Support vector machine applications in the field of hydrology: A review

[Display omitted] •Basics of SVMs theory are discussed.•Applications of SVMs in various hydrological problems are reviewed.•Hybrid SVM models are also dealt.•Advantages and disadvantages of SVMs are surveyed.•Future directions of research using SVMs are suggested. In the recent few decades there has...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 19; pp. 372 - 386
Main Authors Raghavendra. N, Sujay, Deka, Paresh Chandra
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2014
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2014.02.002

Cover

Loading…
Abstract [Display omitted] •Basics of SVMs theory are discussed.•Applications of SVMs in various hydrological problems are reviewed.•Hybrid SVM models are also dealt.•Advantages and disadvantages of SVMs are surveyed.•Future directions of research using SVMs are suggested. In the recent few decades there has been very significant developments in the theoretical understanding of Support vector machines (SVMs) as well as algorithmic strategies for implementing them, and applications of the approach to practical problems. SVMs introduced by Vapnik and others in the early 1990s are machine learning systems that utilize a hypothesis space of linear functions in a high dimensional feature space, trained with optimization algorithms that implements a learning bias derived from statistical learning theory. This paper reviews the state-of-the-art and focuses over a wide range of applications of SVMs in the field of hydrology. To use SVM aided hydrological models, which have increasingly extended during the last years; comprehensive knowledge about their theory and modelling approaches seems to be necessary. Furthermore, this review provides a brief synopsis of the techniques of SVMs and other emerging ones (hybrid models), which have proven useful in the analysis of the various hydrological parameters. Moreover, various examples of successful applications of SVMs for modelling different hydrological processes are also provided.
AbstractList [Display omitted] •Basics of SVMs theory are discussed.•Applications of SVMs in various hydrological problems are reviewed.•Hybrid SVM models are also dealt.•Advantages and disadvantages of SVMs are surveyed.•Future directions of research using SVMs are suggested. In the recent few decades there has been very significant developments in the theoretical understanding of Support vector machines (SVMs) as well as algorithmic strategies for implementing them, and applications of the approach to practical problems. SVMs introduced by Vapnik and others in the early 1990s are machine learning systems that utilize a hypothesis space of linear functions in a high dimensional feature space, trained with optimization algorithms that implements a learning bias derived from statistical learning theory. This paper reviews the state-of-the-art and focuses over a wide range of applications of SVMs in the field of hydrology. To use SVM aided hydrological models, which have increasingly extended during the last years; comprehensive knowledge about their theory and modelling approaches seems to be necessary. Furthermore, this review provides a brief synopsis of the techniques of SVMs and other emerging ones (hybrid models), which have proven useful in the analysis of the various hydrological parameters. Moreover, various examples of successful applications of SVMs for modelling different hydrological processes are also provided.
Author Raghavendra. N, Sujay
Deka, Paresh Chandra
Author_xml – sequence: 1
  givenname: Sujay
  surname: Raghavendra. N
  fullname: Raghavendra. N, Sujay
  email: sujayraghavendran@ymail.com
– sequence: 2
  givenname: Paresh Chandra
  surname: Deka
  fullname: Deka, Paresh Chandra
BookMark eNp9kL1OwzAUhS1UJNrCCzD5BRJsJ7EdxFJVUJAqMQCz5Z8b6iqNIzsU9e1JKRNDp3OW7-qeb4YmXegAoVtKckoov9vmOgWbM0LLnLCcEHaBplQKltVc0snYKy6zsi75FZqltCUjVDM5Rau3r74PccB7sEOIeKftxneAdd-33urBhy5h3-FhA7jx0DocGrw5uBja8Hm4xwscYe_h-xpdNrpNcPOXc_Tx9Pi-fM7Wr6uX5WKd2YLzIRPMCcp0YStnKl3UrJK6cIY6Jl0tjAThjAVriooQoY3hxlkwlEtCjWhIWcyRPN21MaQUoVHWD79vDlH7VlGijkLUVh2FqKMQRZgahYwo-4f20e90PJyHHk4QjKPGoVEl66Gz4HwcjSkX_Dn8B5_9fVw
CitedBy_id crossref_primary_10_1007_s00521_017_3112_7
crossref_primary_10_2166_nh_2017_045
crossref_primary_10_1109_JSTARS_2017_2788462
crossref_primary_10_1007_s40808_022_01428_0
crossref_primary_10_1080_10916466_2022_2043368
crossref_primary_10_26701_ems_1144456
crossref_primary_10_3390_rs13152948
crossref_primary_10_1007_s00366_020_01137_1
crossref_primary_10_3390_w12030713
crossref_primary_10_1016_j_srs_2025_100198
crossref_primary_10_1007_s11831_022_09763_2
crossref_primary_10_1016_j_envres_2021_111609
crossref_primary_10_1109_ACCESS_2019_2943515
crossref_primary_10_1186_s12938_015_0003_y
crossref_primary_10_1088_1742_6596_1207_1_012015
crossref_primary_10_1016_j_asr_2017_03_026
crossref_primary_10_5897_IJWREE2018_0772
crossref_primary_10_1016_j_compag_2021_106032
crossref_primary_10_1038_s41598_022_08786_w
crossref_primary_10_1016_j_geoderma_2019_06_028
crossref_primary_10_1007_s13201_022_01798_x
crossref_primary_10_1016_j_chemosphere_2024_141393
crossref_primary_10_1016_j_dyepig_2023_111912
crossref_primary_10_3390_w11050910
crossref_primary_10_3390_w14152307
crossref_primary_10_2478_johh_2020_0008
crossref_primary_10_1016_j_cherd_2022_01_026
crossref_primary_10_3389_fenrg_2021_751066
crossref_primary_10_1016_j_envc_2023_100680
crossref_primary_10_1134_S0097807823600973
crossref_primary_10_3390_cli10100147
crossref_primary_10_3390_w14020191
crossref_primary_10_2166_ws_2021_018
crossref_primary_10_2166_aqua_2023_161
crossref_primary_10_1029_2020WR029471
crossref_primary_10_1016_j_watres_2021_117851
crossref_primary_10_2166_ws_2021_372
crossref_primary_10_3390_s20010132
crossref_primary_10_1016_j_jhydrol_2016_09_035
crossref_primary_10_1016_j_ejrh_2023_101475
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_3390_w16010012
crossref_primary_10_1016_j_molliq_2022_119306
crossref_primary_10_3390_s23094365
crossref_primary_10_1155_2018_4832423
crossref_primary_10_1016_j_jhydrol_2016_10_013
crossref_primary_10_1007_s00521_020_05172_3
crossref_primary_10_1029_2021WR031065
crossref_primary_10_1016_j_jenvman_2023_117287
crossref_primary_10_1007_s00158_019_02251_5
crossref_primary_10_1016_j_jhydrol_2020_125481
crossref_primary_10_1007_s12145_020_00450_z
crossref_primary_10_1016_j_envsoft_2022_105609
crossref_primary_10_1016_j_flowmeasinst_2017_08_004
crossref_primary_10_3390_su12197877
crossref_primary_10_1007_s12517_020_06408_1
crossref_primary_10_3390_ma14154068
crossref_primary_10_1016_j_ecoleng_2020_105990
crossref_primary_10_1016_j_jhydrol_2016_02_040
crossref_primary_10_5433_1679_0359_2022v43n3p1017
crossref_primary_10_1016_j_scitotenv_2016_09_093
crossref_primary_10_3390_geosciences13100293
crossref_primary_10_1007_s42001_023_00244_5
crossref_primary_10_1007_s10346_022_01923_6
crossref_primary_10_1007_s40899_021_00506_y
crossref_primary_10_1016_j_compag_2018_08_029
crossref_primary_10_1016_j_jhydrol_2025_133166
crossref_primary_10_1117_1_JEI_27_5_053021
crossref_primary_10_1007_s13201_018_0742_6
crossref_primary_10_1016_j_asoc_2022_108535
crossref_primary_10_1016_j_fuel_2020_117066
crossref_primary_10_1007_s11600_023_01107_3
crossref_primary_10_3390_rs14030805
crossref_primary_10_1007_s41748_024_00507_9
crossref_primary_10_1109_ACCESS_2022_3188649
crossref_primary_10_1061__ASCE_EE_1943_7870_0001217
crossref_primary_10_2139_ssrn_4170585
crossref_primary_10_1002_bit_28503
crossref_primary_10_3390_w8120560
crossref_primary_10_1007_s00477_018_1620_3
crossref_primary_10_1021_acsomega_2c00746
crossref_primary_10_1088_1755_1315_498_1_012076
crossref_primary_10_1007_s12205_019_1946_5
crossref_primary_10_1016_j_jsv_2016_07_020
crossref_primary_10_1155_2020_6618842
crossref_primary_10_1007_s11356_020_08023_9
crossref_primary_10_3390_w13091208
crossref_primary_10_1080_24694452_2023_2166010
crossref_primary_10_3151_jact_20_404
crossref_primary_10_3390_info13120577
crossref_primary_10_1029_2021WR031048
crossref_primary_10_1111_ejss_13123
crossref_primary_10_1016_j_ejrh_2023_101649
crossref_primary_10_2166_ws_2021_243
crossref_primary_10_1007_s12161_016_0681_5
crossref_primary_10_1016_j_engappai_2020_104012
crossref_primary_10_1080_09715010_2019_1574614
crossref_primary_10_1021_es501944c
crossref_primary_10_1007_s11600_019_00283_5
crossref_primary_10_1016_j_ecohyd_2017_02_002
crossref_primary_10_1016_j_pce_2024_103603
crossref_primary_10_2166_wcc_2022_271
crossref_primary_10_1007_s11356_017_9243_7
crossref_primary_10_1007_s00521_021_06362_3
crossref_primary_10_1016_j_engstruct_2020_110793
crossref_primary_10_1080_02626667_2022_2063724
crossref_primary_10_1016_j_agsy_2017_01_017
crossref_primary_10_1016_j_indcrop_2023_116750
crossref_primary_10_2139_ssrn_3991690
crossref_primary_10_1007_s00500_016_2131_0
crossref_primary_10_1007_s11270_021_05311_z
crossref_primary_10_1007_s00500_022_07041_8
crossref_primary_10_3390_pr13020369
crossref_primary_10_1080_19648189_2023_2205914
crossref_primary_10_1016_j_jconhyd_2021_103844
crossref_primary_10_1007_s12145_024_01533_x
crossref_primary_10_3390_f8120498
crossref_primary_10_1002_joc_7988
crossref_primary_10_1111_gwat_12913
crossref_primary_10_1007_s00477_024_02856_3
crossref_primary_10_1016_j_conbuildmat_2020_119889
crossref_primary_10_1016_j_compchemeng_2024_108950
crossref_primary_10_1109_ACCESS_2021_3125622
crossref_primary_10_1016_j_jhydrol_2021_126723
crossref_primary_10_1016_j_asej_2020_10_022
crossref_primary_10_1016_j_jfoodeng_2018_06_020
crossref_primary_10_1097_MD_0000000000025813
crossref_primary_10_2166_ws_2019_204
crossref_primary_10_1016_j_jhydrol_2023_130458
crossref_primary_10_1038_s41598_019_56405_y
crossref_primary_10_1016_j_jenvman_2024_120777
crossref_primary_10_3390_app13031333
crossref_primary_10_1007_s11269_015_0990_2
crossref_primary_10_1029_2020WR027086
crossref_primary_10_1016_j_jhydrol_2020_125563
crossref_primary_10_1080_02626667_2024_2321332
crossref_primary_10_1680_jwama_20_00002
crossref_primary_10_3390_w9020105
crossref_primary_10_3390_w16131904
crossref_primary_10_1007_s12517_017_3211_x
crossref_primary_10_1016_j_ecolind_2022_108708
crossref_primary_10_1061_JTEPBS_TEENG_8277
crossref_primary_10_3390_agronomy10010101
crossref_primary_10_1016_j_jhydrol_2020_125324
crossref_primary_10_1007_s40808_022_01387_6
crossref_primary_10_1016_j_jhydrol_2020_125205
crossref_primary_10_1038_s41598_021_85629_0
crossref_primary_10_1016_j_jhydrol_2021_126958
crossref_primary_10_1007_s00500_023_08865_8
crossref_primary_10_1007_s13042_018_00904_3
crossref_primary_10_3390_w14060949
crossref_primary_10_1016_j_jhydrol_2025_132906
crossref_primary_10_3934_environsci_2025004
crossref_primary_10_1007_s12517_019_4697_1
crossref_primary_10_1007_s11069_019_03665_6
crossref_primary_10_1007_s12665_023_11408_x
crossref_primary_10_1016_j_asoc_2021_108080
crossref_primary_10_55213_kmujens_1477330
crossref_primary_10_1061__ASCE_WR_1943_5452_0001612
crossref_primary_10_3846_13923730_2015_1005021
crossref_primary_10_1111_wej_12939
crossref_primary_10_1111_wej_12801
crossref_primary_10_1007_s00024_024_03656_0
crossref_primary_10_1016_j_eti_2022_102939
crossref_primary_10_3934_jimo_2021184
crossref_primary_10_1007_s00704_023_04822_5
crossref_primary_10_1007_s00366_018_0681_8
crossref_primary_10_1016_j_atmosres_2020_105026
crossref_primary_10_1007_s10333_016_0571_x
crossref_primary_10_1007_s00704_015_1544_5
crossref_primary_10_1007_s40808_015_0027_0
crossref_primary_10_3390_jof8090978
crossref_primary_10_4018_IJAEIS_2020010104
crossref_primary_10_1109_ACCESS_2019_2940899
crossref_primary_10_1109_ACCESS_2020_2974406
crossref_primary_10_3390_ijerph18031023
crossref_primary_10_1155_2016_3061674
crossref_primary_10_1016_j_engappai_2022_105150
crossref_primary_10_1016_j_jenvman_2023_119714
crossref_primary_10_1061__ASCE_IR_1943_4774_0001471
crossref_primary_10_1007_s00521_024_09457_9
crossref_primary_10_1061__ASCE_HE_1943_5584_0001674
crossref_primary_10_3390_su11184836
crossref_primary_10_1016_j_conbuildmat_2019_117048
crossref_primary_10_1016_j_jhydrol_2024_131639
crossref_primary_10_1080_17455030_2021_1996658
crossref_primary_10_1007_s13762_018_1674_2
crossref_primary_10_1038_s41598_019_54888_3
crossref_primary_10_3390_math12162542
crossref_primary_10_1016_j_advwatres_2024_104636
crossref_primary_10_1016_j_cmpb_2018_05_029
crossref_primary_10_1155_2021_3721661
crossref_primary_10_1109_JSTARS_2021_3053945
crossref_primary_10_1016_j_watres_2023_120828
crossref_primary_10_1007_s11356_021_17257_0
crossref_primary_10_1029_2020WR028666
crossref_primary_10_1007_s00477_024_02692_5
crossref_primary_10_1007_s11042_023_14713_6
crossref_primary_10_1016_j_ecolind_2020_106941
crossref_primary_10_1016_j_watres_2020_115799
crossref_primary_10_1680_jwama_19_00001
crossref_primary_10_1007_s00500_023_08285_8
crossref_primary_10_1007_s11269_022_03341_8
crossref_primary_10_1080_01431161_2018_1482026
crossref_primary_10_1016_j_jhydrol_2025_132915
crossref_primary_10_1016_j_applanim_2021_105397
crossref_primary_10_1029_2022EA002518
crossref_primary_10_3390_hydrology7030059
crossref_primary_10_1177_02670844251320066
crossref_primary_10_3390_atmos9030083
crossref_primary_10_1007_s41062_024_01744_7
crossref_primary_10_1029_2022WR032779
crossref_primary_10_1002_suco_202100681
crossref_primary_10_3390_rs13132598
crossref_primary_10_1016_j_istruc_2023_105742
crossref_primary_10_3390_land13030299
crossref_primary_10_1007_s10489_018_1185_3
crossref_primary_10_1007_s00340_022_07879_8
crossref_primary_10_1111_jfr3_12656
crossref_primary_10_1016_j_biotechadv_2023_108095
crossref_primary_10_1016_j_catena_2025_108774
crossref_primary_10_1155_2018_8328167
crossref_primary_10_1016_j_asoc_2022_109345
crossref_primary_10_1016_j_compag_2023_107836
crossref_primary_10_1016_j_microc_2021_106635
crossref_primary_10_1155_2018_1824317
crossref_primary_10_1016_j_scitotenv_2018_03_162
crossref_primary_10_2166_aqua_2018_036
crossref_primary_10_1016_j_eswa_2020_114498
crossref_primary_10_1021_acsomega_1c02317
crossref_primary_10_1007_s00704_022_03939_3
crossref_primary_10_1061_JPSEA2_PSENG_1521
crossref_primary_10_1016_j_jenvman_2021_113783
crossref_primary_10_1016_j_scitotenv_2022_156410
crossref_primary_10_1080_02626667_2022_2082876
crossref_primary_10_1002_hyp_15310
crossref_primary_10_1007_s11269_017_1568_y
crossref_primary_10_3390_w10111536
crossref_primary_10_1038_s41598_025_88446_x
crossref_primary_10_3390_w11010085
crossref_primary_10_1016_j_apenergy_2022_120604
crossref_primary_10_1016_j_csag_2024_100025
crossref_primary_10_31857_S0321059623030112
crossref_primary_10_1007_s10661_023_11276_9
crossref_primary_10_1007_s11269_018_2028_z
crossref_primary_10_1016_j_conbuildmat_2022_127233
crossref_primary_10_1007_s12665_021_09394_z
crossref_primary_10_1175_JHM_D_21_0194_1
crossref_primary_10_2166_hydro_2024_253
crossref_primary_10_1175_JHM_D_21_0096_1
crossref_primary_10_2166_hydro_2025_292
crossref_primary_10_3390_atmos15060727
crossref_primary_10_3390_s19194091
crossref_primary_10_1007_s12046_022_01805_6
crossref_primary_10_1016_j_eswa_2021_115691
crossref_primary_10_3390_electronics12112431
crossref_primary_10_1515_jisys_2016_0065
crossref_primary_10_1016_j_scitotenv_2023_167534
crossref_primary_10_1016_j_jhydrol_2019_123929
crossref_primary_10_1007_s00382_016_3145_0
crossref_primary_10_29130_dubited_1225446
crossref_primary_10_1080_0305215X_2016_1245729
crossref_primary_10_1134_S1054661819010097
crossref_primary_10_1007_s10040_021_02306_2
crossref_primary_10_1007_s00477_022_02336_6
crossref_primary_10_1016_j_jhydrol_2020_125272
crossref_primary_10_1029_2021WR031412
crossref_primary_10_1080_10910344_2023_2235610
crossref_primary_10_3390_biom13081192
crossref_primary_10_1016_j_jag_2021_102458
crossref_primary_10_1016_j_engappai_2017_05_019
crossref_primary_10_1016_j_jenvman_2021_112674
crossref_primary_10_1080_23311916_2014_999414
crossref_primary_10_1080_02626667_2020_1787416
crossref_primary_10_1002_hyp_14000
crossref_primary_10_1080_00295639_2020_1854541
crossref_primary_10_1016_j_tsep_2024_102902
crossref_primary_10_1016_j_envpol_2024_124242
crossref_primary_10_1016_j_measurement_2019_07_048
crossref_primary_10_3390_w12061643
crossref_primary_10_1109_ACCESS_2018_2890422
crossref_primary_10_1016_j_saa_2024_123991
crossref_primary_10_3390_buildings13010048
crossref_primary_10_1007_s10666_018_9639_x
crossref_primary_10_2166_hydro_2024_153
crossref_primary_10_2166_hydro_2024_033
crossref_primary_10_3390_su17051786
crossref_primary_10_1007_s11356_024_34691_y
crossref_primary_10_1016_j_cma_2024_117191
crossref_primary_10_1016_j_protcy_2016_03_039
crossref_primary_10_1016_j_scitotenv_2018_01_202
crossref_primary_10_2166_h2oj_2020_005
crossref_primary_10_3390_buildings13122914
crossref_primary_10_1016_j_ejrh_2025_102273
crossref_primary_10_1155_2018_7809302
crossref_primary_10_3390_s20226671
crossref_primary_10_1007_s12205_018_0128_1
crossref_primary_10_1007_s12665_020_08971_y
crossref_primary_10_1016_j_jher_2022_10_002
crossref_primary_10_1061__ASCE_IR_1943_4774_0001575
crossref_primary_10_1016_j_seta_2022_102040
crossref_primary_10_1109_JIOT_2024_3429341
crossref_primary_10_1016_j_scp_2023_101060
crossref_primary_10_3389_fenvs_2022_820615
crossref_primary_10_1016_j_scitotenv_2024_171684
crossref_primary_10_1007_s00477_018_1638_6
crossref_primary_10_1080_02626667_2017_1413491
crossref_primary_10_3390_informatics10040084
crossref_primary_10_3390_su15087016
crossref_primary_10_1016_j_compag_2020_105577
crossref_primary_10_1017_aer_2024_164
crossref_primary_10_1016_j_jhydrol_2021_126055
crossref_primary_10_1186_s12877_022_03152_x
crossref_primary_10_3390_math10162971
crossref_primary_10_3390_ma15134436
crossref_primary_10_3390_w12123351
crossref_primary_10_3390_w16223328
crossref_primary_10_1016_j_neucom_2022_10_078
crossref_primary_10_1007_s11053_019_09512_6
crossref_primary_10_1080_19942060_2019_1680576
crossref_primary_10_1080_02626667_2022_2156292
crossref_primary_10_1134_S0097807823030119
crossref_primary_10_1007_s00477_024_02793_1
crossref_primary_10_1016_j_measurement_2016_06_042
crossref_primary_10_1007_s10651_024_00642_6
crossref_primary_10_1016_j_energy_2021_120309
crossref_primary_10_3390_w8030069
crossref_primary_10_1007_s10668_024_04926_6
crossref_primary_10_1007_s12040_017_0850_y
crossref_primary_10_3390_liquids2030010
crossref_primary_10_1016_j_jwpe_2024_105225
crossref_primary_10_1080_19942060_2021_1984992
crossref_primary_10_1155_2022_4285328
crossref_primary_10_1016_j_advwatres_2021_104076
crossref_primary_10_1109_JSTARS_2020_3035386
crossref_primary_10_1007_s12145_021_00572_y
crossref_primary_10_1016_j_atmosres_2018_05_022
crossref_primary_10_1007_s11356_024_35173_x
crossref_primary_10_56093_ijans_v90i8_109314
crossref_primary_10_1080_02626667_2015_1006232
crossref_primary_10_3390_w14030431
crossref_primary_10_1007_s11356_018_2698_3
crossref_primary_10_12677_OJTT_2019_94034
crossref_primary_10_3390_rs13193928
crossref_primary_10_3390_agriengineering6020063
crossref_primary_10_1029_2018WR024620
crossref_primary_10_1061__ASCE_BE_1943_5592_0001571
crossref_primary_10_1002_rra_4191
crossref_primary_10_3390_w13091177
crossref_primary_10_1007_s12665_024_11538_w
crossref_primary_10_1016_j_jhydrol_2020_124954
crossref_primary_10_1007_s11356_024_33389_5
crossref_primary_10_1016_j_agwat_2023_108231
crossref_primary_10_1016_j_csite_2022_102620
crossref_primary_10_5194_hess_26_129_2022
crossref_primary_10_1109_JSTARS_2021_3067890
crossref_primary_10_1029_2018WR024558
crossref_primary_10_1007_s12517_021_06603_8
crossref_primary_10_1007_s11269_024_03912_x
crossref_primary_10_1007_s11269_016_1280_3
crossref_primary_10_1080_0951192X_2022_2163295
crossref_primary_10_1111_coin_12524
crossref_primary_10_2166_nh_2022_144
crossref_primary_10_1016_j_jhydrol_2018_09_064
crossref_primary_10_1007_s11269_018_2155_6
crossref_primary_10_1007_s11270_020_04693_w
crossref_primary_10_3390_w16223247
crossref_primary_10_1007_s00158_017_1871_5
crossref_primary_10_1155_2021_6242288
crossref_primary_10_3389_fmars_2022_947394
crossref_primary_10_1016_j_catena_2021_105841
crossref_primary_10_1007_s00382_018_04605_z
crossref_primary_10_1016_j_scitotenv_2016_12_149
crossref_primary_10_1088_1755_1315_648_1_012212
crossref_primary_10_1002_met_1881
crossref_primary_10_2147_IJGM_S467374
crossref_primary_10_1007_s00500_023_08827_0
crossref_primary_10_3389_frwa_2021_652100
crossref_primary_10_1007_s11831_024_10126_2
crossref_primary_10_1016_j_jseaes_2024_106027
crossref_primary_10_1080_02626667_2020_1755436
crossref_primary_10_3390_rs10020172
crossref_primary_10_1007_s13131_024_2356_1
crossref_primary_10_1016_j_jcomc_2020_100070
crossref_primary_10_1016_j_ymssp_2024_111633
crossref_primary_10_1109_ACCESS_2020_2990181
crossref_primary_10_1016_j_asr_2022_05_057
crossref_primary_10_1007_s13201_023_01885_7
crossref_primary_10_1109_ACCESS_2021_3083175
crossref_primary_10_1016_j_jhydrol_2022_128995
crossref_primary_10_1007_s00521_022_07406_y
crossref_primary_10_1016_j_petrol_2020_108182
crossref_primary_10_1061__ASCE_CR_1943_5495_0000188
crossref_primary_10_1016_j_jhydrol_2018_11_069
crossref_primary_10_3390_w16050677
crossref_primary_10_1007_s40997_023_00748_5
crossref_primary_10_1080_20442041_2021_1924034
crossref_primary_10_1007_s11356_024_32984_w
crossref_primary_10_1007_s40996_023_01099_6
crossref_primary_10_1016_j_jastp_2024_106381
crossref_primary_10_1371_journal_pone_0311482
crossref_primary_10_1016_j_jhydrol_2018_10_020
crossref_primary_10_1016_j_resourpol_2019_101474
crossref_primary_10_1016_j_atmosres_2018_06_006
crossref_primary_10_1016_j_ast_2019_105332
crossref_primary_10_3233_JIFS_169200
crossref_primary_10_1080_15715124_2023_2196635
crossref_primary_10_1007_s12517_021_08209_6
crossref_primary_10_1080_09715010_2017_1408037
crossref_primary_10_1186_s40623_024_02002_x
crossref_primary_10_1016_j_still_2019_104449
crossref_primary_10_1088_1748_9326_ac6229
crossref_primary_10_1016_j_compag_2019_105041
crossref_primary_10_1016_j_ejrh_2021_100880
crossref_primary_10_1088_1755_1315_140_1_012035
crossref_primary_10_1016_j_jhydrol_2018_07_004
crossref_primary_10_1016_j_autcon_2021_103916
crossref_primary_10_1007_s10661_020_08695_3
crossref_primary_10_3390_sym14050927
crossref_primary_10_1016_j_enconman_2016_08_020
crossref_primary_10_3390_math12071066
crossref_primary_10_3390_su14010148
crossref_primary_10_1002_wwp2_12175
crossref_primary_10_1016_j_scitotenv_2023_161623
crossref_primary_10_1038_s41598_024_69238_1
crossref_primary_10_1016_j_jaridenv_2021_104513
crossref_primary_10_1139_er_2018_0034
crossref_primary_10_1016_j_renene_2021_06_112
crossref_primary_10_1007_s00521_018_3519_9
crossref_primary_10_1016_j_jhazmat_2020_123492
crossref_primary_10_1007_s12230_015_9453_9
crossref_primary_10_1007_s11356_023_25235_x
crossref_primary_10_3389_frwa_2022_961954
crossref_primary_10_1016_j_asoc_2023_111031
crossref_primary_10_1080_19475705_2020_1751734
crossref_primary_10_1038_s41598_023_38771_w
crossref_primary_10_1007_s11053_021_09890_w
crossref_primary_10_3390_w14172649
crossref_primary_10_1016_j_asej_2023_102168
crossref_primary_10_1093_fqsafe_fyad014
crossref_primary_10_1016_j_gsd_2024_101343
crossref_primary_10_1016_j_jhydrol_2020_124670
crossref_primary_10_1016_j_jconhyd_2021_103815
crossref_primary_10_1007_s11356_021_17064_7
crossref_primary_10_1007_s12665_017_7064_0
crossref_primary_10_1016_j_energy_2019_03_057
crossref_primary_10_3389_fneur_2024_1366307
crossref_primary_10_1029_2019WR025656
crossref_primary_10_1016_j_gsd_2023_101037
crossref_primary_10_1109_TGRS_2018_2860931
crossref_primary_10_3390_w9040257
crossref_primary_10_1007_s11004_023_10100_x
crossref_primary_10_1007_s11030_016_9709_4
crossref_primary_10_1109_ACCESS_2018_2885310
crossref_primary_10_3390_w7052494
crossref_primary_10_1016_j_isatra_2021_10_010
crossref_primary_10_3390_jmse10081150
crossref_primary_10_3390_en15166063
crossref_primary_10_1016_j_advwatres_2020_103562
crossref_primary_10_21923_jesd_722323
crossref_primary_10_1590_fst_54622
crossref_primary_10_1016_j_jenvman_2024_120495
crossref_primary_10_3390_ijerph17155497
crossref_primary_10_3390_w14030492
crossref_primary_10_1007_s11356_021_12501_z
crossref_primary_10_1007_s10666_017_9586_y
crossref_primary_10_1080_02626667_2017_1371847
crossref_primary_10_3390_w15112004
crossref_primary_10_3390_w16152199
crossref_primary_10_1111_gwat_13041
crossref_primary_10_1016_j_scitotenv_2022_155944
crossref_primary_10_1016_j_jconhyd_2023_104201
crossref_primary_10_1038_s41598_021_96751_4
crossref_primary_10_3390_math10193432
crossref_primary_10_1007_s00521_021_05890_2
crossref_primary_10_1016_j_mex_2023_102060
crossref_primary_10_33395_sinkron_v4i2_10524
crossref_primary_10_3390_coatings11040450
crossref_primary_10_30521_jes_932581
crossref_primary_10_2166_ws_2020_015
crossref_primary_10_2139_ssrn_4352020
crossref_primary_10_1016_j_compag_2023_108255
crossref_primary_10_3390_jmse11122305
crossref_primary_10_1016_j_ymssp_2015_02_018
crossref_primary_10_1016_j_agwat_2019_03_045
crossref_primary_10_1109_ACCESS_2018_2880044
crossref_primary_10_3390_rs12213613
crossref_primary_10_1007_s11269_023_03730_7
crossref_primary_10_1155_2022_5991154
crossref_primary_10_1007_s40899_024_01069_4
crossref_primary_10_1038_s41598_019_41510_9
crossref_primary_10_1016_j_jngse_2016_02_019
crossref_primary_10_1016_j_biosystemseng_2019_01_005
crossref_primary_10_1016_j_pedsph_2022_06_009
crossref_primary_10_3390_foods13172656
crossref_primary_10_1016_j_rser_2018_05_060
crossref_primary_10_1007_s12665_018_7376_8
crossref_primary_10_3390_rs15081984
crossref_primary_10_3390_w17030434
crossref_primary_10_1007_s10346_023_02073_z
crossref_primary_10_1016_j_jclepro_2023_137329
crossref_primary_10_1016_j_sab_2023_106852
crossref_primary_10_1007_s13201_017_0526_4
crossref_primary_10_1016_j_compag_2020_105439
crossref_primary_10_1007_s11831_023_10017_y
crossref_primary_10_1007_s11269_020_02589_2
crossref_primary_10_1007_s11356_021_17852_1
crossref_primary_10_1109_TGRS_2021_3054582
crossref_primary_10_1016_j_triboint_2023_108336
crossref_primary_10_3390_rs12111801
crossref_primary_10_1029_2018WR022643
crossref_primary_10_1016_j_chemolab_2021_104329
crossref_primary_10_1007_s00704_023_04442_z
crossref_primary_10_1016_j_csite_2023_102968
crossref_primary_10_1061__ASCE_EE_1943_7870_0001272
crossref_primary_10_1155_2021_6611885
crossref_primary_10_1016_j_watres_2021_117666
crossref_primary_10_2166_wcc_2021_051
crossref_primary_10_1007_s12205_022_1367_8
crossref_primary_10_1080_02626667_2019_1676428
crossref_primary_10_1016_j_scitotenv_2022_154707
crossref_primary_10_1016_j_coldregions_2015_11_004
crossref_primary_10_1016_j_foodp_2024_100020
crossref_primary_10_1016_j_jhydrol_2020_124759
crossref_primary_10_3389_frwa_2020_573034
Cites_doi 10.2166/hydro.2004.0016
10.1016/j.jhydrol.2010.11.002
10.1080/10556780008805771
10.1002/clen.201000068
10.1016/j.neucom.2012.07.017
10.2166/hydro.2001.0014
10.1016/j.advwatres.2009.10.008
10.2166/hydro.2004.0020
10.2478/jwld-2013-0001
10.1016/j.tcs.2005.05.020
10.1186/1471-2105-7-S2-S4
10.4236/jwarp.2012.47062
10.1109/72.788640
10.1175/WAF-D-11-00004.1
10.1007/BF00994018
10.1145/956750.956786
10.1061/(ASCE)0887-3801(2001)15:3(208)
10.1016/j.engappai.2011.11.003
10.1162/089976600300015565
10.1016/j.engappai.2008.05.008
10.1007/s11269-013-0382-4
10.1016/0022-247X(71)90184-3
10.1016/j.jhydrol.2006.04.030
10.2166/hydro.2007.027
10.14419/ijet.v2i2.834
10.1016/j.jhydrol.2006.01.021
10.1016/j.jhydrol.2008.05.028
10.1016/j.jhydrol.2007.08.029
10.1623/hysj.51.4.599
10.1007/s00376-009-8071-1
10.4236/eng.2011.34049
10.1623/hysj.53.3.656
10.3923/jas.2008.3497.3502
10.1016/S0893-6080(03)00169-2
10.1016/j.jhydrol.2007.04.008
10.1061/(ASCE)1084-0699(2006)11:3(199)
10.1002/hyp.9966
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2014.02.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 386
ExternalDocumentID 10_1016_j_asoc_2014_02_002
S1568494614000611
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-72d712a3c5db5a39258a3db1d28d97b8e7dbcecb35007abb6bdceb16801b7f043
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 00:55:30 EDT 2025
Fri Feb 23 02:28:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector machines
Optimization theory
Hydrological models
Statistical learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-72d712a3c5db5a39258a3db1d28d97b8e7dbcecb35007abb6bdceb16801b7f043
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2014_02_002
crossref_primary_10_1016_j_asoc_2014_02_002
elsevier_sciencedirect_doi_10_1016_j_asoc_2014_02_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vapnik (bib0080) 1999; 10
Schölkopf, Smola, Williamson, Bartlett (bib0110) 2000; 12
Arun, Mahesh (bib0150) 2009; 22
Drucker, Burges, Kaufman, Smola, Vapnik (bib0295) 1997; 9
Moghaddamnia, Ghafari, Piri, Han (bib0175) 2008; 43
Chen, Yu (bib0220) 2007; 347
Sivapragasam, Liong, Pasha (bib0020) 2001; 3
Yuri (bib0335) 2013; 2
Vapnik (bib0025) 1995
Cristianini, Shawe-Tylor (bib0045) 2000
Wei, Wang, Xie, Liu (bib0215) 2007; 258
Dibike, Velickov, Solomatine, Abbott (bib0115) 2001; 15
Hossein, Ozgur, Azadeh, Hosseinzadeh (bib0190) 2012; 444–445
Zahrahtul, Ani (bib0165) 2012; 6
Yu, Chen, Chang (bib0205) 2006; 328
Tripathi, Srinivas, Nanjundiah (bib0125) 2006; 330
Hazi, Aminuddin, Chun, Chang, Zorkeflee, Zakaria (bib0160) 2010; 38
Wu, Chau, Li (bib0345) 2008; 358
Bradley, Mangasarian (bib0090) 1998
Cortes, Vapnik (bib0040) 1995; 20
Han, Chan, Zhu (bib0210) 2007; 9
C. Saunders , M.O. Stitson , J. Weston , L. Bottou , B. Schölkopf , A. Smola , Support vector machine – Reference manual Royal Holloway Technical Report CSD-TR-98-03. Royal Holloway (1998).
Chen, Guo, Wei (bib0135) 2010; 27
Shigeo (bib0050) 2010
Gill, Asefa, Kemblowski, McKee (bib0260) 2006; 42
Eslamian, Gohari, Biabanaki, Malekin (bib0180) 2008; 8
Duda, Hart (bib0055) 1973
Mukherjee, Vapnik (bib0325) 1999
Suykens, Van Gestel, De Brabanter, De Moor, Vandewalle (bib0085) 2002
Afiq, Ahmed, Ali, Othman, Aini, Mukhlisi (bib0200) 2013; 27
Marty, Beekwilder, Goodall, Ercan (bib0365) 2012
Pijush (bib0185) 2011; 3
S. Gunn, Support vector machines for classification and regression, ISIS Technical Report. (1998).
Bray, Han (bib0120) 2004; 6
Kimeldorf, Wabha (bib0370) 1971; 33
Shahbazi, Banafsheh, Hossein, Manshouri, Mohsen (bib0230) 2011; 13
Xinying, Liong, Babovic (bib0015) 2004; 6
Jian, Chun, Kwok (bib0140) 2006; 51
Belayneh, Adamowski (bib0235) 2013; 18
Debasmita, Thomas, Avinash, Surendra, Anita (bib0155) 2009; 103
Smola (bib0315) 1990
Cherkassky, Ma (bib0310) 2004; 17
Parag, Bhagwat, Rajib (bib0170) 2012; 4
Winters-Hilt, Yelundur, McChesney, Landry (bib0070) 2006; 7
Chen, Yu (bib0225) 2007; 340
Ganguli, Reddy (bib0240) 2013
Heesung, Jun, Yunjung, Bae, Kang (bib0255) 2011; 396
J.C. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector. (1998).
Seyyed, Reza, Mohammad, Kazem (bib0375) 2010; 37
Remesan, Michaela, Shamim, Han (bib0275) 2009
Karaboga, Akay (bib0355) 2009
Collobert, Bengio (bib0035) 2001; 1
National Engineering Handbook (bib0010) 2012
Vapnik, Golwich, Smola (bib0030) 1997; vol. 9
Mesut (bib0145) 2008; 53
Yu, Yang, Han (bib0060) 2003
Sudheer, Nitin, Panigrahi, Shashi (bib0290) 2013; 101
Sajjad, Ajay, Haroon (bib0265) 2010; 33
Fletcher (bib0075) 1987
Ozgur, Mesut (bib0280) 2012; 25
Dorigo, Blum (bib0360) 2005; 344
Bradley, Mangasarian (bib0105) 2000; 13
Pechlivanidis, Jackson, Mcintyre, Wheater (bib0005) 2011; 13
Yonas, Slavco, Dimitri (bib0340) 2000
Weston, Gammerman, Stitson, Vapnik, Vovk, Watkins (bib0350) 1999
Shih, Rennie, Chang, Karger (bib0065) 2003
Bi, Bennett, Embrechts, Breneman, Song (bib0095) 2003; 3
Mohsen, Keyvan, Emery, Coppola (bib0250) 2010; 24
Liu, Chang, Xiaoyan (bib0270) 2011
Anirudh, Umesh (bib0130) 2007
Jin, Chang, Zhang (bib0245) 2009
Wei (bib0285) 2012; 27
Zhu, Rosset, Hastie, Tibshirani (bib0100) 2003
Ovidiu (bib0305) 2007; vol. 23
Khan, Coulibaly (bib0195) 2006; 11
Karaboga (10.1016/j.asoc.2014.02.002_bib0355) 2009
Winters-Hilt (10.1016/j.asoc.2014.02.002_bib0070) 2006; 7
Han (10.1016/j.asoc.2014.02.002_bib0210) 2007; 9
Yuri (10.1016/j.asoc.2014.02.002_bib0335) 2013; 2
Arun (10.1016/j.asoc.2014.02.002_bib0150) 2009; 22
Chen (10.1016/j.asoc.2014.02.002_bib0225) 2007; 340
Heesung (10.1016/j.asoc.2014.02.002_bib0255) 2011; 396
Sivapragasam (10.1016/j.asoc.2014.02.002_bib0020) 2001; 3
Zahrahtul (10.1016/j.asoc.2014.02.002_bib0165) 2012; 6
Drucker (10.1016/j.asoc.2014.02.002_bib0295) 1997; 9
Tripathi (10.1016/j.asoc.2014.02.002_bib0125) 2006; 330
Jin (10.1016/j.asoc.2014.02.002_bib0245) 2009
Remesan (10.1016/j.asoc.2014.02.002_bib0275) 2009
Shigeo (10.1016/j.asoc.2014.02.002_bib0050) 2010
Ovidiu (10.1016/j.asoc.2014.02.002_bib0305) 2007; vol. 23
Hazi (10.1016/j.asoc.2014.02.002_bib0160) 2010; 38
Bray (10.1016/j.asoc.2014.02.002_bib0120) 2004; 6
Liu (10.1016/j.asoc.2014.02.002_bib0270) 2011
Smola (10.1016/j.asoc.2014.02.002_bib0315) 1990
Vapnik (10.1016/j.asoc.2014.02.002_bib0025) 1995
Dibike (10.1016/j.asoc.2014.02.002_bib0115) 2001; 15
Hossein (10.1016/j.asoc.2014.02.002_bib0190) 2012; 444–445
Debasmita (10.1016/j.asoc.2014.02.002_bib0155) 2009; 103
Gill (10.1016/j.asoc.2014.02.002_bib0260) 2006; 42
Marty (10.1016/j.asoc.2014.02.002_bib0365) 2012
Zhu (10.1016/j.asoc.2014.02.002_bib0100) 2003
Shahbazi (10.1016/j.asoc.2014.02.002_bib0230) 2011; 13
Seyyed (10.1016/j.asoc.2014.02.002_bib0375) 2010; 37
Yu (10.1016/j.asoc.2014.02.002_bib0205) 2006; 328
Cherkassky (10.1016/j.asoc.2014.02.002_bib0310) 2004; 17
Wu (10.1016/j.asoc.2014.02.002_bib0345) 2008; 358
Mesut (10.1016/j.asoc.2014.02.002_bib0145) 2008; 53
Suykens (10.1016/j.asoc.2014.02.002_bib0085) 2002
Schölkopf (10.1016/j.asoc.2014.02.002_bib0110) 2000; 12
Chen (10.1016/j.asoc.2014.02.002_bib0220) 2007; 347
Jian (10.1016/j.asoc.2014.02.002_bib0140) 2006; 51
Wei (10.1016/j.asoc.2014.02.002_bib0285) 2012; 27
10.1016/j.asoc.2014.02.002_bib0320
Bradley (10.1016/j.asoc.2014.02.002_bib0090) 1998
Xinying (10.1016/j.asoc.2014.02.002_bib0015) 2004; 6
Pechlivanidis (10.1016/j.asoc.2014.02.002_bib0005) 2011; 13
Pijush (10.1016/j.asoc.2014.02.002_bib0185) 2011; 3
Parag (10.1016/j.asoc.2014.02.002_bib0170) 2012; 4
Mohsen (10.1016/j.asoc.2014.02.002_bib0250) 2010; 24
Belayneh (10.1016/j.asoc.2014.02.002_bib0235) 2013; 18
Fletcher (10.1016/j.asoc.2014.02.002_bib0075) 1987
Eslamian (10.1016/j.asoc.2014.02.002_bib0180) 2008; 8
Yonas (10.1016/j.asoc.2014.02.002_bib0340) 2000
Yu (10.1016/j.asoc.2014.02.002_bib0060) 2003
10.1016/j.asoc.2014.02.002_bib0330
Duda (10.1016/j.asoc.2014.02.002_bib0055) 1973
Vapnik (10.1016/j.asoc.2014.02.002_bib0080) 1999; 10
Anirudh (10.1016/j.asoc.2014.02.002_bib0130) 2007
Chen (10.1016/j.asoc.2014.02.002_bib0135) 2010; 27
Dorigo (10.1016/j.asoc.2014.02.002_bib0360) 2005; 344
National Engineering Handbook (10.1016/j.asoc.2014.02.002_bib0010) 2012
Moghaddamnia (10.1016/j.asoc.2014.02.002_bib0175) 2008; 43
Weston (10.1016/j.asoc.2014.02.002_bib0350) 1999
Collobert (10.1016/j.asoc.2014.02.002_bib0035) 2001; 1
Khan (10.1016/j.asoc.2014.02.002_bib0195) 2006; 11
Wei (10.1016/j.asoc.2014.02.002_bib0215) 2007; 258
Afiq (10.1016/j.asoc.2014.02.002_bib0200) 2013; 27
Kimeldorf (10.1016/j.asoc.2014.02.002_bib0370) 1971; 33
Shih (10.1016/j.asoc.2014.02.002_bib0065) 2003
Mukherjee (10.1016/j.asoc.2014.02.002_bib0325) 1999
Bi (10.1016/j.asoc.2014.02.002_bib0095) 2003; 3
Ganguli (10.1016/j.asoc.2014.02.002_bib0240) 2013
Ozgur (10.1016/j.asoc.2014.02.002_bib0280) 2012; 25
Cristianini (10.1016/j.asoc.2014.02.002_bib0045) 2000
Bradley (10.1016/j.asoc.2014.02.002_bib0105) 2000; 13
Sajjad (10.1016/j.asoc.2014.02.002_bib0265) 2010; 33
Vapnik (10.1016/j.asoc.2014.02.002_bib0030) 1997; vol. 9
Cortes (10.1016/j.asoc.2014.02.002_bib0040) 1995; 20
Sudheer (10.1016/j.asoc.2014.02.002_bib0290) 2013; 101
10.1016/j.asoc.2014.02.002_bib0300
References_xml – volume: 1
  start-page: 143
  year: 2001
  end-page: 160
  ident: bib0035
  article-title: SVMTorch: support vector machines for large-scale regression problems
  publication-title: Journal of Machine Learning Research
– volume: 358
  start-page: 96
  year: 2008
  end-page: 111
  ident: bib0345
  article-title: River stage prediction based on a distributed support vector regression
  publication-title: Journal of Hydrology
– volume: 24
  year: 2010
  ident: bib0250
  article-title: Comparative study of SVMs and ANNs in aquifer water level prediction
  publication-title: Journal of Computing in Civil Engineering
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0040
  article-title: Support vector networks
  publication-title: Machine Learning
– year: 2000
  ident: bib0340
  article-title: Support vector machines: Review and applications in civil engineering
  publication-title: Proceedings of the 2nd Joint Workshop on Application of AI in Civil Engineering March 2000
– reference: S. Gunn, Support vector machines for classification and regression, ISIS Technical Report. (1998).
– volume: 6
  start-page: 3003
  year: 2012
  end-page: 3014
  ident: bib0165
  article-title: Streamflow forecasting at ungaged sites using support vector machines
  publication-title: Applied Mathematical Sciences
– volume: 9
  start-page: 155
  year: 1997
  end-page: 161
  ident: bib0295
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 18
  start-page: 3
  year: 2013
  end-page: 12
  ident: bib0235
  article-title: Drought forecasting using new machine learning methods
  publication-title: Journal of Water and Land Development
– volume: 10
  start-page: 988
  year: 1999
  end-page: 999
  ident: bib0080
  article-title: An overview of statistical learning theory
  publication-title: IEEE Transactions on Neural Networks
– volume: 13
  start-page: 1387
  year: 2011
  end-page: 1397
  ident: bib0230
  article-title: Seasonal meteorological drought prediction using support vector machine
  publication-title: World Applied Sciences Journal
– volume: 11
  start-page: 199
  year: 2006
  end-page: 205
  ident: bib0195
  article-title: Application of support vector machine in lake water level prediction
  publication-title: Journal of Hydrologic Engineering ASCE
– reference: C. Saunders , M.O. Stitson , J. Weston , L. Bottou , B. Schölkopf , A. Smola , Support vector machine – Reference manual Royal Holloway Technical Report CSD-TR-98-03. Royal Holloway (1998).
– volume: vol. 23
  start-page: 291
  year: 2007
  end-page: 400
  ident: bib0305
  article-title: Applications of support vector machines in chemistry
  publication-title: Reviews in Computational Chemistry
– volume: 330
  start-page: 621
  year: 2006
  end-page: 640
  ident: bib0125
  article-title: Downscaling of precipitation for climate change scenarios: a support vector machine approach
  publication-title: Journal of Hydrology
– volume: 27
  start-page: 438
  year: 2012
  end-page: 450
  ident: bib0285
  article-title: Wavelet support vector machines for forecasting precipitation in tropical cyclones: comparisons with GSVM, regression, and MM5
  publication-title: Weather and Forecasting
– volume: 15
  start-page: 208
  year: 2001
  end-page: 216
  ident: bib0115
  article-title: Model induction with support vector machines: introduction and application
  publication-title: Journal of Computing in Civil Engineering
– volume: 43
  start-page: 14
  year: 2008
  end-page: 22
  ident: bib0175
  article-title: Evaporation estimation using support vector machines technique
  publication-title: World Academy of Science, Engineering and Technology
– volume: 396
  start-page: 128
  year: 2011
  end-page: 138
  ident: bib0255
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: Journal of Hydrology
– volume: 2
  start-page: 113
  year: 2013
  end-page: 125
  ident: bib0335
  article-title: Applications of SVMs in the exploratory phase of petroleum and natural gas: a survey
  publication-title: International Journal of Engineering and Technology
– year: 1995
  ident: bib0025
  publication-title: The Nature of Statistical Learning Theory
– volume: 33
  start-page: 69
  year: 2010
  end-page: 80
  ident: bib0265
  article-title: Estimating soil moisture using remote sensing data: a machine learning approach
  publication-title: Advances in Water Resources
– volume: 444–445
  start-page: 78
  year: 2012
  end-page: 89
  ident: bib0190
  article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modelling using limited climatic data in a semi-arid highland environment
  publication-title: Journal of Hydrology
– volume: 8
  start-page: 3497
  year: 2008
  end-page: 3502
  ident: bib0180
  article-title: Estimation of pan evaporation using ANNs and SVMS
  publication-title: Journal of Applied Sciences
– start-page: 293
  year: 1999
  end-page: 305
  ident: bib0350
  article-title: Support vector density estimation
  publication-title: Advances in Kernel Methods: Support Vector Learning
– volume: 6
  start-page: 209
  year: 2004
  end-page: 223
  ident: bib0015
  article-title: EC-SVM approach for real-time hydrologic forecasting
  publication-title: Journal of Hydroinformatics
– year: 2000
  ident: bib0045
  publication-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
– year: 2003
  ident: bib0100
  article-title: 1-Norm Support Vector Machines
  publication-title: Neural Information Processing Systems
– volume: 4
  start-page: 528
  year: 2012
  end-page: 539
  ident: bib0170
  article-title: Multistep-ahead river flow prediction using LS-SVR at daily scale
  publication-title: Journal of Water Resource and Protection
– year: 1987
  ident: bib0075
  publication-title: Practical Methods of Optimization
– volume: 101
  start-page: 18
  year: 2013
  end-page: 23
  ident: bib0290
  article-title: Streamflow forecasting by SVM with quantum behaved particle swarm optimization
  publication-title: Neurocomputing
– year: 2009
  ident: bib0245
  article-title: Groundwater level dynamic prediction based on chaos optimization and support vector machine
  publication-title: Proceedings of the 3rd International Conference on Genetic and Evolutionary Computing
– year: 2003
  ident: bib0060
  article-title: Classifying large data sets using SVM with hierarchical clusters
  publication-title: Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 347
  start-page: 67
  year: 2007
  end-page: 78
  ident: bib0220
  article-title: Pruning of support vector networks on flood forecasting
  publication-title: Journal of Hydrology
– volume: 6
  start-page: 265
  year: 2004
  end-page: 280
  ident: bib0120
  article-title: Identification of support vector machines for runoff modelling
  publication-title: Journal of Hydroinformatics
– start-page: 1
  year: 2011
  ident: bib0270
  article-title: Groundwater quality assessment based on support vector machine
  publication-title: Report of “Introducing Intelligence Project” (B08039), funded by Global Environment Fund (GEF) Integral Water Resource and Environment Management of Haihe River basin (MWR-9-2-1)
– volume: 7
  start-page: S4
  year: 2006
  ident: bib0070
  article-title: Support Vector Machine Implementations for Classification and Clustering
  publication-title: BMC Bioinformatics
– volume: 27
  start-page: 274
  year: 2010
  end-page: 284
  ident: bib0135
  article-title: Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang basin
  publication-title: Advances in Atmospheric Sciences
– volume: 42
  start-page: 1033
  year: 2006
  end-page: 1046
  ident: bib0260
  article-title: Soil moisture prediction using support vector machines
  publication-title: JAWRA Journal of the American Water Resources Association
– year: 2013
  ident: bib0240
  article-title: Ensemble prediction of regional droughts using climate inputs and the SVM – copula approach
  publication-title: Hydrological Processes
– year: 2012
  ident: bib0010
  publication-title: United States Department of Agriculture, Selected Statistical Methods, Part 630-Hydrology
– year: 2007
  ident: bib0130
  article-title: Classification of rainy days using SVM
  publication-title: Proceedings of Symposium at HYDRO
– volume: 3
  start-page: 141
  year: 2001
  end-page: 152
  ident: bib0020
  article-title: Rainfall and runoff forecasting with SSA–SVM approach
  publication-title: Journal of Hydroinformatics
– year: 2003
  ident: bib0065
  article-title: Text bundling: statistics-based data reduction
  publication-title: Twentieth International Conference on Machine Learning
– volume: 258
  start-page: 223
  year: 2007
  end-page: 230
  ident: bib0215
  article-title: Soil water content forecasting by support vector machine in purple hilly region. Computer and computing technologies in agriculture
  publication-title: International Federation for Information Processing
– reference: J.C. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector. (1998).
– year: 1990
  ident: bib0315
  publication-title: Regression Estimation with Support Vector Learning Machines
– volume: 9
  start-page: 267
  year: 2007
  end-page: 276
  ident: bib0210
  article-title: Flood forecasting using support vector machines
  publication-title: Journal of Hydroinformatics
– year: 1999
  ident: bib0325
  article-title: Support vector method for multivariate density estimation
  publication-title: Center for Biological and Computational Learning. Department of Brain and Cognitive Sciences, MIT. C. B. C. L. No. 170
– volume: 51
  start-page: 599
  year: 2006
  end-page: 612
  ident: bib0140
  article-title: Using support vector machines for long term discharge prediction
  publication-title: Hydrological Sciences Journal
– volume: 13
  start-page: 1
  year: 2000
  end-page: 10
  ident: bib0105
  article-title: Massive data discrimination via linear support vector machines
  publication-title: Optimization Methods and Software
– volume: 344
  start-page: 243
  year: 2005
  end-page: 278
  ident: bib0360
  article-title: Ant colony optimization theory: a survey
  publication-title: Theoretical Computer Science
– volume: 3
  start-page: 1229
  year: 2003
  end-page: 1243
  ident: bib0095
  article-title: Dimensionality reduction via sparse support vector machines
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 431
  year: 2011
  end-page: 434
  ident: bib0185
  article-title: Application of least square support vector machine (LSSVM) for determination of evaporation losses in reservoirs
  publication-title: Engineering
– volume: 13
  start-page: 193
  year: 2011
  end-page: 214
  ident: bib0005
  article-title: Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods
  publication-title: Global NEST Journal
– volume: 12
  start-page: 1207
  year: 2000
  end-page: 1245
  ident: bib0110
  article-title: New support vector algorithms
  publication-title: Neural Computation
– volume: 53
  start-page: 656
  year: 2008
  end-page: 666
  ident: bib0145
  article-title: Estimation of daily suspended sediments using support vector machines
  publication-title: Hydrological Sciences Journal
– volume: 340
  start-page: 63
  year: 2007
  end-page: 77
  ident: bib0225
  article-title: Real-time probabilistic forecasting of flood stages
  publication-title: Journal of Hydrology
– year: 2012
  ident: bib0365
  article-title: Calibration of watershed models using cloud computing
  publication-title: Proceedings of the 8th IEEE International Conference on eScience
– year: 2009
  ident: bib0275
  article-title: Rainfall-runoff modelling using a wavelet-based hybrid SVM scheme
  publication-title: Proceedings of Symposium JS. 4 at the Joint Convention of the International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH)
– volume: 37
  start-page: 7154
  year: 2010
  end-page: 7161
  ident: bib0375
  article-title: Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN, Journal Expert Systems with Applications
  publication-title: An International Journal archive
– volume: 328
  start-page: 704
  year: 2006
  end-page: 716
  ident: bib0205
  article-title: Support vector regression for real-time flood stage forecasting
  publication-title: Journal of Hydrology
– volume: 25
  start-page: 783
  year: 2012
  end-page: 792
  ident: bib0280
  article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model
  publication-title: Engineering Applications of Artificial Intelligence
– start-page: 82
  year: 1998
  end-page: 90
  ident: bib0090
  article-title: Feature selection via concave minimization and support vector machines
  publication-title: The Fifteenth International Conference of Machine Learning
– volume: 27
  start-page: 3803
  year: 2013
  end-page: 3823
  ident: bib0200
  article-title: Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS)
  publication-title: Water Resources Management
– year: 1973
  ident: bib0055
  publication-title: Pattern Classification and Scene Analysis
– volume: 17
  start-page: 113
  year: 2004
  end-page: 126
  ident: bib0310
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Networks
– year: 2010
  ident: bib0050
  publication-title: Support Vector Machines for Pattern Classification
– volume: 38
  start-page: 969
  year: 2010
  end-page: 976
  ident: bib0160
  article-title: Machine learning approach to predict sediment load – a case study
  publication-title: Journal of Clean – Soil, Air, Water
– volume: vol. 9
  start-page: 281
  year: 1997
  end-page: 287
  ident: bib0030
  article-title: Support vector method for function approximation, regression estimation and signal processing
  publication-title: Advances in Neural Information Processing Systems
– year: 2002
  ident: bib0085
  publication-title: Least Squares Support Vector Machines
– volume: 33
  start-page: 82
  year: 1971
  end-page: 95
  ident: bib0370
  article-title: Some results on Tchebycheffian spline functions
  publication-title: Journal of Mathematical Analysis and Applications
– year: 2009
  ident: bib0355
  article-title: Artificial bee colony (ABC), Harmony Search and Bees Algorithm on Numerical Optimization
  publication-title: Proceedings of Innovative Production Machines and Systems virtual Conference
– volume: 22
  start-page: 216
  year: 2009
  end-page: 223
  ident: bib0150
  article-title: Application of support vector machines in scour prediction on grade-control structures
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 103
  start-page: 527
  year: 2009
  end-page: 535
  ident: bib0155
  article-title: Application and analysis of support vector machine based simulation for runoff and sediment yield
  publication-title: Bio Systems Engineering
– volume: 6
  start-page: 209
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2014.02.002_bib0015
  article-title: EC-SVM approach for real-time hydrologic forecasting
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2004.0016
– volume: 396
  start-page: 128
  year: 2011
  ident: 10.1016/j.asoc.2014.02.002_bib0255
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 444–445
  start-page: 78
  year: 2012
  ident: 10.1016/j.asoc.2014.02.002_bib0190
  article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modelling using limited climatic data in a semi-arid highland environment
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 1
  year: 2000
  ident: 10.1016/j.asoc.2014.02.002_bib0105
  article-title: Massive data discrimination via linear support vector machines
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556780008805771
– ident: 10.1016/j.asoc.2014.02.002_bib0330
– volume: 38
  start-page: 969
  issue: 10
  year: 2010
  ident: 10.1016/j.asoc.2014.02.002_bib0160
  article-title: Machine learning approach to predict sediment load – a case study
  publication-title: Journal of Clean – Soil, Air, Water
  doi: 10.1002/clen.201000068
– volume: vol. 23
  start-page: 291
  year: 2007
  ident: 10.1016/j.asoc.2014.02.002_bib0305
  article-title: Applications of support vector machines in chemistry
– volume: 101
  start-page: 18
  year: 2013
  ident: 10.1016/j.asoc.2014.02.002_bib0290
  article-title: Streamflow forecasting by SVM with quantum behaved particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.017
– volume: 9
  start-page: 155
  year: 1997
  ident: 10.1016/j.asoc.2014.02.002_bib0295
  article-title: Support vector regression machines
– year: 2003
  ident: 10.1016/j.asoc.2014.02.002_bib0065
  article-title: Text bundling: statistics-based data reduction
  publication-title: Twentieth International Conference on Machine Learning
– year: 2002
  ident: 10.1016/j.asoc.2014.02.002_bib0085
– volume: vol. 9
  start-page: 281
  year: 1997
  ident: 10.1016/j.asoc.2014.02.002_bib0030
  article-title: Support vector method for function approximation, regression estimation and signal processing
– volume: 3
  start-page: 141
  issue: 3
  year: 2001
  ident: 10.1016/j.asoc.2014.02.002_bib0020
  article-title: Rainfall and runoff forecasting with SSA–SVM approach
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2001.0014
– volume: 33
  start-page: 69
  year: 2010
  ident: 10.1016/j.asoc.2014.02.002_bib0265
  article-title: Estimating soil moisture using remote sensing data: a machine learning approach
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2009.10.008
– volume: 6
  start-page: 265
  issue: 4
  year: 2004
  ident: 10.1016/j.asoc.2014.02.002_bib0120
  article-title: Identification of support vector machines for runoff modelling
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2004.0020
– year: 1995
  ident: 10.1016/j.asoc.2014.02.002_bib0025
– year: 2003
  ident: 10.1016/j.asoc.2014.02.002_bib0100
  article-title: 1-Norm Support Vector Machines
– year: 1973
  ident: 10.1016/j.asoc.2014.02.002_bib0055
– volume: 18
  start-page: 3
  year: 2013
  ident: 10.1016/j.asoc.2014.02.002_bib0235
  article-title: Drought forecasting using new machine learning methods
  publication-title: Journal of Water and Land Development
  doi: 10.2478/jwld-2013-0001
– year: 2012
  ident: 10.1016/j.asoc.2014.02.002_bib0365
  article-title: Calibration of watershed models using cloud computing
– year: 2009
  ident: 10.1016/j.asoc.2014.02.002_bib0275
  article-title: Rainfall-runoff modelling using a wavelet-based hybrid SVM scheme
  publication-title: Proceedings of Symposium JS. 4 at the Joint Convention of the International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH)
– volume: 344
  start-page: 243
  year: 2005
  ident: 10.1016/j.asoc.2014.02.002_bib0360
  article-title: Ant colony optimization theory: a survey
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2005.05.020
– volume: 103
  start-page: 527
  year: 2009
  ident: 10.1016/j.asoc.2014.02.002_bib0155
  article-title: Application and analysis of support vector machine based simulation for runoff and sediment yield
  publication-title: Bio Systems Engineering
– start-page: 293
  year: 1999
  ident: 10.1016/j.asoc.2014.02.002_bib0350
  article-title: Support vector density estimation
– volume: 7
  start-page: S4
  issue: Suppl. 2
  year: 2006
  ident: 10.1016/j.asoc.2014.02.002_bib0070
  article-title: Support Vector Machine Implementations for Classification and Clustering
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-S2-S4
– volume: 42
  start-page: 1033
  year: 2006
  ident: 10.1016/j.asoc.2014.02.002_bib0260
  article-title: Soil moisture prediction using support vector machines
  publication-title: JAWRA Journal of the American Water Resources Association
  doi: 10.4236/jwarp.2012.47062
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: 10.1016/j.asoc.2014.02.002_bib0080
  article-title: An overview of statistical learning theory
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.788640
– volume: 27
  start-page: 438
  year: 2012
  ident: 10.1016/j.asoc.2014.02.002_bib0285
  article-title: Wavelet support vector machines for forecasting precipitation in tropical cyclones: comparisons with GSVM, regression, and MM5
  publication-title: Weather and Forecasting
  doi: 10.1175/WAF-D-11-00004.1
– volume: 43
  start-page: 14
  year: 2008
  ident: 10.1016/j.asoc.2014.02.002_bib0175
  article-title: Evaporation estimation using support vector machines technique
  publication-title: World Academy of Science, Engineering and Technology
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.asoc.2014.02.002_bib0040
  article-title: Support vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 1
  start-page: 143
  year: 2001
  ident: 10.1016/j.asoc.2014.02.002_bib0035
  article-title: SVMTorch: support vector machines for large-scale regression problems
  publication-title: Journal of Machine Learning Research
– year: 2003
  ident: 10.1016/j.asoc.2014.02.002_bib0060
  article-title: Classifying large data sets using SVM with hierarchical clusters
  publication-title: Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  doi: 10.1145/956750.956786
– volume: 15
  start-page: 208
  issue: 3
  year: 2001
  ident: 10.1016/j.asoc.2014.02.002_bib0115
  article-title: Model induction with support vector machines: introduction and application
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)0887-3801(2001)15:3(208)
– volume: 6
  start-page: 3003
  issue: 60
  year: 2012
  ident: 10.1016/j.asoc.2014.02.002_bib0165
  article-title: Streamflow forecasting at ungaged sites using support vector machines
  publication-title: Applied Mathematical Sciences
– volume: 25
  start-page: 783
  year: 2012
  ident: 10.1016/j.asoc.2014.02.002_bib0280
  article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2011.11.003
– year: 1990
  ident: 10.1016/j.asoc.2014.02.002_bib0315
– volume: 37
  start-page: 7154
  issue: 10
  year: 2010
  ident: 10.1016/j.asoc.2014.02.002_bib0375
  article-title: Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN, Journal Expert Systems with Applications
  publication-title: An International Journal archive
– volume: 12
  start-page: 1207
  issue: 5
  year: 2000
  ident: 10.1016/j.asoc.2014.02.002_bib0110
  article-title: New support vector algorithms
  publication-title: Neural Computation
  doi: 10.1162/089976600300015565
– volume: 22
  start-page: 216
  year: 2009
  ident: 10.1016/j.asoc.2014.02.002_bib0150
  article-title: Application of support vector machines in scour prediction on grade-control structures
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2008.05.008
– year: 1987
  ident: 10.1016/j.asoc.2014.02.002_bib0075
– volume: 4
  start-page: 528
  year: 2012
  ident: 10.1016/j.asoc.2014.02.002_bib0170
  article-title: Multistep-ahead river flow prediction using LS-SVR at daily scale
  publication-title: Journal of Water Resource and Protection
  doi: 10.4236/jwarp.2012.47062
– year: 2012
  ident: 10.1016/j.asoc.2014.02.002_bib0010
– volume: 27
  start-page: 3803
  year: 2013
  ident: 10.1016/j.asoc.2014.02.002_bib0200
  article-title: Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS)
  publication-title: Water Resources Management
  doi: 10.1007/s11269-013-0382-4
– volume: 33
  start-page: 82
  issue: 1
  year: 1971
  ident: 10.1016/j.asoc.2014.02.002_bib0370
  article-title: Some results on Tchebycheffian spline functions
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(71)90184-3
– year: 2009
  ident: 10.1016/j.asoc.2014.02.002_bib0245
  article-title: Groundwater level dynamic prediction based on chaos optimization and support vector machine
– volume: 330
  start-page: 621
  year: 2006
  ident: 10.1016/j.asoc.2014.02.002_bib0125
  article-title: Downscaling of precipitation for climate change scenarios: a support vector machine approach
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2006.04.030
– volume: 13
  start-page: 1387
  issue: 6
  year: 2011
  ident: 10.1016/j.asoc.2014.02.002_bib0230
  article-title: Seasonal meteorological drought prediction using support vector machine
  publication-title: World Applied Sciences Journal
– volume: 9
  start-page: 267
  issue: 4
  year: 2007
  ident: 10.1016/j.asoc.2014.02.002_bib0210
  article-title: Flood forecasting using support vector machines
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2007.027
– year: 2000
  ident: 10.1016/j.asoc.2014.02.002_bib0340
  article-title: Support vector machines: Review and applications in civil engineering
– volume: 2
  start-page: 113
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2014.02.002_bib0335
  article-title: Applications of SVMs in the exploratory phase of petroleum and natural gas: a survey
  publication-title: International Journal of Engineering and Technology
  doi: 10.14419/ijet.v2i2.834
– volume: 24
  issue: 5
  year: 2010
  ident: 10.1016/j.asoc.2014.02.002_bib0250
  article-title: Comparative study of SVMs and ANNs in aquifer water level prediction
  publication-title: Journal of Computing in Civil Engineering
– volume: 328
  start-page: 704
  year: 2006
  ident: 10.1016/j.asoc.2014.02.002_bib0205
  article-title: Support vector regression for real-time flood stage forecasting
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2006.01.021
– volume: 358
  start-page: 96
  year: 2008
  ident: 10.1016/j.asoc.2014.02.002_bib0345
  article-title: River stage prediction based on a distributed support vector regression
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2008.05.028
– volume: 347
  start-page: 67
  year: 2007
  ident: 10.1016/j.asoc.2014.02.002_bib0220
  article-title: Pruning of support vector networks on flood forecasting
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2007.08.029
– volume: 51
  start-page: 599
  issue: 4
  year: 2006
  ident: 10.1016/j.asoc.2014.02.002_bib0140
  article-title: Using support vector machines for long term discharge prediction
  publication-title: Hydrological Sciences Journal
  doi: 10.1623/hysj.51.4.599
– volume: 27
  start-page: 274
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2014.02.002_bib0135
  article-title: Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang basin
  publication-title: Advances in Atmospheric Sciences
  doi: 10.1007/s00376-009-8071-1
– volume: 258
  start-page: 223
  year: 2007
  ident: 10.1016/j.asoc.2014.02.002_bib0215
  article-title: Soil water content forecasting by support vector machine in purple hilly region. Computer and computing technologies in agriculture
  publication-title: International Federation for Information Processing
– start-page: 1
  year: 2011
  ident: 10.1016/j.asoc.2014.02.002_bib0270
  article-title: Groundwater quality assessment based on support vector machine
– start-page: 82
  year: 1998
  ident: 10.1016/j.asoc.2014.02.002_bib0090
  article-title: Feature selection via concave minimization and support vector machines
– volume: 3
  start-page: 431
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2014.02.002_bib0185
  article-title: Application of least square support vector machine (LSSVM) for determination of evaporation losses in reservoirs
  publication-title: Engineering
  doi: 10.4236/eng.2011.34049
– ident: 10.1016/j.asoc.2014.02.002_bib0300
– volume: 3
  start-page: 1229
  year: 2003
  ident: 10.1016/j.asoc.2014.02.002_bib0095
  article-title: Dimensionality reduction via sparse support vector machines
  publication-title: Journal of Machine Learning Research
– year: 2000
  ident: 10.1016/j.asoc.2014.02.002_bib0045
– volume: 53
  start-page: 656
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2014.02.002_bib0145
  article-title: Estimation of daily suspended sediments using support vector machines
  publication-title: Hydrological Sciences Journal
  doi: 10.1623/hysj.53.3.656
– year: 2007
  ident: 10.1016/j.asoc.2014.02.002_bib0130
  article-title: Classification of rainy days using SVM
– volume: 8
  start-page: 3497
  issue: 19
  year: 2008
  ident: 10.1016/j.asoc.2014.02.002_bib0180
  article-title: Estimation of pan evaporation using ANNs and SVMS
  publication-title: Journal of Applied Sciences
  doi: 10.3923/jas.2008.3497.3502
– volume: 13
  start-page: 193
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2014.02.002_bib0005
  article-title: Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods
  publication-title: Global NEST Journal
– volume: 17
  start-page: 113
  year: 2004
  ident: 10.1016/j.asoc.2014.02.002_bib0310
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00169-2
– year: 2009
  ident: 10.1016/j.asoc.2014.02.002_bib0355
  article-title: Artificial bee colony (ABC), Harmony Search and Bees Algorithm on Numerical Optimization
– year: 2010
  ident: 10.1016/j.asoc.2014.02.002_bib0050
– volume: 340
  start-page: 63
  issue: 1–2
  year: 2007
  ident: 10.1016/j.asoc.2014.02.002_bib0225
  article-title: Real-time probabilistic forecasting of flood stages
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2007.04.008
– volume: 11
  start-page: 199
  year: 2006
  ident: 10.1016/j.asoc.2014.02.002_bib0195
  article-title: Application of support vector machine in lake water level prediction
  publication-title: Journal of Hydrologic Engineering ASCE
  doi: 10.1061/(ASCE)1084-0699(2006)11:3(199)
– ident: 10.1016/j.asoc.2014.02.002_bib0320
– year: 2013
  ident: 10.1016/j.asoc.2014.02.002_bib0240
  article-title: Ensemble prediction of regional droughts using climate inputs and the SVM – copula approach
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.9966
– year: 1999
  ident: 10.1016/j.asoc.2014.02.002_bib0325
  article-title: Support vector method for multivariate density estimation
SSID ssj0016928
Score 2.5971231
SecondaryResourceType review_article
Snippet [Display omitted] •Basics of SVMs theory are discussed.•Applications of SVMs in various hydrological problems are reviewed.•Hybrid SVM models are also...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 372
SubjectTerms Hydrological models
Optimization theory
Statistical learning
Support vector machines
Title Support vector machine applications in the field of hydrology: A review
URI https://dx.doi.org/10.1016/j.asoc.2014.02.002
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3iVvatEm9jeGcX0PUwW6hSVqcaDfGFLz4t_uSpmOC7OCptLxA-SV9v5f0995D6FQEqVGxYkQDfxMGBEFEJCgJDQuYMokQxmYj3w_i_pDdjKJRDXWrXBgrq_S-v_Tpzlv7Jy2PZms6HreeYOchWMKAXxwRuwx2xu0qP_9eyDxonLj-qtaYWGufOFNqvFJAwMq7WFm3M_ibnJYIp7eFNnykiDvly2yjWlbsoM2qCwP2H-UuurKNOSGIxp_uAB6_O3lkhpd_TeNxgSHSw06vhic5fvkyM3egfoE7uExf2UPD3uVzt098ewSiwzieEx4YToM01JFRUQpxTiTS0ChqAmESrkTGjdKZVmEEcUCqYEaMBs8cAycpnrdZuI_qxaTIDhDWSqhEcZbD5g4YXYu8TVOTU01tOTEtGohWuEjta4fbFhZvshKJvUqLpbRYynYgAcsGOluMmZaVM1ZaRxXc8tf8S3DtK8Yd_nPcEVq3d6Xo6xjV57OP7ATCi7lquvXTRGud7uPdg71e3_YHPwXT0HI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7QALb0R5emBDUZvEThy2qqKk9LHQSt2s2E5EEaRVVZD495wTBxUJdWBNfFL0xb7vbH93B3DLvUTLQFJHIX87FAnC4Yy7jq-pR6WOONcmG3k0DuIpfZqxWQ26VS6MkVVa31_69MJb2ycti2ZrOZ-3nnHnwWlEkV8KIsYtUMNUp2J1aHT6g3j8c5kQREWLVTPeMQY2d6aUeSUIglF40bJ0p_c3P21wTu8A9mywSDrl9xxCLc2PYL9qxEDsujyGR9ObE-No8lmcwZP3QiGZks3baTLPCQZ7pJCskUVGXr70qjhTvycdUmawnMC09zDpxo7tkOAoPwjWTujp0PUSXzEtWYKhDuOJr6WrPa6jUPI01FKlSvoMQ4FE4k_RCp1zgLQkw6xN_VOo54s8PQOiJJeRDGmG-zskdcWztpvozFWuqSimeBPcChehbPlw08XiTVQ6sVdhsBQGS9H2BGLZhLsfm2VZPGPraFbBLX5NAYHefYvd-T_tbmAnnoyGYtgfDy5g17wpNWCXUF-vPtIrjDbW8trOpm-w6dGO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+machine+applications+in+the+field+of+hydrology%3A+A+review&rft.jtitle=Applied+soft+computing&rft.au=Raghavendra.+N%2C+Sujay&rft.au=Deka%2C+Paresh+Chandra&rft.date=2014-06-01&rft.issn=1568-4946&rft.volume=19&rft.spage=372&rft.epage=386&rft_id=info:doi/10.1016%2Fj.asoc.2014.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2014_02_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon