SIMVI disentangles intrinsic and spatial-induced cellular states in spatial omics data

Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably captu...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 2990 - 17
Main Authors Dong, Mingze, Su, David G., Kluger, Harriet, Fan, Rong, Kluger, Yuval
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments. Dissecting cellular intrinsic properties and spatial interactions is crucial for understanding biological processes. Here, authors develop a theoretically grounded deep learning framework SIMVI, that disentangles the two factors from spatial omics data.
AbstractList Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments.Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments.
Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments.
Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments.Dissecting cellular intrinsic properties and spatial interactions is crucial for understanding biological processes. Here, authors develop a theoretically grounded deep learning framework SIMVI, that disentangles the two factors from spatial omics data.
Abstract Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments.
Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments. Dissecting cellular intrinsic properties and spatial interactions is crucial for understanding biological processes. Here, authors develop a theoretically grounded deep learning framework SIMVI, that disentangles the two factors from spatial omics data.
ArticleNumber 2990
Author Su, David G.
Fan, Rong
Dong, Mingze
Kluger, Harriet
Kluger, Yuval
Author_xml – sequence: 1
  givenname: Mingze
  orcidid: 0000-0001-7367-6819
  surname: Dong
  fullname: Dong, Mingze
  organization: Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, Department of Pathology, Yale School of Medicine, Department of Biomedical Engineering, Yale University
– sequence: 2
  givenname: David G.
  orcidid: 0000-0002-8693-612X
  surname: Su
  fullname: Su, David G.
  organization: Department of Medicine, Yale School of Medicine, Yale Cancer Center, Yale School of Medicine, Yale Center for Immuno-Oncology, Yale School of Medicine, Department of Surgery, Yale School of Medicine
– sequence: 3
  givenname: Harriet
  surname: Kluger
  fullname: Kluger, Harriet
  organization: Department of Medicine, Yale School of Medicine, Yale Cancer Center, Yale School of Medicine, Yale Center for Immuno-Oncology, Yale School of Medicine
– sequence: 4
  givenname: Rong
  orcidid: 0000-0001-7805-8059
  surname: Fan
  fullname: Fan, Rong
  organization: Department of Pathology, Yale School of Medicine, Department of Biomedical Engineering, Yale University, Yale Cancer Center, Yale School of Medicine
– sequence: 5
  givenname: Yuval
  orcidid: 0000-0002-3035-071X
  surname: Kluger
  fullname: Kluger, Yuval
  email: yuval.kluger@yale.edu
  organization: Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, Department of Pathology, Yale School of Medicine, Applied Mathematics Program, Yale University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40148341$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuPFCEUhYkZ4zycP-DCVOLGTSlcqCpYmok6nYxxoc6W3OLRoVMNLVQt_PfSXTOjcSELIOQ7597LuSRnMUVHyCtG3zHK5fsimOiHlkLXdpJK1Q7PyAVQwVo2AD_7635OrkvZ0bq4YlKIF-RcUCYkF-yC3H_bfLnfNDYUF2eM28mVJsQ5h1iCaTDaphxwDji1IdrFONsYN03LhLkpM84n-hFp0j6Y0lic8SV57nEq7vrhvCI_Pn38fnPb3n39vLn5cNca3vdzOygrrBylH3qJpleWQW85GK8Ucm88s05RAMqptL7rR5QoGQBIAYNiDvgV2ay-NuFOH3LYY_6lEwZ9ekh5qzHPwUxOD6NDJyigUF70qu4UrMXO40hBOV-93q5eh5x-Lq7Meh_KcVqMLi1FcyZBSOhAVfTNP-guLTnWSU8UMC7EsbnXD9Qy7p19au_x9ysAK2ByKiU7_4Qwqo8p6zVlXVPWp5T1UEV8FZUKx63Lf2r_R_UbbvKn1g
Cites_doi 10.1016/j.cels.2023.03.008
10.1038/s41596-020-0292-x
10.1038/s41592-021-01358-2
10.1093/bib/bbaa269
10.1016/j.immuni.2007.07.009
10.1038/s41586-023-05795-1
10.1186/s13046-021-01933-7
10.1038/s41586-023-06837-4
10.1186/s13059-022-02684-0
10.1016/j.cell.2020.10.026
10.15252/msb.20209620
10.1093/bioinformatics/btab471
10.3322/caac.21763
10.1038/s41592-023-01955-3
10.1038/s41586-021-03705-x
10.1038/s41587-020-0739-1
10.3389/fnins.2022.916055
10.1097/nen.0b013e3180301c06
10.1016/j.celrep.2019.08.077
10.1073/pnas.1900654116
10.1038/s41467-023-39748-z
10.1038/s41592-024-02316-4
10.1038/s41592-021-01336-8
10.1126/science.abm1741
10.1038/s41467-023-36796-3
10.1038/s41587-021-01075-3
10.1038/s41592-024-02463-8
10.1101/2023.12.30.573739
10.1016/S0893-6080(98)00140-3
10.1038/s41592-018-0229-2
10.1016/j.immuni.2023.06.007
10.1038/s41588-021-00972-2
10.1038/nmeth.4636
10.1038/s41551-022-00951-w
10.1002/cpz1.90
10.1016/j.cell.2024.09.001
10.1016/j.cell.2022.04.003
10.1038/s41592-019-0701-7
10.1016/j.immuni.2016.09.001
10.1093/bioinformatics/btac757
10.1038/s41587-021-01001-7
10.1038/s41588-023-01588-4
10.1038/nmeth.4401
10.1038/s41592-022-01575-3
10.1186/s13059-021-02404-0
10.1038/s41467-022-29439-6
10.1038/s41588-024-01664-3
10.1093/nar/gky955
10.1038/s41587-022-01483-z
10.1145/3444944
10.1038/s41587-021-01206-w
10.1038/s41592-024-02410-7
10.1109/CVPR52688.2022.01042
10.1038/s41588-021-00778-2
10.1016/j.cell.2020.04.007
10.1038/s41586-018-0698-6
10.1038/s41587-020-00803-5
10.1093/nar/gkaa516
10.1038/s41588-022-01256-z
10.1038/s41586-022-04918-4
10.1038/s41592-019-0619-0
10.1038/s41587-024-02193-4
10.1038/s41590-022-01267-2
10.1038/s41592-021-01264-7
10.1126/science.abp9444
10.1038/s41592-021-01343-9
10.1016/j.it.2022.04.008
10.1158/1078-0432.CCR-18-2652
10.1186/s13059-021-02286-2
10.1186/s13059-022-02663-5
10.1093/nar/gkac958
10.1038/s41587-022-01467-z
10.1038/s41587-021-01006-2
10.1038/s41592-019-0548-y
10.1016/j.neucom.2011.06.033
10.1038/s41587-022-01273-7
10.5281/zenodo.14708000
10.1038/s41587-022-01272-8
10.1038/s41592-023-02040-5
10.1017/CBO9781139025751
10.1038/s41592-022-01687-w
10.1145/1390156.1390294
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-025-58089-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 17
ExternalDocumentID oai_doaj_org_article_7beae402a49f46949f02dda5fab029ef
40148341
10_1038_s41467_025_58089_7
Genre Journal Article
GrantInformation_xml – fundername: NIH: U54AG076043, U54AG079759, P50CA121974, R01GM131642, UM1DA051410, and U01DA053628.
– fundername: NIA NIH HHS
  grantid: U54 AG079759
– fundername: NIDA NIH HHS
  grantid: UM1 DA051410
– fundername: NCI NIH HHS
  grantid: P50 CA121974
– fundername: NIGMS NIH HHS
  grantid: R01 GM131642
– fundername: NIDA NIH HHS
  grantid: U01 DA053628
– fundername: NIA NIH HHS
  grantid: U54 AG076043
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SV3
TSG
UKHRP
AAYXX
CITATION
PHGZM
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c366t-79d4d8b8f768ac69d126d32cf99a3fcf1de90220308df56ba8a81222842791e23
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:16 EDT 2025
Fri Jul 11 18:55:27 EDT 2025
Sat Aug 23 13:30:41 EDT 2025
Mon Jul 21 06:02:38 EDT 2025
Tue Jul 01 05:14:34 EDT 2025
Fri Mar 28 01:24:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-79d4d8b8f768ac69d126d32cf99a3fcf1de90220308df56ba8a81222842791e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7805-8059
0000-0002-8693-612X
0000-0001-7367-6819
0000-0002-3035-071X
OpenAccessLink https://www.proquest.com/docview/3182213442?pq-origsite=%requestingapplication%
PMID 40148341
PQID 3182213442
PQPubID 546298
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_7beae402a49f46949f02dda5fab029ef
proquest_miscellaneous_3182482529
proquest_journals_3182213442
pubmed_primary_40148341
crossref_primary_10_1038_s41467_025_58089_7
springer_journals_10_1038_s41467_025_58089_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-27
PublicationDateYYYYMMDD 2025-03-27
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References M Efremova (58089_CR66) 2020; 15
Z Xie (58089_CR80) 2021; 1
X Wei (58089_CR12) 2022; 377
58089_CR25
RF Hevner (58089_CR49) 2007; 66
L Bergenstråhle (58089_CR61) 2022; 40
58089_CR27
RL Siegel (58089_CR53) 2023; 73
S He (58089_CR4) 2022; 40
58089_CR28
R Lopez (58089_CR41) 2018; 15
Q Li (58089_CR55) 2021; 40
S Zhao (58089_CR72) 2019; 33
M Hao (58089_CR16) 2021; 37
PF Wong (58089_CR89) 2019; 25
M Mørup (58089_CR47) 2012; 80
A Chen (58089_CR11) 2022; 185
X Shao (58089_CR69) 2021; 22
58089_CR71
C Xu (58089_CR73) 2021; 17
Z Fang (58089_CR81) 2023; 39
K Dong (58089_CR23) 2022; 13
58089_CR30
O Fornes (58089_CR87) 2020; 48
58089_CR31
M Lotfollahi (58089_CR64) 2022; 40
58089_CR75
58089_CR76
V Singhal (58089_CR29) 2024; 56
S Clavreul (58089_CR48) 2022; 16
R Vento-Tormo (58089_CR65) 2018; 563
58089_CR56
58089_CR13
D Arnol (58089_CR35) 2019; 29
Z Wu (58089_CR32) 2022; 6
A Gayoso (58089_CR70) 2022; 40
R Dries (58089_CR14) 2021; 22
M Varrone (58089_CR26) 2024; 56
FJ Martin (58089_CR85) 2023; 51
E Weinberger (58089_CR74) 2023; 20
A Christofides (58089_CR57) 2022; 23
DB Burkhardt (58089_CR84) 2021; 39
T Lohoff (58089_CR1) 2022; 40
Y Liu (58089_CR5) 2020; 183
S Sun (58089_CR17) 2020; 17
I Korsunsky (58089_CR46) 2019; 16
WJ Murdoch (58089_CR63) 2019; 116
J Hu (58089_CR62) 2023; 14
Q Wang (58089_CR83) 2020; 181
58089_CR44
AN Schep (58089_CR88) 2017; 14
LM Weber (58089_CR15) 2023; 14
DS Fischer (58089_CR34) 2023; 41
V Chernozhukov (58089_CR42) 2018; 21
D Zhang (58089_CR6) 2023; 616
RR Stickels (58089_CR8) 2021; 39
R Fang (58089_CR3) 2022; 377
S Vickovic (58089_CR9) 2019; 16
L Garcia-Alonso (58089_CR67) 2021; 53
V Svensson (58089_CR19) 2018; 15
58089_CR90
L Mesin (58089_CR52) 2016; 45
A Frankish (58089_CR86) 2019; 47
L Garcia-Alonso (58089_CR68) 2022; 607
58089_CR54
58089_CR33
E Papalexi (58089_CR77) 2021; 53
B Chidester (58089_CR22) 2023; 55
Y Long (58089_CR24) 2023; 14
58089_CR38
M Zhang (58089_CR2) 2021; 598
A Hyvärinen (58089_CR37) 1999; 12
58089_CR39
DM Cable (58089_CR50) 2022; 19
J Tanevski (58089_CR36) 2022; 23
CD Allen (58089_CR51) 2007; 27
P Zhao (58089_CR45) 2022; 23
T Biancalani (58089_CR58) 2021; 18
J Zhu (58089_CR18) 2021; 22
MD Luecken (58089_CR79) 2022; 19
G Palla (58089_CR82) 2022; 19
FW Townes (58089_CR21) 2023; 20
Z Bai (58089_CR7) 2024; 187
B Velten (58089_CR20) 2022; 19
Y Ma (58089_CR59) 2022; 40
L Yao (58089_CR43) 2021; 15
M Dong (58089_CR78) 2023; 20
R Lopez (58089_CR60) 2022; 40
AJ Russell (58089_CR10) 2024; 625
58089_CR40
37693629 - bioRxiv. 2024 Oct 10:2023.08.28.554970. doi: 10.1101/2023.08.28.554970.
References_xml – ident: 58089_CR31
– volume: 14
  start-page: 404
  year: 2023
  ident: 58089_CR62
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2023.03.008
– volume: 15
  start-page: 1484
  year: 2020
  ident: 58089_CR66
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0292-x
– volume: 19
  start-page: 171
  year: 2022
  ident: 58089_CR82
  publication-title: Nat. methods
  doi: 10.1038/s41592-021-01358-2
– volume: 22
  start-page: bbaa269
  year: 2021
  ident: 58089_CR69
  publication-title: Brief. Bioinforma.
  doi: 10.1093/bib/bbaa269
– volume: 27
  start-page: 190
  year: 2007
  ident: 58089_CR51
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.07.009
– volume: 616
  start-page: 113
  year: 2023
  ident: 58089_CR6
  publication-title: Nature
  doi: 10.1038/s41586-023-05795-1
– volume: 40
  start-page: 168
  year: 2021
  ident: 58089_CR55
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-021-01933-7
– volume: 625
  start-page: 101
  year: 2024
  ident: 58089_CR10
  publication-title: Nature
  doi: 10.1038/s41586-023-06837-4
– volume: 23
  year: 2022
  ident: 58089_CR45
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02684-0
– volume: 183
  start-page: 1665
  year: 2020
  ident: 58089_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.026
– ident: 58089_CR39
– volume: 17
  start-page: e9620
  year: 2021
  ident: 58089_CR73
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20209620
– volume: 37
  start-page: 4392
  year: 2021
  ident: 58089_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab471
– volume: 73
  start-page: 17
  year: 2023
  ident: 58089_CR53
  publication-title: Ca Cancer J. Clin.
  doi: 10.3322/caac.21763
– volume: 20
  start-page: 1336
  year: 2023
  ident: 58089_CR74
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-01955-3
– volume: 598
  start-page: 137
  year: 2021
  ident: 58089_CR2
  publication-title: Nature
  doi: 10.1038/s41586-021-03705-x
– volume: 39
  start-page: 313
  year: 2021
  ident: 58089_CR8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0739-1
– volume: 16
  start-page: 916055
  year: 2022
  ident: 58089_CR48
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.916055
– volume: 66
  start-page: 101
  year: 2007
  ident: 58089_CR49
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/nen.0b013e3180301c06
– volume: 29
  start-page: 202
  year: 2019
  ident: 58089_CR35
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.077
– volume: 33
  start-page: 5885
  year: 2019
  ident: 58089_CR72
  publication-title: Proc. aaai Conf. Artif. Intell.
– volume: 116
  start-page: 22071
  year: 2019
  ident: 58089_CR63
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1900654116
– volume: 14
  year: 2023
  ident: 58089_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39748-z
– ident: 58089_CR30
  doi: 10.1038/s41592-024-02316-4
– volume: 19
  start-page: 41
  year: 2022
  ident: 58089_CR79
  publication-title: Nat. methods
  doi: 10.1038/s41592-021-01336-8
– volume: 377
  start-page: 56
  year: 2022
  ident: 58089_CR3
  publication-title: Science
  doi: 10.1126/science.abm1741
– volume: 14
  year: 2023
  ident: 58089_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36796-3
– volume: 40
  start-page: 476
  year: 2022
  ident: 58089_CR61
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01075-3
– ident: 58089_CR28
  doi: 10.1038/s41592-024-02463-8
– ident: 58089_CR33
  doi: 10.1101/2023.12.30.573739
– volume: 12
  start-page: 429
  year: 1999
  ident: 58089_CR37
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00140-3
– volume: 15
  start-page: 1053
  year: 2018
  ident: 58089_CR41
  publication-title: Nat. methods
  doi: 10.1038/s41592-018-0229-2
– ident: 58089_CR54
  doi: 10.1016/j.immuni.2023.06.007
– volume: 53
  start-page: 1698
  year: 2021
  ident: 58089_CR67
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00972-2
– volume: 15
  start-page: 343
  year: 2018
  ident: 58089_CR19
  publication-title: Nat. methods
  doi: 10.1038/nmeth.4636
– volume: 6
  start-page: 1435
  year: 2022
  ident: 58089_CR32
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-022-00951-w
– volume: 1
  start-page: e90
  year: 2021
  ident: 58089_CR80
  publication-title: Curr. Protoc.
  doi: 10.1002/cpz1.90
– volume: 187
  start-page: 6760
  year: 2024
  ident: 58089_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2024.09.001
– volume: 185
  start-page: 1777
  year: 2022
  ident: 58089_CR11
  publication-title: Cell
  doi: 10.1016/j.cell.2022.04.003
– volume: 17
  start-page: 193
  year: 2020
  ident: 58089_CR17
  publication-title: Nat. methods
  doi: 10.1038/s41592-019-0701-7
– volume: 45
  start-page: 471
  year: 2016
  ident: 58089_CR52
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.09.001
– ident: 58089_CR75
– volume: 39
  start-page: btac757
  year: 2023
  ident: 58089_CR81
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac757
– volume: 40
  start-page: 121
  year: 2022
  ident: 58089_CR64
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01001-7
– volume: 56
  start-page: 74
  year: 2024
  ident: 58089_CR26
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-023-01588-4
– volume: 14
  start-page: 975
  year: 2017
  ident: 58089_CR88
  publication-title: Nat. methods
  doi: 10.1038/nmeth.4401
– volume: 19
  start-page: 1076
  year: 2022
  ident: 58089_CR50
  publication-title: Nat. methods
  doi: 10.1038/s41592-022-01575-3
– volume: 22
  start-page: 1
  year: 2021
  ident: 58089_CR18
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02404-0
– volume: 13
  year: 2022
  ident: 58089_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29439-6
– volume: 56
  start-page: 431
  year: 2024
  ident: 58089_CR29
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-024-01664-3
– volume: 47
  start-page: D766
  year: 2019
  ident: 58089_CR86
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gky955
– volume: 40
  start-page: 1794
  year: 2022
  ident: 58089_CR4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01483-z
– volume: 15
  start-page: 1
  year: 2021
  ident: 58089_CR43
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
  doi: 10.1145/3444944
– volume: 40
  start-page: 163
  year: 2022
  ident: 58089_CR70
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01206-w
– ident: 58089_CR27
  doi: 10.1038/s41592-024-02410-7
– ident: 58089_CR71
  doi: 10.1109/CVPR52688.2022.01042
– volume: 53
  start-page: 322
  year: 2021
  ident: 58089_CR77
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00778-2
– volume: 181
  start-page: 936
  year: 2020
  ident: 58089_CR83
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.007
– volume: 21
  start-page: C1
  year: 2018
  ident: 58089_CR42
  publication-title: Econ. J.
– volume: 563
  start-page: 347
  year: 2018
  ident: 58089_CR65
  publication-title: Nature
  doi: 10.1038/s41586-018-0698-6
– volume: 39
  start-page: 619
  year: 2021
  ident: 58089_CR84
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-00803-5
– volume: 48
  start-page: D87
  year: 2020
  ident: 58089_CR87
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa516
– volume: 55
  start-page: 78
  year: 2023
  ident: 58089_CR22
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-022-01256-z
– volume: 607
  start-page: 540
  year: 2022
  ident: 58089_CR68
  publication-title: Nature
  doi: 10.1038/s41586-022-04918-4
– volume: 16
  start-page: 1289
  year: 2019
  ident: 58089_CR46
  publication-title: Nat. methods
  doi: 10.1038/s41592-019-0619-0
– ident: 58089_CR25
  doi: 10.1038/s41587-024-02193-4
– volume: 23
  start-page: 1148
  year: 2022
  ident: 58089_CR57
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01267-2
– volume: 18
  start-page: 1352
  year: 2021
  ident: 58089_CR58
  publication-title: Nat. methods
  doi: 10.1038/s41592-021-01264-7
– volume: 377
  start-page: eabp9444
  year: 2022
  ident: 58089_CR12
  publication-title: Science
  doi: 10.1126/science.abp9444
– volume: 19
  start-page: 179
  year: 2022
  ident: 58089_CR20
  publication-title: Nat. methods
  doi: 10.1038/s41592-021-01343-9
– ident: 58089_CR56
  doi: 10.1016/j.it.2022.04.008
– ident: 58089_CR40
– volume: 25
  start-page: 2442
  year: 2019
  ident: 58089_CR89
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2652
– volume: 22
  start-page: 1
  year: 2021
  ident: 58089_CR14
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02286-2
– volume: 23
  year: 2022
  ident: 58089_CR36
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02663-5
– volume: 51
  start-page: D933
  year: 2023
  ident: 58089_CR85
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkac958
– volume: 41
  start-page: 332
  year: 2023
  ident: 58089_CR34
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01467-z
– volume: 40
  start-page: 74
  year: 2022
  ident: 58089_CR1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01006-2
– volume: 16
  start-page: 987
  year: 2019
  ident: 58089_CR9
  publication-title: Nat. methods
  doi: 10.1038/s41592-019-0548-y
– volume: 80
  start-page: 54
  year: 2012
  ident: 58089_CR47
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.033
– volume: 40
  start-page: 1349
  year: 2022
  ident: 58089_CR59
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01273-7
– ident: 58089_CR90
  doi: 10.5281/zenodo.14708000
– ident: 58089_CR38
– volume: 40
  start-page: 1360
  year: 2022
  ident: 58089_CR60
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01272-8
– ident: 58089_CR13
– volume: 20
  start-page: 1769
  year: 2023
  ident: 58089_CR78
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-02040-5
– ident: 58089_CR44
  doi: 10.1017/CBO9781139025751
– volume: 20
  start-page: 229
  year: 2023
  ident: 58089_CR21
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01687-w
– ident: 58089_CR76
  doi: 10.1145/1390156.1390294
– reference: 37693629 - bioRxiv. 2024 Oct 10:2023.08.28.554970. doi: 10.1101/2023.08.28.554970.
SSID ssj0000391844
Score 2.4666784
Snippet Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing...
Abstract Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 2990
SubjectTerms 631/114/1305
631/114/2397
631/114/2415
631/114/794
Annotations
B-Lymphocytes - metabolism
Biological activity
Cell Communication
Cellular communication
Computational Biology - methods
Deep Learning
Epigenetics
Gene expression
Germinal Center - cytology
Germinal Center - metabolism
Germinal centers
Humanities and Social Sciences
Humans
Interaction models
Lymphocytes B
Macrophages
Macrophages - metabolism
Melanoma
Melanoma - genetics
Melanoma - pathology
Microenvironments
multidisciplinary
Palatine Tonsil - cytology
Science
Science (multidisciplinary)
Single-Cell Analysis - methods
Spatial analysis
Spatial data
Structure-function relationships
Tumor microenvironment
Tumor Microenvironment - genetics
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS-YwEA8iCF7E12p9LFnw5hbbJG2So8qKCu7FB97CtElEkH5iPw_73-9M2u_TZZW97KWHdgjpb5J5JPNg7KAtShOoyid4oXIlweKWato8et9CMFZXqc721c_6_FZd3lf371p9UUzYUB54AO5INwECOjmgbERXDp-F8B6qCE0hbIgkfVHnvXOmkgyWFl0XNWbJFNIc9SrJBOreWpnC2Fz_oYlSwf6PrMy_bkiT4jlbZSujxciPh5musYXQrbOloYfkrw12d31xdXfB6aKlQ0Pv4Sn0_LGb4liIP4fO856CpuEpR-8b-eg5ndVT8ClPyUREPSPhlKLcc4oa3WS3Zz9uTs_zsVlC3sq6nubaeuVNYyL6D9DW1pei9lK00VqQsY2lD5ayamVhfKzqBgygbheonYS2ZRDyC1vsJl3YZryVUqNdZwPSKCUQaSilDqjuItgGRMYOZ8C556Emhkt32dK4AWaHMLsEs9MZOyFs55RUzzq9QC67kcvuX1zO2N6MM27cZL1DcSSoIJ3CGX2bf8btQThCFyavA41CL1jYjG0NHJ3PRNFpKmrxjH2fsfht8M9_aOd__NAuWxa0FguZC73HFqcvr2EfzZtp8zWt5N_jEvVS
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJiQuiI8BhYGCxI1VtEnaJEf2xLQhbRfYtFvkNsmENPWhvbcD_z122r5pYjtw6aF108SOazuxfwH41Fe1jYzyiUHqUit0pFJdX6YQeozWmSbjbJ-ctkdn-vtFc7EFcq6FyUn7GdIy_6bn7LAvK51Vmg9fbWxlXWkewQ5Dt_OsXrSLzboKI55braf6mErZe169Y4MyVP99_uU_e6PZ5Bw-g6eTryi-jr17DltxeAGPx9Mj_7yE8x_HJ-fHgrdYBnLxLmkA4tewpraI8wKHIFacLo1XJcXdJMEgeJWe005FLiNi6plEcHHySnC-6C6cHX77uTgqp2MSyl617bo0LuhgO5socsC-daGWbVCyT86hSn2qQ3RcT6sqG1LTdmiRrLokuySNq6NUr2B7WA7xDYheKUMenYtEo7VM2GGtTCRDl9B1KAv4PDPO_x7RMHzexVbWj2z2xGaf2exNAQfM2w0lI1nnG8vrSz9J1psuYqQgFrVLFKrTtZIhYEPfrqSLqYC9WTJ-Uq-Vpx-RZCg6TT36uHlMisF8xCEub0YaTfGvdAW8HiW66YnmdVSy3wXszyK-bfzhAb39P_J38ETyrKtUKc0ebK-vb-J7cmHW3Yc8Z_8C_jfpfw
  priority: 102
  providerName: Springer Nature
Title SIMVI disentangles intrinsic and spatial-induced cellular states in spatial omics data
URI https://link.springer.com/article/10.1038/s41467-025-58089-7
https://www.ncbi.nlm.nih.gov/pubmed/40148341
https://www.proquest.com/docview/3182213442
https://www.proquest.com/docview/3182482529
https://doaj.org/article/7beae402a49f46949f02dda5fab029ef
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LatwwcGgTCr2Uvus2XVTorTXxSrIlncpmyTZZSChNE_YmZEsKheBN482hf98Z2d5Q-rjIIA-yPCNpnpoBeN8UUx0oy6fzXOZSOINbqm7y6H3jgjaqTHm2T06ro3O5XJWrweDWDWGV45mYDmq_bshGvo9rj1P2Mck_Xf_IqWoUeVeHEhr3YZdSl1FIl1qprY2Fsp9rKYe7MoXQ-51MJwPVcC11oU2ufuNHKW3_32TNP_ykif0sHsOjQW5ks57QT-BeaJ_Cg76S5M9ncHF2fHJxzMjd0qK4d3kVOva93eBYSAXmWs86Cp12Vznq4EhNz8hiTyGoLF0pIugRhNFF5Y5R7OhzOF8cfpsf5UPJhLwRVbXJlfHS61pH1CJcUxk_5ZUXvInGOBGbOPXB0N1aUWgfy6p22iGH58ijuDLTwMUL2GnXbXgFrBFCoXRnAsIg1qOr3VSogEwvOlM7nsGHEXH2us-MYZNHW2jbo9kimm1Cs1UZHBBut5CU1Tp1rG8u7bBJrKqDC6jQOmkiqu3YFtx7V-K3C25CzGBvpIwdtlpn7xZGBu-2r3GTEB5dG9a3PYxEXZibDF72FN3ORJJNFXl5Bh9HEt8N_u8fev3_ubyBh5xWWSFyrvZgZ3NzG96i-LKpJ2mNYqsXnyewO5stz5b4PDg8_fIVe-fVfJIMA78Anu_xYQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQVIbgg3qQUMBKcIGpiO4l9QIjXsku7vdBWvRkntiukKts2W6H-FN_IjJNshXjceskhGTnJvDzjeQG8aLJceeryaR2XqRRWo0jVTRqca6xXuipin-35bjndl18Oi8M1-DnWwlBa5agTo6J2i4bOyLeQ9zh1H5P87clpSlOjKLo6jtDo2WLbX_xAl617M_uI9H3J-eTT3odpOkwVSBtRlsu00k46VauAhrZtSu1yXjrBm6C1FaEJufOayk9Fplwoytoqi5sgRzXOK517anSAKv-aFEKTRKnJ59WZDnVbV1IOtTmZUFudjJqIZsYWKlM6rX7b_-KYgL_Ztn_EZeN2N7kNtwY7lb3rGesOrPn2LlzvJ1de3IODr7P5wYxReKdF8_Lo2Hfse7vEtZDqzLaOdZSqbY9T9PmRexyjCAGlvLJYwkTQIwijwuiOUa7qfdi_EmQ-gPV20fpHwBohKrQmtUcYpHKwtc1F5XGTDVbXlifwakScOek7cZgYQRfK9Gg2iGYT0WyqBN4TbleQ1EU73licHZlBKE1Ve-vRgbZSB1lqvGbcOVvguzOufUhgc6SMGUS7M5eMmMDz1WMUSsKjbf3ivIeR6HtzncDDnqKrL5F0hou2QwKvRxJfLv7vH9r4_7c8gxvTvfmO2Zntbj-Gm5w4LhMprzZhfXl27p-g6bSsn0Z-ZfDtqgXkF2H9J6Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQVgbgg3oQWMBKcINrEdmL7gBBQVl1KKyRotTfXie0Kqcq2zVaov8bXMZPHVojHrZcckpGTzMsznhfAizrLdaAun85zmUrhDIpUVafR-9oFbVTR9dne3Su39-WneTFfg59jLQylVY46sVPUflHTGfkEeY9T9zHJJ3FIi_iyNX17cprSBCmKtI7jNHoW2QkXP9B9a9_MtpDWLzmffvz2YTsdJgyktSjLZaqMl15XOqLR7erS-JyXXvA6GuNErGPug6FSVJFpH4uyctrhhshRpXNl8kBND1D9X1OiyEnG1Fytzneo87qWcqjTyYSetLLTSjQ_ttCZNqn6bS_sRgb8zc79I0bbbX3T23BrsFnZu57J7sBaaO7C9X6K5cU9OPg62z2YMQr1NGhqHh2Hln1vlrgWcgBzjWctpW274xT9f-QkzyhaQOmvrCtnIugRhFGRdMsob_U-7F8JMh_AerNowiNgtRAKLUsTEAYpHl3lcqECbrjRmcrxBF6NiLMnfVcO20XThbY9mi2i2XZotiqB94TbFSR11O5uLM6O7CCgVlXBBXSmnTRRlgavGffeFfjujJsQE9gcKWMHMW_tJVMm8Hz1GAWU8OiasDjvYST64dwk8LCn6OpLJJ3noh2RwOuRxJeL__uHHv__W57BDRQN-3m2t7MBNzkxXCZSrjZhfXl2Hp6gFbWsnnbsyuDwquXjFxoVK9M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIMVI+disentangles+intrinsic+and+spatial-induced+cellular+states+in+spatial+omics+data&rft.jtitle=Nature+communications&rft.date=2025-03-27&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=2990&rft_id=info:doi/10.1038%2Fs41467-025-58089-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon