Influence of initialization on the performance of metaheuristic optimizers

All metaheuristic optimization algorithms require some initialization, and the initialization for such optimizers is usually carried out randomly. However, initialization can have some significant influence on the performance of such algorithms. This paper presents a systematic comparison of 22 diff...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 91; p. 106193
Main Authors Li, Qian, Liu, San-Yang, Yang, Xin-She
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All metaheuristic optimization algorithms require some initialization, and the initialization for such optimizers is usually carried out randomly. However, initialization can have some significant influence on the performance of such algorithms. This paper presents a systematic comparison of 22 different initialization methods on the convergence and accuracy of five optimizers: differential evolution (DE), particle swarm optimization (PSO), cuckoo search (CS), artificial bee colony (ABC) and genetic algorithm (GA). We have used 19 different test functions with different properties and modalities to compare the possible effects of initialization, population sizes and the numbers of iterations. Rigorous statistical ranking tests indicate that 43.37% of the functions using the DE algorithm show significant differences for different initialization methods, while 73.68% of the functions using both PSO and CS algorithms are significantly affected by different initialization methods. The simulations show that DE is less sensitive to initialization, while both PSO and CS are more sensitive to initialization. In addition, under the condition of the same maximum number of fitness evaluations (FEs), the population size can also have a strong effect. Particle swarm optimization usually requires a larger population, while the cuckoo search needs only a small population size. Differential evolution depends more heavily on the number of iterations, a relatively small population with more iterations can lead to better results. Furthermore, ABC is more sensitive to initialization, while such initialization has little effect on GA. Some probability distributions such as the beta distribution, exponential distribution and Rayleigh distribution can usually lead to better performance. The implications of this study and further research topics are also discussed in detail. •A systematical comparison of 22 different initialization methods for 5 algorithms.•A parametric study of the effects of the population size and number of iterations.•A detailed analysis of experimental results using statistical ranking techniques.
AbstractList All metaheuristic optimization algorithms require some initialization, and the initialization for such optimizers is usually carried out randomly. However, initialization can have some significant influence on the performance of such algorithms. This paper presents a systematic comparison of 22 different initialization methods on the convergence and accuracy of five optimizers: differential evolution (DE), particle swarm optimization (PSO), cuckoo search (CS), artificial bee colony (ABC) and genetic algorithm (GA). We have used 19 different test functions with different properties and modalities to compare the possible effects of initialization, population sizes and the numbers of iterations. Rigorous statistical ranking tests indicate that 43.37% of the functions using the DE algorithm show significant differences for different initialization methods, while 73.68% of the functions using both PSO and CS algorithms are significantly affected by different initialization methods. The simulations show that DE is less sensitive to initialization, while both PSO and CS are more sensitive to initialization. In addition, under the condition of the same maximum number of fitness evaluations (FEs), the population size can also have a strong effect. Particle swarm optimization usually requires a larger population, while the cuckoo search needs only a small population size. Differential evolution depends more heavily on the number of iterations, a relatively small population with more iterations can lead to better results. Furthermore, ABC is more sensitive to initialization, while such initialization has little effect on GA. Some probability distributions such as the beta distribution, exponential distribution and Rayleigh distribution can usually lead to better performance. The implications of this study and further research topics are also discussed in detail. •A systematical comparison of 22 different initialization methods for 5 algorithms.•A parametric study of the effects of the population size and number of iterations.•A detailed analysis of experimental results using statistical ranking techniques.
ArticleNumber 106193
Author Li, Qian
Yang, Xin-She
Liu, San-Yang
Author_xml – sequence: 1
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  email: qianli_30@163.com
  organization: School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi 710071, PR China
– sequence: 2
  givenname: San-Yang
  surname: Liu
  fullname: Liu, San-Yang
  email: liusanyang@126.com
  organization: School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi 710071, PR China
– sequence: 3
  givenname: Xin-She
  surname: Yang
  fullname: Yang, Xin-She
  email: xy227@cam.ac.uk
  organization: School of Science and Technology, Middlesex University, London NW4 4BT, UK
BookMark eNp9kM1qwzAMgM3oYG23F9gpL5DMdhLHgV1G2U9HYZftbBxHpipJXGx3sD79krWnHQoCCaFPSN-CzAY3ACH3jGaMMvGwy3RwJuOUTw3B6vyKzJmseFoLyWZjXQqZFnUhbsgihB0doZrLOXlfD7Y7wGAgcTbBASPqDo86ohuSMeIWkj1463yvz0M9RL2Fg8cQ0SRuH7HHI_hwS66t7gLcnfOSfL08f67e0s3H63r1tElNLkRMRU1zC1qCbGXRmsLaXFNumRW64ZSVjaB2rKrG2jpvSwFVKZq24aYWjcxtlS-JPO013oXgwSqD8e_g6DV2ilE1OVE7NTlRkxN1cjKi_B-699hr_3MZejxBMD71jeBVMDgZa9GDiap1eAn_BZSbf0Y
CitedBy_id crossref_primary_10_1007_s13042_020_01161_z
crossref_primary_10_53297_0002306X_2022_v75_3_431
crossref_primary_10_1109_OJIES_2024_3510367
crossref_primary_10_1093_jcde_qwae050
crossref_primary_10_1061__ASCE_HE_1943_5584_0002185
crossref_primary_10_1007_s44196_021_00030_z
crossref_primary_10_1109_ACCESS_2024_3427632
crossref_primary_10_3390_rs16101794
crossref_primary_10_1109_ACCESS_2021_3073480
crossref_primary_10_1109_ACCESS_2024_3502458
crossref_primary_10_1002_aisy_202300746
crossref_primary_10_1007_s10472_021_09755_1
crossref_primary_10_1016_j_neucom_2024_128427
crossref_primary_10_1016_j_swevo_2021_100868
crossref_primary_10_1109_TPWRD_2024_3398790
crossref_primary_10_1016_j_eswa_2023_120069
crossref_primary_10_32604_cmc_2024_057431
crossref_primary_10_1134_S0005117921060011
crossref_primary_10_3390_su152014821
crossref_primary_10_1109_ACCESS_2024_3502251
crossref_primary_10_1007_s10462_024_10946_5
crossref_primary_10_1109_ACCESS_2023_3247954
crossref_primary_10_1016_j_advengsoft_2022_103177
crossref_primary_10_3390_math12131994
crossref_primary_10_1016_j_asoc_2021_107959
crossref_primary_10_1016_j_cie_2024_110686
crossref_primary_10_1109_ACCESS_2024_3397402
crossref_primary_10_1007_s10479_024_06039_9
crossref_primary_10_1155_2022_9193511
crossref_primary_10_26117_2079_6641_2022_39_2_150_174
crossref_primary_10_1038_s41598_024_63739_9
crossref_primary_10_1109_ACCESS_2023_3277625
crossref_primary_10_1007_s11831_022_09850_4
crossref_primary_10_1016_j_swevo_2021_100952
crossref_primary_10_1109_ACCESS_2022_3232175
crossref_primary_10_1007_s12530_023_09514_z
crossref_primary_10_1016_j_asoc_2024_111477
crossref_primary_10_3390_math11122695
crossref_primary_10_1016_j_swevo_2025_101848
crossref_primary_10_1007_s10922_024_09822_y
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1093_jcde_qwad037
crossref_primary_10_3390_s22051894
crossref_primary_10_1016_j_matcom_2023_12_027
crossref_primary_10_1002_cpe_6871
crossref_primary_10_1007_s44196_023_00248_z
crossref_primary_10_3390_app12020896
crossref_primary_10_1016_j_istruc_2023_105819
crossref_primary_10_1109_ACCESS_2021_3083220
crossref_primary_10_1007_s00500_021_06224_z
crossref_primary_10_1016_j_neucom_2023_126899
crossref_primary_10_1115_1_4063006
crossref_primary_10_3390_math12233676
crossref_primary_10_1007_s41060_025_00726_x
crossref_primary_10_3390_electronics13245007
crossref_primary_10_3934_era_2025023
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_3390_w15142593
crossref_primary_10_1016_j_asoc_2024_111946
crossref_primary_10_1007_s11277_024_11510_8
crossref_primary_10_1016_j_jii_2024_100676
crossref_primary_10_1016_j_asoc_2021_107376
crossref_primary_10_1016_j_jhydrol_2021_126152
crossref_primary_10_1007_s11227_023_05111_8
crossref_primary_10_1111_itor_13237
crossref_primary_10_1515_jisys_2021_0164
crossref_primary_10_1007_s11581_025_06200_9
crossref_primary_10_3390_jmse11040761
crossref_primary_10_1049_sfw2_12025
crossref_primary_10_1016_j_knosys_2024_112194
crossref_primary_10_1002_int_22733
crossref_primary_10_1016_j_cma_2022_115764
crossref_primary_10_1016_j_ins_2024_120795
crossref_primary_10_1016_j_egyr_2024_04_014
Cites_doi 10.1016/j.asoc.2008.07.004
10.1007/s00366-012-0308-4
10.1109/TFUZZ.2019.2895562
10.1007/s12065-013-0102-2
10.1016/j.eswa.2019.112853
10.1109/JIOT.2019.2938486
10.1016/j.asoc.2017.11.012
10.1016/j.asoc.2019.105653
10.1109/TEVC.2007.894200
10.1016/j.compstruc.2012.07.010
10.1038/44831
10.1007/s00521-013-1498-4
10.1111/j.1740-9713.2018.01123.x
10.1016/j.camwa.2003.07.011
10.1016/j.fluid.2012.09.018
10.1109/TEVC.2003.819263
10.1016/j.swevo.2018.05.002
10.1016/j.asoc.2018.11.028
10.1016/j.ejor.2015.03.005
10.1016/j.cor.2011.06.007
10.1016/j.asoc.2016.12.017
10.1007/s00500-017-2810-5
10.1080/0305215X.2017.1401067
10.1016/j.ejor.2017.10.013
10.1007/s00500-004-0363-x
10.1109/TEVC.2009.2014613
10.1109/TEVC.2008.927706
10.1109/TFUZZ.2018.2856120
10.1016/j.asoc.2016.06.011
10.1016/j.energy.2019.01.137
10.1016/j.neucom.2017.05.029
10.1109/TPWRS.2015.2428714
10.1016/j.eswa.2010.02.042
10.1023/A:1008202821328
10.1016/j.eswa.2007.02.002
10.1109/TPEL.2018.2889781
10.1016/j.ins.2010.07.015
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106193
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106193
S1568494620301332
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-6903fea8e8d84dc4ff3a02f1f6ab2015b60fab27bff93d56e756bdb2c96b83f73
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:05 EDT 2025
Thu Apr 24 23:10:41 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Initialization
Differential evolution
Cuckoo search
Probability distribution
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-6903fea8e8d84dc4ff3a02f1f6ab2015b60fab27bff93d56e756bdb2c96b83f73
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106193
crossref_primary_10_1016_j_asoc_2020_106193
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106193
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ma, Vandenbosch (b17) 2012
Shi, Eberhart (b38) 1998
Yang, Deb, Zhao, Fong, He (b1) 2018; 22
Zaman, Elsayed, Ray, Sarker (b24) 2016; 31
Burke, Gustafson, Kendall (b54) 2004; 8
Guerrero, Montoya, Baños, Alcayde, Gil (b47) 2017; 266
McKay, Beckman, Conover (b56) 1979; 21
Isiet, Gadala (b7) 2019; 83
Bhargava, Fateen, Bonilla-Petriciolet (b43) 2013; 337
Li, Lin, Cui, Du, Liang, Chen, Lu, Ming (b3) 2016; 47
Cheng, Wang, Xiong (b6) 2018; 50
Weik (b58) 2001
Zhang, Sanderson (b34) 2009; 13
dos Santos Coelho, Mariani (b25) 2008; 34
Kimura, Matsumura (b16) 2005
Yaseen, Allawi, Karami, Ehteram, Farzin, Ahmed, Koting, Mohd, Jaafar, Afan (b10) 2019
Yang, Deb, Loomes, Karamanoglu (b65) 2013; 23
Nguyen, Kuo (b12) 2019; 75
Yang (b29) 2014
Kennedy (b37) 2010
Li, Liu, Yang (b27) 2020; 139
Ran, Li, Ke, Xin (b23) 2017; PP
Karaboga, Basturk (b53) 2007; vol. 4529
Essiet, Sun, Wang (b9) 2019; 172
Puralachetty, Pamula (b28) 2016
Back, Schwefel (b46) 1996
Qin, Huang, Suganthan (b35) 2009; 13
Gao, Sheng, Wang, Wang (b50) 2018; 27
Kızılersü, Kreer, Thomas (b57) 2018; 15
López-Vázquez, Hochsztain (b60) 2017
Liang, Qu, Suganthan (b61) 2013
Clerc, Kennedy (b36) 2002; 20
Storn, Price (b32) 1997; 11
Akay, Karaboga (b59) 2012; 192
Li, Chu, Chen, Xing (b26) 2015
Chou, Chen (b55) 2000
Fan, Yan, Zhang (b5) 2018; 270
Lin, Zhu, Li, Wang, Cui, Chen, Lu (b64) 2018; 62
Jacob, Nair, Sasikumar (b11) 2009; 9
Yang (b13) 2014; 7
Chifu, Pop, Salomie, Suia, Niculici (b42) 2011
Karaboga (b48) 2005
Gandomi, Yang, Alavi (b40) 2013; 29
Yang, Deb (b39) 2009
Rahnamayan, Tizhoosh, Salama (b22) 2008; 12
Kondamadugula, Naidu (b14) 2016
Yin, Gong, Du, Liu, Zhong (b31) 2019; 34
Li, Cui, Fu, Wen, Lu, Lu (b49) 2017; 52
Sun, Lin, Gen, Li (b4) 2019; 27
Gao, Liu (b20) 2012; 39
Eskandar, Sadollah, Bahreininejad, Hamdi (b2) 2012; 110
Maaranen, Miettinen, Mäkelä (b19) 2004; 47
Liu, Lampinen (b33) 2005; 9
Hasan, Al-Rizzo (b8) 2019; 6
Vazquez (b41) 2011
Pal, Wang (b45) 2017
Cui, Li, Luo, Chen, Ming, Lu, Lu (b63) 2018; 43
Alatas (b21) 2010; 37
Xiang, Zhou, Liu (b52) 2015; 245
Elsayed, Sarker, Coello (b15) 2017
Aljarah, Mafarja, Heidari, Faris, Mirjalili (b30) 2020
Gao, Li, Zhang, Luo, Wang (b51) 2019
Kazimipour, Li, Qin (b18) 2014
Viswanathan, Buldyrev, Havlin, Luz, Raposo, Stanley (b44) 1999; 401
amd M. Z. Ali, Liang, Qu, Suganthan (b62) 2017
Yang (10.1016/j.asoc.2020.106193_b65) 2013; 23
Gao (10.1016/j.asoc.2020.106193_b51) 2019
López-Vázquez (10.1016/j.asoc.2020.106193_b60) 2017
Zhang (10.1016/j.asoc.2020.106193_b34) 2009; 13
Burke (10.1016/j.asoc.2020.106193_b54) 2004; 8
Lin (10.1016/j.asoc.2020.106193_b64) 2018; 62
Hasan (10.1016/j.asoc.2020.106193_b8) 2019; 6
dos Santos Coelho (10.1016/j.asoc.2020.106193_b25) 2008; 34
Yaseen (10.1016/j.asoc.2020.106193_b10) 2019
Chou (10.1016/j.asoc.2020.106193_b55) 2000
Kızılersü (10.1016/j.asoc.2020.106193_b57) 2018; 15
Ran (10.1016/j.asoc.2020.106193_b23) 2017; PP
Kazimipour (10.1016/j.asoc.2020.106193_b18) 2014
Essiet (10.1016/j.asoc.2020.106193_b9) 2019; 172
Yang (10.1016/j.asoc.2020.106193_b39) 2009
Karaboga (10.1016/j.asoc.2020.106193_b48) 2005
Gao (10.1016/j.asoc.2020.106193_b20) 2012; 39
Weik (10.1016/j.asoc.2020.106193_b58) 2001
Li (10.1016/j.asoc.2020.106193_b49) 2017; 52
Cui (10.1016/j.asoc.2020.106193_b63) 2018; 43
Yang (10.1016/j.asoc.2020.106193_b1) 2018; 22
Kimura (10.1016/j.asoc.2020.106193_b16) 2005
Li (10.1016/j.asoc.2020.106193_b26) 2015
Yin (10.1016/j.asoc.2020.106193_b31) 2019; 34
Puralachetty (10.1016/j.asoc.2020.106193_b28) 2016
Karaboga (10.1016/j.asoc.2020.106193_b53) 2007; vol. 4529
Eskandar (10.1016/j.asoc.2020.106193_b2) 2012; 110
Rahnamayan (10.1016/j.asoc.2020.106193_b22) 2008; 12
Chifu (10.1016/j.asoc.2020.106193_b42) 2011
Gao (10.1016/j.asoc.2020.106193_b50) 2018; 27
Li (10.1016/j.asoc.2020.106193_b27) 2020; 139
Yang (10.1016/j.asoc.2020.106193_b29) 2014
amd M. Z. Ali (10.1016/j.asoc.2020.106193_b62) 2017
Storn (10.1016/j.asoc.2020.106193_b32) 1997; 11
Maaranen (10.1016/j.asoc.2020.106193_b19) 2004; 47
Alatas (10.1016/j.asoc.2020.106193_b21) 2010; 37
Liu (10.1016/j.asoc.2020.106193_b33) 2005; 9
Clerc (10.1016/j.asoc.2020.106193_b36) 2002; 20
Yang (10.1016/j.asoc.2020.106193_b13) 2014; 7
Shi (10.1016/j.asoc.2020.106193_b38) 1998
Akay (10.1016/j.asoc.2020.106193_b59) 2012; 192
Isiet (10.1016/j.asoc.2020.106193_b7) 2019; 83
Xiang (10.1016/j.asoc.2020.106193_b52) 2015; 245
McKay (10.1016/j.asoc.2020.106193_b56) 1979; 21
Vazquez (10.1016/j.asoc.2020.106193_b41) 2011
Cheng (10.1016/j.asoc.2020.106193_b6) 2018; 50
Jacob (10.1016/j.asoc.2020.106193_b11) 2009; 9
Qin (10.1016/j.asoc.2020.106193_b35) 2009; 13
Gandomi (10.1016/j.asoc.2020.106193_b40) 2013; 29
Aljarah (10.1016/j.asoc.2020.106193_b30) 2020
Bhargava (10.1016/j.asoc.2020.106193_b43) 2013; 337
Fan (10.1016/j.asoc.2020.106193_b5) 2018; 270
Kondamadugula (10.1016/j.asoc.2020.106193_b14) 2016
Nguyen (10.1016/j.asoc.2020.106193_b12) 2019; 75
Elsayed (10.1016/j.asoc.2020.106193_b15) 2017
Back (10.1016/j.asoc.2020.106193_b46) 1996
Pal (10.1016/j.asoc.2020.106193_b45) 2017
Guerrero (10.1016/j.asoc.2020.106193_b47) 2017; 266
Zaman (10.1016/j.asoc.2020.106193_b24) 2016; 31
Kennedy (10.1016/j.asoc.2020.106193_b37) 2010
Ma (10.1016/j.asoc.2020.106193_b17) 2012
Sun (10.1016/j.asoc.2020.106193_b4) 2019; 27
Viswanathan (10.1016/j.asoc.2020.106193_b44) 1999; 401
Li (10.1016/j.asoc.2020.106193_b3) 2016; 47
Liang (10.1016/j.asoc.2020.106193_b61) 2013
References_xml – start-page: 69
  year: 1998
  end-page: 73
  ident: b38
  article-title: A modified particle swarm optimizer
  publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360)
– volume: 37
  start-page: 5682
  year: 2010
  end-page: 5687
  ident: b21
  article-title: Chaotic bee colony algorithms for global numerical optimization
  publication-title: Expert Syst. Appl.
– volume: 245
  start-page: 168
  year: 2015
  end-page: 193
  ident: b52
  article-title: An elitism based multi-objective artificial bee colony algorithm
  publication-title: European J. Oper. Res.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b32
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 20
  start-page: 1671
  year: 2002
  end-page: 1676
  ident: b36
  article-title: The particle swarm: explosion, stability and convergence in multi-dimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 577
  year: 2016
  end-page: 599
  ident: b3
  article-title: A novel hybrid differential evolution algorithm with modified CoDE and JADE
  publication-title: Appl. Soft Comput.
– start-page: 965
  year: 2000
  end-page: 968
  ident: b55
  article-title: Genetic algorithms: initialization schemes and genes extraction
  publication-title: Ninth IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2000 (Cat. No. 00CH37063), Vol. 2
– start-page: 188
  year: 2015
  end-page: 193
  ident: b26
  article-title: A knowledge-based initialization technique of genetic algorithm for the travelling salesman problem
  publication-title: 2015 11th International Conference on Natural Computation
– volume: 8
  start-page: 47
  year: 2004
  end-page: 62
  ident: b54
  article-title: Diversity in genetic programming: An analysis of measures and correlation with fitness
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 507
  year: 2016
  end-page: 511
  ident: b28
  article-title: Differential evolution and particle swarm optimization algorithms with two stage initialization for PID controller tuning in coupled tank liquid level system
  publication-title: 2016 International Conference on Advanced Robotics and Mechatronics
– volume: 266
  start-page: 101
  year: 2017
  end-page: 113
  ident: b47
  article-title: Adaptive community detection in complex networks using genetic algorithms
  publication-title: Neurocomputing
– start-page: 2585
  year: 2014
  end-page: 2592
  ident: b18
  article-title: A review of population initialization techniques for evolutionary algorithms
  publication-title: 2014 IEEE Congress on Evolutionary Computation
– volume: 52
  start-page: 146
  year: 2017
  end-page: 159
  ident: b49
  article-title: Artificial bee colony algorithm with gene recombination for numerical function optimization
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 184
  year: 2018
  end-page: 206
  ident: b63
  article-title: An enhanced artificial bee colony algorithm with dual-population framework
  publication-title: Swarm Evol. Comput.
– volume: 62
  start-page: 702
  year: 2018
  end-page: 735
  ident: b64
  article-title: A novel artificial bee colony algorithm with local and global information interaction
  publication-title: Appl. Soft Comput.
– volume: 192
  start-page: 120
  year: 2012
  end-page: 142
  ident: b59
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inform. Sci.
– volume: 110
  start-page: 151
  year: 2012
  end-page: 166
  ident: b2
  article-title: Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– volume: 337
  start-page: 191
  year: 2013
  end-page: 200
  ident: b43
  article-title: Cuckoo search: A new nature-inspired optimization method for phase equilibrium calculations
  publication-title: Fluid Phase Equilib.
– start-page: 1341
  year: 2005
  end-page: 1346
  ident: b16
  article-title: Genetic algorithms using low-discrepancy sequences
  publication-title: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation
– start-page: 1
  year: 2016
  end-page: 4
  ident: b14
  article-title: Accelerated evolutionary algorithms with parameterimportance based population initialization for variation-aware analog yield optimization
  publication-title: 2016 IEEE 59th International Midwest Symposium on Circuits and Systems
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b34
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 75
  start-page: 254
  year: 2019
  end-page: 264
  ident: b12
  article-title: Partition-and-merge based fuzzy genetic clustering algorithm for categorical data
  publication-title: Appl. Soft Comput.
– volume: 172
  start-page: 354
  year: 2019
  end-page: 365
  ident: b9
  article-title: Optimized energy consumption model for smart home using improved differential evolution algorithm
  publication-title: Energy
– start-page: 760
  year: 2010
  end-page: 766
  ident: b37
  article-title: Particle swarm optimization
  publication-title: Encyclopedia Mach. Learn.
– volume: 29
  start-page: 245
  year: 2013
  ident: b40
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
– volume: 21
  start-page: 239
  year: 1979
  end-page: 245
  ident: b56
  article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 27
  start-page: 966
  year: 2018
  end-page: 978
  ident: b50
  article-title: Artificial bee colony algorithm based on novel mechanism for fuzzy portfolio selection
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 1
  year: 2019
  end-page: 12
  ident: b51
  article-title: Solving nonlinear equation systems by a two-phase evolutionary algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2017
  ident: b45
  article-title: Genetic Algorithms for Pattern Recognition
– start-page: 20
  year: 1996
  end-page: 29
  ident: b46
  article-title: Evolutionary computation: An overview
  publication-title: Proceedings of IEEE International Conference on Evolutionary Computation
– volume: 39
  start-page: 687
  year: 2012
  end-page: 697
  ident: b20
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
– volume: 9
  start-page: 488
  year: 2009
  end-page: 496
  ident: b11
  article-title: A fuzzy-driven genetic algorithm for sequence segmentation applied to genomic sequences
  publication-title: Appl. Soft Comput.
– volume: 47
  start-page: 1885
  year: 2004
  end-page: 1895
  ident: b19
  article-title: Quasi-random initial population for genetic algorithms
  publication-title: Comput. Math. Appl.
– year: 2014
  ident: b29
  article-title: Nature-Inspired Optimization Algorithms
– start-page: 210
  year: 2009
  end-page: 214
  ident: b39
  article-title: Cuckoo search via Lévy flights
  publication-title: 2009 World Congress on Nature & Biologically Inspired Computing
– volume: 34
  start-page: 8994
  year: 2019
  end-page: 9005
  ident: b31
  article-title: Integrated position and speed loops under sliding mode control optimized by differential evolution algorithm for PMSM drives
  publication-title: IEEE Trans. Power Electron.
– volume: vol. 4529
  start-page: 789
  year: 2007
  end-page: 798
  ident: b53
  article-title: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems
  publication-title: Foundations of Fuzzy Logic and Soft Computing
– volume: 9
  start-page: 448
  year: 2005
  end-page: 462
  ident: b33
  article-title: A fuzzy adaptive differential evolution algorithm
  publication-title: Soft Comput.
– volume: 270
  start-page: 636
  year: 2018
  end-page: 653
  ident: b5
  article-title: Auto-selection mechanism of differential evolution algorithm variants and its application
  publication-title: European J. Oper. Res.
– volume: PP
  start-page: 1
  year: 2017
  ident: b23
  article-title: Evolutionary multiobjective optimization based multimodal optimization: Fitness landscape approximation and peak detection
  publication-title: IEEE Trans. Evol. Comput.
– volume: 401
  start-page: 911
  year: 1999
  end-page: 914
  ident: b44
  article-title: Optimizing the success of random searches
  publication-title: Nature
– start-page: 123
  year: 2020
  end-page: 141
  ident: b30
  article-title: Multi-verse optimizer: Theory, literature review, and application in data clustering
  publication-title: Nature-Inspired Optimizers
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: b35
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 679
  year: 2011
  end-page: 686
  ident: b41
  article-title: Training spiking neural models using cuckoo search algorithm
  publication-title: 2011 IEEE Congress of Evolutionary Computation
– start-page: 1
  year: 2017
  end-page: 14
  ident: b60
  article-title: Extended and updated tables for the friedman rank test
  publication-title: Commun. Stat.-Theory Methods
– volume: 31
  start-page: 1486
  year: 2016
  end-page: 1495
  ident: b24
  article-title: Evolutionary algorithms for dynamic economic dispatch problems
  publication-title: IEEE Trans. Power Syst.
– start-page: 93
  year: 2011
  end-page: 102
  ident: b42
  article-title: Optimizing the semantic web service composition process using cuckoo search
  publication-title: Intelligent Distributed Computing V
– volume: 139
  start-page: 112853
  year: 2020
  ident: b27
  article-title: Neighborhood information-based probabilistic algorithm for network disintegration
  publication-title: Expert Syst. Appl.
– volume: 27
  start-page: 1008
  year: 2019
  end-page: 1022
  ident: b4
  article-title: A hybrid cooperative coevolution algorithm for fuzzy flexible job shop scheduling
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 7
  start-page: 17
  year: 2014
  end-page: 28
  ident: b13
  article-title: Swarm intelligence based algorithms: a critical analysis
  publication-title: Evol. Intell.
– start-page: 1416
  year: 2001
  ident: b58
  article-title: Rayleigh distribution
  publication-title: Comput. Sci. Commun. Dict.
– volume: 23
  start-page: 2051
  year: 2013
  end-page: 2057
  ident: b65
  article-title: A framework for self-tuning optimization algorithms
  publication-title: Neural Comput. Appl.
– volume: 22
  start-page: 5923
  year: 2018
  end-page: 5933
  ident: b1
  article-title: Swarm intelligence: past, present and future
  publication-title: Soft Comput.
– start-page: 925
  year: 2012
  end-page: 929
  ident: b17
  article-title: Impact of random number generators on the performance of particle swarm optimization in antenna design
  publication-title: 2012 6th European Conference on Antennas and Propagation
– year: 2005
  ident: b48
  article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization
– volume: 50
  start-page: 1593
  year: 2018
  end-page: 1608
  ident: b6
  article-title: An improved cuckoo search algorithm and its application in vibration fault diagnosis for a hydroelectric generating unit
  publication-title: Eng. Optim.
– volume: 83
  start-page: 105653
  year: 2019
  ident: b7
  article-title: Self-adapting control parameters in particle swarm optimization
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 10
  year: 2018
  end-page: 11
  ident: b57
  article-title: The Weibull distribution
  publication-title: Significance
– volume: 12
  start-page: 64
  year: 2008
  end-page: 79
  ident: b22
  article-title: Opposition-based differential evolution
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2017
  end-page: 13
  ident: b15
  article-title: Sequence-based deterministic initialization for evolutionary algorithms
  publication-title: IEEE Trans. Cybern.
– volume: 34
  start-page: 1905
  year: 2008
  end-page: 1913
  ident: b25
  article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 10344
  year: 2019
  end-page: 10362
  ident: b8
  article-title: Optimization of sensor deployment for industrial internet of things using a multi-swarm algorithm
  publication-title: IEEE Internet Things J.
– year: 2017
  ident: b62
  article-title: Problem Definitions and Evaluation Criteria for the CEC2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
– start-page: 1
  year: 2019
  end-page: 15
  ident: b10
  article-title: A hybrid bat–swarm algorithm for optimizing dam and reservoir operation
  publication-title: Neural Comput. Appl.
– year: 2013
  ident: b61
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, Vol. 635
– volume: 9
  start-page: 488
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2020.106193_b11
  article-title: A fuzzy-driven genetic algorithm for sequence segmentation applied to genomic sequences
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.07.004
– year: 2005
  ident: 10.1016/j.asoc.2020.106193_b48
– volume: 29
  start-page: 245
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2020.106193_b40
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-012-0308-4
– volume: 27
  start-page: 1008
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2020.106193_b4
  article-title: A hybrid cooperative coevolution algorithm for fuzzy flexible job shop scheduling
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2895562
– volume: 7
  start-page: 17
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2020.106193_b13
  article-title: Swarm intelligence based algorithms: a critical analysis
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-013-0102-2
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106193_b15
  article-title: Sequence-based deterministic initialization for evolutionary algorithms
  publication-title: IEEE Trans. Cybern.
– year: 2014
  ident: 10.1016/j.asoc.2020.106193_b29
– start-page: 123
  year: 2020
  ident: 10.1016/j.asoc.2020.106193_b30
  article-title: Multi-verse optimizer: Theory, literature review, and application in data clustering
– year: 2013
  ident: 10.1016/j.asoc.2020.106193_b61
– volume: 139
  start-page: 112853
  year: 2020
  ident: 10.1016/j.asoc.2020.106193_b27
  article-title: Neighborhood information-based probabilistic algorithm for network disintegration
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112853
– volume: 20
  start-page: 1671
  issue: 1
  year: 2002
  ident: 10.1016/j.asoc.2020.106193_b36
  article-title: The particle swarm: explosion, stability and convergence in multi-dimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 10344
  year: 2019
  ident: 10.1016/j.asoc.2020.106193_b8
  article-title: Optimization of sensor deployment for industrial internet of things using a multi-swarm algorithm
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2938486
– volume: 62
  start-page: 702
  year: 2018
  ident: 10.1016/j.asoc.2020.106193_b64
  article-title: A novel artificial bee colony algorithm with local and global information interaction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.012
– volume: 83
  start-page: 105653
  year: 2019
  ident: 10.1016/j.asoc.2020.106193_b7
  article-title: Self-adapting control parameters in particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105653
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.106193_b14
  article-title: Accelerated evolutionary algorithms with parameterimportance based population initialization for variation-aware analog yield optimization
– volume: 12
  start-page: 64
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2020.106193_b22
  article-title: Opposition-based differential evolution
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.894200
– volume: 110
  start-page: 151
  year: 2012
  ident: 10.1016/j.asoc.2020.106193_b2
  article-title: Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 401
  start-page: 911
  issue: 6756
  year: 1999
  ident: 10.1016/j.asoc.2020.106193_b44
  article-title: Optimizing the success of random searches
  publication-title: Nature
  doi: 10.1038/44831
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106193_b10
  article-title: A hybrid bat–swarm algorithm for optimizing dam and reservoir operation
  publication-title: Neural Comput. Appl.
– volume: 23
  start-page: 2051
  issue: 7–8
  year: 2013
  ident: 10.1016/j.asoc.2020.106193_b65
  article-title: A framework for self-tuning optimization algorithms
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1498-4
– start-page: 965
  year: 2000
  ident: 10.1016/j.asoc.2020.106193_b55
  article-title: Genetic algorithms: initialization schemes and genes extraction
– volume: 15
  start-page: 10
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2020.106193_b57
  article-title: The Weibull distribution
  publication-title: Significance
  doi: 10.1111/j.1740-9713.2018.01123.x
– start-page: 2585
  year: 2014
  ident: 10.1016/j.asoc.2020.106193_b18
  article-title: A review of population initialization techniques for evolutionary algorithms
– volume: 47
  start-page: 1885
  issue: 12
  year: 2004
  ident: 10.1016/j.asoc.2020.106193_b19
  article-title: Quasi-random initial population for genetic algorithms
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2003.07.011
– volume: 337
  start-page: 191
  issue: 337
  year: 2013
  ident: 10.1016/j.asoc.2020.106193_b43
  article-title: Cuckoo search: A new nature-inspired optimization method for phase equilibrium calculations
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2012.09.018
– volume: 8
  start-page: 47
  issue: 1
  year: 2004
  ident: 10.1016/j.asoc.2020.106193_b54
  article-title: Diversity in genetic programming: An analysis of measures and correlation with fitness
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.819263
– volume: 43
  start-page: 184
  year: 2018
  ident: 10.1016/j.asoc.2020.106193_b63
  article-title: An enhanced artificial bee colony algorithm with dual-population framework
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.05.002
– volume: 75
  start-page: 254
  year: 2019
  ident: 10.1016/j.asoc.2020.106193_b12
  article-title: Partition-and-merge based fuzzy genetic clustering algorithm for categorical data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.028
– year: 2017
  ident: 10.1016/j.asoc.2020.106193_b45
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  ident: 10.1016/j.asoc.2020.106193_b56
  article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– start-page: 1416
  year: 2001
  ident: 10.1016/j.asoc.2020.106193_b58
  article-title: Rayleigh distribution
  publication-title: Comput. Sci. Commun. Dict.
– volume: 245
  start-page: 168
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2020.106193_b52
  article-title: An elitism based multi-objective artificial bee colony algorithm
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.03.005
– start-page: 20
  year: 1996
  ident: 10.1016/j.asoc.2020.106193_b46
  article-title: Evolutionary computation: An overview
– start-page: 93
  year: 2011
  ident: 10.1016/j.asoc.2020.106193_b42
  article-title: Optimizing the semantic web service composition process using cuckoo search
– volume: 39
  start-page: 687
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2020.106193_b20
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.06.007
– volume: 52
  start-page: 146
  year: 2017
  ident: 10.1016/j.asoc.2020.106193_b49
  article-title: Artificial bee colony algorithm with gene recombination for numerical function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.017
– volume: PP
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.asoc.2020.106193_b23
  article-title: Evolutionary multiobjective optimization based multimodal optimization: Fitness landscape approximation and peak detection
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 925
  year: 2012
  ident: 10.1016/j.asoc.2020.106193_b17
  article-title: Impact of random number generators on the performance of particle swarm optimization in antenna design
– start-page: 210
  year: 2009
  ident: 10.1016/j.asoc.2020.106193_b39
  article-title: Cuckoo search via Lévy flights
– volume: vol. 4529
  start-page: 789
  year: 2007
  ident: 10.1016/j.asoc.2020.106193_b53
  article-title: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems
– volume: 22
  start-page: 5923
  issue: 18
  year: 2018
  ident: 10.1016/j.asoc.2020.106193_b1
  article-title: Swarm intelligence: past, present and future
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2810-5
– volume: 50
  start-page: 1593
  issue: 9
  year: 2018
  ident: 10.1016/j.asoc.2020.106193_b6
  article-title: An improved cuckoo search algorithm and its application in vibration fault diagnosis for a hydroelectric generating unit
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2017.1401067
– volume: 270
  start-page: 636
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2020.106193_b5
  article-title: Auto-selection mechanism of differential evolution algorithm variants and its application
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2017.10.013
– volume: 9
  start-page: 448
  issue: 6
  year: 2005
  ident: 10.1016/j.asoc.2020.106193_b33
  article-title: A fuzzy adaptive differential evolution algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-004-0363-x
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2020.106193_b34
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– start-page: 679
  year: 2011
  ident: 10.1016/j.asoc.2020.106193_b41
  article-title: Training spiking neural models using cuckoo search algorithm
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2020.106193_b35
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.927706
– start-page: 760
  year: 2010
  ident: 10.1016/j.asoc.2020.106193_b37
  article-title: Particle swarm optimization
  publication-title: Encyclopedia Mach. Learn.
– volume: 27
  start-page: 966
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2020.106193_b50
  article-title: Artificial bee colony algorithm based on novel mechanism for fuzzy portfolio selection
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2856120
– start-page: 507
  year: 2016
  ident: 10.1016/j.asoc.2020.106193_b28
  article-title: Differential evolution and particle swarm optimization algorithms with two stage initialization for PID controller tuning in coupled tank liquid level system
– volume: 47
  start-page: 577
  year: 2016
  ident: 10.1016/j.asoc.2020.106193_b3
  article-title: A novel hybrid differential evolution algorithm with modified CoDE and JADE
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.06.011
– start-page: 188
  year: 2015
  ident: 10.1016/j.asoc.2020.106193_b26
  article-title: A knowledge-based initialization technique of genetic algorithm for the travelling salesman problem
– volume: 172
  start-page: 354
  year: 2019
  ident: 10.1016/j.asoc.2020.106193_b9
  article-title: Optimized energy consumption model for smart home using improved differential evolution algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.137
– volume: 266
  start-page: 101
  year: 2017
  ident: 10.1016/j.asoc.2020.106193_b47
  article-title: Adaptive community detection in complex networks using genetic algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.029
– volume: 31
  start-page: 1486
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2020.106193_b24
  article-title: Evolutionary algorithms for dynamic economic dispatch problems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2428714
– year: 2017
  ident: 10.1016/j.asoc.2020.106193_b62
– volume: 37
  start-page: 5682
  issue: 8
  year: 2010
  ident: 10.1016/j.asoc.2020.106193_b21
  article-title: Chaotic bee colony algorithms for global numerical optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.02.042
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2020.106193_b32
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106193_b60
  article-title: Extended and updated tables for the friedman rank test
  publication-title: Commun. Stat.-Theory Methods
– volume: 34
  start-page: 1905
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2020.106193_b25
  article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.02.002
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106193_b51
  article-title: Solving nonlinear equation systems by a two-phase evolutionary algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 34
  start-page: 8994
  year: 2019
  ident: 10.1016/j.asoc.2020.106193_b31
  article-title: Integrated position and speed loops under sliding mode control optimized by differential evolution algorithm for PMSM drives
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2018.2889781
– volume: 192
  start-page: 120
  year: 2012
  ident: 10.1016/j.asoc.2020.106193_b59
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2010.07.015
– start-page: 69
  year: 1998
  ident: 10.1016/j.asoc.2020.106193_b38
  article-title: A modified particle swarm optimizer
– start-page: 1341
  year: 2005
  ident: 10.1016/j.asoc.2020.106193_b16
  article-title: Genetic algorithms using low-discrepancy sequences
SSID ssj0016928
Score 2.5627375
Snippet All metaheuristic optimization algorithms require some initialization, and the initialization for such optimizers is usually carried out randomly. However,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106193
SubjectTerms Cuckoo search
Differential evolution
Initialization
Particle swarm optimization
Probability distribution
Title Influence of initialization on the performance of metaheuristic optimizers
URI https://dx.doi.org/10.1016/j.asoc.2020.106193
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3iWua9LU9juHYpgxRB7uVpE2wsi-ku3jwbzdp06kgOwiFtuEFyo_X90F-7z2ErlVqolTj-AjNJCNc85DEJg8iMoiVooJ6LC3ZFmMYTPhoGkwbqFfXwlhapbP9lU0vrbVb6Tg0O6s87zybzCPiMQffRvWMWTvMeWi1_PZzQ_OgEJfzVa0wsdKucKbieAmDgMkRfbsA5eHzX87ph8PpH6A9FynibvUxh6ihFkdov57CgN1PeYxGw3rOCF5qnFsykJi56kpsLhPh4dV3eYAVmqtCvKp11aQZL43VmOcfJg48QZP-3UtvQNyEBJIygIKY1JZpJSIVZRHPUq41E56vqQYhjWcPJHjaPIVS65hlAagwAJlJP41BRkyH7BQ1F8uFOkPYA0EBpMeZ0DygTEZcaaEoSA5UZLKFaA1Nkrr24XaKxSypeWJviYUzsXAmFZwtdLPZs6qaZ2yVDmrEk18qkBjrvmXf-T_3XaBd-1bxvi5Rs3hfqysTYRSyXapQG-10e08Pj_Y-vB-MvwCcTdJc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05a8MwFBYhGdqld2l6auhWTCzrsD2G0OAczdIEsgnJlqhLLoqz9NdXsuW0hZKh4MFI74H5kL_3HnoHAI8qNV6qMXweyiT2iCahF5s4yJM0VgoJ5OO0zLaYsGRGhnM6b4BeXQtj0yod91ecXrK1W-k4NDubPO-8msgjIjFhgfXqMTY83LLdqWgTtLqDUTLZXSawuByxauU9q-BqZ6o0L2FAMGFiYBdYef_8l336YXP6J-DIOYuwW33PKWio1Rk4rgcxQPdfnoPhoB41Atca5jYfSCxcgSU0j3Hy4Oa7QsAKLVUh3tS26tMM14Y4lvmncQUvwKz_PO0lnhuS4KWYscIz0S3WSkQqyiKSpURrLPxAI82ENMadSuZr8xZKrWOcUaZCymQmgzRmMsI6xJeguVqv1BWAPhOIMekTLDShCMuIKC0UYpIwJDLZBqiGhqeug7gdZLHgdarYO7dwcgsnr-Bsg6edzqbqn7FXmtaI81-ngBuC36N3_U-9B3CQTF_GfDyYjG7Aod2p0sBuQbP42Ko743AU8t4dqC9GL9N4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+initialization+on+the+performance+of+metaheuristic+optimizers&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Qian&rft.au=Liu%2C+San-Yang&rft.au=Yang%2C+Xin-She&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=91&rft_id=info:doi/10.1016%2Fj.asoc.2020.106193&rft.externalDocID=S1568494620301332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon