Hot and heavy dark matter from a weak scale phase transition
We point out that dark matter which is produced non-adiabatically in a phase transition (PT) with fast bubble walls receives a boost in velocity which leads to long free-streaming lengths. We find that this could be observed via the suppressed matter power spectrum for dark matter masses around \mat...
Saved in:
Published in | SciPost physics Vol. 14; no. 3; p. 033 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
SciPost
01.03.2023
|
Online Access | Get full text |
ISSN | 2542-4653 2542-4653 |
DOI | 10.21468/SciPostPhys.14.3.033 |
Cover
Loading…
Abstract | We point out that dark matter which is produced non-adiabatically in
a phase transition (PT) with fast bubble walls receives a boost in
velocity which leads to long free-streaming lengths. We find that this
could be observed via the suppressed matter power spectrum for dark
matter masses around
\mathbf{ 10^8 - 10^9}
10
8
-
10
9
GeV and energy scales of the PT around
\mathbf{ 10^{2} - 10^3}
10
2
-
10
3
GeV.
The PT should take place at the border of the supercooled regime,
i.e. approximately when the Universe becomes vacuum dominated. This work
offers novel physics goals for galaxy surveys,
Lyman-
\alpha
ɑ
,
stellar stream, lensing, and 21-cm observations, and connects these to
the gravitational waves from such phase transitions, and more
speculatively to possible telescope signals of heavy dark matter
decay. |
---|---|
AbstractList | We point out that dark matter which is produced non-adiabatically in
a phase transition (PT) with fast bubble walls receives a boost in
velocity which leads to long free-streaming lengths. We find that this
could be observed via the suppressed matter power spectrum for dark
matter masses around
\mathbf{ 10^8 - 10^9}
10
8
-
10
9
GeV and energy scales of the PT around
\mathbf{ 10^{2} - 10^3}
10
2
-
10
3
GeV.
The PT should take place at the border of the supercooled regime,
i.e. approximately when the Universe becomes vacuum dominated. This work
offers novel physics goals for galaxy surveys,
Lyman-
\alpha
ɑ
,
stellar stream, lensing, and 21-cm observations, and connects these to
the gravitational waves from such phase transitions, and more
speculatively to possible telescope signals of heavy dark matter
decay. We point out that dark matter which is produced non-adiabatically in a phase transition (PT) with fast bubble walls receives a boost in velocity which leads to long free-streaming lengths. We find that this could be observed via the suppressed matter power spectrum for dark matter masses around $\mathbf{ 10^8 - 10^9}$ GeV and energy scales of the PT around $\mathbf{ 10^{2} - 10^3}$ GeV. The PT should take place at the border of the supercooled regime, i.e. approximately when the Universe becomes vacuum dominated. This work offers novel physics goals for galaxy surveys, Lyman-$\alpha$, stellar stream, lensing, and 21-cm observations, and connects these to the gravitational waves from such phase transitions, and more speculatively to possible telescope signals of heavy dark matter decay. |
ArticleNumber | 033 |
Author | Baldes, Iason Gouttenoire, Yann Sala, Filippo |
Author_xml | – sequence: 1 givenname: Iason surname: Baldes fullname: Baldes, Iason organization: Université Libre de Bruxelles – sequence: 2 givenname: Yann surname: Gouttenoire fullname: Gouttenoire, Yann organization: Tel Aviv University – sequence: 3 givenname: Filippo surname: Sala fullname: Sala, Filippo organization: Laboratory of Theoretical and High Energy Physics |
BookMark | eNp9kNtKAzEQhoNUsNY-gpAXaM25W_RGitpCwYJ6HWazE7s9bEoSlL69a6tQvPBqDvB_M_9_STpNaJCQa86GgitT3Ly4ehFSXiz3acjVUA6ZlGekK7QSA2W07Jz0F6Sf0ooxJjgfc6O75G4aMoWmokuEjz2tIK7pFnLGSH0MWwr0E2FNk4MN0t0SEtIcoUl1rkNzRc49bBL2f2qPvD0-vE6mg_nz02xyPx84aUwejCpWCTHimrlCFkZypiXTvkLOysJ4YNDOpTKomQBtjDfI0SmUYzlmbuxkj8yO3CrAyu5ivYW4twFqe1iE-G4h5tpt0DKPHpkShfBaGScA2xtCGI4FlE6XLev2yHIxpBTRW1dn-HbT-qo3ljN7yNWe5Gq5stK2ubZq_Uf9-83_ui9Md4Ge |
CitedBy_id | crossref_primary_10_1007_JHEP07_2024_231 crossref_primary_10_1007_JHEP11_2024_129 crossref_primary_10_1103_PhysRevD_109_035002 crossref_primary_10_1103_PhysRevD_107_095002 crossref_primary_10_1103_PhysRevD_108_055035 crossref_primary_10_1007_JHEP02_2024_059 crossref_primary_10_1088_1475_7516_2023_10_052 crossref_primary_10_1088_1475_7516_2024_10_042 crossref_primary_10_1103_PhysRevD_110_043514 crossref_primary_10_1007_JHEP12_2024_190 crossref_primary_10_1103_PhysRevD_108_063508 crossref_primary_10_1103_PhysRevD_109_095034 crossref_primary_10_1088_1475_7516_2024_05_122 crossref_primary_10_1007_JHEP05_2024_294 crossref_primary_10_1007_JHEP12_2024_056 crossref_primary_10_1088_1475_7516_2024_11_047 crossref_primary_10_1103_PhysRevD_110_023509 crossref_primary_10_1007_JHEP02_2025_119 crossref_primary_10_1103_PhysRevD_110_055002 crossref_primary_10_1007_JHEP09_2023_164 crossref_primary_10_1007_JHEP09_2023_013 crossref_primary_10_1088_1475_7516_2024_04_027 |
Cites_doi | 10.1007/JHEP07(2012)009 10.1103/PhysRevLett.64.1084 10.1007/JHEP02(2021)184 10.1103/PhysRevD.66.083505 10.1103/PhysRevD.104.115029 10.1051/0004-6361:20042238 10.1103/PhysRevD.101.095019 10.1007/JHEP08(2018)188 10.1088/1475-7516/2017/05/025 10.1088/1475-7516/2022/07/012 10.1088/1475-7516/2021/05/004 10.1140/epjp/s13360-021-01247-9 10.1103/PhysRevD.79.083519 10.3847/1538-4357/abf9a3 10.1088/1475-7516/2020/08/045 10.1088/1475-7516/2015/11/011 10.1088/1475-7516/2009/05/009 10.1103/PhysRevD.102.083528 10.1007/JHEP12(2019)149 10.1140/epjc/s10052-021-09232-3 10.1103/PhysRevLett.57.2234 10.1111/j.1365-2966.2010.16276.x 10.1088/1475-7516/2021/03/101 10.21468/SciPostPhys.12.3.114 10.1016/j.physletb.2016.06.009 10.1103/PhysRevLett.78.791 10.1093/mnras/stz3177 10.1007/JHEP10(2022)017 10.48550/arXiv.2206.11293 10.1088/1475-7516/2021/01/058 10.1103/PhysRevLett.129.191301 10.1007/JHEP02(2021)117 10.1088/1475-7516/2019/11/017 10.1093/mnras/stab1960 10.1007/JHEP04(2021)278 10.1088/1475-7516/2022/03/041 10.1007/JHEP05(2022)004 10.1088/1475-7516/2021/10/043 10.1103/PhysRevLett.119.141804 10.1088/1475-7516/2011/12/009 10.1088/1475-7516/2021/05/013 10.1088/1475-7516/2019/01/060 10.1007/JHEP10(2021)043 10.1086/321541 10.1007/JHEP03(2021)288 10.1103/PhysRevD.103.103017 10.1103/PhysRevD.84.084004 10.1140/epjc/s10052-020-08589-1 10.1103/PhysRevD.98.043528 10.1086/173658 10.1007/s10686-021-09709-9 10.1016/0550-3213(94)90123-6 10.1088/1475-7516/2020/04/038 10.1103/PhysRevD.88.043502 10.1093/mnras/stab192 10.1007/JHEP05(2019)190 10.1088/1475-7516/2018/03/047 10.1088/1361-6382/ab1101 10.1111/j.1365-2966.2003.07176.x 10.1007/JHEP12(2018)099 10.1103/PhysRevD.97.123513 10.1103/PhysRevD.85.013002 10.1007/978-3-031-11862-3 10.1103/PhysRevLett.125.151102 10.1103/PhysRevD.59.043517 10.1016/0550-3213(94)90577-0 10.1103/PhysRevD.90.063009 10.1103/PhysRevD.103.023531 10.1103/PhysRevLett.126.091101 10.1088/1475-7516/2003/11/010 10.1088/1475-7516/2018/04/009 10.1103/PhysRevD.46.1226 10.1103/PhysRevD.71.063534 10.1007/JHEP07(2022)084 10.1088/1126-6708/2007/05/054 10.1051/0004-6361/201833910 10.1007/JHEP09(2022)052 10.1103/PhysRevD.105.083011 10.1103/PhysRevD.106.075027 10.1103/PhysRevD.89.103501 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.21468/SciPostPhys.14.3.033 |
DatabaseName | CrossRef Directory of Open Access Journals (DOAJ) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2542-4653 |
ExternalDocumentID | oai_doaj_org_article_0fefe04282f546c2ae0b82261e8abc5b 10_21468_SciPostPhys_14_3_033 |
GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c366t-7d0d227150c83863105305fde10b86fa0a530b46e502a566f6e1ec4e39390c9c3 |
IEDL.DBID | DOA |
ISSN | 2542-4653 |
IngestDate | Wed Aug 27 01:32:12 EDT 2025 Tue Jul 01 03:21:57 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-7d0d227150c83863105305fde10b86fa0a530b46e502a566f6e1ec4e39390c9c3 |
OpenAccessLink | https://doaj.org/article/0fefe04282f546c2ae0b82261e8abc5b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0fefe04282f546c2ae0b82261e8abc5b crossref_citationtrail_10_21468_SciPostPhys_14_3_033 crossref_primary_10_21468_SciPostPhys_14_3_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | SciPost physics |
PublicationYear | 2023 |
Publisher | SciPost |
Publisher_xml | – name: SciPost |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref80 doi: 10.1007/JHEP07(2012)009 – ident: ref29 doi: 10.1103/PhysRevLett.64.1084 – ident: ref75 doi: 10.1007/JHEP02(2021)184 – ident: ref26 doi: 10.1103/PhysRevD.66.083505 – ident: ref67 doi: 10.1103/PhysRevD.104.115029 – ident: ref27 doi: 10.1051/0004-6361:20042238 – ident: ref39 doi: 10.1103/PhysRevD.101.095019 – ident: ref37 doi: 10.1007/JHEP08(2018)188 – ident: ref45 doi: 10.1088/1475-7516/2017/05/025 – ident: ref48 doi: 10.1088/1475-7516/2022/07/012 – ident: ref23 doi: 10.1088/1475-7516/2021/05/004 – ident: ref21 doi: 10.1140/epjp/s13360-021-01247-9 – ident: ref56 doi: 10.1103/PhysRevD.79.083519 – ident: ref12 doi: 10.3847/1538-4357/abf9a3 – ident: ref20 doi: 10.1088/1475-7516/2020/08/045 – ident: ref5 doi: 10.1088/1475-7516/2015/11/011 – ident: ref36 doi: 10.1088/1475-7516/2009/05/009 – ident: ref58 doi: 10.1103/PhysRevD.102.083528 – ident: ref71 doi: 10.1007/JHEP12(2019)149 – ident: ref54 doi: 10.1140/epjc/s10052-021-09232-3 – ident: ref28 doi: 10.1103/PhysRevLett.57.2234 – ident: ref2 doi: 10.1111/j.1365-2966.2010.16276.x – ident: ref22 doi: 10.1088/1475-7516/2021/03/101 – ident: ref35 doi: 10.21468/SciPostPhys.12.3.114 – ident: ref57 doi: 10.1016/j.physletb.2016.06.009 – ident: ref32 doi: 10.1103/PhysRevLett.78.791 – ident: ref10 doi: 10.1093/mnras/stz3177 – ident: ref44 doi: 10.1007/JHEP10(2022)017 – ident: ref25 doi: 10.48550/arXiv.2206.11293 – ident: ref42 doi: 10.1088/1475-7516/2021/01/058 – ident: ref13 doi: 10.1103/PhysRevLett.129.191301 – ident: ref59 doi: 10.1007/JHEP02(2021)117 – ident: ref60 doi: 10.1088/1475-7516/2019/11/017 – ident: ref11 doi: 10.1093/mnras/stab1960 – ident: ref40 doi: 10.1007/JHEP04(2021)278 – ident: ref24 doi: 10.1088/1475-7516/2022/03/041 – ident: ref46 doi: 10.1007/JHEP05(2022)004 – ident: ref9 doi: 10.1088/1475-7516/2021/10/043 – ident: ref74 doi: 10.1103/PhysRevLett.119.141804 – ident: ref77 doi: 10.1088/1475-7516/2011/12/009 – ident: ref47 doi: 10.1088/1475-7516/2021/05/013 – ident: ref50 doi: 10.1088/1475-7516/2019/01/060 – ident: ref66 doi: 10.1007/JHEP10(2021)043 – ident: ref15 doi: 10.1086/321541 – ident: ref43 doi: 10.1007/JHEP03(2021)288 – ident: ref65 doi: 10.1103/PhysRevD.103.103017 – ident: ref62 doi: 10.1103/PhysRevD.84.084004 – ident: ref53 doi: 10.1140/epjc/s10052-020-08589-1 – ident: ref3 doi: 10.1103/PhysRevD.98.043528 – ident: ref31 doi: 10.1086/173658 – ident: ref61 doi: 10.1007/s10686-021-09709-9 – ident: ref73 doi: 10.1016/0550-3213(94)90123-6 – ident: ref6 doi: 10.1088/1475-7516/2020/04/038 – ident: ref4 doi: 10.1103/PhysRevD.88.043502 – ident: ref7 doi: 10.1093/mnras/stab192 – ident: ref78 doi: 10.1007/JHEP05(2019)190 – ident: ref51 doi: 10.1088/1475-7516/2018/03/047 – ident: ref63 doi: 10.1088/1361-6382/ab1101 – ident: ref64 doi: 10.1111/j.1365-2966.2003.07176.x – ident: ref70 doi: 10.1007/JHEP12(2018)099 – ident: ref52 doi: 10.1103/PhysRevD.97.123513 – ident: ref79 doi: 10.1103/PhysRevD.85.013002 – ident: ref17 doi: 10.1007/978-3-031-11862-3 – ident: ref38 doi: 10.1103/PhysRevLett.125.151102 – ident: ref33 doi: 10.1103/PhysRevD.59.043517 – ident: ref72 doi: 10.1016/0550-3213(94)90577-0 – ident: ref34 doi: 10.1103/PhysRevD.90.063009 – ident: ref49 doi: 10.1103/PhysRevD.103.023531 – ident: ref8 doi: 10.1103/PhysRevLett.126.091101 – ident: ref55 doi: 10.1088/1475-7516/2003/11/010 – ident: ref19 doi: 10.1088/1475-7516/2018/04/009 – ident: ref30 doi: 10.1103/PhysRevD.46.1226 – ident: ref16 doi: 10.1103/PhysRevD.71.063534 – ident: ref41 doi: 10.1007/JHEP07(2022)084 – ident: ref76 doi: 10.1088/1126-6708/2007/05/054 – ident: ref1 doi: 10.1051/0004-6361/201833910 – ident: ref68 doi: 10.1007/JHEP09(2022)052 – ident: ref14 doi: 10.1103/PhysRevD.105.083011 – ident: ref69 doi: 10.1103/PhysRevD.106.075027 – ident: ref18 doi: 10.1103/PhysRevD.89.103501 |
SSID | ssj0002119165 |
Score | 2.4092238 |
Snippet | We point out that dark matter which is produced non-adiabatically in
a phase transition (PT) with fast bubble walls receives a boost in
velocity which leads to... We point out that dark matter which is produced non-adiabatically in a phase transition (PT) with fast bubble walls receives a boost in velocity which leads to... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 033 |
Title | Hot and heavy dark matter from a weak scale phase transition |
URI | https://doaj.org/article/0fefe04282f546c2ae0b82261e8abc5b |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wvcvC6bbp5NAteVCzFgycLvS1JdoJQbYuuiv_emexa6qkXj7tswmYmme8bmHzD2BXBuipczIYKigzx2GQ-WMhcBQ7pdlRVTNUWj2Y8UQ9TPV1r9UU1YY08cGO4vogQgYh9HrUyIXcgPIKaGYB1PmhP0Rcxby2ZohicdMuMbq7sUO9q28ezQv1vqbASw0NP9oSUf8BoTbM_gctoj-22rJDfNH-zz7ZgfsC2U3VmeD9k1-NFzTHl5xg5P785pv4z_pqEMTldD-GOf4Gb8Xe0N_DlMwITrwmDUjnWEZuM7p_uxlnb9iAL0pg6G1aiyvMhMrVgpTXIvzQeyljBAFduohMOn70yoEXukI1FAwMICmQhCxGKII9ZZ76YwwnjRaE1TWet0soL6yrpvbLglMpdLnWXqd_1l6HVBKfWFC8l5gbJbOWa2TBNKGWJZuuy3mrYshHF2DTgloy7-pg0rdML9HTZerrc5OnT_5jkjO1Qw_imiuycdeq3D7hAWlH7y7SDfgDQT8tR |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hot+and+heavy+dark+matter+from+a+weak+scale+phase+transition&rft.jtitle=SciPost+physics&rft.au=Iason+Baldes%2C+Yann+Gouttenoire%2C+Filippo+Sala&rft.date=2023-03-01&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=14&rft.issue=3&rft.spage=033&rft_id=info:doi/10.21468%2FSciPostPhys.14.3.033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0fefe04282f546c2ae0b82261e8abc5b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |