SIMVI disentangles intrinsic and spatial-induced cellular states in spatial omics data
Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably captu...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 2990 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments.
Dissecting cellular intrinsic properties and spatial interactions is crucial for understanding biological processes. Here, authors develop a theoretically grounded deep learning framework SIMVI, that disentangles the two factors from spatial omics data. |
---|---|
AbstractList | Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments.Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments. Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments. Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments.Dissecting cellular intrinsic properties and spatial interactions is crucial for understanding biological processes. Here, authors develop a theoretically grounded deep learning framework SIMVI, that disentangles the two factors from spatial omics data. Abstract Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments. Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments. Dissecting cellular intrinsic properties and spatial interactions is crucial for understanding biological processes. Here, authors develop a theoretically grounded deep learning framework SIMVI, that disentangles the two factors from spatial omics data. |
ArticleNumber | 2990 |
Author | Su, David G. Fan, Rong Dong, Mingze Kluger, Harriet Kluger, Yuval |
Author_xml | – sequence: 1 givenname: Mingze orcidid: 0000-0001-7367-6819 surname: Dong fullname: Dong, Mingze organization: Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, Department of Pathology, Yale School of Medicine, Department of Biomedical Engineering, Yale University – sequence: 2 givenname: David G. orcidid: 0000-0002-8693-612X surname: Su fullname: Su, David G. organization: Department of Medicine, Yale School of Medicine, Yale Cancer Center, Yale School of Medicine, Yale Center for Immuno-Oncology, Yale School of Medicine, Department of Surgery, Yale School of Medicine – sequence: 3 givenname: Harriet surname: Kluger fullname: Kluger, Harriet organization: Department of Medicine, Yale School of Medicine, Yale Cancer Center, Yale School of Medicine, Yale Center for Immuno-Oncology, Yale School of Medicine – sequence: 4 givenname: Rong orcidid: 0000-0001-7805-8059 surname: Fan fullname: Fan, Rong organization: Department of Pathology, Yale School of Medicine, Department of Biomedical Engineering, Yale University, Yale Cancer Center, Yale School of Medicine – sequence: 5 givenname: Yuval orcidid: 0000-0002-3035-071X surname: Kluger fullname: Kluger, Yuval email: yuval.kluger@yale.edu organization: Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, Department of Pathology, Yale School of Medicine, Applied Mathematics Program, Yale University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40148341$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuPFCEUhYkZ4zycP-DCVOLGTSlcqCpYmok6nYxxoc6W3OLRoVMNLVQt_PfSXTOjcSELIOQ7597LuSRnMUVHyCtG3zHK5fsimOiHlkLXdpJK1Q7PyAVQwVo2AD_7635OrkvZ0bq4YlKIF-RcUCYkF-yC3H_bfLnfNDYUF2eM28mVJsQ5h1iCaTDaphxwDji1IdrFONsYN03LhLkpM84n-hFp0j6Y0lic8SV57nEq7vrhvCI_Pn38fnPb3n39vLn5cNca3vdzOygrrBylH3qJpleWQW85GK8Ucm88s05RAMqptL7rR5QoGQBIAYNiDvgV2ay-NuFOH3LYY_6lEwZ9ekh5qzHPwUxOD6NDJyigUF70qu4UrMXO40hBOV-93q5eh5x-Lq7Meh_KcVqMLi1FcyZBSOhAVfTNP-guLTnWSU8UMC7EsbnXD9Qy7p19au_x9ysAK2ByKiU7_4Qwqo8p6zVlXVPWp5T1UEV8FZUKx63Lf2r_R_UbbvKn1g |
Cites_doi | 10.1016/j.cels.2023.03.008 10.1038/s41596-020-0292-x 10.1038/s41592-021-01358-2 10.1093/bib/bbaa269 10.1016/j.immuni.2007.07.009 10.1038/s41586-023-05795-1 10.1186/s13046-021-01933-7 10.1038/s41586-023-06837-4 10.1186/s13059-022-02684-0 10.1016/j.cell.2020.10.026 10.15252/msb.20209620 10.1093/bioinformatics/btab471 10.3322/caac.21763 10.1038/s41592-023-01955-3 10.1038/s41586-021-03705-x 10.1038/s41587-020-0739-1 10.3389/fnins.2022.916055 10.1097/nen.0b013e3180301c06 10.1016/j.celrep.2019.08.077 10.1073/pnas.1900654116 10.1038/s41467-023-39748-z 10.1038/s41592-024-02316-4 10.1038/s41592-021-01336-8 10.1126/science.abm1741 10.1038/s41467-023-36796-3 10.1038/s41587-021-01075-3 10.1038/s41592-024-02463-8 10.1101/2023.12.30.573739 10.1016/S0893-6080(98)00140-3 10.1038/s41592-018-0229-2 10.1016/j.immuni.2023.06.007 10.1038/s41588-021-00972-2 10.1038/nmeth.4636 10.1038/s41551-022-00951-w 10.1002/cpz1.90 10.1016/j.cell.2024.09.001 10.1016/j.cell.2022.04.003 10.1038/s41592-019-0701-7 10.1016/j.immuni.2016.09.001 10.1093/bioinformatics/btac757 10.1038/s41587-021-01001-7 10.1038/s41588-023-01588-4 10.1038/nmeth.4401 10.1038/s41592-022-01575-3 10.1186/s13059-021-02404-0 10.1038/s41467-022-29439-6 10.1038/s41588-024-01664-3 10.1093/nar/gky955 10.1038/s41587-022-01483-z 10.1145/3444944 10.1038/s41587-021-01206-w 10.1038/s41592-024-02410-7 10.1109/CVPR52688.2022.01042 10.1038/s41588-021-00778-2 10.1016/j.cell.2020.04.007 10.1038/s41586-018-0698-6 10.1038/s41587-020-00803-5 10.1093/nar/gkaa516 10.1038/s41588-022-01256-z 10.1038/s41586-022-04918-4 10.1038/s41592-019-0619-0 10.1038/s41587-024-02193-4 10.1038/s41590-022-01267-2 10.1038/s41592-021-01264-7 10.1126/science.abp9444 10.1038/s41592-021-01343-9 10.1016/j.it.2022.04.008 10.1158/1078-0432.CCR-18-2652 10.1186/s13059-021-02286-2 10.1186/s13059-022-02663-5 10.1093/nar/gkac958 10.1038/s41587-022-01467-z 10.1038/s41587-021-01006-2 10.1038/s41592-019-0548-y 10.1016/j.neucom.2011.06.033 10.1038/s41587-022-01273-7 10.5281/zenodo.14708000 10.1038/s41587-022-01272-8 10.1038/s41592-023-02040-5 10.1017/CBO9781139025751 10.1038/s41592-022-01687-w 10.1145/1390156.1390294 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-025-58089-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_7beae402a49f46949f02dda5fab029ef 40148341 10_1038_s41467_025_58089_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIH: U54AG076043, U54AG079759, P50CA121974, R01GM131642, UM1DA051410, and U01DA053628. – fundername: NIA NIH HHS grantid: U54 AG079759 – fundername: NIDA NIH HHS grantid: UM1 DA051410 – fundername: NCI NIH HHS grantid: P50 CA121974 – fundername: NIGMS NIH HHS grantid: R01 GM131642 – fundername: NIDA NIH HHS grantid: U01 DA053628 – fundername: NIA NIH HHS grantid: U54 AG076043 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SV3 TSG UKHRP AAYXX CITATION PHGZM SNYQT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c366t-79d4d8b8f768ac69d126d32cf99a3fcf1de90220308df56ba8a81222842791e23 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:16 EDT 2025 Fri Jul 11 18:55:27 EDT 2025 Sat Aug 23 13:30:41 EDT 2025 Mon Jul 21 06:02:38 EDT 2025 Tue Jul 01 05:14:34 EDT 2025 Fri Mar 28 01:24:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-79d4d8b8f768ac69d126d32cf99a3fcf1de90220308df56ba8a81222842791e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7805-8059 0000-0002-8693-612X 0000-0001-7367-6819 0000-0002-3035-071X |
OpenAccessLink | https://www.proquest.com/docview/3182213442?pq-origsite=%requestingapplication% |
PMID | 40148341 |
PQID | 3182213442 |
PQPubID | 546298 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7beae402a49f46949f02dda5fab029ef proquest_miscellaneous_3182482529 proquest_journals_3182213442 pubmed_primary_40148341 crossref_primary_10_1038_s41467_025_58089_7 springer_journals_10_1038_s41467_025_58089_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-27 |
PublicationDateYYYYMMDD | 2025-03-27 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | M Efremova (58089_CR66) 2020; 15 Z Xie (58089_CR80) 2021; 1 X Wei (58089_CR12) 2022; 377 58089_CR25 RF Hevner (58089_CR49) 2007; 66 L Bergenstråhle (58089_CR61) 2022; 40 58089_CR27 RL Siegel (58089_CR53) 2023; 73 S He (58089_CR4) 2022; 40 58089_CR28 R Lopez (58089_CR41) 2018; 15 Q Li (58089_CR55) 2021; 40 S Zhao (58089_CR72) 2019; 33 M Hao (58089_CR16) 2021; 37 PF Wong (58089_CR89) 2019; 25 M Mørup (58089_CR47) 2012; 80 A Chen (58089_CR11) 2022; 185 X Shao (58089_CR69) 2021; 22 58089_CR71 C Xu (58089_CR73) 2021; 17 Z Fang (58089_CR81) 2023; 39 K Dong (58089_CR23) 2022; 13 58089_CR30 O Fornes (58089_CR87) 2020; 48 58089_CR31 M Lotfollahi (58089_CR64) 2022; 40 58089_CR75 58089_CR76 V Singhal (58089_CR29) 2024; 56 S Clavreul (58089_CR48) 2022; 16 R Vento-Tormo (58089_CR65) 2018; 563 58089_CR56 58089_CR13 D Arnol (58089_CR35) 2019; 29 Z Wu (58089_CR32) 2022; 6 A Gayoso (58089_CR70) 2022; 40 R Dries (58089_CR14) 2021; 22 M Varrone (58089_CR26) 2024; 56 FJ Martin (58089_CR85) 2023; 51 E Weinberger (58089_CR74) 2023; 20 A Christofides (58089_CR57) 2022; 23 DB Burkhardt (58089_CR84) 2021; 39 T Lohoff (58089_CR1) 2022; 40 Y Liu (58089_CR5) 2020; 183 S Sun (58089_CR17) 2020; 17 I Korsunsky (58089_CR46) 2019; 16 WJ Murdoch (58089_CR63) 2019; 116 J Hu (58089_CR62) 2023; 14 Q Wang (58089_CR83) 2020; 181 58089_CR44 AN Schep (58089_CR88) 2017; 14 LM Weber (58089_CR15) 2023; 14 DS Fischer (58089_CR34) 2023; 41 V Chernozhukov (58089_CR42) 2018; 21 D Zhang (58089_CR6) 2023; 616 RR Stickels (58089_CR8) 2021; 39 R Fang (58089_CR3) 2022; 377 S Vickovic (58089_CR9) 2019; 16 L Garcia-Alonso (58089_CR67) 2021; 53 V Svensson (58089_CR19) 2018; 15 58089_CR90 L Mesin (58089_CR52) 2016; 45 A Frankish (58089_CR86) 2019; 47 L Garcia-Alonso (58089_CR68) 2022; 607 58089_CR54 58089_CR33 E Papalexi (58089_CR77) 2021; 53 B Chidester (58089_CR22) 2023; 55 Y Long (58089_CR24) 2023; 14 58089_CR38 M Zhang (58089_CR2) 2021; 598 A Hyvärinen (58089_CR37) 1999; 12 58089_CR39 DM Cable (58089_CR50) 2022; 19 J Tanevski (58089_CR36) 2022; 23 CD Allen (58089_CR51) 2007; 27 P Zhao (58089_CR45) 2022; 23 T Biancalani (58089_CR58) 2021; 18 J Zhu (58089_CR18) 2021; 22 MD Luecken (58089_CR79) 2022; 19 G Palla (58089_CR82) 2022; 19 FW Townes (58089_CR21) 2023; 20 Z Bai (58089_CR7) 2024; 187 B Velten (58089_CR20) 2022; 19 Y Ma (58089_CR59) 2022; 40 L Yao (58089_CR43) 2021; 15 M Dong (58089_CR78) 2023; 20 R Lopez (58089_CR60) 2022; 40 AJ Russell (58089_CR10) 2024; 625 58089_CR40 37693629 - bioRxiv. 2024 Oct 10:2023.08.28.554970. doi: 10.1101/2023.08.28.554970. |
References_xml | – ident: 58089_CR31 – volume: 14 start-page: 404 year: 2023 ident: 58089_CR62 publication-title: Cell Syst. doi: 10.1016/j.cels.2023.03.008 – volume: 15 start-page: 1484 year: 2020 ident: 58089_CR66 publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0292-x – volume: 19 start-page: 171 year: 2022 ident: 58089_CR82 publication-title: Nat. methods doi: 10.1038/s41592-021-01358-2 – volume: 22 start-page: bbaa269 year: 2021 ident: 58089_CR69 publication-title: Brief. Bioinforma. doi: 10.1093/bib/bbaa269 – volume: 27 start-page: 190 year: 2007 ident: 58089_CR51 publication-title: Immunity doi: 10.1016/j.immuni.2007.07.009 – volume: 616 start-page: 113 year: 2023 ident: 58089_CR6 publication-title: Nature doi: 10.1038/s41586-023-05795-1 – volume: 40 start-page: 168 year: 2021 ident: 58089_CR55 publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-021-01933-7 – volume: 625 start-page: 101 year: 2024 ident: 58089_CR10 publication-title: Nature doi: 10.1038/s41586-023-06837-4 – volume: 23 year: 2022 ident: 58089_CR45 publication-title: Genome Biol. doi: 10.1186/s13059-022-02684-0 – volume: 183 start-page: 1665 year: 2020 ident: 58089_CR5 publication-title: Cell doi: 10.1016/j.cell.2020.10.026 – ident: 58089_CR39 – volume: 17 start-page: e9620 year: 2021 ident: 58089_CR73 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20209620 – volume: 37 start-page: 4392 year: 2021 ident: 58089_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab471 – volume: 73 start-page: 17 year: 2023 ident: 58089_CR53 publication-title: Ca Cancer J. Clin. doi: 10.3322/caac.21763 – volume: 20 start-page: 1336 year: 2023 ident: 58089_CR74 publication-title: Nat. Methods doi: 10.1038/s41592-023-01955-3 – volume: 598 start-page: 137 year: 2021 ident: 58089_CR2 publication-title: Nature doi: 10.1038/s41586-021-03705-x – volume: 39 start-page: 313 year: 2021 ident: 58089_CR8 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0739-1 – volume: 16 start-page: 916055 year: 2022 ident: 58089_CR48 publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.916055 – volume: 66 start-page: 101 year: 2007 ident: 58089_CR49 publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/nen.0b013e3180301c06 – volume: 29 start-page: 202 year: 2019 ident: 58089_CR35 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.077 – volume: 33 start-page: 5885 year: 2019 ident: 58089_CR72 publication-title: Proc. aaai Conf. Artif. Intell. – volume: 116 start-page: 22071 year: 2019 ident: 58089_CR63 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1900654116 – volume: 14 year: 2023 ident: 58089_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39748-z – ident: 58089_CR30 doi: 10.1038/s41592-024-02316-4 – volume: 19 start-page: 41 year: 2022 ident: 58089_CR79 publication-title: Nat. methods doi: 10.1038/s41592-021-01336-8 – volume: 377 start-page: 56 year: 2022 ident: 58089_CR3 publication-title: Science doi: 10.1126/science.abm1741 – volume: 14 year: 2023 ident: 58089_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36796-3 – volume: 40 start-page: 476 year: 2022 ident: 58089_CR61 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01075-3 – ident: 58089_CR28 doi: 10.1038/s41592-024-02463-8 – ident: 58089_CR33 doi: 10.1101/2023.12.30.573739 – volume: 12 start-page: 429 year: 1999 ident: 58089_CR37 publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00140-3 – volume: 15 start-page: 1053 year: 2018 ident: 58089_CR41 publication-title: Nat. methods doi: 10.1038/s41592-018-0229-2 – ident: 58089_CR54 doi: 10.1016/j.immuni.2023.06.007 – volume: 53 start-page: 1698 year: 2021 ident: 58089_CR67 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00972-2 – volume: 15 start-page: 343 year: 2018 ident: 58089_CR19 publication-title: Nat. methods doi: 10.1038/nmeth.4636 – volume: 6 start-page: 1435 year: 2022 ident: 58089_CR32 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-022-00951-w – volume: 1 start-page: e90 year: 2021 ident: 58089_CR80 publication-title: Curr. Protoc. doi: 10.1002/cpz1.90 – volume: 187 start-page: 6760 year: 2024 ident: 58089_CR7 publication-title: Cell doi: 10.1016/j.cell.2024.09.001 – volume: 185 start-page: 1777 year: 2022 ident: 58089_CR11 publication-title: Cell doi: 10.1016/j.cell.2022.04.003 – volume: 17 start-page: 193 year: 2020 ident: 58089_CR17 publication-title: Nat. methods doi: 10.1038/s41592-019-0701-7 – volume: 45 start-page: 471 year: 2016 ident: 58089_CR52 publication-title: Immunity doi: 10.1016/j.immuni.2016.09.001 – ident: 58089_CR75 – volume: 39 start-page: btac757 year: 2023 ident: 58089_CR81 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac757 – volume: 40 start-page: 121 year: 2022 ident: 58089_CR64 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01001-7 – volume: 56 start-page: 74 year: 2024 ident: 58089_CR26 publication-title: Nat. Genet. doi: 10.1038/s41588-023-01588-4 – volume: 14 start-page: 975 year: 2017 ident: 58089_CR88 publication-title: Nat. methods doi: 10.1038/nmeth.4401 – volume: 19 start-page: 1076 year: 2022 ident: 58089_CR50 publication-title: Nat. methods doi: 10.1038/s41592-022-01575-3 – volume: 22 start-page: 1 year: 2021 ident: 58089_CR18 publication-title: Genome Biol. doi: 10.1186/s13059-021-02404-0 – volume: 13 year: 2022 ident: 58089_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29439-6 – volume: 56 start-page: 431 year: 2024 ident: 58089_CR29 publication-title: Nat. Genet. doi: 10.1038/s41588-024-01664-3 – volume: 47 start-page: D766 year: 2019 ident: 58089_CR86 publication-title: Nucleic acids Res. doi: 10.1093/nar/gky955 – volume: 40 start-page: 1794 year: 2022 ident: 58089_CR4 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01483-z – volume: 15 start-page: 1 year: 2021 ident: 58089_CR43 publication-title: ACM Trans. Knowl. Discov. Data (TKDD) doi: 10.1145/3444944 – volume: 40 start-page: 163 year: 2022 ident: 58089_CR70 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01206-w – ident: 58089_CR27 doi: 10.1038/s41592-024-02410-7 – ident: 58089_CR71 doi: 10.1109/CVPR52688.2022.01042 – volume: 53 start-page: 322 year: 2021 ident: 58089_CR77 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00778-2 – volume: 181 start-page: 936 year: 2020 ident: 58089_CR83 publication-title: Cell doi: 10.1016/j.cell.2020.04.007 – volume: 21 start-page: C1 year: 2018 ident: 58089_CR42 publication-title: Econ. J. – volume: 563 start-page: 347 year: 2018 ident: 58089_CR65 publication-title: Nature doi: 10.1038/s41586-018-0698-6 – volume: 39 start-page: 619 year: 2021 ident: 58089_CR84 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-00803-5 – volume: 48 start-page: D87 year: 2020 ident: 58089_CR87 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa516 – volume: 55 start-page: 78 year: 2023 ident: 58089_CR22 publication-title: Nat. Genet. doi: 10.1038/s41588-022-01256-z – volume: 607 start-page: 540 year: 2022 ident: 58089_CR68 publication-title: Nature doi: 10.1038/s41586-022-04918-4 – volume: 16 start-page: 1289 year: 2019 ident: 58089_CR46 publication-title: Nat. methods doi: 10.1038/s41592-019-0619-0 – ident: 58089_CR25 doi: 10.1038/s41587-024-02193-4 – volume: 23 start-page: 1148 year: 2022 ident: 58089_CR57 publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01267-2 – volume: 18 start-page: 1352 year: 2021 ident: 58089_CR58 publication-title: Nat. methods doi: 10.1038/s41592-021-01264-7 – volume: 377 start-page: eabp9444 year: 2022 ident: 58089_CR12 publication-title: Science doi: 10.1126/science.abp9444 – volume: 19 start-page: 179 year: 2022 ident: 58089_CR20 publication-title: Nat. methods doi: 10.1038/s41592-021-01343-9 – ident: 58089_CR56 doi: 10.1016/j.it.2022.04.008 – ident: 58089_CR40 – volume: 25 start-page: 2442 year: 2019 ident: 58089_CR89 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2652 – volume: 22 start-page: 1 year: 2021 ident: 58089_CR14 publication-title: Genome Biol. doi: 10.1186/s13059-021-02286-2 – volume: 23 year: 2022 ident: 58089_CR36 publication-title: Genome Biol. doi: 10.1186/s13059-022-02663-5 – volume: 51 start-page: D933 year: 2023 ident: 58089_CR85 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkac958 – volume: 41 start-page: 332 year: 2023 ident: 58089_CR34 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01467-z – volume: 40 start-page: 74 year: 2022 ident: 58089_CR1 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01006-2 – volume: 16 start-page: 987 year: 2019 ident: 58089_CR9 publication-title: Nat. methods doi: 10.1038/s41592-019-0548-y – volume: 80 start-page: 54 year: 2012 ident: 58089_CR47 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.06.033 – volume: 40 start-page: 1349 year: 2022 ident: 58089_CR59 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01273-7 – ident: 58089_CR90 doi: 10.5281/zenodo.14708000 – ident: 58089_CR38 – volume: 40 start-page: 1360 year: 2022 ident: 58089_CR60 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01272-8 – ident: 58089_CR13 – volume: 20 start-page: 1769 year: 2023 ident: 58089_CR78 publication-title: Nat. Methods doi: 10.1038/s41592-023-02040-5 – ident: 58089_CR44 doi: 10.1017/CBO9781139025751 – volume: 20 start-page: 229 year: 2023 ident: 58089_CR21 publication-title: Nat. Methods doi: 10.1038/s41592-022-01687-w – ident: 58089_CR76 doi: 10.1145/1390156.1390294 – reference: 37693629 - bioRxiv. 2024 Oct 10:2023.08.28.554970. doi: 10.1101/2023.08.28.554970. |
SSID | ssj0000391844 |
Score | 2.4666784 |
Snippet | Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing... Abstract Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 2990 |
SubjectTerms | 631/114/1305 631/114/2397 631/114/2415 631/114/794 Annotations B-Lymphocytes - metabolism Biological activity Cell Communication Cellular communication Computational Biology - methods Deep Learning Epigenetics Gene expression Germinal Center - cytology Germinal Center - metabolism Germinal centers Humanities and Social Sciences Humans Interaction models Lymphocytes B Macrophages Macrophages - metabolism Melanoma Melanoma - genetics Melanoma - pathology Microenvironments multidisciplinary Palatine Tonsil - cytology Science Science (multidisciplinary) Single-Cell Analysis - methods Spatial analysis Spatial data Structure-function relationships Tumor microenvironment Tumor Microenvironment - genetics Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS-YwEA8iCF7E12p9LFnw5hbbJG2So8qKCu7FB97CtElEkH5iPw_73-9M2u_TZZW97KWHdgjpb5J5JPNg7KAtShOoyid4oXIlweKWato8et9CMFZXqc721c_6_FZd3lf371p9UUzYUB54AO5INwECOjmgbERXDp-F8B6qCE0hbIgkfVHnvXOmkgyWFl0XNWbJFNIc9SrJBOreWpnC2Fz_oYlSwf6PrMy_bkiT4jlbZSujxciPh5musYXQrbOloYfkrw12d31xdXfB6aKlQ0Pv4Sn0_LGb4liIP4fO856CpuEpR-8b-eg5ndVT8ClPyUREPSPhlKLcc4oa3WS3Zz9uTs_zsVlC3sq6nubaeuVNYyL6D9DW1pei9lK00VqQsY2lD5ayamVhfKzqBgygbheonYS2ZRDyC1vsJl3YZryVUqNdZwPSKCUQaSilDqjuItgGRMYOZ8C556Emhkt32dK4AWaHMLsEs9MZOyFs55RUzzq9QC67kcvuX1zO2N6MM27cZL1DcSSoIJ3CGX2bf8btQThCFyavA41CL1jYjG0NHJ3PRNFpKmrxjH2fsfht8M9_aOd__NAuWxa0FguZC73HFqcvr2EfzZtp8zWt5N_jEvVS priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJiQuiI8BhYGCxI1VtEnaJEf2xLQhbRfYtFvkNsmENPWhvbcD_z122r5pYjtw6aF108SOazuxfwH41Fe1jYzyiUHqUit0pFJdX6YQeozWmSbjbJ-ctkdn-vtFc7EFcq6FyUn7GdIy_6bn7LAvK51Vmg9fbWxlXWkewQ5Dt_OsXrSLzboKI55braf6mErZe169Y4MyVP99_uU_e6PZ5Bw-g6eTryi-jr17DltxeAGPx9Mj_7yE8x_HJ-fHgrdYBnLxLmkA4tewpraI8wKHIFacLo1XJcXdJMEgeJWe005FLiNi6plEcHHySnC-6C6cHX77uTgqp2MSyl617bo0LuhgO5socsC-daGWbVCyT86hSn2qQ3RcT6sqG1LTdmiRrLokuySNq6NUr2B7WA7xDYheKUMenYtEo7VM2GGtTCRDl9B1KAv4PDPO_x7RMHzexVbWj2z2xGaf2exNAQfM2w0lI1nnG8vrSz9J1psuYqQgFrVLFKrTtZIhYEPfrqSLqYC9WTJ-Uq-Vpx-RZCg6TT36uHlMisF8xCEub0YaTfGvdAW8HiW66YnmdVSy3wXszyK-bfzhAb39P_J38ETyrKtUKc0ebK-vb-J7cmHW3Yc8Z_8C_jfpfw priority: 102 providerName: Springer Nature |
Title | SIMVI disentangles intrinsic and spatial-induced cellular states in spatial omics data |
URI | https://link.springer.com/article/10.1038/s41467-025-58089-7 https://www.ncbi.nlm.nih.gov/pubmed/40148341 https://www.proquest.com/docview/3182213442 https://www.proquest.com/docview/3182482529 https://doaj.org/article/7beae402a49f46949f02dda5fab029ef |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LatwwcGgTCr2Uvus2XVTorTXxSrIlncpmyTZZSChNE_YmZEsKheBN482hf98Z2d5Q-rjIIA-yPCNpnpoBeN8UUx0oy6fzXOZSOINbqm7y6H3jgjaqTHm2T06ro3O5XJWrweDWDWGV45mYDmq_bshGvo9rj1P2Mck_Xf_IqWoUeVeHEhr3YZdSl1FIl1qprY2Fsp9rKYe7MoXQ-51MJwPVcC11oU2ufuNHKW3_32TNP_ykif0sHsOjQW5ks57QT-BeaJ_Cg76S5M9ncHF2fHJxzMjd0qK4d3kVOva93eBYSAXmWs86Cp12Vznq4EhNz8hiTyGoLF0pIugRhNFF5Y5R7OhzOF8cfpsf5UPJhLwRVbXJlfHS61pH1CJcUxk_5ZUXvInGOBGbOPXB0N1aUWgfy6p22iGH58ijuDLTwMUL2GnXbXgFrBFCoXRnAsIg1qOr3VSogEwvOlM7nsGHEXH2us-MYZNHW2jbo9kimm1Cs1UZHBBut5CU1Tp1rG8u7bBJrKqDC6jQOmkiqu3YFtx7V-K3C25CzGBvpIwdtlpn7xZGBu-2r3GTEB5dG9a3PYxEXZibDF72FN3ORJJNFXl5Bh9HEt8N_u8fev3_ubyBh5xWWSFyrvZgZ3NzG96i-LKpJ2mNYqsXnyewO5stz5b4PDg8_fIVe-fVfJIMA78Anu_xYQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQVIbgg3qQUMBKcIGpiO4l9QIjXsku7vdBWvRkntiukKts2W6H-FN_IjJNshXjceskhGTnJvDzjeQG8aLJceeryaR2XqRRWo0jVTRqca6xXuipin-35bjndl18Oi8M1-DnWwlBa5agTo6J2i4bOyLeQ9zh1H5P87clpSlOjKLo6jtDo2WLbX_xAl617M_uI9H3J-eTT3odpOkwVSBtRlsu00k46VauAhrZtSu1yXjrBm6C1FaEJufOayk9Fplwoytoqi5sgRzXOK517anSAKv-aFEKTRKnJ59WZDnVbV1IOtTmZUFudjJqIZsYWKlM6rX7b_-KYgL_Ztn_EZeN2N7kNtwY7lb3rGesOrPn2LlzvJ1de3IODr7P5wYxReKdF8_Lo2Hfse7vEtZDqzLaOdZSqbY9T9PmRexyjCAGlvLJYwkTQIwijwuiOUa7qfdi_EmQ-gPV20fpHwBohKrQmtUcYpHKwtc1F5XGTDVbXlifwakScOek7cZgYQRfK9Gg2iGYT0WyqBN4TbleQ1EU73licHZlBKE1Ve-vRgbZSB1lqvGbcOVvguzOufUhgc6SMGUS7M5eMmMDz1WMUSsKjbf3ivIeR6HtzncDDnqKrL5F0hou2QwKvRxJfLv7vH9r4_7c8gxvTvfmO2Zntbj-Gm5w4LhMprzZhfXl27p-g6bSsn0Z-ZfDtqgXkF2H9J6Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQVgbgg3oQWMBKcINrEdmL7gBBQVl1KKyRotTfXie0Kqcq2zVaov8bXMZPHVojHrZcckpGTzMsznhfAizrLdaAun85zmUrhDIpUVafR-9oFbVTR9dne3Su39-WneTFfg59jLQylVY46sVPUflHTGfkEeY9T9zHJJ3FIi_iyNX17cprSBCmKtI7jNHoW2QkXP9B9a9_MtpDWLzmffvz2YTsdJgyktSjLZaqMl15XOqLR7erS-JyXXvA6GuNErGPug6FSVJFpH4uyctrhhshRpXNl8kBND1D9X1OiyEnG1Fytzneo87qWcqjTyYSetLLTSjQ_ttCZNqn6bS_sRgb8zc79I0bbbX3T23BrsFnZu57J7sBaaO7C9X6K5cU9OPg62z2YMQr1NGhqHh2Hln1vlrgWcgBzjWctpW274xT9f-QkzyhaQOmvrCtnIugRhFGRdMsob_U-7F8JMh_AerNowiNgtRAKLUsTEAYpHl3lcqECbrjRmcrxBF6NiLMnfVcO20XThbY9mi2i2XZotiqB94TbFSR11O5uLM6O7CCgVlXBBXSmnTRRlgavGffeFfjujJsQE9gcKWMHMW_tJVMm8Hz1GAWU8OiasDjvYST64dwk8LCn6OpLJJ3noh2RwOuRxJeL__uHHv__W57BDRQN-3m2t7MBNzkxXCZSrjZhfXl2Hp6gFbWsnnbsyuDwquXjFxoVK9M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIMVI+disentangles+intrinsic+and+spatial-induced+cellular+states+in+spatial+omics+data&rft.jtitle=Nature+communications&rft.date=2025-03-27&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=2990&rft_id=info:doi/10.1038%2Fs41467-025-58089-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |