Hot and heavy dark matter from a weak scale phase transition

We point out that dark matter which is produced non-adiabatically in a phase transition (PT) with fast bubble walls receives a boost in velocity which leads to long free-streaming lengths. We find that this could be observed via the suppressed matter power spectrum for dark matter masses around \mat...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 14; no. 3; p. 033
Main Authors Baldes, Iason, Gouttenoire, Yann, Sala, Filippo
Format Journal Article
LanguageEnglish
Published SciPost 01.03.2023
Online AccessGet full text
ISSN2542-4653
2542-4653
DOI10.21468/SciPostPhys.14.3.033

Cover

Loading…
Abstract We point out that dark matter which is produced non-adiabatically in a phase transition (PT) with fast bubble walls receives a boost in velocity which leads to long free-streaming lengths. We find that this could be observed via the suppressed matter power spectrum for dark matter masses around \mathbf{ 10^8 - 10^9} 10 8 - 10 9 GeV and energy scales of the PT around \mathbf{ 10^{2} - 10^3} 10 2 - 10 3 GeV. The PT should take place at the border of the supercooled regime, i.e. approximately when the Universe becomes vacuum dominated. This work offers novel physics goals for galaxy surveys, Lyman- \alpha ɑ , stellar stream, lensing, and 21-cm observations, and connects these to the gravitational waves from such phase transitions, and more speculatively to possible telescope signals of heavy dark matter decay.
AbstractList We point out that dark matter which is produced non-adiabatically in a phase transition (PT) with fast bubble walls receives a boost in velocity which leads to long free-streaming lengths. We find that this could be observed via the suppressed matter power spectrum for dark matter masses around \mathbf{ 10^8 - 10^9} 10 8 - 10 9 GeV and energy scales of the PT around \mathbf{ 10^{2} - 10^3} 10 2 - 10 3 GeV. The PT should take place at the border of the supercooled regime, i.e. approximately when the Universe becomes vacuum dominated. This work offers novel physics goals for galaxy surveys, Lyman- \alpha ɑ , stellar stream, lensing, and 21-cm observations, and connects these to the gravitational waves from such phase transitions, and more speculatively to possible telescope signals of heavy dark matter decay.
We point out that dark matter which is produced non-adiabatically in a phase transition (PT) with fast bubble walls receives a boost in velocity which leads to long free-streaming lengths. We find that this could be observed via the suppressed matter power spectrum for dark matter masses around $\mathbf{ 10^8 - 10^9}$ GeV and energy scales of the PT around $\mathbf{ 10^{2} - 10^3}$ GeV. The PT should take place at the border of the supercooled regime, i.e. approximately when the Universe becomes vacuum dominated. This work offers novel physics goals for galaxy surveys, Lyman-$\alpha$, stellar stream, lensing, and 21-cm observations, and connects these to the gravitational waves from such phase transitions, and more speculatively to possible telescope signals of heavy dark matter decay.
ArticleNumber 033
Author Baldes, Iason
Gouttenoire, Yann
Sala, Filippo
Author_xml – sequence: 1
  givenname: Iason
  surname: Baldes
  fullname: Baldes, Iason
  organization: Université Libre de Bruxelles
– sequence: 2
  givenname: Yann
  surname: Gouttenoire
  fullname: Gouttenoire, Yann
  organization: Tel Aviv University
– sequence: 3
  givenname: Filippo
  surname: Sala
  fullname: Sala, Filippo
  organization: Laboratory of Theoretical and High Energy Physics
BookMark eNp9kNtKAzEQhoNUsNY-gpAXaM25W_RGitpCwYJ6HWazE7s9bEoSlL69a6tQvPBqDvB_M_9_STpNaJCQa86GgitT3Ly4ehFSXiz3acjVUA6ZlGekK7QSA2W07Jz0F6Sf0ooxJjgfc6O75G4aMoWmokuEjz2tIK7pFnLGSH0MWwr0E2FNk4MN0t0SEtIcoUl1rkNzRc49bBL2f2qPvD0-vE6mg_nz02xyPx84aUwejCpWCTHimrlCFkZypiXTvkLOysJ4YNDOpTKomQBtjDfI0SmUYzlmbuxkj8yO3CrAyu5ivYW4twFqe1iE-G4h5tpt0DKPHpkShfBaGScA2xtCGI4FlE6XLev2yHIxpBTRW1dn-HbT-qo3ljN7yNWe5Gq5stK2ubZq_Uf9-83_ui9Md4Ge
CitedBy_id crossref_primary_10_1007_JHEP07_2024_231
crossref_primary_10_1007_JHEP11_2024_129
crossref_primary_10_1103_PhysRevD_109_035002
crossref_primary_10_1103_PhysRevD_107_095002
crossref_primary_10_1103_PhysRevD_108_055035
crossref_primary_10_1007_JHEP02_2024_059
crossref_primary_10_1088_1475_7516_2023_10_052
crossref_primary_10_1088_1475_7516_2024_10_042
crossref_primary_10_1103_PhysRevD_110_043514
crossref_primary_10_1007_JHEP12_2024_190
crossref_primary_10_1103_PhysRevD_108_063508
crossref_primary_10_1103_PhysRevD_109_095034
crossref_primary_10_1088_1475_7516_2024_05_122
crossref_primary_10_1007_JHEP05_2024_294
crossref_primary_10_1007_JHEP12_2024_056
crossref_primary_10_1088_1475_7516_2024_11_047
crossref_primary_10_1103_PhysRevD_110_023509
crossref_primary_10_1007_JHEP02_2025_119
crossref_primary_10_1103_PhysRevD_110_055002
crossref_primary_10_1007_JHEP09_2023_164
crossref_primary_10_1007_JHEP09_2023_013
crossref_primary_10_1088_1475_7516_2024_04_027
Cites_doi 10.1007/JHEP07(2012)009
10.1103/PhysRevLett.64.1084
10.1007/JHEP02(2021)184
10.1103/PhysRevD.66.083505
10.1103/PhysRevD.104.115029
10.1051/0004-6361:20042238
10.1103/PhysRevD.101.095019
10.1007/JHEP08(2018)188
10.1088/1475-7516/2017/05/025
10.1088/1475-7516/2022/07/012
10.1088/1475-7516/2021/05/004
10.1140/epjp/s13360-021-01247-9
10.1103/PhysRevD.79.083519
10.3847/1538-4357/abf9a3
10.1088/1475-7516/2020/08/045
10.1088/1475-7516/2015/11/011
10.1088/1475-7516/2009/05/009
10.1103/PhysRevD.102.083528
10.1007/JHEP12(2019)149
10.1140/epjc/s10052-021-09232-3
10.1103/PhysRevLett.57.2234
10.1111/j.1365-2966.2010.16276.x
10.1088/1475-7516/2021/03/101
10.21468/SciPostPhys.12.3.114
10.1016/j.physletb.2016.06.009
10.1103/PhysRevLett.78.791
10.1093/mnras/stz3177
10.1007/JHEP10(2022)017
10.48550/arXiv.2206.11293
10.1088/1475-7516/2021/01/058
10.1103/PhysRevLett.129.191301
10.1007/JHEP02(2021)117
10.1088/1475-7516/2019/11/017
10.1093/mnras/stab1960
10.1007/JHEP04(2021)278
10.1088/1475-7516/2022/03/041
10.1007/JHEP05(2022)004
10.1088/1475-7516/2021/10/043
10.1103/PhysRevLett.119.141804
10.1088/1475-7516/2011/12/009
10.1088/1475-7516/2021/05/013
10.1088/1475-7516/2019/01/060
10.1007/JHEP10(2021)043
10.1086/321541
10.1007/JHEP03(2021)288
10.1103/PhysRevD.103.103017
10.1103/PhysRevD.84.084004
10.1140/epjc/s10052-020-08589-1
10.1103/PhysRevD.98.043528
10.1086/173658
10.1007/s10686-021-09709-9
10.1016/0550-3213(94)90123-6
10.1088/1475-7516/2020/04/038
10.1103/PhysRevD.88.043502
10.1093/mnras/stab192
10.1007/JHEP05(2019)190
10.1088/1475-7516/2018/03/047
10.1088/1361-6382/ab1101
10.1111/j.1365-2966.2003.07176.x
10.1007/JHEP12(2018)099
10.1103/PhysRevD.97.123513
10.1103/PhysRevD.85.013002
10.1007/978-3-031-11862-3
10.1103/PhysRevLett.125.151102
10.1103/PhysRevD.59.043517
10.1016/0550-3213(94)90577-0
10.1103/PhysRevD.90.063009
10.1103/PhysRevD.103.023531
10.1103/PhysRevLett.126.091101
10.1088/1475-7516/2003/11/010
10.1088/1475-7516/2018/04/009
10.1103/PhysRevD.46.1226
10.1103/PhysRevD.71.063534
10.1007/JHEP07(2022)084
10.1088/1126-6708/2007/05/054
10.1051/0004-6361/201833910
10.1007/JHEP09(2022)052
10.1103/PhysRevD.105.083011
10.1103/PhysRevD.106.075027
10.1103/PhysRevD.89.103501
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21468/SciPostPhys.14.3.033
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_0fefe04282f546c2ae0b82261e8abc5b
10_21468_SciPostPhys_14_3_033
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c366t-7d0d227150c83863105305fde10b86fa0a530b46e502a566f6e1ec4e39390c9c3
IEDL.DBID DOA
ISSN 2542-4653
IngestDate Wed Aug 27 01:32:12 EDT 2025
Tue Jul 01 03:21:57 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-7d0d227150c83863105305fde10b86fa0a530b46e502a566f6e1ec4e39390c9c3
OpenAccessLink https://doaj.org/article/0fefe04282f546c2ae0b82261e8abc5b
ParticipantIDs doaj_primary_oai_doaj_org_article_0fefe04282f546c2ae0b82261e8abc5b
crossref_citationtrail_10_21468_SciPostPhys_14_3_033
crossref_primary_10_21468_SciPostPhys_14_3_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle SciPost physics
PublicationYear 2023
Publisher SciPost
Publisher_xml – name: SciPost
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref80
  doi: 10.1007/JHEP07(2012)009
– ident: ref29
  doi: 10.1103/PhysRevLett.64.1084
– ident: ref75
  doi: 10.1007/JHEP02(2021)184
– ident: ref26
  doi: 10.1103/PhysRevD.66.083505
– ident: ref67
  doi: 10.1103/PhysRevD.104.115029
– ident: ref27
  doi: 10.1051/0004-6361:20042238
– ident: ref39
  doi: 10.1103/PhysRevD.101.095019
– ident: ref37
  doi: 10.1007/JHEP08(2018)188
– ident: ref45
  doi: 10.1088/1475-7516/2017/05/025
– ident: ref48
  doi: 10.1088/1475-7516/2022/07/012
– ident: ref23
  doi: 10.1088/1475-7516/2021/05/004
– ident: ref21
  doi: 10.1140/epjp/s13360-021-01247-9
– ident: ref56
  doi: 10.1103/PhysRevD.79.083519
– ident: ref12
  doi: 10.3847/1538-4357/abf9a3
– ident: ref20
  doi: 10.1088/1475-7516/2020/08/045
– ident: ref5
  doi: 10.1088/1475-7516/2015/11/011
– ident: ref36
  doi: 10.1088/1475-7516/2009/05/009
– ident: ref58
  doi: 10.1103/PhysRevD.102.083528
– ident: ref71
  doi: 10.1007/JHEP12(2019)149
– ident: ref54
  doi: 10.1140/epjc/s10052-021-09232-3
– ident: ref28
  doi: 10.1103/PhysRevLett.57.2234
– ident: ref2
  doi: 10.1111/j.1365-2966.2010.16276.x
– ident: ref22
  doi: 10.1088/1475-7516/2021/03/101
– ident: ref35
  doi: 10.21468/SciPostPhys.12.3.114
– ident: ref57
  doi: 10.1016/j.physletb.2016.06.009
– ident: ref32
  doi: 10.1103/PhysRevLett.78.791
– ident: ref10
  doi: 10.1093/mnras/stz3177
– ident: ref44
  doi: 10.1007/JHEP10(2022)017
– ident: ref25
  doi: 10.48550/arXiv.2206.11293
– ident: ref42
  doi: 10.1088/1475-7516/2021/01/058
– ident: ref13
  doi: 10.1103/PhysRevLett.129.191301
– ident: ref59
  doi: 10.1007/JHEP02(2021)117
– ident: ref60
  doi: 10.1088/1475-7516/2019/11/017
– ident: ref11
  doi: 10.1093/mnras/stab1960
– ident: ref40
  doi: 10.1007/JHEP04(2021)278
– ident: ref24
  doi: 10.1088/1475-7516/2022/03/041
– ident: ref46
  doi: 10.1007/JHEP05(2022)004
– ident: ref9
  doi: 10.1088/1475-7516/2021/10/043
– ident: ref74
  doi: 10.1103/PhysRevLett.119.141804
– ident: ref77
  doi: 10.1088/1475-7516/2011/12/009
– ident: ref47
  doi: 10.1088/1475-7516/2021/05/013
– ident: ref50
  doi: 10.1088/1475-7516/2019/01/060
– ident: ref66
  doi: 10.1007/JHEP10(2021)043
– ident: ref15
  doi: 10.1086/321541
– ident: ref43
  doi: 10.1007/JHEP03(2021)288
– ident: ref65
  doi: 10.1103/PhysRevD.103.103017
– ident: ref62
  doi: 10.1103/PhysRevD.84.084004
– ident: ref53
  doi: 10.1140/epjc/s10052-020-08589-1
– ident: ref3
  doi: 10.1103/PhysRevD.98.043528
– ident: ref31
  doi: 10.1086/173658
– ident: ref61
  doi: 10.1007/s10686-021-09709-9
– ident: ref73
  doi: 10.1016/0550-3213(94)90123-6
– ident: ref6
  doi: 10.1088/1475-7516/2020/04/038
– ident: ref4
  doi: 10.1103/PhysRevD.88.043502
– ident: ref7
  doi: 10.1093/mnras/stab192
– ident: ref78
  doi: 10.1007/JHEP05(2019)190
– ident: ref51
  doi: 10.1088/1475-7516/2018/03/047
– ident: ref63
  doi: 10.1088/1361-6382/ab1101
– ident: ref64
  doi: 10.1111/j.1365-2966.2003.07176.x
– ident: ref70
  doi: 10.1007/JHEP12(2018)099
– ident: ref52
  doi: 10.1103/PhysRevD.97.123513
– ident: ref79
  doi: 10.1103/PhysRevD.85.013002
– ident: ref17
  doi: 10.1007/978-3-031-11862-3
– ident: ref38
  doi: 10.1103/PhysRevLett.125.151102
– ident: ref33
  doi: 10.1103/PhysRevD.59.043517
– ident: ref72
  doi: 10.1016/0550-3213(94)90577-0
– ident: ref34
  doi: 10.1103/PhysRevD.90.063009
– ident: ref49
  doi: 10.1103/PhysRevD.103.023531
– ident: ref8
  doi: 10.1103/PhysRevLett.126.091101
– ident: ref55
  doi: 10.1088/1475-7516/2003/11/010
– ident: ref19
  doi: 10.1088/1475-7516/2018/04/009
– ident: ref30
  doi: 10.1103/PhysRevD.46.1226
– ident: ref16
  doi: 10.1103/PhysRevD.71.063534
– ident: ref41
  doi: 10.1007/JHEP07(2022)084
– ident: ref76
  doi: 10.1088/1126-6708/2007/05/054
– ident: ref1
  doi: 10.1051/0004-6361/201833910
– ident: ref68
  doi: 10.1007/JHEP09(2022)052
– ident: ref14
  doi: 10.1103/PhysRevD.105.083011
– ident: ref69
  doi: 10.1103/PhysRevD.106.075027
– ident: ref18
  doi: 10.1103/PhysRevD.89.103501
SSID ssj0002119165
Score 2.4092238
Snippet We point out that dark matter which is produced non-adiabatically in a phase transition (PT) with fast bubble walls receives a boost in velocity which leads to...
We point out that dark matter which is produced non-adiabatically in a phase transition (PT) with fast bubble walls receives a boost in velocity which leads to...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 033
Title Hot and heavy dark matter from a weak scale phase transition
URI https://doaj.org/article/0fefe04282f546c2ae0b82261e8abc5b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wvcvC6bbp5NAteVCzFgycLvS1JdoJQbYuuiv_emexa6qkXj7tswmYmme8bmHzD2BXBuipczIYKigzx2GQ-WMhcBQ7pdlRVTNUWj2Y8UQ9TPV1r9UU1YY08cGO4vogQgYh9HrUyIXcgPIKaGYB1PmhP0Rcxby2ZohicdMuMbq7sUO9q28ezQv1vqbASw0NP9oSUf8BoTbM_gctoj-22rJDfNH-zz7ZgfsC2U3VmeD9k1-NFzTHl5xg5P785pv4z_pqEMTldD-GOf4Gb8Xe0N_DlMwITrwmDUjnWEZuM7p_uxlnb9iAL0pg6G1aiyvMhMrVgpTXIvzQeyljBAFduohMOn70yoEXukI1FAwMICmQhCxGKII9ZZ76YwwnjRaE1TWet0soL6yrpvbLglMpdLnWXqd_1l6HVBKfWFC8l5gbJbOWa2TBNKGWJZuuy3mrYshHF2DTgloy7-pg0rdML9HTZerrc5OnT_5jkjO1Qw_imiuycdeq3D7hAWlH7y7SDfgDQT8tR
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hot+and+heavy+dark+matter+from+a+weak+scale+phase+transition&rft.jtitle=SciPost+physics&rft.au=Iason+Baldes%2C+Yann+Gouttenoire%2C+Filippo+Sala&rft.date=2023-03-01&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=14&rft.issue=3&rft.spage=033&rft_id=info:doi/10.21468%2FSciPostPhys.14.3.033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0fefe04282f546c2ae0b82261e8abc5b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon