., Boukerche (10.1016/j.eswa.2022.117921_b14) 2020 Lu (10.1016/j.eswa.2022.117921_b117) 2020 Chen (10.1016/j.eswa.2022.117921_b25) 2020 Wu (10.1016/j.eswa.2022.117921_b184) 2020 Kong (10.1016/j.eswa.2022.117921_b91) 2020 Zhou (10.1016/j.eswa.2022.117921_b251) 2019 Xu (10.1016/j.eswa.2022.117921_b196) 2020 Li (10.1016/j.eswa.2022.117921_b107) 2020 10.1016/j.eswa.2022.117921_b155 Tang (10.1016/j.eswa.2022.117921_b160) 2020 Gilmer (10.1016/j.eswa.2022.117921_b50) 2017 10.1016/j.eswa.2022.117921_b77 Guo (10.1016/j.eswa.2022.117921_b57) 2019 Pavlyuk (10.1016/j.eswa.2022.117921_b136) 2019; 11 Zhang (10.1016/j.eswa.2022.117921_b231) 2019; 7 Huang (10.1016/j.eswa.2022.117921_b73) 2020 Qiu (10.1016/j.eswa.2022.117921_b142) 2020 Song (10.1016/j.eswa.2022.117921_b156) 2020 Xiong (10.1016/j.eswa.2022.117921_b195) 2020 Luca (10.1016/j.eswa.2022.117921_b120) 2020 10.1016/j.eswa.2022.117921_b169 Yu (10.1016/j.eswa.2022.117921_b218) 2019 Xiao (10.1016/j.eswa.2022.117921_b188) 2020 Zhu (10.1016/j.eswa.2022.117921_b259) 2020; 2020 Ge (10.1016/j.eswa.2022.117921_b44) 2019 Vaswani (10.1016/j.eswa.2022.117921_b165) 2017; 30 Wang (10.1016/j.eswa.2022.117921_b171) 2018 10.1016/j.eswa.2022.117921_b65 Ye (10.1016/j.eswa.2022.117921_b206) 2020 Guo (10.1016/j.eswa.2022.117921_b58) 2020 Yu (10.1016/j.eswa.2022.117921_b213) 2020 Cao (10.1016/j.eswa.2022.117921_b17) 2020; 33 Veličković (10.1016/j.eswa.2022.117921_b166) 2018 10.1016/j.eswa.2022.117921_b139 10.1016/j.eswa.2022.117921_b135 Xie (10.1016/j.eswa.2022.117921_b190) 2020; 59 Lee (10.1016/j.eswa.2022.117921_b93) 2019 Wu (10.1016/j.eswa.2022.117921_b186) 2018; 90 10.1016/j.eswa.2022.117921_b131 10.1016/j.eswa.2022.117921_b252 10.1016/j.eswa.2022.117921_b133 10.1016/j.eswa.2022.117921_b132 10.1016/j.eswa.2022.117921_b56 Guo (10.1016/j.eswa.2022.117921_b52) 2020 Lewenfus (10.1016/j.eswa.2022.117921_b96) 2020 Hu (10.1016/j.eswa.2022.117921_b72) 2020 Ge (10.1016/j.eswa.2022.117921_b45) 2019 Henaff (10.1016/j.eswa.2022.117921_b69) 2015 Lee (10.1016/j.eswa.2022.117921_b94) 2019 10.1016/j.eswa.2022.117921_b149 Liu (10.1016/j.eswa.2022.117921_b112) 2020 10.1016/j.eswa.2022.117921_b47 Wu (10.1016/j.eswa.2022.117921_b185) 2019 Zhang (10.1016/j.eswa.2022.117921_b236) 2020 Zhao (10.1016/j.eswa.2022.117921_b243) 2020 Xu (10.1016/j.eswa.2022.117921_b199) 2019; 8 Hamilton (10.1016/j.eswa.2022.117921_b61) 2017 10.1016/j.eswa.2022.117921_b194 Manibardo (10.1016/j.eswa.2022.117921_b126) 2021 Shen (10.1016/j.eswa.2022.117921_b150) 2020 Luo (10.1016/j.eswa.2022.117921_b121) 2020; 4 Zhang (10.1016/j.eswa.2022.117921_b234) 2019; 105 Guo (10.1016/j.eswa.2022.117921_b53) 2020 Zhang (10.1016/j.eswa.2022.117921_b227) 2019 Dai (10.1016/j.eswa.2022.117921_b32) 2020 Agafonov (10.1016/j.eswa.2022.117921_b1) 2020 10.1016/j.eswa.2022.117921_b35 Ying (10.1016/j.eswa.2022.117921_b211) 2019 Chen (10.1016/j.eswa.2022.117921_b26) 2020 10.1016/j.eswa.2022.117921_b34 Bruna (10.1016/j.eswa.2022.117921_b15) 2014 Li (10.1016/j.eswa.2022.117921_b97) 2020; 1 Jepsen (10.1016/j.eswa.2022.117921_b78) 2020 Zhang (10.1016/j.eswa.2022.117921_b232) 2018 Lee (10.1016/j.eswa.2022.117921_b92) 2021; 9 Satorras (10.1016/j.eswa.2022.117921_b147) 2018 Cui (10.1016/j.eswa.2022.117921_b29) 2019 Lee (10.1016/j.eswa.2022.117921_b95) 2022; 134 Zhou (10.1016/j.eswa.2022.117921_b255) 2020 Yin (10.1016/j.eswa.2022.117921_b210) 2021 Goodfellow (10.1016/j.eswa.2022.117921_b51) 2014; 27 10.1016/j.eswa.2022.117921_b173 Zhang (10.1016/j.eswa.2022.117921_b229) 2020 10.1016/j.eswa.2022.117921_b23 Cui (10.1016/j.eswa.2022.117921_b31) 2020; 117 10.1016/j.eswa.2022.117921_b21 Scarselli (10.1016/j.eswa.2022.117921_b148) 2008; 20 Xu (10.1016/j.eswa.2022.117921_b197) 2019; 29 Li (10.1016/j.eswa.2022.117921_b108) 2018 Yoshida (10.1016/j.eswa.2022.117921_b212) 2019 Li (10.1016/j.eswa.2022.117921_b105) 2020 Maas (10.1016/j.eswa.2022.117921_b123) 2020 Wang (10.1016/j.eswa.2022.117921_b168) 2020; 119 Chen (10.1016/j.eswa.2022.117921_b24) 2020 Peng (10.1016/j.eswa.2022.117921_b137) 2020; 521 Xu (10.1016/j.eswa.2022.117921_b200) 2020; 117 Zhou (10.1016/j.eswa.2022.117921_b254) 2020 Haghighat (10.1016/j.eswa.2022.117921_b60) 2020; 2 Wang (10.1016/j.eswa.2022.117921_b178) 2020 Tang (10.1016/j.eswa.2022.117921_b161) 2020; 8 10.1016/j.eswa.2022.117921_b19 Xu (10.1016/j.eswa.2022.117921_b201) 2020 10.1016/j.eswa.2022.117921_b177 10.1016/j.eswa.2022.117921_b18 Zhang (10.1016/j.eswa.2022.117921_b228) 2020 Feng (10.1016/j.eswa.2022.117921_b41) 2020; 8 Guo (10.1016/j.eswa.2022.117921_b55) 2019 Barredo-Arrieta (10.1016/j.eswa.2022.117921_b9) 2019 Yang (10.1016/j.eswa.2022.117921_b203) 2019; 107 Boukerche (10.1016/j.eswa.2022.117921_b12) 2020; 182 10.1016/j.eswa.2022.117921_b189 Kipf (10.1016/j.eswa.2022.117921_b90) 2017 Zhou (10.1016/j.eswa.2022.117921_b253) 2020 10.1016/j.eswa.2022.117921_b187 Fang (10.1016/j.eswa.2022.117921_b39) 2020 Zhang (10.1016/j.eswa.2022.117921_b233) 2019 Chen (10.1016/j.eswa.2022.117921_b22) 2020 Lv (10.1016/j.eswa.2022.117921_b122) 2020 Arjovsky (10.1016/j.eswa.2022.117921_b2) 2017 Qin (10.1016/j.eswa.2022.117921_b140) 2020 Zhang (10.1016/j.eswa.2022.117921_b238) 2020; 2020 Pian (10.1016/j.eswa.2022.117921_b138) 2020 Yu (10.1016/j.eswa.2022.117921_b214) 2019; 20 Wang (10.1016/j.eswa.2022.117921_b167) 2018 Wei (10.1016/j.eswa.2022.117921_b180) 2019 Xie (10.1016/j.eswa.2022.117921_b192) 2020 Chen (10.1016/j.eswa.2022.117921_b20) 2020; 8 Baldassarre (10.1016/j.eswa.2022.117921_b8) 2019 Sun (10.1016/j.eswa.2022.117921_b159) 2020 Hasanzadeh (10.1016/j.eswa.2022.117921_b64) 2019 Guo (10.1016/j.eswa.2022.117921_b54) 2020 Bai (10.1016/j.eswa.2022.117921_b5) 2019 Wang (10.1016/j.eswa.2022.117921_b170) 2021; 47 Kim (10.1016/j.eswa.2022.117921_b87) 2020 Ke (10.1016/j.eswa.2022.117921_b85) 2021; 127 Zhang (10.1016/j.eswa.2022.117921_b240) 2019 10.1016/j.eswa.2022.117921_b205 Guopeng (10.1016/j.eswa.2022.117921_b59) 2020 Zhang (10.1016/j.eswa.2022.117921_b226) 2020 Zhou (10.1016/j.eswa.2022.117921_b249) 2020; 1 Ren (10.1016/j.eswa.2022.117921_b145) 2019 Jiang (10.1016/j.eswa.2022.117921_b80) 2022; 185 Sánchez (10.1016/j.eswa.2022.117921_b146) 2020 Bing (10.1016/j.eswa.2022.117921_b10) 2020; 2020 Bai (10.1016/j.eswa.2022.117921_b6) 2020 Chen (10.1016/j.eswa.2022.117921_b27) 2020; 20 Wang (10.1016/j.eswa.2022.117921_b175) 2020 Jin (10.1016/j.eswa.2022.117921_b82) 2020; 117 Li (10.1016/j.eswa.2022.117921_b104) 2019 Wei (10.1016/j.eswa.2022.117921_b179) 2020 Zhang (10.1016/j.eswa.2022.117921_b225) 2020 Kim (10.1016/j.eswa.2022.117921_b88) 2019; 14 James (10.1016/j.eswa.2022.117921_b75) 2019 Atwood (10.1016/j.eswa.2022.117921_b3) 2016 Kipf (10.1016/j.eswa.2022.117921_b89) 2016 Sun (10.1016/j.eswa.2022.117921_b158) 2021 Zheng (10.1016/j.eswa.2022.117921_b248) 2020 Liu (10.1016/j.eswa.2022.117921_b113) 2020 Heglund (10.1016/j.eswa.2022.117921_b68) 2020 Mallick (10.1016/j.eswa.2022.117921_b125) 2021 Fukuda (10.1016/j.eswa.2022.117921_b43) 2020 Shi (10.1016/j.eswa.2022.117921_b152) 2018 Pan (10.1016/j.eswa.2022.117921_b134) 2020 Ramadan (10.1016/j.eswa.2022.117921_b144) 2020 Bai (10.1016/j.eswa.2022.117921_b7) 2021; 10 10.1016/j.eswa.2022.117921_b4 James (10.1016/j.eswa.2022.117921_b76) 2020 Shleifer (10.1016/j.eswa.2022.117921_b154) 2019 Bogaerts (10.1016/j.eswa.2022.117921_b11) 2020; 112 Zhu (10.1016/j.eswa.2022.117921_b258) 2021; 9 Shi (10.1016/j.eswa.2022.117921_b151) 2020 Xu (10.1016/j.eswa.2022.117921_b198) 2020 Han (10.1016/j.eswa.2022.117921_b63) 2019; 8 Qu (10.1016/j.eswa.2022.117921_b143) 2020 Mohanty (10.1016/j.eswa.2022.117921_b128) 2018 Tedjopurnomo (10.1016/j.eswa.2022.117921_b162) 2020 Jia (10.1016/j.eswa.2022.117921_b79) 2020 Fang (10.1016/j.eswa.2022.117921_b38) 2020 Li (10.1016/j.eswa.2022.117921_b103) 2020 Yu (10.1016/j.eswa.2022.117921_b215) 2020; 114 Zhang (10.1016/j.eswa.2022.117921_b241) 2020 Han (10.1016/j.eswa.2022.117921_b62) 2020; 121 Lin (10.1016/j.eswa.2022.117921_b111) 2018; 97 Wang (10.1016/j.eswa.2022.117921_b176) 2020; 30 Zhang (10.1016/j.eswa.2022.117921_b237) 2020 Zhou (10.1016/j.eswa.2022.117921_b250) 2020; 35 Cai (10.1016/j.eswa.2022.117921_b16) 2020 Davis (10.1016/j.eswa.2022.117921_b33) 2020 10.1016/j.eswa.2022.117921_b116 Yu (10.1016/j.eswa.2022.117921_b217) 2018 Hong (10.1016/j.eswa.2022.117921_b70) 2020 Wang (10.1016/j.eswa.2022.117921_b174) 2020; 115 10.1016/j.eswa.2022.117921_b114 10.1016/j.eswa.2022.117921_b235 10.1016/j.eswa.2022.117921_b230 Xie (10.1016/j.eswa.2022.117921_b191) 2019 10.1016/j.eswa.2022.117921_b110 Ye (10.1016/j.eswa.2022.117921_b207) 2020 He (10.1016/j.eswa.2022.117921_b67) 2020 Cirstea (10.1016/j.eswa.2022.117921_b28) 2019 Zhao (10.1016/j.eswa.2022.117921_b244) 2021 Zhao (10.1016/j.eswa.2022.117921_b245) 2019 Hu (10.1016/j.eswa.2022.117921_b71) 2018 Mena-Oreja (10.1016/j.eswa.2022.117921_b127) 2020; 8 Varghese (10.1016/j.eswa.2022.117921_b164) 2020 Fu (10.1016/j.eswa.2022.117921_b42) 2020 Jin (10.1016/j.eswa.2022.117921_b83) 2020 Qin (10.1016/j.eswa.2022.117921_b141) 2020 Wu (10.1016/j.eswa.2022.117921_b183) 2020 10.1016/j.eswa.2022.117921_b247 Ke (10.1016/j.eswa.2022.117921_b86) 2021; 122 Mallick (10.1016/j.eswa.2022.117921_b124) 2020 Yeghikyan (10.1016/j.eswa.2022.117921_b208) 2020 Zhu (10.1016/j.eswa.2022.117921_b257) 2019; 29 10.1016/j.eswa.2022.117921_b242 Zhu (10.1016/j.eswa.2022.117921_b256) 2022 Tian (10.1016/j.eswa.2022.117921_b163) 2020 Zhang (10.1016/j.eswa.2022.117921_b222) 2020 Zhang (10.1016/j.eswa.2022.117921_b224) 2020; 34 Lu (10.1016/j.eswa.2022.117921_b118) 2019 Fan (10.1016/j.eswa.2022.117921_b37) 2020 He (10.1016/j.eswa.2022.117921_b66) 2020 Du (10.1016/j.eswa.2022.117921_b36) 2020 Fang (10.1016/j.eswa.2022.117921_b40) 2019 George (10.1016/j.eswa.2022.117921_b49) 2020; 115 Wang (10.1016/j.eswa.2022.117921_b172) 2020 Wu (10.1016/j.eswa.2022.117921_b182) 2018 Geng (10.1016/j.eswa.2022.117921_b48) 2019 Sun (10.1016/j.eswa.2022.117921_b157) 2020; 14 Yu (10.1016/j.eswa.2022.117921_b216) 2019 Huang (10.1016/j.eswa.2022.117921_b74) 2020 10.1016/j.eswa.2022.117921_b219 Li (10.1016/j.eswa.2022.117921_b99) 2020 Ge (10.1016/j.eswa.2022.117921_b46) 2020; 10 Mohanty (10.1016/j.eswa.2022.117921_b129) 2020; 116 Liu (10.1016/j.eswa.2022.117921_b115) 2019 Boukerche (10.1016/j.eswa.2022.117921_b13) 2020; 181 Li (10.1016/j.eswa.2022.117921_b |
References_xml | – volume: 127 year: 2021 ident: b85 article-title: Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach publication-title: Transportation Research Part C (Emerging Technologies) – start-page: 1 year: 2020 end-page: 8 ident: b107 article-title: SDCN: Sparsity and diversity driven correlation networks for traffic demand forecasting publication-title: 2020 international joint conference on neural networks (IJCNN) – start-page: 3634 year: 2018 end-page: 3640 ident: b217 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting publication-title: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI-18 – reference: (pp. 4189–4196). – year: 2020 ident: b138 article-title: Spatial-temporal dynamic graph attention networks for ride-hailing demand prediction – year: 2018 ident: b128 article-title: Graph cnn+ lstm framework for dynamic macroscopic traffic congestion prediction publication-title: International workshop on mining and learning with graphs – start-page: 29 year: 2018 end-page: 36 ident: b101 article-title: Graph CNNs for urban traffic passenger flows prediction publication-title: 2018 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) – volume: 29 year: 2019 ident: b197 article-title: Road traffic state prediction based on a graph embedding recurrent neural network under the SCATS publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science – reference: Song, C., Lin, Y., Guo, S., & Wan, H. (2020). Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In – year: 2016 ident: b89 article-title: Variational graph auto-encoders – year: 2020 ident: b79 article-title: Dynamic spatiotemporal graph neural network with tensor network – start-page: 1251 year: 2019 end-page: 1258 ident: b212 article-title: Practical end-to-end repositioning algorithm for managing bike-sharing system publication-title: 2019 IEEE international conference on big data (Big data) – volume: 105 start-page: 297 year: 2019 end-page: 322 ident: b234 article-title: Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies publication-title: Transportation Research Part C (Emerging Technologies) – volume: 4 start-page: 1 year: 2020 end-page: 21 ident: b121 article-title: D3P: Data-driven demand prediction for fast expanding electric vehicle sharing systems publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies – volume: 30 year: 2020 ident: b176 article-title: An urban commuters’ OD hybrid prediction method based on big GPS data publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science – reference: Li, L., Yan, J., Yang, X., & Jin, Y. (2019). Learning interpretable deep state space model for probabilistic time series forecasting. In – year: 2020 ident: b248 article-title: Spatial-temporal demand forecasting and competitive supply via graph convolutional networks – year: 2019 ident: b216 article-title: 3D graph convolutional networks with temporal graphs: A spatial information free framework for traffic forecasting – reference: (pp. 1655–1661). – year: 2021 ident: b244 article-title: Data augmentation for graph neural networks publication-title: Proceedings of the 30th international joint conference on artificial intelligence – reference: (pp. 1720–1730). – reference: Li, Z., Sergin, N. D., Yan, H., Zhang, C., & Tsung, F. (2020). Tensor completion for weakly-dependent data on graph for metro passenger flow prediction. In – volume: 115 year: 2020 ident: b174 article-title: Evaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approach publication-title: Transportation Research Part C (Emerging Technologies) – volume: 14 year: 2020 ident: b157 article-title: Traffic flow prediction model based on spatio-temporal dilated graph convolution publication-title: KSII Transactions on Internet & Information Systems – start-page: 2570 year: 2019 end-page: 2576 ident: b84 article-title: Learning dynamic graph embedding for traffic flow forecasting: A graph self-attentive method publication-title: 2019 IEEE intelligent transportation systems conference (ITSC) – volume: 20 start-page: 3940 year: 2019 end-page: 3951 ident: b214 article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 122 year: 2021 ident: b86 article-title: Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network publication-title: Transportation Research Part C (Emerging Technologies) – start-page: 241 year: 2018 end-page: 245 ident: b182 article-title: Graph attention LSTM network: A new model for traffic flow forecasting publication-title: 2018 5th international conference on information science and control engineering (ICISCE) – year: 2018 ident: b108 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting publication-title: International conference on learning representations (ICLR ’18) – year: 2020 ident: b142 article-title: Topological graph convolutional network-based urban traffic flow and density prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 2195 year: 2019 end-page: 2200 ident: b233 article-title: Link speed prediction for signalized urban traffic network using a hybrid deep learning approach publication-title: 2019 IEEE intelligent transportation systems conference (ITSC) – reference: (pp. 537–546). – reference: Zhang, X., Huang, C., Xu, Y., & Xia, L. (2020). Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting. In – start-page: 1 year: 2020 end-page: 6 ident: b68 article-title: Railway delay prediction with spatial-temporal graph convolutional networks publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC) – reference: (pp. 1555–1564). – year: 2020 ident: b33 article-title: Grids versus graphs: Partitioning space for improved taxi demand-supply forecasts publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2015 ident: b69 article-title: Deep convolutional networks on graph-structured data – year: 2019 ident: b130 article-title: Spatio-temporal deep graph infomax publication-title: Representation learning on graphs and manifolds, ICLR 2019 workshop – start-page: 1929 year: 2019 end-page: 1933 ident: b104 article-title: A hybrid deep learning approach with GCN and LSTM for traffic flow prediction publication-title: 2019 IEEE intelligent transportation systems conference (ITSC) – start-page: 1039 year: 2019 end-page: 1050 ident: b115 article-title: Learning to propagate for graph meta-learning publication-title: Advances in neural information processing systems – start-page: 1263 year: 2017 end-page: 1272 ident: b50 article-title: Neural message passing for quantum chemistry publication-title: International conference on machine learning – start-page: 3483 year: 2021 end-page: 3490 ident: b158 article-title: Constructing geographic and long-term temporal graph for traffic forecasting publication-title: 2020 25th international conference on pattern recognition (ICPR) – volume: 185 start-page: 40 year: 2022 end-page: 54 ident: b80 article-title: Graph-based deep learning for communication networks: A survey publication-title: Computer Communications – volume: 20 start-page: 61 year: 2008 end-page: 80 ident: b148 article-title: The graph neural network model publication-title: IEEE Transactions on Neural Networks – year: 2020 ident: b123 article-title: Uncertainty intervals for graph-based spatio-temporal traffic prediction – start-page: 2232 year: 2019 end-page: 2237 ident: b9 article-title: What Lies beneath: A note on the explainability of black-box machine learning models for road traffic forecasting publication-title: 2019 IEEE intelligent transportation systems conference (ITSC) – year: 2020 ident: b76 article-title: Citywide traffic speed prediction: A geometric deep learning approach publication-title: Knowledge-Based Systems – reference: Zhang, J., Zheng, Y., & Qi, D. (2017). Deep spatio-temporal residual networks for citywide crowd flows prediction. In – volume: 117 year: 2020 ident: b200 article-title: GE-GAN: A novel deep learning framework for road traffic state estimation publication-title: Transportation Research Part C (Emerging Technologies) – start-page: 1417 year: 2020 end-page: 1428 ident: b72 article-title: Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks publication-title: 2020 IEEE 36th international conference on data engineering (ICDE) – volume: 2020 year: 2020 ident: b238 article-title: Urban traffic flow forecast based on FastGCRNN publication-title: Journal of Advanced Transportation – start-page: 91 year: 2020 end-page: 95 ident: b1 article-title: Traffic flow prediction using graph convolution neural networks publication-title: 2020 10th international conference on information science and technology (ICIST) – volume: 33 year: 2020 ident: b17 article-title: Spectral temporal graph neural network for multivariate time-series forecasting publication-title: Advances in Neural Information Processing Systems – start-page: 1 year: 2020 end-page: 6 ident: b156 article-title: Graph attention convolutional network: Spatiotemporal modeling for urban traffic prediction publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC) – year: 2020 ident: b122 article-title: Temporal multi-graph convolutional network for traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Wang, S., Miao, H., Chen, H., & Huang, Z. (2020). Multi-task adversarial spatial-temporal networks for crowd flow prediction. In – start-page: 522 year: 2019 end-page: 529 ident: b45 article-title: Traffic speed prediction with missing data based on TGCN publication-title: 2019 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) – year: 2020 ident: b183 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 2020 year: 2020 ident: b10 article-title: Integrating semantic zoning information with the prediction of road link speed based on taxi GPS data publication-title: Complexity – reference: Zhou, Z., Wang, Y., Xie, X., Chen, L., & Liu, H. (2020). RiskOracle: A minute-level citywide traffic accident forecasting framework. In – reference: (pp. 3844–3852). – volume: 134 year: 2022 ident: b95 article-title: DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting publication-title: Transportation Research Part C (Emerging Technologies) – volume: 7 start-page: 166246 year: 2019 end-page: 166256 ident: b231 article-title: Spatial-temporal graph attention networks: A deep learning approach for traffic forecasting publication-title: IEEE Access – year: 2020 ident: b120 article-title: Deep learning for human mobility: a survey on data and models – year: 2020 ident: b209 article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction publication-title: Neurocomputing – year: 2020 ident: b253 article-title: Foresee urban sparse traffic accidents: A spatiotemporal multi-granularity perspective publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 117 year: 2020 ident: b82 article-title: Urban ride-hailing demand prediction with multiple spatio-temporal information fusion network publication-title: Transportation Research Part C (Emerging Technologies) – year: 2020 ident: b113 article-title: GraphSAGE-based traffic speed forecasting for segment network with sparse data publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Jepsen, T. S., Jensen, C. S., & Nielsen, T. D. (2019). Graph convolutional networks for road networks. In – reference: Wang, Y., Yin, H., Chen, H., Wo, T., Xu, J., & Zheng, K. (2019). Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling. In – volume: 117 year: 2020 ident: b31 article-title: Graph Markov network for traffic forecasting with missing data publication-title: Transportation Research Part C (Emerging Technologies) – volume: 2020 year: 2020 ident: b259 article-title: A novel traffic flow forecasting method based on RNN-GCN and BRB publication-title: Journal of Advanced Transportation – volume: 47 start-page: 1 year: 2021 end-page: 12 ident: b170 article-title: Survey of graph neural network publication-title: Computer Engineering – volume: 27 start-page: 2672 year: 2014 end-page: 2680 ident: b51 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – reference: (pp. 99–108). – year: 2019 ident: b227 article-title: A hybrid traffic speed forecasting approach integrating wavelet transform and motif-based graph convolutional recurrent neural network – reference: Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., & Ye, J., et al. (2019). Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In – reference: (pp. 224–228). – volume: 59 start-page: 1 year: 2020 end-page: 12 ident: b190 article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey publication-title: Information Fusion – year: 2020 ident: b134 article-title: Spatio-temporal meta learning for urban traffic prediction publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 1 year: 2020 end-page: 6 ident: b144 article-title: Traffic forecasting using temporal line graph convolutional network: Case study publication-title: ICC 2020-2020 IEEE international conference on communications (ICC) – reference: (pp. 218–223). – start-page: 208 year: 2019 end-page: 219 ident: b145 article-title: Transfer knowledge between sub-regions for traffic prediction using deep learning method publication-title: International conference on intelligent data engineering and automated learning – year: 2014 ident: b15 article-title: Spectral networks and deep locally connected networks on graphs publication-title: 2nd international conference on learning representations, ICLR 2014 – volume: 121 year: 2020 ident: b62 article-title: Congestion recognition for hybrid urban road systems via digraph convolutional network publication-title: Transportation Research Part C (Emerging Technologies) – reference: Liu, R., Zhao, S., Cheng, B., Yang, H., Tang, H., & Yang, F. (2020). ST-MFM: A spatiotemporal multi-modal fusion model for urban anomalies prediction. In – year: 2020 ident: b150 article-title: TTPNet: A neural network for travel time prediction based on tensor decomposition and graph embedding publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2018 ident: b71 article-title: Recurrent multi-graph neural networks for travel cost prediction – year: 2018 ident: b166 article-title: Graph attention networks publication-title: International conference on learning representations – year: 2020 ident: b78 article-title: Relational fusion networks: Graph convolutional networks for road networks publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Wu, M., Zhu, C., & Chen, L. (2020). Multi-task spatial-temporal graph attention network for taxi demand prediction. In – start-page: 2697 year: 2020 end-page: 2705 ident: b38 article-title: Constgat: Contextual spatial-temporal graph attention network for travel time estimation at baidu maps publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining – start-page: 1 year: 2020 end-page: 5 ident: b160 article-title: Dynamic spatial-temporal graph attention graph convolutional network for short-term traffic flow forecasting publication-title: 2020 IEEE international symposium on circuits and systems (ISCAS) – volume: 14 year: 2019 ident: b88 article-title: Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects publication-title: PLOS ONE – year: 2020 ident: b91 article-title: STGAT: Spatial-temporal graph attention networks for traffic flow forecasting publication-title: IEEE Access – volume: 114 start-page: 189 year: 2020 end-page: 204 ident: b215 article-title: Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN) publication-title: Transportation Research Part C (Emerging Technologies) – start-page: 2355 year: 2020 end-page: 2361 ident: b73 article-title: LSGCN: Long short-term traffic prediction with graph convolutional networks publication-title: Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20 – year: 2020 ident: b36 article-title: Traffic demand prediction based on dynamic transition convolutional neural network publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2020 ident: b162 article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2020 ident: b112 article-title: Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1 year: 2019 end-page: 8 ident: b240 article-title: GCGAN: Generative adversarial nets with graph CNN for network-scale traffic prediction publication-title: 2019 international joint conference on neural networks (IJCNN) – year: 2020 ident: b146 article-title: GANNSTER: Graph-augmented neural network spatio-temporal reasoner for traffic forecasting publication-title: International workshop on advanced analysis and learning on temporal data (AALTD) – start-page: 251 year: 2020 end-page: 256 ident: b201 article-title: Traffic flow forecasting with spatial-temporal graph convolutional networks in edge-computing systems publication-title: 2020 international conference on wireless communications and signal processing (WCSP) – year: 2020 ident: b202 article-title: Relational state-space model for stochastic multi-object systems publication-title: International conference on learning representations – year: 2020 ident: b58 article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks publication-title: Neurocomputing – volume: 8 start-page: 153731 year: 2020 end-page: 153741 ident: b161 article-title: A general traffic flow prediction approach based on spatial-temporal graph attention publication-title: IEEE Access – year: 2018 ident: b171 article-title: Graph-based deep modeling and real time forecasting of sparse spatio-temporal data – volume: 112 start-page: 62 year: 2020 end-page: 77 ident: b11 article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data publication-title: Transportation Research Part C (Emerging Technologies) – year: 2020 ident: b195 article-title: Dynamic origin–destination matrix prediction with line graph neural networks and Kalman filter publication-title: Transportation Research Record – start-page: 1 year: 2020 end-page: 19 ident: b229 article-title: Graph attention temporal convolutional network for traffic speed forecasting on road networks publication-title: Transportmetrica B: Transport Dynamics – reference: Xin, Y., Miao, D., Zhu, M., Jin, C., & Lu, X. (2020). InterNet: Multistep traffic forecasting by interacting spatial and temporal features. In – start-page: 438 year: 2020 end-page: 449 ident: b22 article-title: GDCRN: Global diffusion convolutional residual network for traffic flow prediction publication-title: International conference on knowledge science, engineering and management – reference: Li, M., & Zhu, Z. (2021). Spatial-temporal fusion graph neural networks for traffic flow forecasting. In – reference: Park, C., Lee, C., Bahng, H., Tae, Y., Jin, S., & Kim, K., et al. (2020). ST-GRAT: A novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed. In – year: 2020 ident: b105 article-title: A multi-stream feature fusion approach for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 24 start-page: 52 year: 2018 end-page: 64 ident: b81 article-title: Geospatial data to images: A deep-learning framework for traffic forecasting publication-title: Tsinghua Science and Technology – volume: 35 start-page: 338 year: 2020 end-page: 352 ident: b250 article-title: Exploiting multiple correlations among Urban regions for crowd flow prediction publication-title: Journal of Computer Science and Technology – start-page: 1082 year: 2020 end-page: 1092 ident: b172 article-title: Traffic flow prediction via spatial temporal graph neural network publication-title: Proceedings of the web conference 2020 – volume: 8 start-page: 414 year: 2019 ident: b199 article-title: Incorporating graph attention and recurrent architectures for city-wide taxi demand prediction publication-title: ISPRS International Journal of Geo-Information – start-page: 159 year: 2020 end-page: 168 ident: b74 article-title: Short-term traffic flow prediction based on graph convolutional network embedded LSTM publication-title: International conference on transportation and development 2020 – reference: (pp. 2901–2908). – reference: (pp. 922–929). – year: 2019 ident: b218 article-title: ST-UNet: A spatio-temporal U-network for graph-structured time series modeling – start-page: 414 year: 2020 end-page: 429 ident: b143 article-title: Modeling local and global flow aggregation for traffic flow forecasting publication-title: International conference on web information systems engineering – year: 2019 ident: b28 article-title: Graph attention recurrent neural networks for correlated time series forecasting publication-title: MileTS19@KDD – start-page: 10367 year: 2021 end-page: 10374 ident: b125 article-title: Transfer learning with graph neural networks for short-term highway traffic forecasting publication-title: 2020 25th international conference on pattern recognition (ICPR) – year: 2017 ident: b2 article-title: Wasserstein gan – start-page: 1024 year: 2017 end-page: 1034 ident: b61 article-title: Inductive representation learning on large graphs publication-title: Advances in neural information processing systems – start-page: 1 year: 2020 end-page: 6 ident: b246 article-title: Attention based graph bi-LSTM networks for traffic forecasting publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC) – volume: 9 start-page: 54739 year: 2021 end-page: 54756 ident: b92 article-title: Short-term traffic prediction with deep neural networks: A survey publication-title: IEEE Access – year: 2020 ident: b222 article-title: Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit publication-title: IET Intelligent Transport Systems – year: 2020 ident: b179 article-title: Spatial-temporal graph attention networks for traffic flow forecasting publication-title: IOP conference series: Earth and environmental science, Vol. 587 – reference: (pp. 890–897). – reference: Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In – year: 2019 ident: b8 article-title: Explainability techniques for graph convolutional networks publication-title: International conference on machine learning (ICML) workshops, 2019 workshop on learning and reasoning with graph-structured representations – reference: Chen, C., Li, K., Teo, S. G., Zou, X., Wang, K., & Wang, J., et al. (2019). Gated residual recurrent graph neural networks for traffic prediction. In – volume: 181 year: 2020 ident: b13 article-title: Machine learning-based traffic prediction models for intelligent transportation systems publication-title: Computer Networks – reference: He, S., & Shin, K. G. (2020a). Dynamic flow distribution prediction for urban dockless E-scooter sharing reconfiguration. In – reference: (pp. 1025–1034). – volume: 30 start-page: 5998 year: 2017 end-page: 6008 ident: b165 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – reference: Liao, B., Zhang, J., Wu, C., McIlwraith, D., Chen, T., & Yang, S., et al. (2018). Deep sequence learning with auxiliary information for traffic prediction. In – year: 2020 ident: b236 article-title: Semi-supervised city-wide parking availability prediction via hierarchical recurrent graph neural network publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Diao, Z., Wang, X., Zhang, D., Liu, Y., Xie, K., & He, S. (2019). Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting. In – year: 2020 ident: b117 article-title: LSTM variants meet graph neural networks for road speed prediction publication-title: Neurocomputing – reference: Ye, J., Sun, L., Du, B., Fu, Y., & Xiong, H. (2021). Coupled layer-wise graph convolution for transportation demand prediction. In – year: 2020 ident: b225 article-title: Deep learning on graphs: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: (pp. 460–463). – start-page: 753 year: 2020 end-page: 763 ident: b184 article-title: Connecting the dots: Multivariate time series forecasting with graph neural networks publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining – reference: (pp. 1185–1194). – reference: Zhang, Q., Chang, J., Meng, G., Xiang, S., & Pan, C. (2020). Spatio-temporal graph structure learning for traffic forecasting. In – reference: (pp. 3477–3480). – start-page: 1 year: 2020 end-page: 22 ident: b164 article-title: Deep learning in transport studies: A meta-analysis on the prediction accuracy publication-title: Journal of Big Data Analytics in Transportation – start-page: 1 year: 2020 end-page: 19 ident: b188 article-title: Demand prediction for a public bike sharing program based on spatio-temporal graph convolutional networks publication-title: Multimedia Tools and Applications – volume: 10 start-page: 1509 year: 2020 ident: b46 article-title: Global spatial-temporal graph convolutional network for urban traffic speed prediction publication-title: Applied Sciences – reference: (pp. 1665–1674). – year: 2020 ident: b96 article-title: Joint forecasting and interpolation of time-varying graph signals using deep learning publication-title: IEEE Transactions on Signal and Information Processing over Networks – year: 2019 ident: b191 article-title: Sequential graph neural network for urban road traffic speed prediction publication-title: IEEE Access – volume: 34 start-page: 877 year: 2019 end-page: 896 ident: b223 article-title: A graph deep learning method for short-term traffic forecasting on large road networks publication-title: Computer-Aided Civil and Infrastructure Engineering – reference: . – volume: 10 start-page: 485 year: 2021 ident: b7 article-title: A3T-GCN: attention temporal graph convolutional network for traffic forecasting publication-title: ISPRS International Journal of Geo-Information – volume: 8 start-page: 91188 year: 2020 end-page: 91212 ident: b127 article-title: A comprehensive evaluation of deep learning-based techniques for traffic prediction publication-title: IEEE Access – volume: 20 start-page: 3776 year: 2020 ident: b27 article-title: Multitask learning and GCN-based taxi demand prediction for a traffic road network publication-title: Sensors – start-page: 9244 year: 2019 end-page: 9255 ident: b211 article-title: Gnnexplainer: Generating explanations for graph neural networks publication-title: Advances in neural information processing systems – reference: (pp. 2293–2296). – reference: (pp. 10772–10781). – year: 2019 ident: b29 article-title: Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 11 start-page: 6 year: 2019 ident: b136 article-title: Feature selection and extraction in spatiotemporal traffic forecasting: a systematic literature review publication-title: European Transport Research Review – reference: Zhang, W., Liu, H., Liu, Y., Zhou, J., & Xiong, H. (2020). Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction. In – start-page: 355 year: 2020 end-page: 362 ident: b99 article-title: A two-stream graph convolutional neural network for dynamic traffic flow forecasting publication-title: 2020 IEEE 32nd international conference on tools with artificial intelligence (ICTAI) – year: 2020 ident: b206 article-title: How to build a graph-based deep learning architecture in traffic domain: A survey publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Wang, Q., Guo, B., Ouyang, Y., Shu, K., Yu, Z., & Liu, H. (2020). Spatial community-informed evolving graphs for demand prediction. In – start-page: 707 year: 2020 end-page: 714 ident: b193 article-title: SAST-GNN: A self-attention based spatio-temporal graph neural network for traffic prediction publication-title: International conference on database systems for advanced applications – volume: 90 start-page: 166 year: 2018 end-page: 180 ident: b186 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transportation Research Part C (Emerging Technologies) – volume: 182 year: 2020 ident: b12 article-title: Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems publication-title: Computer Networks – year: 2019 ident: b251 article-title: Revisiting flow information for traffic prediction – reference: Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., & Feng, X. (2020). Multi-range attentive bicomponent graph convolutional network for traffic forecasting. In – reference: Li, Y., & Moura, J. M. (2020). Forecaster: A graph transformer for forecasting spatial and time-dependent data. In – start-page: 57 year: 2020 end-page: 64 ident: b208 article-title: Learning mobility flows from urban features with spatial interaction models and neural networks publication-title: 2020 IEEE international conference on smart computing (SMARTCOMP) – year: 2020 ident: b39 article-title: Meta-MSNet: Meta-learning based multi-source data fusion for traffic flow prediction publication-title: IEEE Signal Processing Letters – volume: 2 start-page: 115 year: 2020 end-page: 145 ident: b60 article-title: Applications of deep learning in intelligent transportation systems publication-title: Journal of Big Data Analytics in Transportation – start-page: 3898 year: 2019 end-page: 3905 ident: b181 article-title: Neural-attention-based deep learning architectures for modeling traffic dynamics on lane graphs publication-title: 2019 IEEE intelligent transportation systems conference (ITSC) – start-page: 1 year: 2020 end-page: 4 ident: b87 article-title: Urban traffic prediction using congestion diffusion model publication-title: 2020 IEEE international conference on consumer electronics-Asia (ICCE-Asia) – reference: Li, C., Bai, L., Liu, W., Yao, L., & Waller, S. T. (2020). Knowledge adaption for demand prediction based on multi-task memory neural network. In – reference: Pan, Z., Liang, Y., Wang, W., Yu, Y., Zheng, Y., & Zhang, J. (2019). Urban traffic prediction from spatio-temporal data using deep meta learning. In – year: 2018 ident: b152 article-title: Machine learning for spatiotemporal sequence forecasting: A survey – start-page: 999 year: 2020 end-page: 1003 ident: b241 article-title: Spatial-temporal graph attention model on traffic forecasting publication-title: 2020 13th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) – year: 2022 ident: b256 article-title: KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: (pp. 715–724). – reference: (pp. 1227–1235). – volume: 8 start-page: 243 year: 2019 ident: b63 article-title: Predicting station-level short-term passenger flow in a citywide metro network using spatiotemporal graph convolutional neural networks publication-title: ISPRS International Journal of Geo-Information – start-page: 210 year: 2020 end-page: 217 ident: b140 article-title: RESGCN: Residual graph convolutional network based free dock prediction in bike sharing system publication-title: 2020 21st IEEE international conference on mobile data management (MDM) – year: 2020 ident: b26 article-title: TSSRGCN: Temporal spectral spatial retrieval graph convolutional network for traffic flow forecasting publication-title: 2020 IEEE international conference on data mining (ICDM) – start-page: 1604 year: 2020 end-page: 1609 ident: b24 article-title: GST-GCN: A geographic-semantic-temporal graph convolutional network for context-aware traffic flow prediction on graph sequences publication-title: 2020 IEEE international conference on systems, man, and cybernetics (SMC) – start-page: 3779 year: 2019 end-page: 3788 ident: b64 article-title: Piecewise stationary modeling of random processes over graphs with an application to traffic prediction publication-title: 2019 IEEE international conference on big data (Big data) – start-page: 2286 year: 2019 end-page: 2293 ident: b40 article-title: GSTNet: Global spatial-temporal network for traffic flow prediction publication-title: Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19 – year: 2021 ident: b126 article-title: Deep learning for road traffic forecasting: Does it make a difference? publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2020 ident: b196 article-title: Spatial-temporal transformer networks for traffic flow forecasting – reference: (pp. 397–400). – year: 2020 ident: b204 article-title: Spatial origin-destination flow imputation using graph convolutional networks publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2020 ident: b213 article-title: Deep spatio-temporal graph convolutional network for traffic accident prediction publication-title: Neurocomputing – year: 2020 ident: b192 article-title: ISTD-GCN: Iterative spatial-temporal diffusion graph convolutional network for traffic speed forecasting – start-page: 2466 year: 2019 end-page: 2471 ident: b57 article-title: A multi-step traffic speed forecasting model based on graph convolutional LSTM publication-title: 2019 Chinese automation congress (CAC) – year: 2020 ident: b228 article-title: Graph attention LSTM: A spatio-temperal approach for traffic flow forecasting publication-title: IEEE Intelligent Transportation Systems Magazine – year: 2020 ident: b255 article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems publication-title: IEEE Transactions on Industrial Informatics – start-page: 686 year: 2019 end-page: 693 ident: b55 article-title: BikeNet: Accurate bike demand prediction using graph neural networks for station rebalancing publication-title: 2019 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) – volume: 34 start-page: 969 year: 2020 end-page: 995 ident: b224 article-title: A novel residual graph convolution deep learning model for short-term network-based traffic forecasting publication-title: International Journal of Geographical Information Science – volume: 1 start-page: 1 year: 2020 end-page: 14 ident: b97 article-title: Short-term traffic demand prediction using graph convolutional neural networks publication-title: AGILE: GIScience Series – reference: (pp. 3656–3663). – start-page: 88 year: 2020 end-page: 98 ident: b66 article-title: Towards fine-grained flow forecasting: A graph attention approach for bike sharing systems publication-title: Proceedings of the web conference 2020 – volume: 8 start-page: 209296 year: 2020 end-page: 209307 ident: b41 article-title: Dynamic global-local spatial-temporal network for traffic speed prediction publication-title: IEEE Access – year: 2019 ident: b154 article-title: Incrementally improving graph WaveNet performance on traffic prediction – year: 2020 ident: b16 article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting publication-title: Transactions in GIS – year: 2020 ident: b83 article-title: Deep multi-view spatiotemporal virtual graph neural network for significant citywide ride-hailing demand prediction – year: 2020 ident: b153 article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1 year: 2020 end-page: 9 ident: b226 article-title: A multi-modal graph neural network approach to traffic risk forecasting in smart urban sensing publication-title: 2020 17th annual IEEE international conference on sensing, communication, and networking (SECON) – start-page: 1 year: 2020 end-page: 6 ident: b67 article-title: GC-LSTM: A deep spatiotemporal model for passenger flow forecasting of high-speed rail network publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC) – volume: 9 start-page: 35973 year: 2021 end-page: 35983 ident: b258 article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting publication-title: IEEE Access – volume: 521 start-page: 277 year: 2020 end-page: 290 ident: b137 article-title: Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting publication-title: Information Sciences – reference: Ou, J., Sun, J., Zhu, Y., Jin, H., Liu, Y., & Zhang, F., et al. (2020). STP-TrellisNets: Spatial-temporal parallel TrellisNets for metro station passenger flow prediction. In – reference: Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., & Hoffmann, H. (2019). Explainability methods for graph convolutional neural networks. In – volume: 119 year: 2020 ident: b168 article-title: Forecast network-wide traffic states for multiple steps ahead: A deep learning approach considering dynamic non-local spatial correlation and non-stationary temporal dependency publication-title: Transportation Research Part C (Emerging Technologies) – year: 2019 ident: b119 article-title: Graph hierarchical convolutional recurrent neural network (GHCRNN) for vehicle condition prediction – start-page: 3074 year: 2020 end-page: 3082 ident: b32 article-title: Hybrid spatio-temporal graph convolutional network: Improving traffic prediction with navigation data publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining – volume: 8 start-page: 185136 year: 2020 end-page: 185145 ident: b20 article-title: Dynamic spatio-temporal graph-based CNNs for traffic flow prediction publication-title: IEEE Access – year: 2020 ident: b198 article-title: Spatiotemporal graph convolution multifusion network for urban vehicle emission prediction publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 107 start-page: 248 year: 2019 end-page: 265 ident: b203 article-title: A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources publication-title: Transportation Research Part C (Emerging Technologies) – start-page: 2444 year: 2020 end-page: 2454 ident: b70 article-title: Heteta: Heterogeneous information network embedding for estimating time of arrival publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining – reference: (pp. 914–921). – year: 2020 ident: b52 article-title: Optimized graph convolution recurrent neural network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In – volume: 115 start-page: 1047 year: 2020 end-page: 1106 ident: b49 article-title: Traffic prediction using multifaceted techniques: A survey publication-title: Wireless Personal Communications – volume: 1 start-page: 57 year: 2020 end-page: 81 ident: b249 article-title: Graph neural networks: A review of methods and applications publication-title: AI Open – year: 2020 ident: b25 article-title: A context integrated relational spatio-temporal model for demand and supply forecasting – start-page: 714 year: 2020 end-page: 721 ident: b163 article-title: ST-MGAT: Spatial-temporal multi-head graph attention networks for traffic forecasting publication-title: 2020 IEEE 32nd international conference on tools with artificial intelligence (ICTAI) – reference: Zheng, C., Fan, X., Wang, C., & Qi, J. (2020). Gman: A graph multi-attention network for traffic prediction. In – reference: Lu, B., Gan, X., Jin, H., Fu, L., & Zhang, H. (2020). Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In – start-page: 435 year: 2020 end-page: 451 ident: b175 article-title: MTGCN: A multitask deep learning model for traffic flow prediction publication-title: International conference on database systems for advanced applications – year: 2020 ident: b141 article-title: A graph convolutional network model for evaluating potential congestion spots based on local urban built environments publication-title: Transactions in GIS – reference: (pp. 1853–1862). – year: 2020 ident: b221 article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Bai, L., Yao, L., Kanhere, S. S., Wang, X., Liu, W., & Yang, Z. (2019). Spatio-temporal graph convolutional and recurrent networks for citywide passenger demand prediction. In – year: 2021 ident: b210 article-title: Deep learning on traffic prediction: Methods, analysis and future directions publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2020 ident: b6 article-title: Adaptive graph convolutional recurrent network for traffic forecasting publication-title: Advances in neural information processing systems – reference: Chai, D., Wang, L., & Yang, Q. (2018). Bike flow prediction with multi-graph convolutional networks. In – start-page: 1 year: 2020 end-page: 6 ident: b59 article-title: Dynamic graph filters networks: A gray-box model for multistep traffic forecasting publication-title: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC) – start-page: 1 year: 2020 end-page: 8 ident: b207 article-title: Multi-STGCnet: A graph convolution based spatial-temporal framework for subway passenger flow forecasting publication-title: 2020 international joint conference on neural networks (IJCNN) – year: 2019 ident: b94 article-title: Graph convolutional modules for traffic forecasting – start-page: 4024 year: 2019 end-page: 4029 ident: b75 article-title: Online traffic speed estimation for urban road networks with few data: A transfer learning approach publication-title: 2019 IEEE intelligent transportation systems conference (ITSC) – year: 2016 ident: b3 article-title: Diffusion-convolutional neural networks publication-title: NIPS – start-page: 1818 year: 2020 end-page: 1821 ident: b151 article-title: Predicting origin-destination flow via multi-perspective graph convolutional network publication-title: 2020 IEEE 36th international conference on data engineering (ICDE) – year: 2019 ident: b180 article-title: Dual graph for traffic forecasting publication-title: IEEE Access – start-page: 1 year: 2020 ident: b159 article-title: Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2018 ident: b167 article-title: Efficient metropolitan traffic prediction based on graph recurrent neural network – reference: (pp. 133–143). – reference: (pp. 4617–4625). – reference: Oreshkin, B. N., Amini, A., Coyle, L., & Coates, M. (2021). FC-GAGA: Fully connected gated graph architecture for spatio-temporal traffic forecasting. In – volume: 29 start-page: 1727 year: 2019 end-page: 1740 ident: b257 article-title: Multistep flow prediction on car-sharing systems: A multi-graph convolutional neural network with attention mechanism publication-title: International Journal of Software Engineering and Knowledge Engineering – start-page: 1981 year: 2019 end-page: 1987 ident: b5 article-title: Stg2seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting publication-title: Proceedings of the 28th international joint conference on artificial intelligence – start-page: 1018 year: 2018 end-page: 1023 ident: b232 article-title: Kernel-weighted graph convolutional network: A deep learning approach for traffic forecasting publication-title: 2018 24th international conference on pattern recognition (ICPR) – reference: Chen, F., Chen, Z., Biswas, S., Lei, S., Ramakrishnan, N., & Lu, C.-T. (2020). Graph convolutional networks with Kalman filtering for traffic prediction. In – year: 2020 ident: b124 article-title: Graph-partitioning-based diffusion convolution recurrent neural network for large-scale traffic forecasting publication-title: Transportation Research Record – year: 2019 ident: b48 article-title: Multi-modal graph interaction for multi-graph convolution network in urban spatiotemporal forecasting – year: 2018 ident: b239 article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs publication-title: 34th conference on uncertainty in artificial intelligence 2018, UAI 2018 – reference: (pp. 9233–9241). – year: 2020 ident: b53 article-title: Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2020 ident: b254 article-title: Reinforced spatio-temporal attentive graph neural networks for traffic forecasting publication-title: IEEE Internet of Things Journal – year: 2020 ident: b54 article-title: An optimized temporal-spatial gated graph convolution network for traffic forecasting publication-title: IEEE Intelligent Transportation Systems Magazine – volume: 97 start-page: 258 year: 2018 end-page: 276 ident: b111 article-title: Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach publication-title: Transportation Research Part C (Emerging Technologies) – reference: Xie, Q., Guo, T., Chen, Y., Xiao, Y., Wang, X., & Zhao, B. Y. (2020). Deep graph convolutional networks for incident-driven traffic speed prediction. In – volume: 115 year: 2020 ident: b30 article-title: Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction publication-title: Transportation Research Part C (Emerging Technologies) – year: 2020 ident: b42 article-title: Bayesian spatio-temporal graph convolutional network for traffic forecasting – reference: Shao, K., Wang, K., Chen, L., & Zhou, Z. (2020). Estimation of urban travel time with sparse traffic surveillance data. In – reference: (pp. 1215–1224). – year: 2019 ident: b245 article-title: T-gcn: A temporal graph convolutional network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 558 year: 2020 end-page: 563 ident: b237 article-title: Attention based graph covolution networks for intelligent traffic flow analysis publication-title: 2020 IEEE 16th international conference on automation science and engineering (CASE) – year: 2020 ident: b243 article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction publication-title: IEEE Access – start-page: 1907 year: 2019 end-page: 1913 ident: b185 article-title: Graph WaveNet for deep spatial-temporal graph modeling publication-title: Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19 – year: 2018 ident: b147 article-title: Few-shot learning with graph neural networks publication-title: International conference on learning representations – year: 2020 ident: b43 article-title: Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation publication-title: IET Intelligent Transport Systems – reference: (pp. 485–492). – year: 2019 ident: b93 article-title: Demand forecasting from spatiotemporal data with graph networks and temporal-guided embedding – start-page: 1 year: 2020 end-page: 21 ident: b37 article-title: Deep learning for intelligent traffic sensing and prediction: recent advances and future challenges publication-title: CCF Transactions on Pervasive Computing and Interaction – start-page: 74 year: 2019 end-page: 81 ident: b118 article-title: Leveraging graph neural network with LSTM for traffic speed prediction publication-title: 2019 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) – year: 2020 ident: b103 article-title: Traffic flow prediction over muti-sensor data correlation with graph convolution network publication-title: Neurocomputing – year: 2017 ident: b90 article-title: Semi-supervised classification with graph convolutional networks publication-title: International conference on learning representations (ICLR ’17) – reference: (pp. 135–138). – year: 2020 ident: b178 article-title: Auto-STGCN: Autonomous spatial-temporal graph convolutional network search based on reinforcement learning and existing research results – year: 2020 ident: b14 article-title: A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid machine learning-based model publication-title: Ad Hoc Networks – start-page: 234 year: 2019 end-page: 242 ident: b44 article-title: Temporal graph convolutional networks for traffic speed prediction considering external factors publication-title: 2019 20th IEEE international conference on mobile data management (MDM) – volume: 116 year: 2020 ident: b129 article-title: Region-wide congestion prediction and control using deep learning publication-title: Transportation Research Part C (Emerging Technologies) – reference: Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., & Sun, G., et al. (2010). T-drive: driving directions based on taxi trajectories. In – volume: 10 start-page: 1509 issue: 4 year: 2020 ident: 10.1016/j.eswa.2022.117921_b46 article-title: Global spatial-temporal graph convolutional network for urban traffic speed prediction publication-title: Applied Sciences doi: 10.3390/app10041509 – volume: 2 start-page: 115 issue: 2 year: 2020 ident: 10.1016/j.eswa.2022.117921_b60 article-title: Applications of deep learning in intelligent transportation systems publication-title: Journal of Big Data Analytics in Transportation doi: 10.1007/s42421-020-00020-1 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b156 article-title: Graph attention convolutional network: Spatiotemporal modeling for urban traffic prediction – start-page: 88 year: 2020 ident: 10.1016/j.eswa.2022.117921_b66 article-title: Towards fine-grained flow forecasting: A graph attention approach for bike sharing systems – start-page: 714 year: 2020 ident: 10.1016/j.eswa.2022.117921_b163 article-title: ST-MGAT: Spatial-temporal multi-head graph attention networks for traffic forecasting – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b159 article-title: Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 2020 year: 2020 ident: 10.1016/j.eswa.2022.117921_b259 article-title: A novel traffic flow forecasting method based on RNN-GCN and BRB publication-title: Journal of Advanced Transportation doi: 10.1155/2020/7586154 – year: 2019 ident: 10.1016/j.eswa.2022.117921_b218 – volume: 116 year: 2020 ident: 10.1016/j.eswa.2022.117921_b129 article-title: Region-wide congestion prediction and control using deep learning publication-title: Transportation Research Part C (Emerging Technologies) – year: 2019 ident: 10.1016/j.eswa.2022.117921_b191 article-title: Sequential graph neural network for urban road traffic speed prediction publication-title: IEEE Access – start-page: 208 year: 2019 ident: 10.1016/j.eswa.2022.117921_b145 article-title: Transfer knowledge between sub-regions for traffic prediction using deep learning method – volume: 8 start-page: 185136 year: 2020 ident: 10.1016/j.eswa.2022.117921_b20 article-title: Dynamic spatio-temporal graph-based CNNs for traffic flow prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3027375 – start-page: 210 year: 2020 ident: 10.1016/j.eswa.2022.117921_b140 article-title: RESGCN: Residual graph convolutional network based free dock prediction in bike sharing system – volume: 121 year: 2020 ident: 10.1016/j.eswa.2022.117921_b62 article-title: Congestion recognition for hybrid urban road systems via digraph convolutional network publication-title: Transportation Research Part C (Emerging Technologies) – ident: 10.1016/j.eswa.2022.117921_b247 doi: 10.1609/aaai.v34i01.5477 – year: 2019 ident: 10.1016/j.eswa.2022.117921_b180 article-title: Dual graph for traffic forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2958380 – ident: 10.1016/j.eswa.2022.117921_b187 doi: 10.1145/3395260.3395266 – volume: 14 issue: 9 year: 2019 ident: 10.1016/j.eswa.2022.117921_b88 article-title: Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects publication-title: PLOS ONE doi: 10.1371/journal.pone.0220782 – year: 2019 ident: 10.1016/j.eswa.2022.117921_b28 article-title: Graph attention recurrent neural networks for correlated time series forecasting – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b188 article-title: Demand prediction for a public bike sharing program based on spatio-temporal graph convolutional networks publication-title: Multimedia Tools and Applications – start-page: 3074 year: 2020 ident: 10.1016/j.eswa.2022.117921_b32 article-title: Hybrid spatio-temporal graph convolutional network: Improving traffic prediction with navigation data – start-page: 241 year: 2018 ident: 10.1016/j.eswa.2022.117921_b182 article-title: Graph attention LSTM network: A new model for traffic flow forecasting – year: 2020 ident: 10.1016/j.eswa.2022.117921_b150 article-title: TTPNet: A neural network for travel time prediction based on tensor decomposition and graph embedding publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2020 ident: 10.1016/j.eswa.2022.117921_b53 article-title: Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b37 article-title: Deep learning for intelligent traffic sensing and prediction: recent advances and future challenges publication-title: CCF Transactions on Pervasive Computing and Interaction – year: 2020 ident: 10.1016/j.eswa.2022.117921_b39 article-title: Meta-MSNet: Meta-learning based multi-source data fusion for traffic flow prediction publication-title: IEEE Signal Processing Letters – year: 2020 ident: 10.1016/j.eswa.2022.117921_b76 article-title: Citywide traffic speed prediction: A geometric deep learning approach publication-title: Knowledge-Based Systems – year: 2018 ident: 10.1016/j.eswa.2022.117921_b239 article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b246 article-title: Attention based graph bi-LSTM networks for traffic forecasting – year: 2019 ident: 10.1016/j.eswa.2022.117921_b154 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b254 article-title: Reinforced spatio-temporal attentive graph neural networks for traffic forecasting publication-title: IEEE Internet of Things Journal – volume: 4 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b121 article-title: D3P: Data-driven demand prediction for fast expanding electric vehicle sharing systems publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies doi: 10.1145/3381005 – start-page: 1604 year: 2020 ident: 10.1016/j.eswa.2022.117921_b24 article-title: GST-GCN: A geographic-semantic-temporal graph convolutional network for context-aware traffic flow prediction on graph sequences – volume: 115 start-page: 1047 issue: 2 year: 2020 ident: 10.1016/j.eswa.2022.117921_b49 article-title: Traffic prediction using multifaceted techniques: A survey publication-title: Wireless Personal Communications doi: 10.1007/s11277-020-07612-8 – volume: 117 year: 2020 ident: 10.1016/j.eswa.2022.117921_b200 article-title: GE-GAN: A novel deep learning framework for road traffic state estimation publication-title: Transportation Research Part C (Emerging Technologies) – year: 2018 ident: 10.1016/j.eswa.2022.117921_b167 – volume: 181 year: 2020 ident: 10.1016/j.eswa.2022.117921_b13 article-title: Machine learning-based traffic prediction models for intelligent transportation systems publication-title: Computer Networks doi: 10.1016/j.comnet.2020.107530 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b25 – volume: 2020 year: 2020 ident: 10.1016/j.eswa.2022.117921_b238 article-title: Urban traffic flow forecast based on FastGCRNN publication-title: Journal of Advanced Transportation doi: 10.1155/2020/8859538 – year: 2021 ident: 10.1016/j.eswa.2022.117921_b244 article-title: Data augmentation for graph neural networks – year: 2020 ident: 10.1016/j.eswa.2022.117921_b195 article-title: Dynamic origin–destination matrix prediction with line graph neural networks and Kalman filter publication-title: Transportation Research Record doi: 10.1177/0361198120919399 – volume: 34 start-page: 969 issue: 5 year: 2020 ident: 10.1016/j.eswa.2022.117921_b224 article-title: A novel residual graph convolution deep learning model for short-term network-based traffic forecasting publication-title: International Journal of Geographical Information Science doi: 10.1080/13658816.2019.1697879 – ident: 10.1016/j.eswa.2022.117921_b139 doi: 10.1109/CVPR.2019.01103 – ident: 10.1016/j.eswa.2022.117921_b133 doi: 10.1145/3292500.3330884 – start-page: 1929 year: 2019 ident: 10.1016/j.eswa.2022.117921_b104 article-title: A hybrid deep learning approach with GCN and LSTM for traffic flow prediction – start-page: 1818 year: 2020 ident: 10.1016/j.eswa.2022.117921_b151 article-title: Predicting origin-destination flow via multi-perspective graph convolutional network – year: 2019 ident: 10.1016/j.eswa.2022.117921_b227 – ident: 10.1016/j.eswa.2022.117921_b19 doi: 10.1145/3397536.3422257 – volume: 1 start-page: 57 year: 2020 ident: 10.1016/j.eswa.2022.117921_b249 article-title: Graph neural networks: A review of methods and applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – ident: 10.1016/j.eswa.2022.117921_b205 doi: 10.1609/aaai.v35i5.16591 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b26 article-title: TSSRGCN: Temporal spectral spatial retrieval graph convolutional network for traffic flow forecasting – year: 2020 ident: 10.1016/j.eswa.2022.117921_b236 article-title: Semi-supervised city-wide parking availability prediction via hierarchical recurrent graph neural network publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2022.117921_b240 article-title: GCGAN: Generative adversarial nets with graph CNN for network-scale traffic prediction – year: 2020 ident: 10.1016/j.eswa.2022.117921_b228 article-title: Graph attention LSTM: A spatio-temperal approach for traffic flow forecasting publication-title: IEEE Intelligent Transportation Systems Magazine – ident: 10.1016/j.eswa.2022.117921_b34 – start-page: 438 year: 2020 ident: 10.1016/j.eswa.2022.117921_b22 article-title: GDCRN: Global diffusion convolutional residual network for traffic flow prediction – volume: 33 year: 2020 ident: 10.1016/j.eswa.2022.117921_b17 article-title: Spectral temporal graph neural network for multivariate time-series forecasting publication-title: Advances in Neural Information Processing Systems – year: 2014 ident: 10.1016/j.eswa.2022.117921_b15 article-title: Spectral networks and deep locally connected networks on graphs – ident: 10.1016/j.eswa.2022.117921_b169 doi: 10.1007/978-3-030-67670-4_27 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b192 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b253 article-title: Foresee urban sparse traffic accidents: A spatiotemporal multi-granularity perspective publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 8 start-page: 91188 year: 2020 ident: 10.1016/j.eswa.2022.117921_b127 article-title: A comprehensive evaluation of deep learning-based techniques for traffic prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994415 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b6 article-title: Adaptive graph convolutional recurrent network for traffic forecasting – ident: 10.1016/j.eswa.2022.117921_b47 doi: 10.1609/aaai.v33i01.33013656 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b124 article-title: Graph-partitioning-based diffusion convolution recurrent neural network for large-scale traffic forecasting publication-title: Transportation Research Record doi: 10.1177/0361198120930010 – start-page: 753 year: 2020 ident: 10.1016/j.eswa.2022.117921_b184 article-title: Connecting the dots: Multivariate time series forecasting with graph neural networks – start-page: 707 year: 2020 ident: 10.1016/j.eswa.2022.117921_b193 article-title: SAST-GNN: A self-attention based spatio-temporal graph neural network for traffic prediction – year: 2020 ident: 10.1016/j.eswa.2022.117921_b153 article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 2355 year: 2020 ident: 10.1016/j.eswa.2022.117921_b73 article-title: LSGCN: Long short-term traffic prediction with graph convolutional networks – year: 2020 ident: 10.1016/j.eswa.2022.117921_b196 – year: 2019 ident: 10.1016/j.eswa.2022.117921_b93 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b58 article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.001 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b83 – ident: 10.1016/j.eswa.2022.117921_b132 doi: 10.1145/3340531.3411874 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b248 – start-page: 91 year: 2020 ident: 10.1016/j.eswa.2022.117921_b1 article-title: Traffic flow prediction using graph convolution neural networks – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b144 article-title: Traffic forecasting using temporal line graph convolutional network: Case study – start-page: 251 year: 2020 ident: 10.1016/j.eswa.2022.117921_b201 article-title: Traffic flow forecasting with spatial-temporal graph convolutional networks in edge-computing systems – year: 2020 ident: 10.1016/j.eswa.2022.117921_b113 article-title: GraphSAGE-based traffic speed forecasting for segment network with sparse data publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 34 start-page: 877 issue: 10 year: 2019 ident: 10.1016/j.eswa.2022.117921_b223 article-title: A graph deep learning method for short-term traffic forecasting on large road networks publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12450 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b160 article-title: Dynamic spatial-temporal graph attention graph convolutional network for short-term traffic flow forecasting – year: 2020 ident: 10.1016/j.eswa.2022.117921_b52 article-title: Optimized graph convolution recurrent neural network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 4024 year: 2019 ident: 10.1016/j.eswa.2022.117921_b75 article-title: Online traffic speed estimation for urban road networks with few data: A transfer learning approach – ident: 10.1016/j.eswa.2022.117921_b131 doi: 10.1609/aaai.v35i10.17114 – volume: 8 start-page: 153731 year: 2020 ident: 10.1016/j.eswa.2022.117921_b161 article-title: A general traffic flow prediction approach based on spatial-temporal graph attention publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3018452 – ident: 10.1016/j.eswa.2022.117921_b135 doi: 10.1145/3340531.3411940 – year: 2016 ident: 10.1016/j.eswa.2022.117921_b3 article-title: Diffusion-convolutional neural networks – ident: 10.1016/j.eswa.2022.117921_b23 doi: 10.1609/aaai.v33i01.3301485 – volume: 8 start-page: 209296 year: 2020 ident: 10.1016/j.eswa.2022.117921_b41 article-title: Dynamic global-local spatial-temporal network for traffic speed prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3038380 – start-page: 558 year: 2020 ident: 10.1016/j.eswa.2022.117921_b237 article-title: Attention based graph covolution networks for intelligent traffic flow analysis – year: 2020 ident: 10.1016/j.eswa.2022.117921_b179 article-title: Spatial-temporal graph attention networks for traffic flow forecasting – start-page: 1981 year: 2019 ident: 10.1016/j.eswa.2022.117921_b5 article-title: Stg2seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting – volume: 24 start-page: 52 issue: 1 year: 2018 ident: 10.1016/j.eswa.2022.117921_b81 article-title: Geospatial data to images: A deep-learning framework for traffic forecasting publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2018.9010033 – volume: 115 year: 2020 ident: 10.1016/j.eswa.2022.117921_b174 article-title: Evaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approach publication-title: Transportation Research Part C (Emerging Technologies) – ident: 10.1016/j.eswa.2022.117921_b177 doi: 10.1145/3292500.3330877 – start-page: 1024 year: 2017 ident: 10.1016/j.eswa.2022.117921_b61 article-title: Inductive representation learning on large graphs – volume: 9 start-page: 35973 year: 2021 ident: 10.1016/j.eswa.2022.117921_b258 article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062114 – ident: 10.1016/j.eswa.2022.117921_b4 doi: 10.1145/3357384.3358097 – volume: 185 start-page: 40 year: 2022 ident: 10.1016/j.eswa.2022.117921_b80 article-title: Graph-based deep learning for communication networks: A survey publication-title: Computer Communications doi: 10.1016/j.comcom.2021.12.015 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b164 article-title: Deep learning in transport studies: A meta-analysis on the prediction accuracy publication-title: Journal of Big Data Analytics in Transportation – start-page: 435 year: 2020 ident: 10.1016/j.eswa.2022.117921_b175 article-title: MTGCN: A multitask deep learning model for traffic flow prediction – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b67 article-title: GC-LSTM: A deep spatiotemporal model for passenger flow forecasting of high-speed rail network – start-page: 1417 year: 2020 ident: 10.1016/j.eswa.2022.117921_b72 article-title: Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks – ident: 10.1016/j.eswa.2022.117921_b18 doi: 10.1145/3274895.3274896 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b204 article-title: Spatial origin-destination flow imputation using graph convolutional networks publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2017 ident: 10.1016/j.eswa.2022.117921_b2 – start-page: 29 year: 2018 ident: 10.1016/j.eswa.2022.117921_b101 article-title: Graph CNNs for urban traffic passenger flows prediction – volume: 29 start-page: 1727 issue: 11n12 year: 2019 ident: 10.1016/j.eswa.2022.117921_b257 article-title: Multistep flow prediction on car-sharing systems: A multi-graph convolutional neural network with attention mechanism publication-title: International Journal of Software Engineering and Knowledge Engineering doi: 10.1142/S0218194019400187 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b33 article-title: Grids versus graphs: Partitioning space for improved taxi demand-supply forecasts publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2020 ident: 10.1016/j.eswa.2022.117921_b78 article-title: Relational fusion networks: Graph convolutional networks for road networks publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 10367 year: 2021 ident: 10.1016/j.eswa.2022.117921_b125 article-title: Transfer learning with graph neural networks for short-term highway traffic forecasting – year: 2020 ident: 10.1016/j.eswa.2022.117921_b91 article-title: STGAT: Spatial-temporal graph attention networks for traffic flow forecasting publication-title: IEEE Access – year: 2019 ident: 10.1016/j.eswa.2022.117921_b245 article-title: T-gcn: A temporal graph convolutional network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2019 ident: 10.1016/j.eswa.2022.117921_b119 – volume: 29 issue: 10 year: 2019 ident: 10.1016/j.eswa.2022.117921_b197 article-title: Road traffic state prediction based on a graph embedding recurrent neural network under the SCATS publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/1.5117180 – ident: 10.1016/j.eswa.2022.117921_b173 doi: 10.1145/3340531.3412054 – ident: 10.1016/j.eswa.2022.117921_b77 doi: 10.1145/3347146.3359094 – start-page: 1251 year: 2019 ident: 10.1016/j.eswa.2022.117921_b212 article-title: Practical end-to-end repositioning algorithm for managing bike-sharing system – ident: 10.1016/j.eswa.2022.117921_b220 doi: 10.1609/aaai.v34i01.5470 – ident: 10.1016/j.eswa.2022.117921_b235 doi: 10.1609/aaai.v34i01.5471 – volume: 182 year: 2020 ident: 10.1016/j.eswa.2022.117921_b12 article-title: Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems publication-title: Computer Networks doi: 10.1016/j.comnet.2020.107484 – volume: 90 start-page: 166 year: 2018 ident: 10.1016/j.eswa.2022.117921_b186 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transportation Research Part C (Emerging Technologies) doi: 10.1016/j.trc.2018.03.001 – start-page: 686 year: 2019 ident: 10.1016/j.eswa.2022.117921_b55 article-title: BikeNet: Accurate bike demand prediction using graph neural networks for station rebalancing – year: 2018 ident: 10.1016/j.eswa.2022.117921_b166 article-title: Graph attention networks – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b59 article-title: Dynamic graph filters networks: A gray-box model for multistep traffic forecasting – start-page: 2195 year: 2019 ident: 10.1016/j.eswa.2022.117921_b233 article-title: Link speed prediction for signalized urban traffic network using a hybrid deep learning approach – volume: 122 year: 2021 ident: 10.1016/j.eswa.2022.117921_b86 article-title: Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network publication-title: Transportation Research Part C (Emerging Technologies) – ident: 10.1016/j.eswa.2022.117921_b100 – year: 2019 ident: 10.1016/j.eswa.2022.117921_b8 article-title: Explainability techniques for graph convolutional networks – year: 2020 ident: 10.1016/j.eswa.2022.117921_b96 article-title: Joint forecasting and interpolation of time-varying graph signals using deep learning publication-title: IEEE Transactions on Signal and Information Processing over Networks doi: 10.1109/TSIPN.2020.3040042 – year: 2019 ident: 10.1016/j.eswa.2022.117921_b130 article-title: Spatio-temporal deep graph infomax – year: 2020 ident: 10.1016/j.eswa.2022.117921_b79 – start-page: 999 year: 2020 ident: 10.1016/j.eswa.2022.117921_b241 article-title: Spatial-temporal graph attention model on traffic forecasting – volume: 1 start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b97 article-title: Short-term traffic demand prediction using graph convolutional neural networks publication-title: AGILE: GIScience Series – volume: 47 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.eswa.2022.117921_b170 article-title: Survey of graph neural network publication-title: Computer Engineering – start-page: 3898 year: 2019 ident: 10.1016/j.eswa.2022.117921_b181 article-title: Neural-attention-based deep learning architectures for modeling traffic dynamics on lane graphs – volume: 59 start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b190 article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2020.01.002 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b36 article-title: Traffic demand prediction based on dynamic transition convolutional neural network publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 107 start-page: 248 year: 2019 ident: 10.1016/j.eswa.2022.117921_b203 article-title: A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources publication-title: Transportation Research Part C (Emerging Technologies) doi: 10.1016/j.trc.2019.08.010 – volume: 127 year: 2021 ident: 10.1016/j.eswa.2022.117921_b85 article-title: Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach publication-title: Transportation Research Part C (Emerging Technologies) – start-page: 3779 year: 2019 ident: 10.1016/j.eswa.2022.117921_b64 article-title: Piecewise stationary modeling of random processes over graphs with an application to traffic prediction – year: 2020 ident: 10.1016/j.eswa.2022.117921_b162 article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2020.3001195 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b103 article-title: Traffic flow prediction over muti-sensor data correlation with graph convolution network publication-title: Neurocomputing – start-page: 2697 year: 2020 ident: 10.1016/j.eswa.2022.117921_b38 article-title: Constgat: Contextual spatial-temporal graph attention network for travel time estimation at baidu maps – volume: 134 year: 2022 ident: 10.1016/j.eswa.2022.117921_b95 article-title: DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting publication-title: Transportation Research Part C (Emerging Technologies) – year: 2018 ident: 10.1016/j.eswa.2022.117921_b152 – volume: 20 start-page: 3776 issue: 13 year: 2020 ident: 10.1016/j.eswa.2022.117921_b27 article-title: Multitask learning and GCN-based taxi demand prediction for a traffic road network publication-title: Sensors doi: 10.3390/s20133776 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b42 – start-page: 57 year: 2020 ident: 10.1016/j.eswa.2022.117921_b208 article-title: Learning mobility flows from urban features with spatial interaction models and neural networks – year: 2018 ident: 10.1016/j.eswa.2022.117921_b71 – volume: 20 start-page: 3940 issue: 10 year: 2019 ident: 10.1016/j.eswa.2022.117921_b214 article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2019.2910560 – year: 2017 ident: 10.1016/j.eswa.2022.117921_b90 article-title: Semi-supervised classification with graph convolutional networks – year: 2020 ident: 10.1016/j.eswa.2022.117921_b138 – volume: 2020 year: 2020 ident: 10.1016/j.eswa.2022.117921_b10 article-title: Integrating semantic zoning information with the prediction of road link speed based on taxi GPS data publication-title: Complexity doi: 10.1155/2020/6939328 – year: 2015 ident: 10.1016/j.eswa.2022.117921_b69 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b120 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b226 article-title: A multi-modal graph neural network approach to traffic risk forecasting in smart urban sensing – ident: 10.1016/j.eswa.2022.117921_b109 doi: 10.1609/aaai.v35i5.16542 – start-page: 2444 year: 2020 ident: 10.1016/j.eswa.2022.117921_b70 article-title: Heteta: Heterogeneous information network embedding for estimating time of arrival – volume: 117 year: 2020 ident: 10.1016/j.eswa.2022.117921_b82 article-title: Urban ride-hailing demand prediction with multiple spatio-temporal information fusion network publication-title: Transportation Research Part C (Emerging Technologies) – start-page: 2570 year: 2019 ident: 10.1016/j.eswa.2022.117921_b84 article-title: Learning dynamic graph embedding for traffic flow forecasting: A graph self-attentive method – volume: 20 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.eswa.2022.117921_b148 article-title: The graph neural network model publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2008.2005605 – start-page: 355 year: 2020 ident: 10.1016/j.eswa.2022.117921_b99 article-title: A two-stream graph convolutional neural network for dynamic traffic flow forecasting – start-page: 1907 year: 2019 ident: 10.1016/j.eswa.2022.117921_b185 article-title: Graph WaveNet for deep spatial-temporal graph modeling – volume: 14 issue: 9 year: 2020 ident: 10.1016/j.eswa.2022.117921_b157 article-title: Traffic flow prediction model based on spatio-temporal dilated graph convolution publication-title: KSII Transactions on Internet & Information Systems – volume: 8 start-page: 243 issue: 6 year: 2019 ident: 10.1016/j.eswa.2022.117921_b63 article-title: Predicting station-level short-term passenger flow in a citywide metro network using spatiotemporal graph convolutional neural networks publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi8060243 – volume: 114 start-page: 189 year: 2020 ident: 10.1016/j.eswa.2022.117921_b215 article-title: Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN) publication-title: Transportation Research Part C (Emerging Technologies) doi: 10.1016/j.trc.2020.02.013 – start-page: 414 year: 2020 ident: 10.1016/j.eswa.2022.117921_b143 article-title: Modeling local and global flow aggregation for traffic flow forecasting – year: 2020 ident: 10.1016/j.eswa.2022.117921_b206 article-title: How to build a graph-based deep learning architecture in traffic domain: A survey publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2020 ident: 10.1016/j.eswa.2022.117921_b43 article-title: Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation publication-title: IET Intelligent Transport Systems doi: 10.1049/iet-its.2019.0778 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b213 article-title: Deep spatio-temporal graph convolutional network for traffic accident prediction publication-title: Neurocomputing – year: 2019 ident: 10.1016/j.eswa.2022.117921_b29 article-title: Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2018 ident: 10.1016/j.eswa.2022.117921_b171 – year: 2018 ident: 10.1016/j.eswa.2022.117921_b128 article-title: Graph cnn+ lstm framework for dynamic macroscopic traffic congestion prediction – year: 2020 ident: 10.1016/j.eswa.2022.117921_b14 article-title: A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid machine learning-based model publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2020.102224 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b243 article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction publication-title: IEEE Access – volume: 27 start-page: 2672 year: 2014 ident: 10.1016/j.eswa.2022.117921_b51 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – start-page: 9244 year: 2019 ident: 10.1016/j.eswa.2022.117921_b211 article-title: Gnnexplainer: Generating explanations for graph neural networks – volume: 112 start-page: 62 year: 2020 ident: 10.1016/j.eswa.2022.117921_b11 article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data publication-title: Transportation Research Part C (Emerging Technologies) doi: 10.1016/j.trc.2020.01.010 – volume: 35 start-page: 338 year: 2020 ident: 10.1016/j.eswa.2022.117921_b250 article-title: Exploiting multiple correlations among Urban regions for crowd flow prediction publication-title: Journal of Computer Science and Technology doi: 10.1007/s11390-020-9970-y – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b107 article-title: SDCN: Sparsity and diversity driven correlation networks for traffic demand forecasting – volume: 30 start-page: 5998 year: 2017 ident: 10.1016/j.eswa.2022.117921_b165 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – start-page: 3483 year: 2021 ident: 10.1016/j.eswa.2022.117921_b158 article-title: Constructing geographic and long-term temporal graph for traffic forecasting – year: 2020 ident: 10.1016/j.eswa.2022.117921_b54 article-title: An optimized temporal-spatial gated graph convolution network for traffic forecasting publication-title: IEEE Intelligent Transportation Systems Magazine – year: 2020 ident: 10.1016/j.eswa.2022.117921_b146 article-title: GANNSTER: Graph-augmented neural network spatio-temporal reasoner for traffic forecasting – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b229 article-title: Graph attention temporal convolutional network for traffic speed forecasting on road networks publication-title: Transportmetrica B: Transport Dynamics – ident: 10.1016/j.eswa.2022.117921_b230 doi: 10.1145/3340531.3411941 – start-page: 159 year: 2020 ident: 10.1016/j.eswa.2022.117921_b74 article-title: Short-term traffic flow prediction based on graph convolutional network embedded LSTM – year: 2020 ident: 10.1016/j.eswa.2022.117921_b122 article-title: Temporal multi-graph convolutional network for traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – ident: 10.1016/j.eswa.2022.117921_b155 doi: 10.1609/aaai.v34i01.5438 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b178 – start-page: 2466 year: 2019 ident: 10.1016/j.eswa.2022.117921_b57 article-title: A multi-step traffic speed forecasting model based on graph convolutional LSTM – year: 2020 ident: 10.1016/j.eswa.2022.117921_b105 article-title: A multi-stream feature fusion approach for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2021 ident: 10.1016/j.eswa.2022.117921_b210 article-title: Deep learning on traffic prediction: Methods, analysis and future directions publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2019 ident: 10.1016/j.eswa.2022.117921_b216 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b142 article-title: Topological graph convolutional network-based urban traffic flow and density prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – ident: 10.1016/j.eswa.2022.117921_b21 doi: 10.1609/aaai.v34i04.5758 – ident: 10.1016/j.eswa.2022.117921_b56 doi: 10.1609/aaai.v33i01.3301922 – start-page: 1018 year: 2018 ident: 10.1016/j.eswa.2022.117921_b232 article-title: Kernel-weighted graph convolutional network: A deep learning approach for traffic forecasting – year: 2020 ident: 10.1016/j.eswa.2022.117921_b141 article-title: A graph convolutional network model for evaluating potential congestion spots based on local urban built environments publication-title: Transactions in GIS doi: 10.1111/tgis.12641 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b16 article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting publication-title: Transactions in GIS doi: 10.1111/tgis.12644 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b68 article-title: Railway delay prediction with spatial-temporal graph convolutional networks – year: 2020 ident: 10.1016/j.eswa.2022.117921_b134 article-title: Spatio-temporal meta learning for urban traffic prediction publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 2232 year: 2019 ident: 10.1016/j.eswa.2022.117921_b9 article-title: What Lies beneath: A note on the explainability of black-box machine learning models for road traffic forecasting – ident: 10.1016/j.eswa.2022.117921_b35 doi: 10.1609/aaai.v33i01.3301890 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b183 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – ident: 10.1016/j.eswa.2022.117921_b242 doi: 10.1609/aaai.v31i1.10735 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b207 article-title: Multi-STGCnet: A graph convolution based spatial-temporal framework for subway passenger flow forecasting – ident: 10.1016/j.eswa.2022.117921_b252 doi: 10.1609/aaai.v34i01.5480 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b225 article-title: Deep learning on graphs: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 119 year: 2020 ident: 10.1016/j.eswa.2022.117921_b168 article-title: Forecast network-wide traffic states for multiple steps ahead: A deep learning approach considering dynamic non-local spatial correlation and non-stationary temporal dependency publication-title: Transportation Research Part C (Emerging Technologies) – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2022.117921_b87 article-title: Urban traffic prediction using congestion diffusion model – year: 2020 ident: 10.1016/j.eswa.2022.117921_b117 article-title: LSTM variants meet graph neural networks for road speed prediction publication-title: Neurocomputing – volume: 8 start-page: 414 issue: 9 year: 2019 ident: 10.1016/j.eswa.2022.117921_b199 article-title: Incorporating graph attention and recurrent architectures for city-wide taxi demand prediction publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi8090414 – ident: 10.1016/j.eswa.2022.117921_b98 doi: 10.1145/3340531.3411965 – start-page: 3634 year: 2018 ident: 10.1016/j.eswa.2022.117921_b217 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting – start-page: 1082 year: 2020 ident: 10.1016/j.eswa.2022.117921_b172 article-title: Traffic flow prediction via spatial temporal graph neural network – ident: 10.1016/j.eswa.2022.117921_b102 doi: 10.1609/aaai.v34i04.5915 – volume: 10 start-page: 485 issue: 7 year: 2021 ident: 10.1016/j.eswa.2022.117921_b7 article-title: A3T-GCN: attention temporal graph convolutional network for traffic forecasting publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi10070485 – start-page: 2286 year: 2019 ident: 10.1016/j.eswa.2022.117921_b40 article-title: GSTNet: Global spatial-temporal network for traffic flow prediction – year: 2019 ident: 10.1016/j.eswa.2022.117921_b251 – ident: 10.1016/j.eswa.2022.117921_b116 doi: 10.1145/3340531.3411894 – year: 2019 ident: 10.1016/j.eswa.2022.117921_b94 – ident: 10.1016/j.eswa.2022.117921_b106 doi: 10.24963/ijcai.2019/402 – volume: 105 start-page: 297 year: 2019 ident: 10.1016/j.eswa.2022.117921_b234 article-title: Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies publication-title: Transportation Research Part C (Emerging Technologies) doi: 10.1016/j.trc.2019.05.039 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b221 article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1049/iet-its.2019.0873 – year: 2022 ident: 10.1016/j.eswa.2022.117921_b256 article-title: KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2022.3220089 – volume: 30 issue: 9 year: 2020 ident: 10.1016/j.eswa.2022.117921_b176 article-title: An urban commuters’ OD hybrid prediction method based on big GPS data publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/5.0007174 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b209 article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction publication-title: Neurocomputing – volume: 97 start-page: 258 year: 2018 ident: 10.1016/j.eswa.2022.117921_b111 article-title: Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach publication-title: Transportation Research Part C (Emerging Technologies) doi: 10.1016/j.trc.2018.10.011 – volume: 9 start-page: 54739 year: 2021 ident: 10.1016/j.eswa.2022.117921_b92 article-title: Short-term traffic prediction with deep neural networks: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071174 – year: 2021 ident: 10.1016/j.eswa.2022.117921_b126 article-title: Deep learning for road traffic forecasting: Does it make a difference? publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 11 start-page: 6 issue: 1 year: 2019 ident: 10.1016/j.eswa.2022.117921_b136 article-title: Feature selection and extraction in spatiotemporal traffic forecasting: a systematic literature review publication-title: European Transport Research Review doi: 10.1186/s12544-019-0345-9 – ident: 10.1016/j.eswa.2022.117921_b219 doi: 10.1145/1869790.1869807 – year: 2019 ident: 10.1016/j.eswa.2022.117921_b48 – ident: 10.1016/j.eswa.2022.117921_b110 doi: 10.1145/3219819.3219895 – start-page: 1263 year: 2017 ident: 10.1016/j.eswa.2022.117921_b50 article-title: Neural message passing for quantum chemistry – year: 2016 ident: 10.1016/j.eswa.2022.117921_b89 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b202 article-title: Relational state-space model for stochastic multi-object systems – volume: 115 year: 2020 ident: 10.1016/j.eswa.2022.117921_b30 article-title: Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction publication-title: Transportation Research Part C (Emerging Technologies) – ident: 10.1016/j.eswa.2022.117921_b149 doi: 10.1145/3409501.3409539 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b222 article-title: Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit publication-title: IET Intelligent Transport Systems doi: 10.1049/iet-its.2019.0873 – ident: 10.1016/j.eswa.2022.117921_b65 doi: 10.1145/3366423.3380101 – ident: 10.1016/j.eswa.2022.117921_b189 doi: 10.1145/3340531.3411873 – year: 2018 ident: 10.1016/j.eswa.2022.117921_b147 article-title: Few-shot learning with graph neural networks – year: 2020 ident: 10.1016/j.eswa.2022.117921_b255 article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems publication-title: IEEE Transactions on Industrial Informatics – start-page: 234 year: 2019 ident: 10.1016/j.eswa.2022.117921_b44 article-title: Temporal graph convolutional networks for traffic speed prediction considering external factors – ident: 10.1016/j.eswa.2022.117921_b194 doi: 10.1145/3340531.3417411 – start-page: 74 year: 2019 ident: 10.1016/j.eswa.2022.117921_b118 article-title: Leveraging graph neural network with LSTM for traffic speed prediction – volume: 521 start-page: 277 year: 2020 ident: 10.1016/j.eswa.2022.117921_b137 article-title: Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting publication-title: Information Sciences doi: 10.1016/j.ins.2020.01.043 – start-page: 522 year: 2019 ident: 10.1016/j.eswa.2022.117921_b45 article-title: Traffic speed prediction with missing data based on TGCN – volume: 117 year: 2020 ident: 10.1016/j.eswa.2022.117921_b31 article-title: Graph Markov network for traffic forecasting with missing data publication-title: Transportation Research Part C (Emerging Technologies) – volume: 7 start-page: 166246 year: 2019 ident: 10.1016/j.eswa.2022.117921_b231 article-title: Spatial-temporal graph attention networks: A deep learning approach for traffic forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953888 – year: 2018 ident: 10.1016/j.eswa.2022.117921_b108 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting – year: 2020 ident: 10.1016/j.eswa.2022.117921_b198 article-title: Spatiotemporal graph convolution multifusion network for urban vehicle emission prediction publication-title: IEEE Transactions on Neural Networks and Learning Systems – ident: 10.1016/j.eswa.2022.117921_b114 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b123 – year: 2020 ident: 10.1016/j.eswa.2022.117921_b112 article-title: Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1039 year: 2019 ident: 10.1016/j.eswa.2022.117921_b115 article-title: Learning to propagate for graph meta-learning |
SSID | ssj0017007 |
Score | 2.744609 |
SecondaryResourceType | review_article |
Snippet | Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117921 |
SubjectTerms | Deep learning Graph attention network Graph convolution network Graph neural networks Traffic forecasting |
Title | Graph neural network for traffic forecasting: A survey |
URI | https://dx.doi.org/10.1016/j.eswa.2022.117921 |
Volume | 207 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEIBPVVlYeCOelQc2FJqHYzdsVUUpILpApW6R4zhSEQpVm4JY-O3c1U4FEurAlocdORf7HsrdZ4ALqZUvpYk9lQjt8bzIPQzBclx4aLt4lkeFoOLkx6EYjPj9OB43oFfXwlBapdP9VqcvtbW70nbSbE8nk_YTOgdoDjG0C5cMGWKCci5pll99rdI8CD8nLW9PetTaFc7YHC8z_yD2UBjSv8skDP42Tj8MTn8HtpynyLp2MLvQMOUebNe7MDC3KPdB3BJzmhGYEpuXNq2boS_KqpkiQAQdG63mlOB8zbpsvpi9m88DGPVvnnsDz-2G4OlIiMqTRmVKi6ITZlIKYsCYmGjtkvgQRZ6JuIiKOBB4H99VoWGm0BAjAl_7KuwE0SE0y7fSHAHzDT4rFjxIZM65iVQSGLRRSa55Fvmd5BiCWgypdqhw2rHiNa1zwl5SEl1Kokut6I7hctVnakEZa1vHtXTTX587RU2-pt_JP_udwiadWWbjGTSr2cKcozdRZa3ldGnBRvfuYTD8BsQQxo0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CLb7E-c_AmoXnuNt5Ksab2cbGF3pbNZgMViaUPxX_vTLMpCtKDt5CdCdkv2XmwM98C3HElHc51aMuIKTtIs9TGFCzFhYe-K0hSP2PUnDwYsngcPE_CSQXaZS8MlVUa21_Y9LW1NncaBs3GbDptvGBwgO4QUztvzSET7ECN2KnCKtRa3V483GwmcKfomkZ5mxRM70xR5qUXn0Q_5Hm0fRl57t_-6YfP6RzCvgkWrVbxPkdQ0fkxHJQHMVhmXZ4AeyLaaYu4KVE8Lyq7LQxHreVcEkcEXWslF1Tj_GC1rMVq_qG_TmHceRy1Y9sciGArn7GlzbVMpGJZ00s4Z0QDo0MibOdEEZGlCQszPwtdhuM4V4m-mbJDTAoc5Uiv6fpnUM3fc30OlqPxWSEL3IinQaB9Gbka3VSUqiDxnWZUB7eEQSjDFk6HVryJsizsVRB0gqATBXR1uN_ozAqujK3SYYmu-PXFBRrzLXoX_9S7hd14NOiLfnfYu4Q9GikoHK-gupyv9DUGF8vkxvw8367-yT4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+neural+network+for+traffic+forecasting%3A+A+survey&rft.jtitle=Expert+systems+with+applications&rft.au=Jiang%2C+Weiwei&rft.au=Luo%2C+Jiayun&rft.date=2022-11-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=207&rft_id=info:doi/10.1016%2Fj.eswa.2022.117921&rft.externalDocID=S0957417422011654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |