Influence of initialization on the performance of metaheuristic optimizers
All metaheuristic optimization algorithms require some initialization, and the initialization for such optimizers is usually carried out randomly. However, initialization can have some significant influence on the performance of such algorithms. This paper presents a systematic comparison of 22 diff...
Saved in:
Published in | Applied soft computing Vol. 91; p. 106193 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All metaheuristic optimization algorithms require some initialization, and the initialization for such optimizers is usually carried out randomly. However, initialization can have some significant influence on the performance of such algorithms. This paper presents a systematic comparison of 22 different initialization methods on the convergence and accuracy of five optimizers: differential evolution (DE), particle swarm optimization (PSO), cuckoo search (CS), artificial bee colony (ABC) and genetic algorithm (GA). We have used 19 different test functions with different properties and modalities to compare the possible effects of initialization, population sizes and the numbers of iterations. Rigorous statistical ranking tests indicate that 43.37% of the functions using the DE algorithm show significant differences for different initialization methods, while 73.68% of the functions using both PSO and CS algorithms are significantly affected by different initialization methods. The simulations show that DE is less sensitive to initialization, while both PSO and CS are more sensitive to initialization. In addition, under the condition of the same maximum number of fitness evaluations (FEs), the population size can also have a strong effect. Particle swarm optimization usually requires a larger population, while the cuckoo search needs only a small population size. Differential evolution depends more heavily on the number of iterations, a relatively small population with more iterations can lead to better results. Furthermore, ABC is more sensitive to initialization, while such initialization has little effect on GA. Some probability distributions such as the beta distribution, exponential distribution and Rayleigh distribution can usually lead to better performance. The implications of this study and further research topics are also discussed in detail.
•A systematical comparison of 22 different initialization methods for 5 algorithms.•A parametric study of the effects of the population size and number of iterations.•A detailed analysis of experimental results using statistical ranking techniques. |
---|---|
AbstractList | All metaheuristic optimization algorithms require some initialization, and the initialization for such optimizers is usually carried out randomly. However, initialization can have some significant influence on the performance of such algorithms. This paper presents a systematic comparison of 22 different initialization methods on the convergence and accuracy of five optimizers: differential evolution (DE), particle swarm optimization (PSO), cuckoo search (CS), artificial bee colony (ABC) and genetic algorithm (GA). We have used 19 different test functions with different properties and modalities to compare the possible effects of initialization, population sizes and the numbers of iterations. Rigorous statistical ranking tests indicate that 43.37% of the functions using the DE algorithm show significant differences for different initialization methods, while 73.68% of the functions using both PSO and CS algorithms are significantly affected by different initialization methods. The simulations show that DE is less sensitive to initialization, while both PSO and CS are more sensitive to initialization. In addition, under the condition of the same maximum number of fitness evaluations (FEs), the population size can also have a strong effect. Particle swarm optimization usually requires a larger population, while the cuckoo search needs only a small population size. Differential evolution depends more heavily on the number of iterations, a relatively small population with more iterations can lead to better results. Furthermore, ABC is more sensitive to initialization, while such initialization has little effect on GA. Some probability distributions such as the beta distribution, exponential distribution and Rayleigh distribution can usually lead to better performance. The implications of this study and further research topics are also discussed in detail.
•A systematical comparison of 22 different initialization methods for 5 algorithms.•A parametric study of the effects of the population size and number of iterations.•A detailed analysis of experimental results using statistical ranking techniques. |
ArticleNumber | 106193 |
Author | Li, Qian Yang, Xin-She Liu, San-Yang |
Author_xml | – sequence: 1 givenname: Qian surname: Li fullname: Li, Qian email: qianli_30@163.com organization: School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi 710071, PR China – sequence: 2 givenname: San-Yang surname: Liu fullname: Liu, San-Yang email: liusanyang@126.com organization: School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi 710071, PR China – sequence: 3 givenname: Xin-She surname: Yang fullname: Yang, Xin-She email: xy227@cam.ac.uk organization: School of Science and Technology, Middlesex University, London NW4 4BT, UK |
BookMark | eNp9kM1qwzAMgM3oYG23F9gpL5DMdhLHgV1G2U9HYZftbBxHpipJXGx3sD79krWnHQoCCaFPSN-CzAY3ACH3jGaMMvGwy3RwJuOUTw3B6vyKzJmseFoLyWZjXQqZFnUhbsgihB0doZrLOXlfD7Y7wGAgcTbBASPqDo86ohuSMeIWkj1463yvz0M9RL2Fg8cQ0SRuH7HHI_hwS66t7gLcnfOSfL08f67e0s3H63r1tElNLkRMRU1zC1qCbGXRmsLaXFNumRW64ZSVjaB2rKrG2jpvSwFVKZq24aYWjcxtlS-JPO013oXgwSqD8e_g6DV2ilE1OVE7NTlRkxN1cjKi_B-699hr_3MZejxBMD71jeBVMDgZa9GDiap1eAn_BZSbf0Y |
CitedBy_id | crossref_primary_10_1007_s13042_020_01161_z crossref_primary_10_53297_0002306X_2022_v75_3_431 crossref_primary_10_1109_OJIES_2024_3510367 crossref_primary_10_1093_jcde_qwae050 crossref_primary_10_1061__ASCE_HE_1943_5584_0002185 crossref_primary_10_1007_s44196_021_00030_z crossref_primary_10_1109_ACCESS_2024_3427632 crossref_primary_10_3390_rs16101794 crossref_primary_10_1109_ACCESS_2021_3073480 crossref_primary_10_1109_ACCESS_2024_3502458 crossref_primary_10_1002_aisy_202300746 crossref_primary_10_1007_s10472_021_09755_1 crossref_primary_10_1016_j_neucom_2024_128427 crossref_primary_10_1016_j_swevo_2021_100868 crossref_primary_10_1109_TPWRD_2024_3398790 crossref_primary_10_1016_j_eswa_2023_120069 crossref_primary_10_32604_cmc_2024_057431 crossref_primary_10_1134_S0005117921060011 crossref_primary_10_3390_su152014821 crossref_primary_10_1109_ACCESS_2024_3502251 crossref_primary_10_1007_s10462_024_10946_5 crossref_primary_10_1109_ACCESS_2023_3247954 crossref_primary_10_1016_j_advengsoft_2022_103177 crossref_primary_10_3390_math12131994 crossref_primary_10_1016_j_asoc_2021_107959 crossref_primary_10_1016_j_cie_2024_110686 crossref_primary_10_1109_ACCESS_2024_3397402 crossref_primary_10_1007_s10479_024_06039_9 crossref_primary_10_1155_2022_9193511 crossref_primary_10_26117_2079_6641_2022_39_2_150_174 crossref_primary_10_1038_s41598_024_63739_9 crossref_primary_10_1109_ACCESS_2023_3277625 crossref_primary_10_1007_s11831_022_09850_4 crossref_primary_10_1016_j_swevo_2021_100952 crossref_primary_10_1109_ACCESS_2022_3232175 crossref_primary_10_1007_s12530_023_09514_z crossref_primary_10_1016_j_asoc_2024_111477 crossref_primary_10_3390_math11122695 crossref_primary_10_1016_j_swevo_2025_101848 crossref_primary_10_1007_s10922_024_09822_y crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1093_jcde_qwad037 crossref_primary_10_3390_s22051894 crossref_primary_10_1016_j_matcom_2023_12_027 crossref_primary_10_1002_cpe_6871 crossref_primary_10_1007_s44196_023_00248_z crossref_primary_10_3390_app12020896 crossref_primary_10_1016_j_istruc_2023_105819 crossref_primary_10_1109_ACCESS_2021_3083220 crossref_primary_10_1007_s00500_021_06224_z crossref_primary_10_1016_j_neucom_2023_126899 crossref_primary_10_1115_1_4063006 crossref_primary_10_3390_math12233676 crossref_primary_10_1007_s41060_025_00726_x crossref_primary_10_3390_electronics13245007 crossref_primary_10_3934_era_2025023 crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_3390_w15142593 crossref_primary_10_1016_j_asoc_2024_111946 crossref_primary_10_1007_s11277_024_11510_8 crossref_primary_10_1016_j_jii_2024_100676 crossref_primary_10_1016_j_asoc_2021_107376 crossref_primary_10_1016_j_jhydrol_2021_126152 crossref_primary_10_1007_s11227_023_05111_8 crossref_primary_10_1111_itor_13237 crossref_primary_10_1515_jisys_2021_0164 crossref_primary_10_1007_s11581_025_06200_9 crossref_primary_10_3390_jmse11040761 crossref_primary_10_1049_sfw2_12025 crossref_primary_10_1016_j_knosys_2024_112194 crossref_primary_10_1002_int_22733 crossref_primary_10_1016_j_cma_2022_115764 crossref_primary_10_1016_j_ins_2024_120795 crossref_primary_10_1016_j_egyr_2024_04_014 |
Cites_doi | 10.1016/j.asoc.2008.07.004 10.1007/s00366-012-0308-4 10.1109/TFUZZ.2019.2895562 10.1007/s12065-013-0102-2 10.1016/j.eswa.2019.112853 10.1109/JIOT.2019.2938486 10.1016/j.asoc.2017.11.012 10.1016/j.asoc.2019.105653 10.1109/TEVC.2007.894200 10.1016/j.compstruc.2012.07.010 10.1038/44831 10.1007/s00521-013-1498-4 10.1111/j.1740-9713.2018.01123.x 10.1016/j.camwa.2003.07.011 10.1016/j.fluid.2012.09.018 10.1109/TEVC.2003.819263 10.1016/j.swevo.2018.05.002 10.1016/j.asoc.2018.11.028 10.1016/j.ejor.2015.03.005 10.1016/j.cor.2011.06.007 10.1016/j.asoc.2016.12.017 10.1007/s00500-017-2810-5 10.1080/0305215X.2017.1401067 10.1016/j.ejor.2017.10.013 10.1007/s00500-004-0363-x 10.1109/TEVC.2009.2014613 10.1109/TEVC.2008.927706 10.1109/TFUZZ.2018.2856120 10.1016/j.asoc.2016.06.011 10.1016/j.energy.2019.01.137 10.1016/j.neucom.2017.05.029 10.1109/TPWRS.2015.2428714 10.1016/j.eswa.2010.02.042 10.1023/A:1008202821328 10.1016/j.eswa.2007.02.002 10.1109/TPEL.2018.2889781 10.1016/j.ins.2010.07.015 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106193 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106193 S1568494620301332 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-6903fea8e8d84dc4ff3a02f1f6ab2015b60fab27bff93d56e756bdb2c96b83f73 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:05 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Initialization Differential evolution Cuckoo search Probability distribution Particle swarm optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-6903fea8e8d84dc4ff3a02f1f6ab2015b60fab27bff93d56e756bdb2c96b83f73 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106193 crossref_primary_10_1016_j_asoc_2020_106193 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106193 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ma, Vandenbosch (b17) 2012 Shi, Eberhart (b38) 1998 Yang, Deb, Zhao, Fong, He (b1) 2018; 22 Zaman, Elsayed, Ray, Sarker (b24) 2016; 31 Burke, Gustafson, Kendall (b54) 2004; 8 Guerrero, Montoya, Baños, Alcayde, Gil (b47) 2017; 266 McKay, Beckman, Conover (b56) 1979; 21 Isiet, Gadala (b7) 2019; 83 Bhargava, Fateen, Bonilla-Petriciolet (b43) 2013; 337 Li, Lin, Cui, Du, Liang, Chen, Lu, Ming (b3) 2016; 47 Cheng, Wang, Xiong (b6) 2018; 50 Weik (b58) 2001 Zhang, Sanderson (b34) 2009; 13 dos Santos Coelho, Mariani (b25) 2008; 34 Kimura, Matsumura (b16) 2005 Yaseen, Allawi, Karami, Ehteram, Farzin, Ahmed, Koting, Mohd, Jaafar, Afan (b10) 2019 Yang, Deb, Loomes, Karamanoglu (b65) 2013; 23 Nguyen, Kuo (b12) 2019; 75 Yang (b29) 2014 Kennedy (b37) 2010 Li, Liu, Yang (b27) 2020; 139 Ran, Li, Ke, Xin (b23) 2017; PP Karaboga, Basturk (b53) 2007; vol. 4529 Essiet, Sun, Wang (b9) 2019; 172 Puralachetty, Pamula (b28) 2016 Back, Schwefel (b46) 1996 Qin, Huang, Suganthan (b35) 2009; 13 Gao, Sheng, Wang, Wang (b50) 2018; 27 Kızılersü, Kreer, Thomas (b57) 2018; 15 López-Vázquez, Hochsztain (b60) 2017 Liang, Qu, Suganthan (b61) 2013 Clerc, Kennedy (b36) 2002; 20 Storn, Price (b32) 1997; 11 Akay, Karaboga (b59) 2012; 192 Li, Chu, Chen, Xing (b26) 2015 Chou, Chen (b55) 2000 Fan, Yan, Zhang (b5) 2018; 270 Lin, Zhu, Li, Wang, Cui, Chen, Lu (b64) 2018; 62 Jacob, Nair, Sasikumar (b11) 2009; 9 Yang (b13) 2014; 7 Chifu, Pop, Salomie, Suia, Niculici (b42) 2011 Karaboga (b48) 2005 Gandomi, Yang, Alavi (b40) 2013; 29 Yang, Deb (b39) 2009 Rahnamayan, Tizhoosh, Salama (b22) 2008; 12 Kondamadugula, Naidu (b14) 2016 Yin, Gong, Du, Liu, Zhong (b31) 2019; 34 Li, Cui, Fu, Wen, Lu, Lu (b49) 2017; 52 Sun, Lin, Gen, Li (b4) 2019; 27 Gao, Liu (b20) 2012; 39 Eskandar, Sadollah, Bahreininejad, Hamdi (b2) 2012; 110 Maaranen, Miettinen, Mäkelä (b19) 2004; 47 Liu, Lampinen (b33) 2005; 9 Hasan, Al-Rizzo (b8) 2019; 6 Vazquez (b41) 2011 Pal, Wang (b45) 2017 Cui, Li, Luo, Chen, Ming, Lu, Lu (b63) 2018; 43 Alatas (b21) 2010; 37 Xiang, Zhou, Liu (b52) 2015; 245 Elsayed, Sarker, Coello (b15) 2017 Aljarah, Mafarja, Heidari, Faris, Mirjalili (b30) 2020 Gao, Li, Zhang, Luo, Wang (b51) 2019 Kazimipour, Li, Qin (b18) 2014 Viswanathan, Buldyrev, Havlin, Luz, Raposo, Stanley (b44) 1999; 401 amd M. Z. Ali, Liang, Qu, Suganthan (b62) 2017 Yang (10.1016/j.asoc.2020.106193_b65) 2013; 23 Gao (10.1016/j.asoc.2020.106193_b51) 2019 López-Vázquez (10.1016/j.asoc.2020.106193_b60) 2017 Zhang (10.1016/j.asoc.2020.106193_b34) 2009; 13 Burke (10.1016/j.asoc.2020.106193_b54) 2004; 8 Lin (10.1016/j.asoc.2020.106193_b64) 2018; 62 Hasan (10.1016/j.asoc.2020.106193_b8) 2019; 6 dos Santos Coelho (10.1016/j.asoc.2020.106193_b25) 2008; 34 Yaseen (10.1016/j.asoc.2020.106193_b10) 2019 Chou (10.1016/j.asoc.2020.106193_b55) 2000 Kızılersü (10.1016/j.asoc.2020.106193_b57) 2018; 15 Ran (10.1016/j.asoc.2020.106193_b23) 2017; PP Kazimipour (10.1016/j.asoc.2020.106193_b18) 2014 Essiet (10.1016/j.asoc.2020.106193_b9) 2019; 172 Yang (10.1016/j.asoc.2020.106193_b39) 2009 Karaboga (10.1016/j.asoc.2020.106193_b48) 2005 Gao (10.1016/j.asoc.2020.106193_b20) 2012; 39 Weik (10.1016/j.asoc.2020.106193_b58) 2001 Li (10.1016/j.asoc.2020.106193_b49) 2017; 52 Cui (10.1016/j.asoc.2020.106193_b63) 2018; 43 Yang (10.1016/j.asoc.2020.106193_b1) 2018; 22 Kimura (10.1016/j.asoc.2020.106193_b16) 2005 Li (10.1016/j.asoc.2020.106193_b26) 2015 Yin (10.1016/j.asoc.2020.106193_b31) 2019; 34 Puralachetty (10.1016/j.asoc.2020.106193_b28) 2016 Karaboga (10.1016/j.asoc.2020.106193_b53) 2007; vol. 4529 Eskandar (10.1016/j.asoc.2020.106193_b2) 2012; 110 Rahnamayan (10.1016/j.asoc.2020.106193_b22) 2008; 12 Chifu (10.1016/j.asoc.2020.106193_b42) 2011 Gao (10.1016/j.asoc.2020.106193_b50) 2018; 27 Li (10.1016/j.asoc.2020.106193_b27) 2020; 139 Yang (10.1016/j.asoc.2020.106193_b29) 2014 amd M. Z. Ali (10.1016/j.asoc.2020.106193_b62) 2017 Storn (10.1016/j.asoc.2020.106193_b32) 1997; 11 Maaranen (10.1016/j.asoc.2020.106193_b19) 2004; 47 Alatas (10.1016/j.asoc.2020.106193_b21) 2010; 37 Liu (10.1016/j.asoc.2020.106193_b33) 2005; 9 Clerc (10.1016/j.asoc.2020.106193_b36) 2002; 20 Yang (10.1016/j.asoc.2020.106193_b13) 2014; 7 Shi (10.1016/j.asoc.2020.106193_b38) 1998 Akay (10.1016/j.asoc.2020.106193_b59) 2012; 192 Isiet (10.1016/j.asoc.2020.106193_b7) 2019; 83 Xiang (10.1016/j.asoc.2020.106193_b52) 2015; 245 McKay (10.1016/j.asoc.2020.106193_b56) 1979; 21 Vazquez (10.1016/j.asoc.2020.106193_b41) 2011 Cheng (10.1016/j.asoc.2020.106193_b6) 2018; 50 Jacob (10.1016/j.asoc.2020.106193_b11) 2009; 9 Qin (10.1016/j.asoc.2020.106193_b35) 2009; 13 Gandomi (10.1016/j.asoc.2020.106193_b40) 2013; 29 Aljarah (10.1016/j.asoc.2020.106193_b30) 2020 Bhargava (10.1016/j.asoc.2020.106193_b43) 2013; 337 Fan (10.1016/j.asoc.2020.106193_b5) 2018; 270 Kondamadugula (10.1016/j.asoc.2020.106193_b14) 2016 Nguyen (10.1016/j.asoc.2020.106193_b12) 2019; 75 Elsayed (10.1016/j.asoc.2020.106193_b15) 2017 Back (10.1016/j.asoc.2020.106193_b46) 1996 Pal (10.1016/j.asoc.2020.106193_b45) 2017 Guerrero (10.1016/j.asoc.2020.106193_b47) 2017; 266 Zaman (10.1016/j.asoc.2020.106193_b24) 2016; 31 Kennedy (10.1016/j.asoc.2020.106193_b37) 2010 Ma (10.1016/j.asoc.2020.106193_b17) 2012 Sun (10.1016/j.asoc.2020.106193_b4) 2019; 27 Viswanathan (10.1016/j.asoc.2020.106193_b44) 1999; 401 Li (10.1016/j.asoc.2020.106193_b3) 2016; 47 Liang (10.1016/j.asoc.2020.106193_b61) 2013 |
References_xml | – start-page: 69 year: 1998 end-page: 73 ident: b38 article-title: A modified particle swarm optimizer publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360) – volume: 37 start-page: 5682 year: 2010 end-page: 5687 ident: b21 article-title: Chaotic bee colony algorithms for global numerical optimization publication-title: Expert Syst. Appl. – volume: 245 start-page: 168 year: 2015 end-page: 193 ident: b52 article-title: An elitism based multi-objective artificial bee colony algorithm publication-title: European J. Oper. Res. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b32 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 20 start-page: 1671 year: 2002 end-page: 1676 ident: b36 article-title: The particle swarm: explosion, stability and convergence in multi-dimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 47 start-page: 577 year: 2016 end-page: 599 ident: b3 article-title: A novel hybrid differential evolution algorithm with modified CoDE and JADE publication-title: Appl. Soft Comput. – start-page: 965 year: 2000 end-page: 968 ident: b55 article-title: Genetic algorithms: initialization schemes and genes extraction publication-title: Ninth IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2000 (Cat. No. 00CH37063), Vol. 2 – start-page: 188 year: 2015 end-page: 193 ident: b26 article-title: A knowledge-based initialization technique of genetic algorithm for the travelling salesman problem publication-title: 2015 11th International Conference on Natural Computation – volume: 8 start-page: 47 year: 2004 end-page: 62 ident: b54 article-title: Diversity in genetic programming: An analysis of measures and correlation with fitness publication-title: IEEE Trans. Evol. Comput. – start-page: 507 year: 2016 end-page: 511 ident: b28 article-title: Differential evolution and particle swarm optimization algorithms with two stage initialization for PID controller tuning in coupled tank liquid level system publication-title: 2016 International Conference on Advanced Robotics and Mechatronics – volume: 266 start-page: 101 year: 2017 end-page: 113 ident: b47 article-title: Adaptive community detection in complex networks using genetic algorithms publication-title: Neurocomputing – start-page: 2585 year: 2014 end-page: 2592 ident: b18 article-title: A review of population initialization techniques for evolutionary algorithms publication-title: 2014 IEEE Congress on Evolutionary Computation – volume: 52 start-page: 146 year: 2017 end-page: 159 ident: b49 article-title: Artificial bee colony algorithm with gene recombination for numerical function optimization publication-title: Appl. Soft Comput. – volume: 43 start-page: 184 year: 2018 end-page: 206 ident: b63 article-title: An enhanced artificial bee colony algorithm with dual-population framework publication-title: Swarm Evol. Comput. – volume: 62 start-page: 702 year: 2018 end-page: 735 ident: b64 article-title: A novel artificial bee colony algorithm with local and global information interaction publication-title: Appl. Soft Comput. – volume: 192 start-page: 120 year: 2012 end-page: 142 ident: b59 article-title: A modified artificial bee colony algorithm for real-parameter optimization publication-title: Inform. Sci. – volume: 110 start-page: 151 year: 2012 end-page: 166 ident: b2 article-title: Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. – volume: 337 start-page: 191 year: 2013 end-page: 200 ident: b43 article-title: Cuckoo search: A new nature-inspired optimization method for phase equilibrium calculations publication-title: Fluid Phase Equilib. – start-page: 1341 year: 2005 end-page: 1346 ident: b16 article-title: Genetic algorithms using low-discrepancy sequences publication-title: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation – start-page: 1 year: 2016 end-page: 4 ident: b14 article-title: Accelerated evolutionary algorithms with parameterimportance based population initialization for variation-aware analog yield optimization publication-title: 2016 IEEE 59th International Midwest Symposium on Circuits and Systems – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: b34 article-title: JADE: Adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – volume: 75 start-page: 254 year: 2019 end-page: 264 ident: b12 article-title: Partition-and-merge based fuzzy genetic clustering algorithm for categorical data publication-title: Appl. Soft Comput. – volume: 172 start-page: 354 year: 2019 end-page: 365 ident: b9 article-title: Optimized energy consumption model for smart home using improved differential evolution algorithm publication-title: Energy – start-page: 760 year: 2010 end-page: 766 ident: b37 article-title: Particle swarm optimization publication-title: Encyclopedia Mach. Learn. – volume: 29 start-page: 245 year: 2013 ident: b40 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. – volume: 21 start-page: 239 year: 1979 end-page: 245 ident: b56 article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 27 start-page: 966 year: 2018 end-page: 978 ident: b50 article-title: Artificial bee colony algorithm based on novel mechanism for fuzzy portfolio selection publication-title: IEEE Trans. Fuzzy Syst. – start-page: 1 year: 2019 end-page: 12 ident: b51 article-title: Solving nonlinear equation systems by a two-phase evolutionary algorithm publication-title: IEEE Trans. Syst. Man Cybern. – year: 2017 ident: b45 article-title: Genetic Algorithms for Pattern Recognition – start-page: 20 year: 1996 end-page: 29 ident: b46 article-title: Evolutionary computation: An overview publication-title: Proceedings of IEEE International Conference on Evolutionary Computation – volume: 39 start-page: 687 year: 2012 end-page: 697 ident: b20 article-title: A modified artificial bee colony algorithm publication-title: Comput. Oper. Res. – volume: 9 start-page: 488 year: 2009 end-page: 496 ident: b11 article-title: A fuzzy-driven genetic algorithm for sequence segmentation applied to genomic sequences publication-title: Appl. Soft Comput. – volume: 47 start-page: 1885 year: 2004 end-page: 1895 ident: b19 article-title: Quasi-random initial population for genetic algorithms publication-title: Comput. Math. Appl. – year: 2014 ident: b29 article-title: Nature-Inspired Optimization Algorithms – start-page: 210 year: 2009 end-page: 214 ident: b39 article-title: Cuckoo search via Lévy flights publication-title: 2009 World Congress on Nature & Biologically Inspired Computing – volume: 34 start-page: 8994 year: 2019 end-page: 9005 ident: b31 article-title: Integrated position and speed loops under sliding mode control optimized by differential evolution algorithm for PMSM drives publication-title: IEEE Trans. Power Electron. – volume: vol. 4529 start-page: 789 year: 2007 end-page: 798 ident: b53 article-title: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems publication-title: Foundations of Fuzzy Logic and Soft Computing – volume: 9 start-page: 448 year: 2005 end-page: 462 ident: b33 article-title: A fuzzy adaptive differential evolution algorithm publication-title: Soft Comput. – volume: 270 start-page: 636 year: 2018 end-page: 653 ident: b5 article-title: Auto-selection mechanism of differential evolution algorithm variants and its application publication-title: European J. Oper. Res. – volume: PP start-page: 1 year: 2017 ident: b23 article-title: Evolutionary multiobjective optimization based multimodal optimization: Fitness landscape approximation and peak detection publication-title: IEEE Trans. Evol. Comput. – volume: 401 start-page: 911 year: 1999 end-page: 914 ident: b44 article-title: Optimizing the success of random searches publication-title: Nature – start-page: 123 year: 2020 end-page: 141 ident: b30 article-title: Multi-verse optimizer: Theory, literature review, and application in data clustering publication-title: Nature-Inspired Optimizers – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: b35 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 679 year: 2011 end-page: 686 ident: b41 article-title: Training spiking neural models using cuckoo search algorithm publication-title: 2011 IEEE Congress of Evolutionary Computation – start-page: 1 year: 2017 end-page: 14 ident: b60 article-title: Extended and updated tables for the friedman rank test publication-title: Commun. Stat.-Theory Methods – volume: 31 start-page: 1486 year: 2016 end-page: 1495 ident: b24 article-title: Evolutionary algorithms for dynamic economic dispatch problems publication-title: IEEE Trans. Power Syst. – start-page: 93 year: 2011 end-page: 102 ident: b42 article-title: Optimizing the semantic web service composition process using cuckoo search publication-title: Intelligent Distributed Computing V – volume: 139 start-page: 112853 year: 2020 ident: b27 article-title: Neighborhood information-based probabilistic algorithm for network disintegration publication-title: Expert Syst. Appl. – volume: 27 start-page: 1008 year: 2019 end-page: 1022 ident: b4 article-title: A hybrid cooperative coevolution algorithm for fuzzy flexible job shop scheduling publication-title: IEEE Trans. Fuzzy Syst. – volume: 7 start-page: 17 year: 2014 end-page: 28 ident: b13 article-title: Swarm intelligence based algorithms: a critical analysis publication-title: Evol. Intell. – start-page: 1416 year: 2001 ident: b58 article-title: Rayleigh distribution publication-title: Comput. Sci. Commun. Dict. – volume: 23 start-page: 2051 year: 2013 end-page: 2057 ident: b65 article-title: A framework for self-tuning optimization algorithms publication-title: Neural Comput. Appl. – volume: 22 start-page: 5923 year: 2018 end-page: 5933 ident: b1 article-title: Swarm intelligence: past, present and future publication-title: Soft Comput. – start-page: 925 year: 2012 end-page: 929 ident: b17 article-title: Impact of random number generators on the performance of particle swarm optimization in antenna design publication-title: 2012 6th European Conference on Antennas and Propagation – year: 2005 ident: b48 article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization – volume: 50 start-page: 1593 year: 2018 end-page: 1608 ident: b6 article-title: An improved cuckoo search algorithm and its application in vibration fault diagnosis for a hydroelectric generating unit publication-title: Eng. Optim. – volume: 83 start-page: 105653 year: 2019 ident: b7 article-title: Self-adapting control parameters in particle swarm optimization publication-title: Appl. Soft Comput. – volume: 15 start-page: 10 year: 2018 end-page: 11 ident: b57 article-title: The Weibull distribution publication-title: Significance – volume: 12 start-page: 64 year: 2008 end-page: 79 ident: b22 article-title: Opposition-based differential evolution publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2017 end-page: 13 ident: b15 article-title: Sequence-based deterministic initialization for evolutionary algorithms publication-title: IEEE Trans. Cybern. – volume: 34 start-page: 1905 year: 2008 end-page: 1913 ident: b25 article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization publication-title: Expert Syst. Appl. – volume: 6 start-page: 10344 year: 2019 end-page: 10362 ident: b8 article-title: Optimization of sensor deployment for industrial internet of things using a multi-swarm algorithm publication-title: IEEE Internet Things J. – year: 2017 ident: b62 article-title: Problem Definitions and Evaluation Criteria for the CEC2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization – start-page: 1 year: 2019 end-page: 15 ident: b10 article-title: A hybrid bat–swarm algorithm for optimizing dam and reservoir operation publication-title: Neural Comput. Appl. – year: 2013 ident: b61 article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, Vol. 635 – volume: 9 start-page: 488 issue: 2 year: 2009 ident: 10.1016/j.asoc.2020.106193_b11 article-title: A fuzzy-driven genetic algorithm for sequence segmentation applied to genomic sequences publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2008.07.004 – year: 2005 ident: 10.1016/j.asoc.2020.106193_b48 – volume: 29 start-page: 245 issue: 2 year: 2013 ident: 10.1016/j.asoc.2020.106193_b40 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-012-0308-4 – volume: 27 start-page: 1008 issue: 5 year: 2019 ident: 10.1016/j.asoc.2020.106193_b4 article-title: A hybrid cooperative coevolution algorithm for fuzzy flexible job shop scheduling publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2895562 – volume: 7 start-page: 17 issue: 1 year: 2014 ident: 10.1016/j.asoc.2020.106193_b13 article-title: Swarm intelligence based algorithms: a critical analysis publication-title: Evol. Intell. doi: 10.1007/s12065-013-0102-2 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2020.106193_b15 article-title: Sequence-based deterministic initialization for evolutionary algorithms publication-title: IEEE Trans. Cybern. – year: 2014 ident: 10.1016/j.asoc.2020.106193_b29 – start-page: 123 year: 2020 ident: 10.1016/j.asoc.2020.106193_b30 article-title: Multi-verse optimizer: Theory, literature review, and application in data clustering – year: 2013 ident: 10.1016/j.asoc.2020.106193_b61 – volume: 139 start-page: 112853 year: 2020 ident: 10.1016/j.asoc.2020.106193_b27 article-title: Neighborhood information-based probabilistic algorithm for network disintegration publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112853 – volume: 20 start-page: 1671 issue: 1 year: 2002 ident: 10.1016/j.asoc.2020.106193_b36 article-title: The particle swarm: explosion, stability and convergence in multi-dimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 10344 year: 2019 ident: 10.1016/j.asoc.2020.106193_b8 article-title: Optimization of sensor deployment for industrial internet of things using a multi-swarm algorithm publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2938486 – volume: 62 start-page: 702 year: 2018 ident: 10.1016/j.asoc.2020.106193_b64 article-title: A novel artificial bee colony algorithm with local and global information interaction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.012 – volume: 83 start-page: 105653 year: 2019 ident: 10.1016/j.asoc.2020.106193_b7 article-title: Self-adapting control parameters in particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105653 – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2020.106193_b14 article-title: Accelerated evolutionary algorithms with parameterimportance based population initialization for variation-aware analog yield optimization – volume: 12 start-page: 64 issue: 1 year: 2008 ident: 10.1016/j.asoc.2020.106193_b22 article-title: Opposition-based differential evolution publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.894200 – volume: 110 start-page: 151 year: 2012 ident: 10.1016/j.asoc.2020.106193_b2 article-title: Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: 401 start-page: 911 issue: 6756 year: 1999 ident: 10.1016/j.asoc.2020.106193_b44 article-title: Optimizing the success of random searches publication-title: Nature doi: 10.1038/44831 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2020.106193_b10 article-title: A hybrid bat–swarm algorithm for optimizing dam and reservoir operation publication-title: Neural Comput. Appl. – volume: 23 start-page: 2051 issue: 7–8 year: 2013 ident: 10.1016/j.asoc.2020.106193_b65 article-title: A framework for self-tuning optimization algorithms publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1498-4 – start-page: 965 year: 2000 ident: 10.1016/j.asoc.2020.106193_b55 article-title: Genetic algorithms: initialization schemes and genes extraction – volume: 15 start-page: 10 issue: 2 year: 2018 ident: 10.1016/j.asoc.2020.106193_b57 article-title: The Weibull distribution publication-title: Significance doi: 10.1111/j.1740-9713.2018.01123.x – start-page: 2585 year: 2014 ident: 10.1016/j.asoc.2020.106193_b18 article-title: A review of population initialization techniques for evolutionary algorithms – volume: 47 start-page: 1885 issue: 12 year: 2004 ident: 10.1016/j.asoc.2020.106193_b19 article-title: Quasi-random initial population for genetic algorithms publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2003.07.011 – volume: 337 start-page: 191 issue: 337 year: 2013 ident: 10.1016/j.asoc.2020.106193_b43 article-title: Cuckoo search: A new nature-inspired optimization method for phase equilibrium calculations publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2012.09.018 – volume: 8 start-page: 47 issue: 1 year: 2004 ident: 10.1016/j.asoc.2020.106193_b54 article-title: Diversity in genetic programming: An analysis of measures and correlation with fitness publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.819263 – volume: 43 start-page: 184 year: 2018 ident: 10.1016/j.asoc.2020.106193_b63 article-title: An enhanced artificial bee colony algorithm with dual-population framework publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.05.002 – volume: 75 start-page: 254 year: 2019 ident: 10.1016/j.asoc.2020.106193_b12 article-title: Partition-and-merge based fuzzy genetic clustering algorithm for categorical data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.028 – year: 2017 ident: 10.1016/j.asoc.2020.106193_b45 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 10.1016/j.asoc.2020.106193_b56 article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – start-page: 1416 year: 2001 ident: 10.1016/j.asoc.2020.106193_b58 article-title: Rayleigh distribution publication-title: Comput. Sci. Commun. Dict. – volume: 245 start-page: 168 issue: 1 year: 2015 ident: 10.1016/j.asoc.2020.106193_b52 article-title: An elitism based multi-objective artificial bee colony algorithm publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2015.03.005 – start-page: 20 year: 1996 ident: 10.1016/j.asoc.2020.106193_b46 article-title: Evolutionary computation: An overview – start-page: 93 year: 2011 ident: 10.1016/j.asoc.2020.106193_b42 article-title: Optimizing the semantic web service composition process using cuckoo search – volume: 39 start-page: 687 issue: 3 year: 2012 ident: 10.1016/j.asoc.2020.106193_b20 article-title: A modified artificial bee colony algorithm publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.06.007 – volume: 52 start-page: 146 year: 2017 ident: 10.1016/j.asoc.2020.106193_b49 article-title: Artificial bee colony algorithm with gene recombination for numerical function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.017 – volume: PP start-page: 1 issue: 99 year: 2017 ident: 10.1016/j.asoc.2020.106193_b23 article-title: Evolutionary multiobjective optimization based multimodal optimization: Fitness landscape approximation and peak detection publication-title: IEEE Trans. Evol. Comput. – start-page: 925 year: 2012 ident: 10.1016/j.asoc.2020.106193_b17 article-title: Impact of random number generators on the performance of particle swarm optimization in antenna design – start-page: 210 year: 2009 ident: 10.1016/j.asoc.2020.106193_b39 article-title: Cuckoo search via Lévy flights – volume: vol. 4529 start-page: 789 year: 2007 ident: 10.1016/j.asoc.2020.106193_b53 article-title: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems – volume: 22 start-page: 5923 issue: 18 year: 2018 ident: 10.1016/j.asoc.2020.106193_b1 article-title: Swarm intelligence: past, present and future publication-title: Soft Comput. doi: 10.1007/s00500-017-2810-5 – volume: 50 start-page: 1593 issue: 9 year: 2018 ident: 10.1016/j.asoc.2020.106193_b6 article-title: An improved cuckoo search algorithm and its application in vibration fault diagnosis for a hydroelectric generating unit publication-title: Eng. Optim. doi: 10.1080/0305215X.2017.1401067 – volume: 270 start-page: 636 issue: 2 year: 2018 ident: 10.1016/j.asoc.2020.106193_b5 article-title: Auto-selection mechanism of differential evolution algorithm variants and its application publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2017.10.013 – volume: 9 start-page: 448 issue: 6 year: 2005 ident: 10.1016/j.asoc.2020.106193_b33 article-title: A fuzzy adaptive differential evolution algorithm publication-title: Soft Comput. doi: 10.1007/s00500-004-0363-x – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.asoc.2020.106193_b34 article-title: JADE: Adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – start-page: 679 year: 2011 ident: 10.1016/j.asoc.2020.106193_b41 article-title: Training spiking neural models using cuckoo search algorithm – volume: 13 start-page: 398 issue: 2 year: 2009 ident: 10.1016/j.asoc.2020.106193_b35 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.927706 – start-page: 760 year: 2010 ident: 10.1016/j.asoc.2020.106193_b37 article-title: Particle swarm optimization publication-title: Encyclopedia Mach. Learn. – volume: 27 start-page: 966 issue: 5 year: 2018 ident: 10.1016/j.asoc.2020.106193_b50 article-title: Artificial bee colony algorithm based on novel mechanism for fuzzy portfolio selection publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2856120 – start-page: 507 year: 2016 ident: 10.1016/j.asoc.2020.106193_b28 article-title: Differential evolution and particle swarm optimization algorithms with two stage initialization for PID controller tuning in coupled tank liquid level system – volume: 47 start-page: 577 year: 2016 ident: 10.1016/j.asoc.2020.106193_b3 article-title: A novel hybrid differential evolution algorithm with modified CoDE and JADE publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.06.011 – start-page: 188 year: 2015 ident: 10.1016/j.asoc.2020.106193_b26 article-title: A knowledge-based initialization technique of genetic algorithm for the travelling salesman problem – volume: 172 start-page: 354 year: 2019 ident: 10.1016/j.asoc.2020.106193_b9 article-title: Optimized energy consumption model for smart home using improved differential evolution algorithm publication-title: Energy doi: 10.1016/j.energy.2019.01.137 – volume: 266 start-page: 101 year: 2017 ident: 10.1016/j.asoc.2020.106193_b47 article-title: Adaptive community detection in complex networks using genetic algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.029 – volume: 31 start-page: 1486 issue: 2 year: 2016 ident: 10.1016/j.asoc.2020.106193_b24 article-title: Evolutionary algorithms for dynamic economic dispatch problems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2428714 – year: 2017 ident: 10.1016/j.asoc.2020.106193_b62 – volume: 37 start-page: 5682 issue: 8 year: 2010 ident: 10.1016/j.asoc.2020.106193_b21 article-title: Chaotic bee colony algorithms for global numerical optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.02.042 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.asoc.2020.106193_b32 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2020.106193_b60 article-title: Extended and updated tables for the friedman rank test publication-title: Commun. Stat.-Theory Methods – volume: 34 start-page: 1905 issue: 3 year: 2008 ident: 10.1016/j.asoc.2020.106193_b25 article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.02.002 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2020.106193_b51 article-title: Solving nonlinear equation systems by a two-phase evolutionary algorithm publication-title: IEEE Trans. Syst. Man Cybern. – volume: 34 start-page: 8994 year: 2019 ident: 10.1016/j.asoc.2020.106193_b31 article-title: Integrated position and speed loops under sliding mode control optimized by differential evolution algorithm for PMSM drives publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2018.2889781 – volume: 192 start-page: 120 year: 2012 ident: 10.1016/j.asoc.2020.106193_b59 article-title: A modified artificial bee colony algorithm for real-parameter optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2010.07.015 – start-page: 69 year: 1998 ident: 10.1016/j.asoc.2020.106193_b38 article-title: A modified particle swarm optimizer – start-page: 1341 year: 2005 ident: 10.1016/j.asoc.2020.106193_b16 article-title: Genetic algorithms using low-discrepancy sequences |
SSID | ssj0016928 |
Score | 2.5627375 |
Snippet | All metaheuristic optimization algorithms require some initialization, and the initialization for such optimizers is usually carried out randomly. However,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106193 |
SubjectTerms | Cuckoo search Differential evolution Initialization Particle swarm optimization Probability distribution |
Title | Influence of initialization on the performance of metaheuristic optimizers |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106193 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3iWua9LU9juHYpgxRB7uVpE2wsi-ku3jwbzdp06kgOwiFtuEFyo_X90F-7z2ErlVqolTj-AjNJCNc85DEJg8iMoiVooJ6LC3ZFmMYTPhoGkwbqFfXwlhapbP9lU0vrbVb6Tg0O6s87zybzCPiMQffRvWMWTvMeWi1_PZzQ_OgEJfzVa0wsdKucKbieAmDgMkRfbsA5eHzX87ph8PpH6A9FynibvUxh6ihFkdov57CgN1PeYxGw3rOCF5qnFsykJi56kpsLhPh4dV3eYAVmqtCvKp11aQZL43VmOcfJg48QZP-3UtvQNyEBJIygIKY1JZpJSIVZRHPUq41E56vqQYhjWcPJHjaPIVS65hlAagwAJlJP41BRkyH7BQ1F8uFOkPYA0EBpMeZ0DygTEZcaaEoSA5UZLKFaA1Nkrr24XaKxSypeWJviYUzsXAmFZwtdLPZs6qaZ2yVDmrEk18qkBjrvmXf-T_3XaBd-1bxvi5Rs3hfqysTYRSyXapQG-10e08Pj_Y-vB-MvwCcTdJc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05a8MwFBYhGdqld2l6auhWTCzrsD2G0OAczdIEsgnJlqhLLoqz9NdXsuW0hZKh4MFI74H5kL_3HnoHAI8qNV6qMXweyiT2iCahF5s4yJM0VgoJ5OO0zLaYsGRGhnM6b4BeXQtj0yod91ecXrK1W-k4NDubPO-8msgjIjFhgfXqMTY83LLdqWgTtLqDUTLZXSawuByxauU9q-BqZ6o0L2FAMGFiYBdYef_8l336YXP6J-DIOYuwW33PKWio1Rk4rgcxQPdfnoPhoB41Atca5jYfSCxcgSU0j3Hy4Oa7QsAKLVUh3tS26tMM14Y4lvmncQUvwKz_PO0lnhuS4KWYscIz0S3WSkQqyiKSpURrLPxAI82ENMadSuZr8xZKrWOcUaZCymQmgzRmMsI6xJeguVqv1BWAPhOIMekTLDShCMuIKC0UYpIwJDLZBqiGhqeug7gdZLHgdarYO7dwcgsnr-Bsg6edzqbqn7FXmtaI81-ngBuC36N3_U-9B3CQTF_GfDyYjG7Aod2p0sBuQbP42Ko743AU8t4dqC9GL9N4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+initialization+on+the+performance+of+metaheuristic+optimizers&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Qian&rft.au=Liu%2C+San-Yang&rft.au=Yang%2C+Xin-She&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=91&rft_id=info:doi/10.1016%2Fj.asoc.2020.106193&rft.externalDocID=S1568494620301332 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |