River Flow Monitoring by Sentinel-3 OLCI and MODIS: Comparison and Combination

The monitoring of rivers by satellite is an up-to-date subject in hydrological studies as confirmed by the interest of space agencies to finance specific missions that respond to the quantification of surface water flows. We address the problem by using multi-spectral sensors, in the near-infrared (...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 23; p. 3867
Main Authors Tarpanelli, Angelica, Iodice, Filippo, Brocca, Luca, Restano, Marco, Benveniste, Jérôme
Format Journal Article
LanguageEnglish
Published MDPI AG 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The monitoring of rivers by satellite is an up-to-date subject in hydrological studies as confirmed by the interest of space agencies to finance specific missions that respond to the quantification of surface water flows. We address the problem by using multi-spectral sensors, in the near-infrared (NIR) band, correlating the reflectance ratio between a dry and a wet pixel extracted from a time series of images, the C/M ratio, with five river flow-related variables: water level, river discharge, flow area, mean flow velocity and surface width. The innovative aspect of this study is the use of the Ocean and Land Colour Instrument (OLCI) on board Sentinel-3 satellites, compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) used in previous studies. Our results show that the C/M ratio from OLCI and MODIS is more correlated with the mean flow velocity than with other variables. To improve the number of observations, OLCI and MODIS products are combined into multi-mission time series. The integration provides good quality data at around daily resolution, appropriate for the analysis of the Po River investigated in this study. Finally, the combination of only MODIS products outperforms the other configurations with a frequency slightly lower (~1.8 days).
AbstractList The monitoring of rivers by satellite is an up-to-date subject in hydrological studies as confirmed by the interest of space agencies to finance specific missions that respond to the quantification of surface water flows. We address the problem by using multi-spectral sensors, in the near-infrared (NIR) band, correlating the reflectance ratio between a dry and a wet pixel extracted from a time series of images, the C/M ratio, with five river flow-related variables: water level, river discharge, flow area, mean flow velocity and surface width. The innovative aspect of this study is the use of the Ocean and Land Colour Instrument (OLCI) on board Sentinel-3 satellites, compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) used in previous studies. Our results show that the C/M ratio from OLCI and MODIS is more correlated with the mean flow velocity than with other variables. To improve the number of observations, OLCI and MODIS products are combined into multi-mission time series. The integration provides good quality data at around daily resolution, appropriate for the analysis of the Po River investigated in this study. Finally, the combination of only MODIS products outperforms the other configurations with a frequency slightly lower (~1.8 days).
Author Iodice, Filippo
Restano, Marco
Brocca, Luca
Tarpanelli, Angelica
Benveniste, Jérôme
Author_xml – sequence: 1
  givenname: Angelica
  orcidid: 0000-0003-3487-1659
  surname: Tarpanelli
  fullname: Tarpanelli, Angelica
– sequence: 2
  givenname: Filippo
  surname: Iodice
  fullname: Iodice, Filippo
– sequence: 3
  givenname: Luca
  orcidid: 0000-0002-9080-260X
  surname: Brocca
  fullname: Brocca, Luca
– sequence: 4
  givenname: Marco
  surname: Restano
  fullname: Restano, Marco
– sequence: 5
  givenname: Jérôme
  surname: Benveniste
  fullname: Benveniste, Jérôme
BookMark eNptUV1LwzAUDaLgnHvxF-RRhGq-2jS-SXVa2Bw4fQ5pmo6MLplJp-zfWzdFEe_LvfdwzuEe7gk4dN4ZAM4wuqRUoKsQMSGU5hk_AAOCOEkYEeTw13wMRjEuUV-UYoHYADw-2TcT4Lj173Dqne18sG4Bqy2cG9dZZ9qEwtmkKKFyNZzObsv5NSz8aq2Cjd7t0H6trFOd9e4UHDWqjWb01YfgZXz3XDwkk9l9WdxMEk2zrEu4SbVoTE4wEzWjCGVUcVznlHFd4z5DijhKRZpRIVIhqBI6I5roWvOG1RjRISj3vrVXS7kOdqXCVnpl5Q7wYSFV6KxujWSoQTk1WmhhGDGsQlhVHFcYNQ1JU9p7ne-91sG_bkzs5MpGbdpWOeM3UZIUYywEZ6Knoj1VBx9jMI3UttsF74KyrcRIfn5C_nyil1z8kXxf-w_5A7IVhyQ
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2023_09_011
crossref_primary_10_1016_j_isci_2024_111598
crossref_primary_10_1016_j_jenvman_2022_116121
crossref_primary_10_1016_j_marpolbul_2022_114525
crossref_primary_10_5194_hess_26_3921_2022
crossref_primary_10_1007_s10712_022_09744_x
crossref_primary_10_1007_s43621_024_00735_z
crossref_primary_10_1016_j_watres_2022_119082
crossref_primary_10_3390_rs13152893
crossref_primary_10_1002_met_2192
crossref_primary_10_1016_j_jhydrol_2024_132049
crossref_primary_10_1029_2024WR037155
crossref_primary_10_1007_s10712_023_09803_x
crossref_primary_10_1016_j_ecolind_2021_107528
crossref_primary_10_1016_j_rsase_2024_101330
crossref_primary_10_1080_02626667_2024_2378486
crossref_primary_10_3390_app11083458
crossref_primary_10_1029_2023WR036880
crossref_primary_10_3103_S1068373923120087
crossref_primary_10_1109_JSTARS_2024_3349692
crossref_primary_10_3390_rs13163057
crossref_primary_10_1016_j_rse_2024_114266
crossref_primary_10_1016_j_rse_2025_114610
crossref_primary_10_1016_j_rse_2022_113255
Cites_doi 10.5194/hess-2018-261
10.1016/j.advwatres.2017.08.010
10.1016/j.rse.2018.10.008
10.1016/j.rse.2011.07.024
10.1016/0022-1694(70)90255-6
10.1016/j.asr.2016.10.008
10.3390/rs12172810
10.1016/j.rse.2018.09.002
10.1029/2001JD000609
10.1007/s10712-015-9346-y
10.3390/rs5094145
10.5194/hess-16-3739-2012
10.5194/hess-17-3127-2013
10.1175/JHM-D-15-0044.1
10.1029/2005EO190001
10.5194/tc-14-2235-2020
10.1016/j.advwatres.2017.11.027
10.1016/j.csda.2003.10.021
10.1016/j.rse.2014.04.007
10.1016/j.rse.2013.04.010
10.1016/j.rse.2020.112092
10.3390/rs12071107
10.1002/2015WR018545
10.1016/j.rse.2019.111629
10.1016/j.pce.2011.02.008
10.1016/j.rse.2010.04.020
10.1016/j.rse.2016.03.019
10.1029/2018RG000598
10.1029/2018WR023808
10.1016/j.rse.2017.04.015
10.1002/2015WR017654
10.1016/j.jhydrol.2018.10.068
10.5194/os-12-471-2016
10.1109/TGRS.2018.2854625
10.1890/060148
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs12233867
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_40f083ec9c9e42e4b01ab71b10ff2553
10_3390_rs12233867
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7S9
L.6
PQGLB
PUEGO
ID FETCH-LOGICAL-c366t-7e5c9fe82149d430063a71d8347cd1233507059563995993a9c62c2cdc7f4d103
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:19:44 EDT 2025
Fri Jul 11 18:37:07 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Tue Jul 01 04:15:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-7e5c9fe82149d430063a71d8347cd1233507059563995993a9c62c2cdc7f4d103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9080-260X
0000-0003-3487-1659
OpenAccessLink https://doaj.org/article/40f083ec9c9e42e4b01ab71b10ff2553
PQID 2511199749
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_40f083ec9c9e42e4b01ab71b10ff2553
proquest_miscellaneous_2511199749
crossref_citationtrail_10_3390_rs12233867
crossref_primary_10_3390_rs12233867
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hou (ref_20) 2020; 239
ref_36
Sichangi (ref_12) 2016; 179
ref_35
ref_34
ref_10
ref_31
Calmant (ref_7) 2010; 114
Tarpanelli (ref_19) 2018; 57
ref_39
Tarpanelli (ref_18) 2015; 8
ref_38
Castellarin (ref_27) 2011; 36
ref_37
Scharroo (ref_44) 2016; 12
Palmer (ref_1) 2008; 6
Tarpanelli (ref_13) 2013; 136
Tarpanelli (ref_16) 2017; 195
Schneider (ref_33) 2018; 112
Tarpanelli (ref_30) 2013; 5
Huang (ref_14) 2018; 56
Donlon (ref_25) 2012; 120
Nash (ref_42) 1970; 10
ref_47
Tarpanelli (ref_40) 2017; 108
Kern (ref_45) 2020; 14
ref_46
Zakharova (ref_9) 2019; 568
ref_22
Hirpa (ref_2) 2016; 17
Montanari (ref_28) 2012; 16
Brakenridge (ref_17) 2016; 52
Huang (ref_11) 2018; 219
Li (ref_21) 2019; 55
ref_3
Birkett (ref_6) 2002; 107
Cuevas (ref_41) 2004; 47
Sahoo (ref_23) 2020; 251
ref_26
Claverie (ref_24) 2018; 219
Domeneghetti (ref_29) 2013; 17
Biancamaria (ref_43) 2016; 37
Biancamaria (ref_8) 2017; 59
Brakenridge (ref_15) 2005; 86
Domeneghetti (ref_32) 2014; 149
ref_5
ref_4
References_xml – ident: ref_10
  doi: 10.5194/hess-2018-261
– volume: 108
  start-page: 249
  year: 2017
  ident: ref_40
  article-title: Exploiting a constellation of satellite soil moisture sensors for accurate rainfall estimation
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.08.010
– ident: ref_5
– volume: 219
  start-page: 115
  year: 2018
  ident: ref_11
  article-title: Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.008
– ident: ref_3
– ident: ref_26
– ident: ref_34
– volume: 120
  start-page: 37
  year: 2012
  ident: ref_25
  article-title: The global monitoring for environment and security (GMES) sentinel-3 mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.07.024
– volume: 10
  start-page: 282
  year: 1970
  ident: ref_42
  article-title: River flow forecasting through conceptual models, part I: A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– ident: ref_47
– volume: 59
  start-page: 128
  year: 2017
  ident: ref_8
  article-title: Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2016.10.008
– volume: 8
  start-page: 141
  year: 2015
  ident: ref_18
  article-title: Coupling MODIS and Radar Altimetry Data for Discharge Estimation in Poorly Gauged River Basins
  publication-title: IEEE J. Sel. Top. Appl.
– ident: ref_22
  doi: 10.3390/rs12172810
– volume: 219
  start-page: 145
  year: 2018
  ident: ref_24
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– ident: ref_39
– volume: 107
  start-page: LBA-26-1
  year: 2002
  ident: ref_6
  article-title: Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2001JD000609
– ident: ref_37
– volume: 37
  start-page: 307
  year: 2016
  ident: ref_43
  article-title: The SWOT Mission and Its Capabilities for Land Hydrology
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-015-9346-y
– volume: 5
  start-page: 4145
  year: 2013
  ident: ref_30
  article-title: River discharge estimation by using altimetry data and simplified flood routing modeling
  publication-title: Remote Sens.
  doi: 10.3390/rs5094145
– ident: ref_35
– volume: 16
  start-page: 3739
  year: 2012
  ident: ref_28
  article-title: Hydrology of the Po River: Looking for changing patterns in river discharge
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-3739-2012
– volume: 17
  start-page: 3127
  year: 2013
  ident: ref_29
  article-title: Probabilistic flood hazard mapping: Effects of uncertain boundary conditions
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-3127-2013
– volume: 17
  start-page: 1131
  year: 2016
  ident: ref_2
  article-title: The effect of reference climatology on global flood forecasting
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-15-0044.1
– volume: 86
  start-page: 185
  year: 2005
  ident: ref_15
  article-title: Space-based measurement of river runoff
  publication-title: Eos Trans. AGU
  doi: 10.1029/2005EO190001
– volume: 14
  start-page: 2235
  year: 2020
  ident: ref_45
  article-title: The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission
  publication-title: Cryosphere
  doi: 10.5194/tc-14-2235-2020
– volume: 112
  start-page: 17
  year: 2018
  ident: ref_33
  article-title: Evaluation of multi-mode Cryosat-2 altimetry data over the Po River against in situ data and a hydrodynamic model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.11.027
– volume: 47
  start-page: 111
  year: 2004
  ident: ref_41
  article-title: An ANOVA test for functional data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2003.10.021
– volume: 149
  start-page: 130
  year: 2014
  ident: ref_32
  article-title: The use of remote sensing-derived water surface data for hydraulic model calibration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.007
– volume: 136
  start-page: 47
  year: 2013
  ident: ref_13
  article-title: Toward the estimation of river discharge variations using MODIS data in ungauged basins
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.010
– ident: ref_46
– volume: 251
  start-page: 112092
  year: 2020
  ident: ref_23
  article-title: Copula-based probabilistic spectral algorithms for high-frequent streamflow estimation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112092
– ident: ref_4
  doi: 10.3390/rs12071107
– volume: 52
  start-page: 6404
  year: 2016
  ident: ref_17
  article-title: River gauging at global scale using optical and passive microwave remote sensing
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR018545
– volume: 239
  start-page: 111629
  year: 2020
  ident: ref_20
  article-title: Global satellite-based river gauging and the influence of river morphology on its application
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111629
– volume: 36
  start-page: 299
  year: 2011
  ident: ref_27
  article-title: Identifying robust large-scale flood risk mitigation strategies: A quasi-2D hydraulic model as a tool for the Po river
  publication-title: Phys. Chem. Earth Parts A/B/C
  doi: 10.1016/j.pce.2011.02.008
– volume: 114
  start-page: 2160
  year: 2010
  ident: ref_7
  article-title: Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.020
– volume: 179
  start-page: 36
  year: 2016
  ident: ref_12
  article-title: Estimating continental river basin discharges using multiple remote sensing data sets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.019
– volume: 56
  start-page: 333
  year: 2018
  ident: ref_14
  article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review
  publication-title: Rev. Geophys.
  doi: 10.1029/2018RG000598
– volume: 55
  start-page: 8404
  year: 2019
  ident: ref_21
  article-title: Extending the Ability of Near-Infrared Images to Monitor Small River Discharge on the Northeastern Tibetan Plateau
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023808
– volume: 195
  start-page: 96
  year: 2017
  ident: ref_16
  article-title: Discharge estimation and forecasting by MODIS and altimetry data in Niger-Benue River
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.015
– ident: ref_38
– ident: ref_31
  doi: 10.1002/2015WR017654
– ident: ref_36
– volume: 568
  start-page: 322
  year: 2019
  ident: ref_9
  article-title: Use of non-polar orbiting satellite radar altimeters of the Jason series for estimation of river input to the Arctic Ocean
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.10.068
– volume: 12
  start-page: 471
  year: 2016
  ident: ref_44
  article-title: Jason continuity of services: Continuing the Jason altimeter data records as Copernicus Sentinel-6
  publication-title: Ocean Sci.
  doi: 10.5194/os-12-471-2016
– volume: 57
  start-page: 329
  year: 2018
  ident: ref_19
  article-title: Daily river discharge estimates by merging satellite optical sensors and radar altimetry through artificial neural network
  publication-title: IEEE Trans. Geosci. Remote
  doi: 10.1109/TGRS.2018.2854625
– volume: 6
  start-page: 81
  year: 2008
  ident: ref_1
  article-title: Climate change and the world’s river basins: Anticipating management options
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/060148
SSID ssj0000331904
Score 2.3983052
Snippet The monitoring of rivers by satellite is an up-to-date subject in hydrological studies as confirmed by the interest of space agencies to finance specific...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3867
SubjectTerms area
color
finance
flow
frequency
land
moderate resolution imaging spectroradiometer
MODIS
monitoring
multi-mission series
Po River
reflectance
remote sensing
river discharge
river flow
rivers
satellites
Sentinel-3 OLCI
surface water
time series analysis
velocity
width
Title River Flow Monitoring by Sentinel-3 OLCI and MODIS: Comparison and Combination
URI https://www.proquest.com/docview/2511199749
https://doaj.org/article/40f083ec9c9e42e4b01ab71b10ff2553
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFB60HvQirliXMqIXD6GZzGTz1tVWukhrobeQTCZ4KKl0QfrvfW-SLqDgRXIICQMJ72XmfV_m8X2EPEozdNEqxPAjFNX2ZGigr4ihktBTcEARxB3dbs9pjcTr2B7vWH1hT1gmD5wFrizMBFCCkr70lbCUiEwWRi6LmJkkAIe1zifUvB0ypddgDp-WKTI9Ug68vjybM6iE3NOG8tsKpIX6f6zDurg0T8hxjgppJXubU7Kn0jNymBuUf6zOSW-A_RO0OZl-0Wwa4v84Gq3oENt9UjUxOO13am0apjHt9uvt4TOtbTwG9V24BBqsM3FBRs3Ge61l5FYIhuSOszBcZUs_UZ4FhCYWHIEFxDj2uHBlDMWHA6wDoGQj3rABcoS-dCxpyVi6iYiZyS9JIZ2m6opQlgDiC13PZyg9xGKfKYRZEVIJU0hZJE_r8AQy1wlHu4pJAHwBQxlsQ1kkD5uxn5k6xq-jqhjlzQhUtNY3IM9BnufgrzwXyf06RwHMANzWCFM1Xc4DJEnYLiP86_940A05spBT65aVW1JYzJbqDoDHIiqRfa_5UiIHlXq3M4RztdF7G5T0l_cNGYfVpw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=River+Flow+Monitoring+by+Sentinel-3+OLCI+and+MODIS%3A+Comparison+and+Combination&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Tarpanelli%2C+Angelica&rft.au=Iodice%2C+Filippo&rft.au=Brocca%2C+Luca&rft.au=Restano%2C+Marco&rft.date=2020-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=23&rft.spage=3867&rft_id=info:doi/10.3390%2Frs12233867&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12233867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon