Support vector machine applications in the field of hydrology: A review
[Display omitted] •Basics of SVMs theory are discussed.•Applications of SVMs in various hydrological problems are reviewed.•Hybrid SVM models are also dealt.•Advantages and disadvantages of SVMs are surveyed.•Future directions of research using SVMs are suggested. In the recent few decades there has...
Saved in:
Published in | Applied soft computing Vol. 19; pp. 372 - 386 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2014.02.002 |
Cover
Loading…
Abstract | [Display omitted]
•Basics of SVMs theory are discussed.•Applications of SVMs in various hydrological problems are reviewed.•Hybrid SVM models are also dealt.•Advantages and disadvantages of SVMs are surveyed.•Future directions of research using SVMs are suggested.
In the recent few decades there has been very significant developments in the theoretical understanding of Support vector machines (SVMs) as well as algorithmic strategies for implementing them, and applications of the approach to practical problems. SVMs introduced by Vapnik and others in the early 1990s are machine learning systems that utilize a hypothesis space of linear functions in a high dimensional feature space, trained with optimization algorithms that implements a learning bias derived from statistical learning theory. This paper reviews the state-of-the-art and focuses over a wide range of applications of SVMs in the field of hydrology. To use SVM aided hydrological models, which have increasingly extended during the last years; comprehensive knowledge about their theory and modelling approaches seems to be necessary. Furthermore, this review provides a brief synopsis of the techniques of SVMs and other emerging ones (hybrid models), which have proven useful in the analysis of the various hydrological parameters. Moreover, various examples of successful applications of SVMs for modelling different hydrological processes are also provided. |
---|---|
AbstractList | [Display omitted]
•Basics of SVMs theory are discussed.•Applications of SVMs in various hydrological problems are reviewed.•Hybrid SVM models are also dealt.•Advantages and disadvantages of SVMs are surveyed.•Future directions of research using SVMs are suggested.
In the recent few decades there has been very significant developments in the theoretical understanding of Support vector machines (SVMs) as well as algorithmic strategies for implementing them, and applications of the approach to practical problems. SVMs introduced by Vapnik and others in the early 1990s are machine learning systems that utilize a hypothesis space of linear functions in a high dimensional feature space, trained with optimization algorithms that implements a learning bias derived from statistical learning theory. This paper reviews the state-of-the-art and focuses over a wide range of applications of SVMs in the field of hydrology. To use SVM aided hydrological models, which have increasingly extended during the last years; comprehensive knowledge about their theory and modelling approaches seems to be necessary. Furthermore, this review provides a brief synopsis of the techniques of SVMs and other emerging ones (hybrid models), which have proven useful in the analysis of the various hydrological parameters. Moreover, various examples of successful applications of SVMs for modelling different hydrological processes are also provided. |
Author | Raghavendra. N, Sujay Deka, Paresh Chandra |
Author_xml | – sequence: 1 givenname: Sujay surname: Raghavendra. N fullname: Raghavendra. N, Sujay email: sujayraghavendran@ymail.com – sequence: 2 givenname: Paresh Chandra surname: Deka fullname: Deka, Paresh Chandra |
BookMark | eNp9kL1OwzAUhS1UJNrCCzD5BRJsJ7EdxFJVUJAqMQCz5Z8b6iqNIzsU9e1JKRNDp3OW7-qeb4YmXegAoVtKckoov9vmOgWbM0LLnLCcEHaBplQKltVc0snYKy6zsi75FZqltCUjVDM5Rau3r74PccB7sEOIeKftxneAdd-33urBhy5h3-FhA7jx0DocGrw5uBja8Hm4xwscYe_h-xpdNrpNcPOXc_Tx9Pi-fM7Wr6uX5WKd2YLzIRPMCcp0YStnKl3UrJK6cIY6Jl0tjAThjAVriooQoY3hxlkwlEtCjWhIWcyRPN21MaQUoVHWD79vDlH7VlGijkLUVh2FqKMQRZgahYwo-4f20e90PJyHHk4QjKPGoVEl66Gz4HwcjSkX_Dn8B5_9fVw |
CitedBy_id | crossref_primary_10_1007_s00521_017_3112_7 crossref_primary_10_2166_nh_2017_045 crossref_primary_10_1109_JSTARS_2017_2788462 crossref_primary_10_1007_s40808_022_01428_0 crossref_primary_10_1080_10916466_2022_2043368 crossref_primary_10_26701_ems_1144456 crossref_primary_10_3390_rs13152948 crossref_primary_10_1007_s00366_020_01137_1 crossref_primary_10_3390_w12030713 crossref_primary_10_1016_j_srs_2025_100198 crossref_primary_10_1007_s11831_022_09763_2 crossref_primary_10_1016_j_envres_2021_111609 crossref_primary_10_1109_ACCESS_2019_2943515 crossref_primary_10_1186_s12938_015_0003_y crossref_primary_10_1088_1742_6596_1207_1_012015 crossref_primary_10_1016_j_asr_2017_03_026 crossref_primary_10_5897_IJWREE2018_0772 crossref_primary_10_1016_j_compag_2021_106032 crossref_primary_10_1038_s41598_022_08786_w crossref_primary_10_1016_j_geoderma_2019_06_028 crossref_primary_10_1007_s13201_022_01798_x crossref_primary_10_1016_j_chemosphere_2024_141393 crossref_primary_10_1016_j_dyepig_2023_111912 crossref_primary_10_3390_w11050910 crossref_primary_10_3390_w14152307 crossref_primary_10_2478_johh_2020_0008 crossref_primary_10_1016_j_cherd_2022_01_026 crossref_primary_10_3389_fenrg_2021_751066 crossref_primary_10_1016_j_envc_2023_100680 crossref_primary_10_1134_S0097807823600973 crossref_primary_10_3390_cli10100147 crossref_primary_10_3390_w14020191 crossref_primary_10_2166_ws_2021_018 crossref_primary_10_2166_aqua_2023_161 crossref_primary_10_1029_2020WR029471 crossref_primary_10_1016_j_watres_2021_117851 crossref_primary_10_2166_ws_2021_372 crossref_primary_10_3390_s20010132 crossref_primary_10_1016_j_jhydrol_2016_09_035 crossref_primary_10_1016_j_ejrh_2023_101475 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_3390_w16010012 crossref_primary_10_1016_j_molliq_2022_119306 crossref_primary_10_3390_s23094365 crossref_primary_10_1155_2018_4832423 crossref_primary_10_1016_j_jhydrol_2016_10_013 crossref_primary_10_1007_s00521_020_05172_3 crossref_primary_10_1029_2021WR031065 crossref_primary_10_1016_j_jenvman_2023_117287 crossref_primary_10_1007_s00158_019_02251_5 crossref_primary_10_1016_j_jhydrol_2020_125481 crossref_primary_10_1007_s12145_020_00450_z crossref_primary_10_1016_j_envsoft_2022_105609 crossref_primary_10_1016_j_flowmeasinst_2017_08_004 crossref_primary_10_3390_su12197877 crossref_primary_10_1007_s12517_020_06408_1 crossref_primary_10_3390_ma14154068 crossref_primary_10_1016_j_ecoleng_2020_105990 crossref_primary_10_1016_j_jhydrol_2016_02_040 crossref_primary_10_5433_1679_0359_2022v43n3p1017 crossref_primary_10_1016_j_scitotenv_2016_09_093 crossref_primary_10_3390_geosciences13100293 crossref_primary_10_1007_s42001_023_00244_5 crossref_primary_10_1007_s10346_022_01923_6 crossref_primary_10_1007_s40899_021_00506_y crossref_primary_10_1016_j_compag_2018_08_029 crossref_primary_10_1016_j_jhydrol_2025_133166 crossref_primary_10_1117_1_JEI_27_5_053021 crossref_primary_10_1007_s13201_018_0742_6 crossref_primary_10_1016_j_asoc_2022_108535 crossref_primary_10_1016_j_fuel_2020_117066 crossref_primary_10_1007_s11600_023_01107_3 crossref_primary_10_3390_rs14030805 crossref_primary_10_1007_s41748_024_00507_9 crossref_primary_10_1109_ACCESS_2022_3188649 crossref_primary_10_1061__ASCE_EE_1943_7870_0001217 crossref_primary_10_2139_ssrn_4170585 crossref_primary_10_1002_bit_28503 crossref_primary_10_3390_w8120560 crossref_primary_10_1007_s00477_018_1620_3 crossref_primary_10_1021_acsomega_2c00746 crossref_primary_10_1088_1755_1315_498_1_012076 crossref_primary_10_1007_s12205_019_1946_5 crossref_primary_10_1016_j_jsv_2016_07_020 crossref_primary_10_1155_2020_6618842 crossref_primary_10_1007_s11356_020_08023_9 crossref_primary_10_3390_w13091208 crossref_primary_10_1080_24694452_2023_2166010 crossref_primary_10_3151_jact_20_404 crossref_primary_10_3390_info13120577 crossref_primary_10_1029_2021WR031048 crossref_primary_10_1111_ejss_13123 crossref_primary_10_1016_j_ejrh_2023_101649 crossref_primary_10_2166_ws_2021_243 crossref_primary_10_1007_s12161_016_0681_5 crossref_primary_10_1016_j_engappai_2020_104012 crossref_primary_10_1080_09715010_2019_1574614 crossref_primary_10_1021_es501944c crossref_primary_10_1007_s11600_019_00283_5 crossref_primary_10_1016_j_ecohyd_2017_02_002 crossref_primary_10_1016_j_pce_2024_103603 crossref_primary_10_2166_wcc_2022_271 crossref_primary_10_1007_s11356_017_9243_7 crossref_primary_10_1007_s00521_021_06362_3 crossref_primary_10_1016_j_engstruct_2020_110793 crossref_primary_10_1080_02626667_2022_2063724 crossref_primary_10_1016_j_agsy_2017_01_017 crossref_primary_10_1016_j_indcrop_2023_116750 crossref_primary_10_2139_ssrn_3991690 crossref_primary_10_1007_s00500_016_2131_0 crossref_primary_10_1007_s11270_021_05311_z crossref_primary_10_1007_s00500_022_07041_8 crossref_primary_10_3390_pr13020369 crossref_primary_10_1080_19648189_2023_2205914 crossref_primary_10_1016_j_jconhyd_2021_103844 crossref_primary_10_1007_s12145_024_01533_x crossref_primary_10_3390_f8120498 crossref_primary_10_1002_joc_7988 crossref_primary_10_1111_gwat_12913 crossref_primary_10_1007_s00477_024_02856_3 crossref_primary_10_1016_j_conbuildmat_2020_119889 crossref_primary_10_1016_j_compchemeng_2024_108950 crossref_primary_10_1109_ACCESS_2021_3125622 crossref_primary_10_1016_j_jhydrol_2021_126723 crossref_primary_10_1016_j_asej_2020_10_022 crossref_primary_10_1016_j_jfoodeng_2018_06_020 crossref_primary_10_1097_MD_0000000000025813 crossref_primary_10_2166_ws_2019_204 crossref_primary_10_1016_j_jhydrol_2023_130458 crossref_primary_10_1038_s41598_019_56405_y crossref_primary_10_1016_j_jenvman_2024_120777 crossref_primary_10_3390_app13031333 crossref_primary_10_1007_s11269_015_0990_2 crossref_primary_10_1029_2020WR027086 crossref_primary_10_1016_j_jhydrol_2020_125563 crossref_primary_10_1080_02626667_2024_2321332 crossref_primary_10_1680_jwama_20_00002 crossref_primary_10_3390_w9020105 crossref_primary_10_3390_w16131904 crossref_primary_10_1007_s12517_017_3211_x crossref_primary_10_1016_j_ecolind_2022_108708 crossref_primary_10_1061_JTEPBS_TEENG_8277 crossref_primary_10_3390_agronomy10010101 crossref_primary_10_1016_j_jhydrol_2020_125324 crossref_primary_10_1007_s40808_022_01387_6 crossref_primary_10_1016_j_jhydrol_2020_125205 crossref_primary_10_1038_s41598_021_85629_0 crossref_primary_10_1016_j_jhydrol_2021_126958 crossref_primary_10_1007_s00500_023_08865_8 crossref_primary_10_1007_s13042_018_00904_3 crossref_primary_10_3390_w14060949 crossref_primary_10_1016_j_jhydrol_2025_132906 crossref_primary_10_3934_environsci_2025004 crossref_primary_10_1007_s12517_019_4697_1 crossref_primary_10_1007_s11069_019_03665_6 crossref_primary_10_1007_s12665_023_11408_x crossref_primary_10_1016_j_asoc_2021_108080 crossref_primary_10_55213_kmujens_1477330 crossref_primary_10_1061__ASCE_WR_1943_5452_0001612 crossref_primary_10_3846_13923730_2015_1005021 crossref_primary_10_1111_wej_12939 crossref_primary_10_1111_wej_12801 crossref_primary_10_1007_s00024_024_03656_0 crossref_primary_10_1016_j_eti_2022_102939 crossref_primary_10_3934_jimo_2021184 crossref_primary_10_1007_s00704_023_04822_5 crossref_primary_10_1007_s00366_018_0681_8 crossref_primary_10_1016_j_atmosres_2020_105026 crossref_primary_10_1007_s10333_016_0571_x crossref_primary_10_1007_s00704_015_1544_5 crossref_primary_10_1007_s40808_015_0027_0 crossref_primary_10_3390_jof8090978 crossref_primary_10_4018_IJAEIS_2020010104 crossref_primary_10_1109_ACCESS_2019_2940899 crossref_primary_10_1109_ACCESS_2020_2974406 crossref_primary_10_3390_ijerph18031023 crossref_primary_10_1155_2016_3061674 crossref_primary_10_1016_j_engappai_2022_105150 crossref_primary_10_1016_j_jenvman_2023_119714 crossref_primary_10_1061__ASCE_IR_1943_4774_0001471 crossref_primary_10_1007_s00521_024_09457_9 crossref_primary_10_1061__ASCE_HE_1943_5584_0001674 crossref_primary_10_3390_su11184836 crossref_primary_10_1016_j_conbuildmat_2019_117048 crossref_primary_10_1016_j_jhydrol_2024_131639 crossref_primary_10_1080_17455030_2021_1996658 crossref_primary_10_1007_s13762_018_1674_2 crossref_primary_10_1038_s41598_019_54888_3 crossref_primary_10_3390_math12162542 crossref_primary_10_1016_j_advwatres_2024_104636 crossref_primary_10_1016_j_cmpb_2018_05_029 crossref_primary_10_1155_2021_3721661 crossref_primary_10_1109_JSTARS_2021_3053945 crossref_primary_10_1016_j_watres_2023_120828 crossref_primary_10_1007_s11356_021_17257_0 crossref_primary_10_1029_2020WR028666 crossref_primary_10_1007_s00477_024_02692_5 crossref_primary_10_1007_s11042_023_14713_6 crossref_primary_10_1016_j_ecolind_2020_106941 crossref_primary_10_1016_j_watres_2020_115799 crossref_primary_10_1680_jwama_19_00001 crossref_primary_10_1007_s00500_023_08285_8 crossref_primary_10_1007_s11269_022_03341_8 crossref_primary_10_1080_01431161_2018_1482026 crossref_primary_10_1016_j_jhydrol_2025_132915 crossref_primary_10_1016_j_applanim_2021_105397 crossref_primary_10_1029_2022EA002518 crossref_primary_10_3390_hydrology7030059 crossref_primary_10_1177_02670844251320066 crossref_primary_10_3390_atmos9030083 crossref_primary_10_1007_s41062_024_01744_7 crossref_primary_10_1029_2022WR032779 crossref_primary_10_1002_suco_202100681 crossref_primary_10_3390_rs13132598 crossref_primary_10_1016_j_istruc_2023_105742 crossref_primary_10_3390_land13030299 crossref_primary_10_1007_s10489_018_1185_3 crossref_primary_10_1007_s00340_022_07879_8 crossref_primary_10_1111_jfr3_12656 crossref_primary_10_1016_j_biotechadv_2023_108095 crossref_primary_10_1016_j_catena_2025_108774 crossref_primary_10_1155_2018_8328167 crossref_primary_10_1016_j_asoc_2022_109345 crossref_primary_10_1016_j_compag_2023_107836 crossref_primary_10_1016_j_microc_2021_106635 crossref_primary_10_1155_2018_1824317 crossref_primary_10_1016_j_scitotenv_2018_03_162 crossref_primary_10_2166_aqua_2018_036 crossref_primary_10_1016_j_eswa_2020_114498 crossref_primary_10_1021_acsomega_1c02317 crossref_primary_10_1007_s00704_022_03939_3 crossref_primary_10_1061_JPSEA2_PSENG_1521 crossref_primary_10_1016_j_jenvman_2021_113783 crossref_primary_10_1016_j_scitotenv_2022_156410 crossref_primary_10_1080_02626667_2022_2082876 crossref_primary_10_1002_hyp_15310 crossref_primary_10_1007_s11269_017_1568_y crossref_primary_10_3390_w10111536 crossref_primary_10_1038_s41598_025_88446_x crossref_primary_10_3390_w11010085 crossref_primary_10_1016_j_apenergy_2022_120604 crossref_primary_10_1016_j_csag_2024_100025 crossref_primary_10_31857_S0321059623030112 crossref_primary_10_1007_s10661_023_11276_9 crossref_primary_10_1007_s11269_018_2028_z crossref_primary_10_1016_j_conbuildmat_2022_127233 crossref_primary_10_1007_s12665_021_09394_z crossref_primary_10_1175_JHM_D_21_0194_1 crossref_primary_10_2166_hydro_2024_253 crossref_primary_10_1175_JHM_D_21_0096_1 crossref_primary_10_2166_hydro_2025_292 crossref_primary_10_3390_atmos15060727 crossref_primary_10_3390_s19194091 crossref_primary_10_1007_s12046_022_01805_6 crossref_primary_10_1016_j_eswa_2021_115691 crossref_primary_10_3390_electronics12112431 crossref_primary_10_1515_jisys_2016_0065 crossref_primary_10_1016_j_scitotenv_2023_167534 crossref_primary_10_1016_j_jhydrol_2019_123929 crossref_primary_10_1007_s00382_016_3145_0 crossref_primary_10_29130_dubited_1225446 crossref_primary_10_1080_0305215X_2016_1245729 crossref_primary_10_1134_S1054661819010097 crossref_primary_10_1007_s10040_021_02306_2 crossref_primary_10_1007_s00477_022_02336_6 crossref_primary_10_1016_j_jhydrol_2020_125272 crossref_primary_10_1029_2021WR031412 crossref_primary_10_1080_10910344_2023_2235610 crossref_primary_10_3390_biom13081192 crossref_primary_10_1016_j_jag_2021_102458 crossref_primary_10_1016_j_engappai_2017_05_019 crossref_primary_10_1016_j_jenvman_2021_112674 crossref_primary_10_1080_23311916_2014_999414 crossref_primary_10_1080_02626667_2020_1787416 crossref_primary_10_1002_hyp_14000 crossref_primary_10_1080_00295639_2020_1854541 crossref_primary_10_1016_j_tsep_2024_102902 crossref_primary_10_1016_j_envpol_2024_124242 crossref_primary_10_1016_j_measurement_2019_07_048 crossref_primary_10_3390_w12061643 crossref_primary_10_1109_ACCESS_2018_2890422 crossref_primary_10_1016_j_saa_2024_123991 crossref_primary_10_3390_buildings13010048 crossref_primary_10_1007_s10666_018_9639_x crossref_primary_10_2166_hydro_2024_153 crossref_primary_10_2166_hydro_2024_033 crossref_primary_10_3390_su17051786 crossref_primary_10_1007_s11356_024_34691_y crossref_primary_10_1016_j_cma_2024_117191 crossref_primary_10_1016_j_protcy_2016_03_039 crossref_primary_10_1016_j_scitotenv_2018_01_202 crossref_primary_10_2166_h2oj_2020_005 crossref_primary_10_3390_buildings13122914 crossref_primary_10_1016_j_ejrh_2025_102273 crossref_primary_10_1155_2018_7809302 crossref_primary_10_3390_s20226671 crossref_primary_10_1007_s12205_018_0128_1 crossref_primary_10_1007_s12665_020_08971_y crossref_primary_10_1016_j_jher_2022_10_002 crossref_primary_10_1061__ASCE_IR_1943_4774_0001575 crossref_primary_10_1016_j_seta_2022_102040 crossref_primary_10_1109_JIOT_2024_3429341 crossref_primary_10_1016_j_scp_2023_101060 crossref_primary_10_3389_fenvs_2022_820615 crossref_primary_10_1016_j_scitotenv_2024_171684 crossref_primary_10_1007_s00477_018_1638_6 crossref_primary_10_1080_02626667_2017_1413491 crossref_primary_10_3390_informatics10040084 crossref_primary_10_3390_su15087016 crossref_primary_10_1016_j_compag_2020_105577 crossref_primary_10_1017_aer_2024_164 crossref_primary_10_1016_j_jhydrol_2021_126055 crossref_primary_10_1186_s12877_022_03152_x crossref_primary_10_3390_math10162971 crossref_primary_10_3390_ma15134436 crossref_primary_10_3390_w12123351 crossref_primary_10_3390_w16223328 crossref_primary_10_1016_j_neucom_2022_10_078 crossref_primary_10_1007_s11053_019_09512_6 crossref_primary_10_1080_19942060_2019_1680576 crossref_primary_10_1080_02626667_2022_2156292 crossref_primary_10_1134_S0097807823030119 crossref_primary_10_1007_s00477_024_02793_1 crossref_primary_10_1016_j_measurement_2016_06_042 crossref_primary_10_1007_s10651_024_00642_6 crossref_primary_10_1016_j_energy_2021_120309 crossref_primary_10_3390_w8030069 crossref_primary_10_1007_s10668_024_04926_6 crossref_primary_10_1007_s12040_017_0850_y crossref_primary_10_3390_liquids2030010 crossref_primary_10_1016_j_jwpe_2024_105225 crossref_primary_10_1080_19942060_2021_1984992 crossref_primary_10_1155_2022_4285328 crossref_primary_10_1016_j_advwatres_2021_104076 crossref_primary_10_1109_JSTARS_2020_3035386 crossref_primary_10_1007_s12145_021_00572_y crossref_primary_10_1016_j_atmosres_2018_05_022 crossref_primary_10_1007_s11356_024_35173_x crossref_primary_10_56093_ijans_v90i8_109314 crossref_primary_10_1080_02626667_2015_1006232 crossref_primary_10_3390_w14030431 crossref_primary_10_1007_s11356_018_2698_3 crossref_primary_10_12677_OJTT_2019_94034 crossref_primary_10_3390_rs13193928 crossref_primary_10_3390_agriengineering6020063 crossref_primary_10_1029_2018WR024620 crossref_primary_10_1061__ASCE_BE_1943_5592_0001571 crossref_primary_10_1002_rra_4191 crossref_primary_10_3390_w13091177 crossref_primary_10_1007_s12665_024_11538_w crossref_primary_10_1016_j_jhydrol_2020_124954 crossref_primary_10_1007_s11356_024_33389_5 crossref_primary_10_1016_j_agwat_2023_108231 crossref_primary_10_1016_j_csite_2022_102620 crossref_primary_10_5194_hess_26_129_2022 crossref_primary_10_1109_JSTARS_2021_3067890 crossref_primary_10_1029_2018WR024558 crossref_primary_10_1007_s12517_021_06603_8 crossref_primary_10_1007_s11269_024_03912_x crossref_primary_10_1007_s11269_016_1280_3 crossref_primary_10_1080_0951192X_2022_2163295 crossref_primary_10_1111_coin_12524 crossref_primary_10_2166_nh_2022_144 crossref_primary_10_1016_j_jhydrol_2018_09_064 crossref_primary_10_1007_s11269_018_2155_6 crossref_primary_10_1007_s11270_020_04693_w crossref_primary_10_3390_w16223247 crossref_primary_10_1007_s00158_017_1871_5 crossref_primary_10_1155_2021_6242288 crossref_primary_10_3389_fmars_2022_947394 crossref_primary_10_1016_j_catena_2021_105841 crossref_primary_10_1007_s00382_018_04605_z crossref_primary_10_1016_j_scitotenv_2016_12_149 crossref_primary_10_1088_1755_1315_648_1_012212 crossref_primary_10_1002_met_1881 crossref_primary_10_2147_IJGM_S467374 crossref_primary_10_1007_s00500_023_08827_0 crossref_primary_10_3389_frwa_2021_652100 crossref_primary_10_1007_s11831_024_10126_2 crossref_primary_10_1016_j_jseaes_2024_106027 crossref_primary_10_1080_02626667_2020_1755436 crossref_primary_10_3390_rs10020172 crossref_primary_10_1007_s13131_024_2356_1 crossref_primary_10_1016_j_jcomc_2020_100070 crossref_primary_10_1016_j_ymssp_2024_111633 crossref_primary_10_1109_ACCESS_2020_2990181 crossref_primary_10_1016_j_asr_2022_05_057 crossref_primary_10_1007_s13201_023_01885_7 crossref_primary_10_1109_ACCESS_2021_3083175 crossref_primary_10_1016_j_jhydrol_2022_128995 crossref_primary_10_1007_s00521_022_07406_y crossref_primary_10_1016_j_petrol_2020_108182 crossref_primary_10_1061__ASCE_CR_1943_5495_0000188 crossref_primary_10_1016_j_jhydrol_2018_11_069 crossref_primary_10_3390_w16050677 crossref_primary_10_1007_s40997_023_00748_5 crossref_primary_10_1080_20442041_2021_1924034 crossref_primary_10_1007_s11356_024_32984_w crossref_primary_10_1007_s40996_023_01099_6 crossref_primary_10_1016_j_jastp_2024_106381 crossref_primary_10_1371_journal_pone_0311482 crossref_primary_10_1016_j_jhydrol_2018_10_020 crossref_primary_10_1016_j_resourpol_2019_101474 crossref_primary_10_1016_j_atmosres_2018_06_006 crossref_primary_10_1016_j_ast_2019_105332 crossref_primary_10_3233_JIFS_169200 crossref_primary_10_1080_15715124_2023_2196635 crossref_primary_10_1007_s12517_021_08209_6 crossref_primary_10_1080_09715010_2017_1408037 crossref_primary_10_1186_s40623_024_02002_x crossref_primary_10_1016_j_still_2019_104449 crossref_primary_10_1088_1748_9326_ac6229 crossref_primary_10_1016_j_compag_2019_105041 crossref_primary_10_1016_j_ejrh_2021_100880 crossref_primary_10_1088_1755_1315_140_1_012035 crossref_primary_10_1016_j_jhydrol_2018_07_004 crossref_primary_10_1016_j_autcon_2021_103916 crossref_primary_10_1007_s10661_020_08695_3 crossref_primary_10_3390_sym14050927 crossref_primary_10_1016_j_enconman_2016_08_020 crossref_primary_10_3390_math12071066 crossref_primary_10_3390_su14010148 crossref_primary_10_1002_wwp2_12175 crossref_primary_10_1016_j_scitotenv_2023_161623 crossref_primary_10_1038_s41598_024_69238_1 crossref_primary_10_1016_j_jaridenv_2021_104513 crossref_primary_10_1139_er_2018_0034 crossref_primary_10_1016_j_renene_2021_06_112 crossref_primary_10_1007_s00521_018_3519_9 crossref_primary_10_1016_j_jhazmat_2020_123492 crossref_primary_10_1007_s12230_015_9453_9 crossref_primary_10_1007_s11356_023_25235_x crossref_primary_10_3389_frwa_2022_961954 crossref_primary_10_1016_j_asoc_2023_111031 crossref_primary_10_1080_19475705_2020_1751734 crossref_primary_10_1038_s41598_023_38771_w crossref_primary_10_1007_s11053_021_09890_w crossref_primary_10_3390_w14172649 crossref_primary_10_1016_j_asej_2023_102168 crossref_primary_10_1093_fqsafe_fyad014 crossref_primary_10_1016_j_gsd_2024_101343 crossref_primary_10_1016_j_jhydrol_2020_124670 crossref_primary_10_1016_j_jconhyd_2021_103815 crossref_primary_10_1007_s11356_021_17064_7 crossref_primary_10_1007_s12665_017_7064_0 crossref_primary_10_1016_j_energy_2019_03_057 crossref_primary_10_3389_fneur_2024_1366307 crossref_primary_10_1029_2019WR025656 crossref_primary_10_1016_j_gsd_2023_101037 crossref_primary_10_1109_TGRS_2018_2860931 crossref_primary_10_3390_w9040257 crossref_primary_10_1007_s11004_023_10100_x crossref_primary_10_1007_s11030_016_9709_4 crossref_primary_10_1109_ACCESS_2018_2885310 crossref_primary_10_3390_w7052494 crossref_primary_10_1016_j_isatra_2021_10_010 crossref_primary_10_3390_jmse10081150 crossref_primary_10_3390_en15166063 crossref_primary_10_1016_j_advwatres_2020_103562 crossref_primary_10_21923_jesd_722323 crossref_primary_10_1590_fst_54622 crossref_primary_10_1016_j_jenvman_2024_120495 crossref_primary_10_3390_ijerph17155497 crossref_primary_10_3390_w14030492 crossref_primary_10_1007_s11356_021_12501_z crossref_primary_10_1007_s10666_017_9586_y crossref_primary_10_1080_02626667_2017_1371847 crossref_primary_10_3390_w15112004 crossref_primary_10_3390_w16152199 crossref_primary_10_1111_gwat_13041 crossref_primary_10_1016_j_scitotenv_2022_155944 crossref_primary_10_1016_j_jconhyd_2023_104201 crossref_primary_10_1038_s41598_021_96751_4 crossref_primary_10_3390_math10193432 crossref_primary_10_1007_s00521_021_05890_2 crossref_primary_10_1016_j_mex_2023_102060 crossref_primary_10_33395_sinkron_v4i2_10524 crossref_primary_10_3390_coatings11040450 crossref_primary_10_30521_jes_932581 crossref_primary_10_2166_ws_2020_015 crossref_primary_10_2139_ssrn_4352020 crossref_primary_10_1016_j_compag_2023_108255 crossref_primary_10_3390_jmse11122305 crossref_primary_10_1016_j_ymssp_2015_02_018 crossref_primary_10_1016_j_agwat_2019_03_045 crossref_primary_10_1109_ACCESS_2018_2880044 crossref_primary_10_3390_rs12213613 crossref_primary_10_1007_s11269_023_03730_7 crossref_primary_10_1155_2022_5991154 crossref_primary_10_1007_s40899_024_01069_4 crossref_primary_10_1038_s41598_019_41510_9 crossref_primary_10_1016_j_jngse_2016_02_019 crossref_primary_10_1016_j_biosystemseng_2019_01_005 crossref_primary_10_1016_j_pedsph_2022_06_009 crossref_primary_10_3390_foods13172656 crossref_primary_10_1016_j_rser_2018_05_060 crossref_primary_10_1007_s12665_018_7376_8 crossref_primary_10_3390_rs15081984 crossref_primary_10_3390_w17030434 crossref_primary_10_1007_s10346_023_02073_z crossref_primary_10_1016_j_jclepro_2023_137329 crossref_primary_10_1016_j_sab_2023_106852 crossref_primary_10_1007_s13201_017_0526_4 crossref_primary_10_1016_j_compag_2020_105439 crossref_primary_10_1007_s11831_023_10017_y crossref_primary_10_1007_s11269_020_02589_2 crossref_primary_10_1007_s11356_021_17852_1 crossref_primary_10_1109_TGRS_2021_3054582 crossref_primary_10_1016_j_triboint_2023_108336 crossref_primary_10_3390_rs12111801 crossref_primary_10_1029_2018WR022643 crossref_primary_10_1016_j_chemolab_2021_104329 crossref_primary_10_1007_s00704_023_04442_z crossref_primary_10_1016_j_csite_2023_102968 crossref_primary_10_1061__ASCE_EE_1943_7870_0001272 crossref_primary_10_1155_2021_6611885 crossref_primary_10_1016_j_watres_2021_117666 crossref_primary_10_2166_wcc_2021_051 crossref_primary_10_1007_s12205_022_1367_8 crossref_primary_10_1080_02626667_2019_1676428 crossref_primary_10_1016_j_scitotenv_2022_154707 crossref_primary_10_1016_j_coldregions_2015_11_004 crossref_primary_10_1016_j_foodp_2024_100020 crossref_primary_10_1016_j_jhydrol_2020_124759 crossref_primary_10_3389_frwa_2020_573034 |
Cites_doi | 10.2166/hydro.2004.0016 10.1016/j.jhydrol.2010.11.002 10.1080/10556780008805771 10.1002/clen.201000068 10.1016/j.neucom.2012.07.017 10.2166/hydro.2001.0014 10.1016/j.advwatres.2009.10.008 10.2166/hydro.2004.0020 10.2478/jwld-2013-0001 10.1016/j.tcs.2005.05.020 10.1186/1471-2105-7-S2-S4 10.4236/jwarp.2012.47062 10.1109/72.788640 10.1175/WAF-D-11-00004.1 10.1007/BF00994018 10.1145/956750.956786 10.1061/(ASCE)0887-3801(2001)15:3(208) 10.1016/j.engappai.2011.11.003 10.1162/089976600300015565 10.1016/j.engappai.2008.05.008 10.1007/s11269-013-0382-4 10.1016/0022-247X(71)90184-3 10.1016/j.jhydrol.2006.04.030 10.2166/hydro.2007.027 10.14419/ijet.v2i2.834 10.1016/j.jhydrol.2006.01.021 10.1016/j.jhydrol.2008.05.028 10.1016/j.jhydrol.2007.08.029 10.1623/hysj.51.4.599 10.1007/s00376-009-8071-1 10.4236/eng.2011.34049 10.1623/hysj.53.3.656 10.3923/jas.2008.3497.3502 10.1016/S0893-6080(03)00169-2 10.1016/j.jhydrol.2007.04.008 10.1061/(ASCE)1084-0699(2006)11:3(199) 10.1002/hyp.9966 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2014.02.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 386 |
ExternalDocumentID | 10_1016_j_asoc_2014_02_002 S1568494614000611 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-72d712a3c5db5a39258a3db1d28d97b8e7dbcecb35007abb6bdceb16801b7f043 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 00:55:30 EDT 2025 Fri Feb 23 02:28:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Support vector machines Optimization theory Hydrological models Statistical learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-72d712a3c5db5a39258a3db1d28d97b8e7dbcecb35007abb6bdceb16801b7f043 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2014_02_002 crossref_primary_10_1016_j_asoc_2014_02_002 elsevier_sciencedirect_doi_10_1016_j_asoc_2014_02_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vapnik (bib0080) 1999; 10 Schölkopf, Smola, Williamson, Bartlett (bib0110) 2000; 12 Arun, Mahesh (bib0150) 2009; 22 Drucker, Burges, Kaufman, Smola, Vapnik (bib0295) 1997; 9 Moghaddamnia, Ghafari, Piri, Han (bib0175) 2008; 43 Chen, Yu (bib0220) 2007; 347 Sivapragasam, Liong, Pasha (bib0020) 2001; 3 Yuri (bib0335) 2013; 2 Vapnik (bib0025) 1995 Cristianini, Shawe-Tylor (bib0045) 2000 Wei, Wang, Xie, Liu (bib0215) 2007; 258 Dibike, Velickov, Solomatine, Abbott (bib0115) 2001; 15 Hossein, Ozgur, Azadeh, Hosseinzadeh (bib0190) 2012; 444–445 Zahrahtul, Ani (bib0165) 2012; 6 Yu, Chen, Chang (bib0205) 2006; 328 Tripathi, Srinivas, Nanjundiah (bib0125) 2006; 330 Hazi, Aminuddin, Chun, Chang, Zorkeflee, Zakaria (bib0160) 2010; 38 Wu, Chau, Li (bib0345) 2008; 358 Bradley, Mangasarian (bib0090) 1998 Cortes, Vapnik (bib0040) 1995; 20 Han, Chan, Zhu (bib0210) 2007; 9 C. Saunders , M.O. Stitson , J. Weston , L. Bottou , B. Schölkopf , A. Smola , Support vector machine – Reference manual Royal Holloway Technical Report CSD-TR-98-03. Royal Holloway (1998). Chen, Guo, Wei (bib0135) 2010; 27 Shigeo (bib0050) 2010 Gill, Asefa, Kemblowski, McKee (bib0260) 2006; 42 Eslamian, Gohari, Biabanaki, Malekin (bib0180) 2008; 8 Duda, Hart (bib0055) 1973 Mukherjee, Vapnik (bib0325) 1999 Suykens, Van Gestel, De Brabanter, De Moor, Vandewalle (bib0085) 2002 Afiq, Ahmed, Ali, Othman, Aini, Mukhlisi (bib0200) 2013; 27 Marty, Beekwilder, Goodall, Ercan (bib0365) 2012 Pijush (bib0185) 2011; 3 S. Gunn, Support vector machines for classification and regression, ISIS Technical Report. (1998). Bray, Han (bib0120) 2004; 6 Kimeldorf, Wabha (bib0370) 1971; 33 Shahbazi, Banafsheh, Hossein, Manshouri, Mohsen (bib0230) 2011; 13 Xinying, Liong, Babovic (bib0015) 2004; 6 Jian, Chun, Kwok (bib0140) 2006; 51 Belayneh, Adamowski (bib0235) 2013; 18 Debasmita, Thomas, Avinash, Surendra, Anita (bib0155) 2009; 103 Smola (bib0315) 1990 Cherkassky, Ma (bib0310) 2004; 17 Parag, Bhagwat, Rajib (bib0170) 2012; 4 Winters-Hilt, Yelundur, McChesney, Landry (bib0070) 2006; 7 Chen, Yu (bib0225) 2007; 340 Ganguli, Reddy (bib0240) 2013 Heesung, Jun, Yunjung, Bae, Kang (bib0255) 2011; 396 J.C. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector. (1998). Seyyed, Reza, Mohammad, Kazem (bib0375) 2010; 37 Remesan, Michaela, Shamim, Han (bib0275) 2009 Karaboga, Akay (bib0355) 2009 Collobert, Bengio (bib0035) 2001; 1 National Engineering Handbook (bib0010) 2012 Vapnik, Golwich, Smola (bib0030) 1997; vol. 9 Mesut (bib0145) 2008; 53 Yu, Yang, Han (bib0060) 2003 Sudheer, Nitin, Panigrahi, Shashi (bib0290) 2013; 101 Sajjad, Ajay, Haroon (bib0265) 2010; 33 Fletcher (bib0075) 1987 Ozgur, Mesut (bib0280) 2012; 25 Dorigo, Blum (bib0360) 2005; 344 Bradley, Mangasarian (bib0105) 2000; 13 Pechlivanidis, Jackson, Mcintyre, Wheater (bib0005) 2011; 13 Yonas, Slavco, Dimitri (bib0340) 2000 Weston, Gammerman, Stitson, Vapnik, Vovk, Watkins (bib0350) 1999 Shih, Rennie, Chang, Karger (bib0065) 2003 Bi, Bennett, Embrechts, Breneman, Song (bib0095) 2003; 3 Mohsen, Keyvan, Emery, Coppola (bib0250) 2010; 24 Liu, Chang, Xiaoyan (bib0270) 2011 Anirudh, Umesh (bib0130) 2007 Jin, Chang, Zhang (bib0245) 2009 Wei (bib0285) 2012; 27 Zhu, Rosset, Hastie, Tibshirani (bib0100) 2003 Ovidiu (bib0305) 2007; vol. 23 Khan, Coulibaly (bib0195) 2006; 11 Karaboga (10.1016/j.asoc.2014.02.002_bib0355) 2009 Winters-Hilt (10.1016/j.asoc.2014.02.002_bib0070) 2006; 7 Han (10.1016/j.asoc.2014.02.002_bib0210) 2007; 9 Yuri (10.1016/j.asoc.2014.02.002_bib0335) 2013; 2 Arun (10.1016/j.asoc.2014.02.002_bib0150) 2009; 22 Chen (10.1016/j.asoc.2014.02.002_bib0225) 2007; 340 Heesung (10.1016/j.asoc.2014.02.002_bib0255) 2011; 396 Sivapragasam (10.1016/j.asoc.2014.02.002_bib0020) 2001; 3 Zahrahtul (10.1016/j.asoc.2014.02.002_bib0165) 2012; 6 Drucker (10.1016/j.asoc.2014.02.002_bib0295) 1997; 9 Tripathi (10.1016/j.asoc.2014.02.002_bib0125) 2006; 330 Jin (10.1016/j.asoc.2014.02.002_bib0245) 2009 Remesan (10.1016/j.asoc.2014.02.002_bib0275) 2009 Shigeo (10.1016/j.asoc.2014.02.002_bib0050) 2010 Ovidiu (10.1016/j.asoc.2014.02.002_bib0305) 2007; vol. 23 Hazi (10.1016/j.asoc.2014.02.002_bib0160) 2010; 38 Bray (10.1016/j.asoc.2014.02.002_bib0120) 2004; 6 Liu (10.1016/j.asoc.2014.02.002_bib0270) 2011 Smola (10.1016/j.asoc.2014.02.002_bib0315) 1990 Vapnik (10.1016/j.asoc.2014.02.002_bib0025) 1995 Dibike (10.1016/j.asoc.2014.02.002_bib0115) 2001; 15 Hossein (10.1016/j.asoc.2014.02.002_bib0190) 2012; 444–445 Debasmita (10.1016/j.asoc.2014.02.002_bib0155) 2009; 103 Gill (10.1016/j.asoc.2014.02.002_bib0260) 2006; 42 Marty (10.1016/j.asoc.2014.02.002_bib0365) 2012 Zhu (10.1016/j.asoc.2014.02.002_bib0100) 2003 Shahbazi (10.1016/j.asoc.2014.02.002_bib0230) 2011; 13 Seyyed (10.1016/j.asoc.2014.02.002_bib0375) 2010; 37 Yu (10.1016/j.asoc.2014.02.002_bib0205) 2006; 328 Cherkassky (10.1016/j.asoc.2014.02.002_bib0310) 2004; 17 Wu (10.1016/j.asoc.2014.02.002_bib0345) 2008; 358 Mesut (10.1016/j.asoc.2014.02.002_bib0145) 2008; 53 Suykens (10.1016/j.asoc.2014.02.002_bib0085) 2002 Schölkopf (10.1016/j.asoc.2014.02.002_bib0110) 2000; 12 Chen (10.1016/j.asoc.2014.02.002_bib0220) 2007; 347 Jian (10.1016/j.asoc.2014.02.002_bib0140) 2006; 51 Wei (10.1016/j.asoc.2014.02.002_bib0285) 2012; 27 10.1016/j.asoc.2014.02.002_bib0320 Bradley (10.1016/j.asoc.2014.02.002_bib0090) 1998 Xinying (10.1016/j.asoc.2014.02.002_bib0015) 2004; 6 Pechlivanidis (10.1016/j.asoc.2014.02.002_bib0005) 2011; 13 Pijush (10.1016/j.asoc.2014.02.002_bib0185) 2011; 3 Parag (10.1016/j.asoc.2014.02.002_bib0170) 2012; 4 Mohsen (10.1016/j.asoc.2014.02.002_bib0250) 2010; 24 Belayneh (10.1016/j.asoc.2014.02.002_bib0235) 2013; 18 Fletcher (10.1016/j.asoc.2014.02.002_bib0075) 1987 Eslamian (10.1016/j.asoc.2014.02.002_bib0180) 2008; 8 Yonas (10.1016/j.asoc.2014.02.002_bib0340) 2000 Yu (10.1016/j.asoc.2014.02.002_bib0060) 2003 10.1016/j.asoc.2014.02.002_bib0330 Duda (10.1016/j.asoc.2014.02.002_bib0055) 1973 Vapnik (10.1016/j.asoc.2014.02.002_bib0080) 1999; 10 Anirudh (10.1016/j.asoc.2014.02.002_bib0130) 2007 Chen (10.1016/j.asoc.2014.02.002_bib0135) 2010; 27 Dorigo (10.1016/j.asoc.2014.02.002_bib0360) 2005; 344 National Engineering Handbook (10.1016/j.asoc.2014.02.002_bib0010) 2012 Moghaddamnia (10.1016/j.asoc.2014.02.002_bib0175) 2008; 43 Weston (10.1016/j.asoc.2014.02.002_bib0350) 1999 Collobert (10.1016/j.asoc.2014.02.002_bib0035) 2001; 1 Khan (10.1016/j.asoc.2014.02.002_bib0195) 2006; 11 Wei (10.1016/j.asoc.2014.02.002_bib0215) 2007; 258 Afiq (10.1016/j.asoc.2014.02.002_bib0200) 2013; 27 Kimeldorf (10.1016/j.asoc.2014.02.002_bib0370) 1971; 33 Shih (10.1016/j.asoc.2014.02.002_bib0065) 2003 Mukherjee (10.1016/j.asoc.2014.02.002_bib0325) 1999 Bi (10.1016/j.asoc.2014.02.002_bib0095) 2003; 3 Ganguli (10.1016/j.asoc.2014.02.002_bib0240) 2013 Ozgur (10.1016/j.asoc.2014.02.002_bib0280) 2012; 25 Cristianini (10.1016/j.asoc.2014.02.002_bib0045) 2000 Bradley (10.1016/j.asoc.2014.02.002_bib0105) 2000; 13 Sajjad (10.1016/j.asoc.2014.02.002_bib0265) 2010; 33 Vapnik (10.1016/j.asoc.2014.02.002_bib0030) 1997; vol. 9 Cortes (10.1016/j.asoc.2014.02.002_bib0040) 1995; 20 Sudheer (10.1016/j.asoc.2014.02.002_bib0290) 2013; 101 10.1016/j.asoc.2014.02.002_bib0300 |
References_xml | – volume: 1 start-page: 143 year: 2001 end-page: 160 ident: bib0035 article-title: SVMTorch: support vector machines for large-scale regression problems publication-title: Journal of Machine Learning Research – volume: 358 start-page: 96 year: 2008 end-page: 111 ident: bib0345 article-title: River stage prediction based on a distributed support vector regression publication-title: Journal of Hydrology – volume: 24 year: 2010 ident: bib0250 article-title: Comparative study of SVMs and ANNs in aquifer water level prediction publication-title: Journal of Computing in Civil Engineering – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0040 article-title: Support vector networks publication-title: Machine Learning – year: 2000 ident: bib0340 article-title: Support vector machines: Review and applications in civil engineering publication-title: Proceedings of the 2nd Joint Workshop on Application of AI in Civil Engineering March 2000 – reference: S. Gunn, Support vector machines for classification and regression, ISIS Technical Report. (1998). – volume: 6 start-page: 3003 year: 2012 end-page: 3014 ident: bib0165 article-title: Streamflow forecasting at ungaged sites using support vector machines publication-title: Applied Mathematical Sciences – volume: 9 start-page: 155 year: 1997 end-page: 161 ident: bib0295 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – volume: 18 start-page: 3 year: 2013 end-page: 12 ident: bib0235 article-title: Drought forecasting using new machine learning methods publication-title: Journal of Water and Land Development – volume: 10 start-page: 988 year: 1999 end-page: 999 ident: bib0080 article-title: An overview of statistical learning theory publication-title: IEEE Transactions on Neural Networks – volume: 13 start-page: 1387 year: 2011 end-page: 1397 ident: bib0230 article-title: Seasonal meteorological drought prediction using support vector machine publication-title: World Applied Sciences Journal – volume: 11 start-page: 199 year: 2006 end-page: 205 ident: bib0195 article-title: Application of support vector machine in lake water level prediction publication-title: Journal of Hydrologic Engineering ASCE – reference: C. Saunders , M.O. Stitson , J. Weston , L. Bottou , B. Schölkopf , A. Smola , Support vector machine – Reference manual Royal Holloway Technical Report CSD-TR-98-03. Royal Holloway (1998). – volume: vol. 23 start-page: 291 year: 2007 end-page: 400 ident: bib0305 article-title: Applications of support vector machines in chemistry publication-title: Reviews in Computational Chemistry – volume: 330 start-page: 621 year: 2006 end-page: 640 ident: bib0125 article-title: Downscaling of precipitation for climate change scenarios: a support vector machine approach publication-title: Journal of Hydrology – volume: 27 start-page: 438 year: 2012 end-page: 450 ident: bib0285 article-title: Wavelet support vector machines for forecasting precipitation in tropical cyclones: comparisons with GSVM, regression, and MM5 publication-title: Weather and Forecasting – volume: 15 start-page: 208 year: 2001 end-page: 216 ident: bib0115 article-title: Model induction with support vector machines: introduction and application publication-title: Journal of Computing in Civil Engineering – volume: 43 start-page: 14 year: 2008 end-page: 22 ident: bib0175 article-title: Evaporation estimation using support vector machines technique publication-title: World Academy of Science, Engineering and Technology – volume: 396 start-page: 128 year: 2011 end-page: 138 ident: bib0255 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: Journal of Hydrology – volume: 2 start-page: 113 year: 2013 end-page: 125 ident: bib0335 article-title: Applications of SVMs in the exploratory phase of petroleum and natural gas: a survey publication-title: International Journal of Engineering and Technology – year: 1995 ident: bib0025 publication-title: The Nature of Statistical Learning Theory – volume: 33 start-page: 69 year: 2010 end-page: 80 ident: bib0265 article-title: Estimating soil moisture using remote sensing data: a machine learning approach publication-title: Advances in Water Resources – volume: 444–445 start-page: 78 year: 2012 end-page: 89 ident: bib0190 article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modelling using limited climatic data in a semi-arid highland environment publication-title: Journal of Hydrology – volume: 8 start-page: 3497 year: 2008 end-page: 3502 ident: bib0180 article-title: Estimation of pan evaporation using ANNs and SVMS publication-title: Journal of Applied Sciences – start-page: 293 year: 1999 end-page: 305 ident: bib0350 article-title: Support vector density estimation publication-title: Advances in Kernel Methods: Support Vector Learning – volume: 6 start-page: 209 year: 2004 end-page: 223 ident: bib0015 article-title: EC-SVM approach for real-time hydrologic forecasting publication-title: Journal of Hydroinformatics – year: 2000 ident: bib0045 publication-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods – year: 2003 ident: bib0100 article-title: 1-Norm Support Vector Machines publication-title: Neural Information Processing Systems – volume: 4 start-page: 528 year: 2012 end-page: 539 ident: bib0170 article-title: Multistep-ahead river flow prediction using LS-SVR at daily scale publication-title: Journal of Water Resource and Protection – year: 1987 ident: bib0075 publication-title: Practical Methods of Optimization – volume: 101 start-page: 18 year: 2013 end-page: 23 ident: bib0290 article-title: Streamflow forecasting by SVM with quantum behaved particle swarm optimization publication-title: Neurocomputing – year: 2009 ident: bib0245 article-title: Groundwater level dynamic prediction based on chaos optimization and support vector machine publication-title: Proceedings of the 3rd International Conference on Genetic and Evolutionary Computing – year: 2003 ident: bib0060 article-title: Classifying large data sets using SVM with hierarchical clusters publication-title: Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 347 start-page: 67 year: 2007 end-page: 78 ident: bib0220 article-title: Pruning of support vector networks on flood forecasting publication-title: Journal of Hydrology – volume: 6 start-page: 265 year: 2004 end-page: 280 ident: bib0120 article-title: Identification of support vector machines for runoff modelling publication-title: Journal of Hydroinformatics – start-page: 1 year: 2011 ident: bib0270 article-title: Groundwater quality assessment based on support vector machine publication-title: Report of “Introducing Intelligence Project” (B08039), funded by Global Environment Fund (GEF) Integral Water Resource and Environment Management of Haihe River basin (MWR-9-2-1) – volume: 7 start-page: S4 year: 2006 ident: bib0070 article-title: Support Vector Machine Implementations for Classification and Clustering publication-title: BMC Bioinformatics – volume: 27 start-page: 274 year: 2010 end-page: 284 ident: bib0135 article-title: Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang basin publication-title: Advances in Atmospheric Sciences – volume: 42 start-page: 1033 year: 2006 end-page: 1046 ident: bib0260 article-title: Soil moisture prediction using support vector machines publication-title: JAWRA Journal of the American Water Resources Association – year: 2013 ident: bib0240 article-title: Ensemble prediction of regional droughts using climate inputs and the SVM – copula approach publication-title: Hydrological Processes – year: 2012 ident: bib0010 publication-title: United States Department of Agriculture, Selected Statistical Methods, Part 630-Hydrology – year: 2007 ident: bib0130 article-title: Classification of rainy days using SVM publication-title: Proceedings of Symposium at HYDRO – volume: 3 start-page: 141 year: 2001 end-page: 152 ident: bib0020 article-title: Rainfall and runoff forecasting with SSA–SVM approach publication-title: Journal of Hydroinformatics – year: 2003 ident: bib0065 article-title: Text bundling: statistics-based data reduction publication-title: Twentieth International Conference on Machine Learning – volume: 258 start-page: 223 year: 2007 end-page: 230 ident: bib0215 article-title: Soil water content forecasting by support vector machine in purple hilly region. Computer and computing technologies in agriculture publication-title: International Federation for Information Processing – reference: J.C. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector. (1998). – year: 1990 ident: bib0315 publication-title: Regression Estimation with Support Vector Learning Machines – volume: 9 start-page: 267 year: 2007 end-page: 276 ident: bib0210 article-title: Flood forecasting using support vector machines publication-title: Journal of Hydroinformatics – year: 1999 ident: bib0325 article-title: Support vector method for multivariate density estimation publication-title: Center for Biological and Computational Learning. Department of Brain and Cognitive Sciences, MIT. C. B. C. L. No. 170 – volume: 51 start-page: 599 year: 2006 end-page: 612 ident: bib0140 article-title: Using support vector machines for long term discharge prediction publication-title: Hydrological Sciences Journal – volume: 13 start-page: 1 year: 2000 end-page: 10 ident: bib0105 article-title: Massive data discrimination via linear support vector machines publication-title: Optimization Methods and Software – volume: 344 start-page: 243 year: 2005 end-page: 278 ident: bib0360 article-title: Ant colony optimization theory: a survey publication-title: Theoretical Computer Science – volume: 3 start-page: 1229 year: 2003 end-page: 1243 ident: bib0095 article-title: Dimensionality reduction via sparse support vector machines publication-title: Journal of Machine Learning Research – volume: 3 start-page: 431 year: 2011 end-page: 434 ident: bib0185 article-title: Application of least square support vector machine (LSSVM) for determination of evaporation losses in reservoirs publication-title: Engineering – volume: 13 start-page: 193 year: 2011 end-page: 214 ident: bib0005 article-title: Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods publication-title: Global NEST Journal – volume: 12 start-page: 1207 year: 2000 end-page: 1245 ident: bib0110 article-title: New support vector algorithms publication-title: Neural Computation – volume: 53 start-page: 656 year: 2008 end-page: 666 ident: bib0145 article-title: Estimation of daily suspended sediments using support vector machines publication-title: Hydrological Sciences Journal – volume: 340 start-page: 63 year: 2007 end-page: 77 ident: bib0225 article-title: Real-time probabilistic forecasting of flood stages publication-title: Journal of Hydrology – year: 2012 ident: bib0365 article-title: Calibration of watershed models using cloud computing publication-title: Proceedings of the 8th IEEE International Conference on eScience – year: 2009 ident: bib0275 article-title: Rainfall-runoff modelling using a wavelet-based hybrid SVM scheme publication-title: Proceedings of Symposium JS. 4 at the Joint Convention of the International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH) – volume: 37 start-page: 7154 year: 2010 end-page: 7161 ident: bib0375 article-title: Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN, Journal Expert Systems with Applications publication-title: An International Journal archive – volume: 328 start-page: 704 year: 2006 end-page: 716 ident: bib0205 article-title: Support vector regression for real-time flood stage forecasting publication-title: Journal of Hydrology – volume: 25 start-page: 783 year: 2012 end-page: 792 ident: bib0280 article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model publication-title: Engineering Applications of Artificial Intelligence – start-page: 82 year: 1998 end-page: 90 ident: bib0090 article-title: Feature selection via concave minimization and support vector machines publication-title: The Fifteenth International Conference of Machine Learning – volume: 27 start-page: 3803 year: 2013 end-page: 3823 ident: bib0200 article-title: Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS) publication-title: Water Resources Management – year: 1973 ident: bib0055 publication-title: Pattern Classification and Scene Analysis – volume: 17 start-page: 113 year: 2004 end-page: 126 ident: bib0310 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Networks – year: 2010 ident: bib0050 publication-title: Support Vector Machines for Pattern Classification – volume: 38 start-page: 969 year: 2010 end-page: 976 ident: bib0160 article-title: Machine learning approach to predict sediment load – a case study publication-title: Journal of Clean – Soil, Air, Water – volume: vol. 9 start-page: 281 year: 1997 end-page: 287 ident: bib0030 article-title: Support vector method for function approximation, regression estimation and signal processing publication-title: Advances in Neural Information Processing Systems – year: 2002 ident: bib0085 publication-title: Least Squares Support Vector Machines – volume: 33 start-page: 82 year: 1971 end-page: 95 ident: bib0370 article-title: Some results on Tchebycheffian spline functions publication-title: Journal of Mathematical Analysis and Applications – year: 2009 ident: bib0355 article-title: Artificial bee colony (ABC), Harmony Search and Bees Algorithm on Numerical Optimization publication-title: Proceedings of Innovative Production Machines and Systems virtual Conference – volume: 22 start-page: 216 year: 2009 end-page: 223 ident: bib0150 article-title: Application of support vector machines in scour prediction on grade-control structures publication-title: Engineering Applications of Artificial Intelligence – volume: 103 start-page: 527 year: 2009 end-page: 535 ident: bib0155 article-title: Application and analysis of support vector machine based simulation for runoff and sediment yield publication-title: Bio Systems Engineering – volume: 6 start-page: 209 issue: 3 year: 2004 ident: 10.1016/j.asoc.2014.02.002_bib0015 article-title: EC-SVM approach for real-time hydrologic forecasting publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2004.0016 – volume: 396 start-page: 128 year: 2011 ident: 10.1016/j.asoc.2014.02.002_bib0255 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2010.11.002 – volume: 444–445 start-page: 78 year: 2012 ident: 10.1016/j.asoc.2014.02.002_bib0190 article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modelling using limited climatic data in a semi-arid highland environment publication-title: Journal of Hydrology – volume: 13 start-page: 1 year: 2000 ident: 10.1016/j.asoc.2014.02.002_bib0105 article-title: Massive data discrimination via linear support vector machines publication-title: Optimization Methods and Software doi: 10.1080/10556780008805771 – ident: 10.1016/j.asoc.2014.02.002_bib0330 – volume: 38 start-page: 969 issue: 10 year: 2010 ident: 10.1016/j.asoc.2014.02.002_bib0160 article-title: Machine learning approach to predict sediment load – a case study publication-title: Journal of Clean – Soil, Air, Water doi: 10.1002/clen.201000068 – volume: vol. 23 start-page: 291 year: 2007 ident: 10.1016/j.asoc.2014.02.002_bib0305 article-title: Applications of support vector machines in chemistry – volume: 101 start-page: 18 year: 2013 ident: 10.1016/j.asoc.2014.02.002_bib0290 article-title: Streamflow forecasting by SVM with quantum behaved particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.017 – volume: 9 start-page: 155 year: 1997 ident: 10.1016/j.asoc.2014.02.002_bib0295 article-title: Support vector regression machines – year: 2003 ident: 10.1016/j.asoc.2014.02.002_bib0065 article-title: Text bundling: statistics-based data reduction publication-title: Twentieth International Conference on Machine Learning – year: 2002 ident: 10.1016/j.asoc.2014.02.002_bib0085 – volume: vol. 9 start-page: 281 year: 1997 ident: 10.1016/j.asoc.2014.02.002_bib0030 article-title: Support vector method for function approximation, regression estimation and signal processing – volume: 3 start-page: 141 issue: 3 year: 2001 ident: 10.1016/j.asoc.2014.02.002_bib0020 article-title: Rainfall and runoff forecasting with SSA–SVM approach publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2001.0014 – volume: 33 start-page: 69 year: 2010 ident: 10.1016/j.asoc.2014.02.002_bib0265 article-title: Estimating soil moisture using remote sensing data: a machine learning approach publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2009.10.008 – volume: 6 start-page: 265 issue: 4 year: 2004 ident: 10.1016/j.asoc.2014.02.002_bib0120 article-title: Identification of support vector machines for runoff modelling publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2004.0020 – year: 1995 ident: 10.1016/j.asoc.2014.02.002_bib0025 – year: 2003 ident: 10.1016/j.asoc.2014.02.002_bib0100 article-title: 1-Norm Support Vector Machines – year: 1973 ident: 10.1016/j.asoc.2014.02.002_bib0055 – volume: 18 start-page: 3 year: 2013 ident: 10.1016/j.asoc.2014.02.002_bib0235 article-title: Drought forecasting using new machine learning methods publication-title: Journal of Water and Land Development doi: 10.2478/jwld-2013-0001 – year: 2012 ident: 10.1016/j.asoc.2014.02.002_bib0365 article-title: Calibration of watershed models using cloud computing – year: 2009 ident: 10.1016/j.asoc.2014.02.002_bib0275 article-title: Rainfall-runoff modelling using a wavelet-based hybrid SVM scheme publication-title: Proceedings of Symposium JS. 4 at the Joint Convention of the International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH) – volume: 344 start-page: 243 year: 2005 ident: 10.1016/j.asoc.2014.02.002_bib0360 article-title: Ant colony optimization theory: a survey publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2005.05.020 – volume: 103 start-page: 527 year: 2009 ident: 10.1016/j.asoc.2014.02.002_bib0155 article-title: Application and analysis of support vector machine based simulation for runoff and sediment yield publication-title: Bio Systems Engineering – start-page: 293 year: 1999 ident: 10.1016/j.asoc.2014.02.002_bib0350 article-title: Support vector density estimation – volume: 7 start-page: S4 issue: Suppl. 2 year: 2006 ident: 10.1016/j.asoc.2014.02.002_bib0070 article-title: Support Vector Machine Implementations for Classification and Clustering publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-S2-S4 – volume: 42 start-page: 1033 year: 2006 ident: 10.1016/j.asoc.2014.02.002_bib0260 article-title: Soil moisture prediction using support vector machines publication-title: JAWRA Journal of the American Water Resources Association doi: 10.4236/jwarp.2012.47062 – volume: 10 start-page: 988 issue: 5 year: 1999 ident: 10.1016/j.asoc.2014.02.002_bib0080 article-title: An overview of statistical learning theory publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.788640 – volume: 27 start-page: 438 year: 2012 ident: 10.1016/j.asoc.2014.02.002_bib0285 article-title: Wavelet support vector machines for forecasting precipitation in tropical cyclones: comparisons with GSVM, regression, and MM5 publication-title: Weather and Forecasting doi: 10.1175/WAF-D-11-00004.1 – volume: 43 start-page: 14 year: 2008 ident: 10.1016/j.asoc.2014.02.002_bib0175 article-title: Evaporation estimation using support vector machines technique publication-title: World Academy of Science, Engineering and Technology – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.asoc.2014.02.002_bib0040 article-title: Support vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 1 start-page: 143 year: 2001 ident: 10.1016/j.asoc.2014.02.002_bib0035 article-title: SVMTorch: support vector machines for large-scale regression problems publication-title: Journal of Machine Learning Research – year: 2003 ident: 10.1016/j.asoc.2014.02.002_bib0060 article-title: Classifying large data sets using SVM with hierarchical clusters publication-title: Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining doi: 10.1145/956750.956786 – volume: 15 start-page: 208 issue: 3 year: 2001 ident: 10.1016/j.asoc.2014.02.002_bib0115 article-title: Model induction with support vector machines: introduction and application publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)0887-3801(2001)15:3(208) – volume: 6 start-page: 3003 issue: 60 year: 2012 ident: 10.1016/j.asoc.2014.02.002_bib0165 article-title: Streamflow forecasting at ungaged sites using support vector machines publication-title: Applied Mathematical Sciences – volume: 25 start-page: 783 year: 2012 ident: 10.1016/j.asoc.2014.02.002_bib0280 article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2011.11.003 – year: 1990 ident: 10.1016/j.asoc.2014.02.002_bib0315 – volume: 37 start-page: 7154 issue: 10 year: 2010 ident: 10.1016/j.asoc.2014.02.002_bib0375 article-title: Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN, Journal Expert Systems with Applications publication-title: An International Journal archive – volume: 12 start-page: 1207 issue: 5 year: 2000 ident: 10.1016/j.asoc.2014.02.002_bib0110 article-title: New support vector algorithms publication-title: Neural Computation doi: 10.1162/089976600300015565 – volume: 22 start-page: 216 year: 2009 ident: 10.1016/j.asoc.2014.02.002_bib0150 article-title: Application of support vector machines in scour prediction on grade-control structures publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2008.05.008 – year: 1987 ident: 10.1016/j.asoc.2014.02.002_bib0075 – volume: 4 start-page: 528 year: 2012 ident: 10.1016/j.asoc.2014.02.002_bib0170 article-title: Multistep-ahead river flow prediction using LS-SVR at daily scale publication-title: Journal of Water Resource and Protection doi: 10.4236/jwarp.2012.47062 – year: 2012 ident: 10.1016/j.asoc.2014.02.002_bib0010 – volume: 27 start-page: 3803 year: 2013 ident: 10.1016/j.asoc.2014.02.002_bib0200 article-title: Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS) publication-title: Water Resources Management doi: 10.1007/s11269-013-0382-4 – volume: 33 start-page: 82 issue: 1 year: 1971 ident: 10.1016/j.asoc.2014.02.002_bib0370 article-title: Some results on Tchebycheffian spline functions publication-title: Journal of Mathematical Analysis and Applications doi: 10.1016/0022-247X(71)90184-3 – year: 2009 ident: 10.1016/j.asoc.2014.02.002_bib0245 article-title: Groundwater level dynamic prediction based on chaos optimization and support vector machine – volume: 330 start-page: 621 year: 2006 ident: 10.1016/j.asoc.2014.02.002_bib0125 article-title: Downscaling of precipitation for climate change scenarios: a support vector machine approach publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2006.04.030 – volume: 13 start-page: 1387 issue: 6 year: 2011 ident: 10.1016/j.asoc.2014.02.002_bib0230 article-title: Seasonal meteorological drought prediction using support vector machine publication-title: World Applied Sciences Journal – volume: 9 start-page: 267 issue: 4 year: 2007 ident: 10.1016/j.asoc.2014.02.002_bib0210 article-title: Flood forecasting using support vector machines publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2007.027 – year: 2000 ident: 10.1016/j.asoc.2014.02.002_bib0340 article-title: Support vector machines: Review and applications in civil engineering – volume: 2 start-page: 113 issue: 2 year: 2013 ident: 10.1016/j.asoc.2014.02.002_bib0335 article-title: Applications of SVMs in the exploratory phase of petroleum and natural gas: a survey publication-title: International Journal of Engineering and Technology doi: 10.14419/ijet.v2i2.834 – volume: 24 issue: 5 year: 2010 ident: 10.1016/j.asoc.2014.02.002_bib0250 article-title: Comparative study of SVMs and ANNs in aquifer water level prediction publication-title: Journal of Computing in Civil Engineering – volume: 328 start-page: 704 year: 2006 ident: 10.1016/j.asoc.2014.02.002_bib0205 article-title: Support vector regression for real-time flood stage forecasting publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2006.01.021 – volume: 358 start-page: 96 year: 2008 ident: 10.1016/j.asoc.2014.02.002_bib0345 article-title: River stage prediction based on a distributed support vector regression publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2008.05.028 – volume: 347 start-page: 67 year: 2007 ident: 10.1016/j.asoc.2014.02.002_bib0220 article-title: Pruning of support vector networks on flood forecasting publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2007.08.029 – volume: 51 start-page: 599 issue: 4 year: 2006 ident: 10.1016/j.asoc.2014.02.002_bib0140 article-title: Using support vector machines for long term discharge prediction publication-title: Hydrological Sciences Journal doi: 10.1623/hysj.51.4.599 – volume: 27 start-page: 274 issue: 2 year: 2010 ident: 10.1016/j.asoc.2014.02.002_bib0135 article-title: Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang basin publication-title: Advances in Atmospheric Sciences doi: 10.1007/s00376-009-8071-1 – volume: 258 start-page: 223 year: 2007 ident: 10.1016/j.asoc.2014.02.002_bib0215 article-title: Soil water content forecasting by support vector machine in purple hilly region. Computer and computing technologies in agriculture publication-title: International Federation for Information Processing – start-page: 1 year: 2011 ident: 10.1016/j.asoc.2014.02.002_bib0270 article-title: Groundwater quality assessment based on support vector machine – start-page: 82 year: 1998 ident: 10.1016/j.asoc.2014.02.002_bib0090 article-title: Feature selection via concave minimization and support vector machines – volume: 3 start-page: 431 issue: 4 year: 2011 ident: 10.1016/j.asoc.2014.02.002_bib0185 article-title: Application of least square support vector machine (LSSVM) for determination of evaporation losses in reservoirs publication-title: Engineering doi: 10.4236/eng.2011.34049 – ident: 10.1016/j.asoc.2014.02.002_bib0300 – volume: 3 start-page: 1229 year: 2003 ident: 10.1016/j.asoc.2014.02.002_bib0095 article-title: Dimensionality reduction via sparse support vector machines publication-title: Journal of Machine Learning Research – year: 2000 ident: 10.1016/j.asoc.2014.02.002_bib0045 – volume: 53 start-page: 656 issue: 3 year: 2008 ident: 10.1016/j.asoc.2014.02.002_bib0145 article-title: Estimation of daily suspended sediments using support vector machines publication-title: Hydrological Sciences Journal doi: 10.1623/hysj.53.3.656 – year: 2007 ident: 10.1016/j.asoc.2014.02.002_bib0130 article-title: Classification of rainy days using SVM – volume: 8 start-page: 3497 issue: 19 year: 2008 ident: 10.1016/j.asoc.2014.02.002_bib0180 article-title: Estimation of pan evaporation using ANNs and SVMS publication-title: Journal of Applied Sciences doi: 10.3923/jas.2008.3497.3502 – volume: 13 start-page: 193 issue: 3 year: 2011 ident: 10.1016/j.asoc.2014.02.002_bib0005 article-title: Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods publication-title: Global NEST Journal – volume: 17 start-page: 113 year: 2004 ident: 10.1016/j.asoc.2014.02.002_bib0310 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Networks doi: 10.1016/S0893-6080(03)00169-2 – year: 2009 ident: 10.1016/j.asoc.2014.02.002_bib0355 article-title: Artificial bee colony (ABC), Harmony Search and Bees Algorithm on Numerical Optimization – year: 2010 ident: 10.1016/j.asoc.2014.02.002_bib0050 – volume: 340 start-page: 63 issue: 1–2 year: 2007 ident: 10.1016/j.asoc.2014.02.002_bib0225 article-title: Real-time probabilistic forecasting of flood stages publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2007.04.008 – volume: 11 start-page: 199 year: 2006 ident: 10.1016/j.asoc.2014.02.002_bib0195 article-title: Application of support vector machine in lake water level prediction publication-title: Journal of Hydrologic Engineering ASCE doi: 10.1061/(ASCE)1084-0699(2006)11:3(199) – ident: 10.1016/j.asoc.2014.02.002_bib0320 – year: 2013 ident: 10.1016/j.asoc.2014.02.002_bib0240 article-title: Ensemble prediction of regional droughts using climate inputs and the SVM – copula approach publication-title: Hydrological Processes doi: 10.1002/hyp.9966 – year: 1999 ident: 10.1016/j.asoc.2014.02.002_bib0325 article-title: Support vector method for multivariate density estimation |
SSID | ssj0016928 |
Score | 2.5971231 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Basics of SVMs theory are discussed.•Applications of SVMs in various hydrological problems are reviewed.•Hybrid SVM models are also... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 372 |
SubjectTerms | Hydrological models Optimization theory Statistical learning Support vector machines |
Title | Support vector machine applications in the field of hydrology: A review |
URI | https://dx.doi.org/10.1016/j.asoc.2014.02.002 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3iVvatEm9jeGcX0PUwW6hSVqcaDfGFLz4t_uSpmOC7OCptLxA-SV9v5f0995D6FQEqVGxYkQDfxMGBEFEJCgJDQuYMokQxmYj3w_i_pDdjKJRDXWrXBgrq_S-v_Tpzlv7Jy2PZms6HreeYOchWMKAXxwRuwx2xu0qP_9eyDxonLj-qtaYWGufOFNqvFJAwMq7WFm3M_ibnJYIp7eFNnykiDvly2yjWlbsoM2qCwP2H-UuurKNOSGIxp_uAB6_O3lkhpd_TeNxgSHSw06vhic5fvkyM3egfoE7uExf2UPD3uVzt098ewSiwzieEx4YToM01JFRUQpxTiTS0ChqAmESrkTGjdKZVmEEcUCqYEaMBs8cAycpnrdZuI_qxaTIDhDWSqhEcZbD5g4YXYu8TVOTU01tOTEtGohWuEjta4fbFhZvshKJvUqLpbRYynYgAcsGOluMmZaVM1ZaRxXc8tf8S3DtK8Yd_nPcEVq3d6Xo6xjV57OP7ATCi7lquvXTRGud7uPdg71e3_YHPwXT0HI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7QALb0R5emBDUZvEThy2qqKk9LHQSt2s2E5EEaRVVZD495wTBxUJdWBNfFL0xb7vbH93B3DLvUTLQFJHIX87FAnC4Yy7jq-pR6WOONcmG3k0DuIpfZqxWQ26VS6MkVVa31_69MJb2ycti2ZrOZ-3nnHnwWlEkV8KIsYtUMNUp2J1aHT6g3j8c5kQREWLVTPeMQY2d6aUeSUIglF40bJ0p_c3P21wTu8A9mywSDrl9xxCLc2PYL9qxEDsujyGR9ObE-No8lmcwZP3QiGZks3baTLPCQZ7pJCskUVGXr70qjhTvycdUmawnMC09zDpxo7tkOAoPwjWTujp0PUSXzEtWYKhDuOJr6WrPa6jUPI01FKlSvoMQ4FE4k_RCp1zgLQkw6xN_VOo54s8PQOiJJeRDGmG-zskdcWztpvozFWuqSimeBPcChehbPlw08XiTVQ6sVdhsBQGS9H2BGLZhLsfm2VZPGPraFbBLX5NAYHefYvd-T_tbmAnnoyGYtgfDy5g17wpNWCXUF-vPtIrjDbW8trOpm-w6dGO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+machine+applications+in+the+field+of+hydrology%3A+A+review&rft.jtitle=Applied+soft+computing&rft.au=Raghavendra.+N%2C+Sujay&rft.au=Deka%2C+Paresh+Chandra&rft.date=2014-06-01&rft.issn=1568-4946&rft.volume=19&rft.spage=372&rft.epage=386&rft_id=info:doi/10.1016%2Fj.asoc.2014.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2014_02_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |