Constraining white dwarf viscosity through tidal heating in detached binary systems
Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly disc...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 443; no. 2; pp. 1057 - 1064 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
11.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly discovered ∼12.8 min system (J0651). These binaries are wide enough that mass transfer has not yet started but close enough that the secondary (least massive) component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity as the secondary gets spun up. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of synchronization (ratio of stellar spin to orbital period) as a function of the viscous time. Specializing to the case of J0651, we find that an ∼10 per cent discrepancy between the measured radius of the secondary star and predictions of He white dwarf models can be interpreted as tidal inflation if the viscous time-scale is ∼4 × 104 yr. Such value is well in the range of various non-microscopic viscosities proposed in the literature like, e.g. tidally induced turbulence, non-linear damping of dynamical tides or internal magnetic stresses with a magnetic field strength ∼10–100 G. A 10 per cent tidal inflation is the maximum possible effect in J0651, at its current orbital separation, hence it selects a single value of the viscous time-scale: the latter implies that the system is still far from synchronization. Smaller effects of tidal inflation – well consistent with current uncertainties – would instead correspond to two different viscous time-scales, one longer and one shorter than 4 × 104 yr. In this more general case, the degeneracy can be broken by a joint measurement of the secondary's spin, since the two time-scales imply very different degrees of synchronization. Extrapolating the secondary's expansion into the future, we find that the star will fill its Roche lobe at a separation which is ∼1.2–1.5 smaller than the current one. Applying this method to a future sample of systems can allow us to learn whether viscosity changes with mass and/or nuclear composition. |
---|---|
AbstractList | Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly discovered similar to 12.8 min system (J0651). These binaries are wide enough that mass transfer has not yet started but close enough that the secondary (least massive) component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity as the secondary gets spun up. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of synchronization (ratio of stellar spin to orbital period) as a function of the viscous time. Specializing to the case of J0651, we find that an similar to 10 per cent discrepancy between the measured radius of the secondary star and predictions of He white dwarf models can be interpreted as tidal inflation if the viscous time-scale is similar to 4 x 10 super( 4) yr. Such value is well in the range of various non-microscopic viscosities proposed in the literature like, e.g. tidally induced turbulence, non-linear damping of dynamical tides or internal magnetic stresses with a magnetic field strength similar to 10-100 G. A 10 per cent tidal inflation is the maximum possible effect in J0651, at its current orbital separation, hence it selects a single value of the viscous time-scale: the latter implies that the system is still far from synchronization. Smaller effects of tidal inflation -- well consistent with current uncertainties -- would instead correspond to two different viscous time-scales, one longer and one shorter than 4 x 10 super( 4) yr. In this more general case, the degeneracy can be broken by a joint measurement of the secondary's spin, since the two time-scales imply very different degrees of synchronization. Extrapolating the secondary's expansion into the future, we find that the star will fill its Roche lobe at a separation which is similar to 1.2-1.5 smaller than the current one. Applying this method to a future sample of systems can allow us to learn whether viscosity changes with mass and/or nuclear composition. Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly discovered ∼12.8 min system (J0651). These binaries are wide enough that mass transfer has not yet started but close enough that the secondary (least massive) component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity as the secondary gets spun up. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of synchronization (ratio of stellar spin to orbital period) as a function of the viscous time. Specializing to the case of J0651, we find that an ∼10 per cent discrepancy between the measured radius of the secondary star and predictions of He white dwarf models can be interpreted as tidal inflation if the viscous time-scale is ∼4 × 104 yr. Such value is well in the range of various non-microscopic viscosities proposed in the literature like, e.g. tidally induced turbulence, non-linear damping of dynamical tides or internal magnetic stresses with a magnetic field strength ∼10–100 G. A 10 per cent tidal inflation is the maximum possible effect in J0651, at its current orbital separation, hence it selects a single value of the viscous time-scale: the latter implies that the system is still far from synchronization. Smaller effects of tidal inflation – well consistent with current uncertainties – would instead correspond to two different viscous time-scales, one longer and one shorter than 4 × 104 yr. In this more general case, the degeneracy can be broken by a joint measurement of the secondary's spin, since the two time-scales imply very different degrees of synchronization. Extrapolating the secondary's expansion into the future, we find that the star will fill its Roche lobe at a separation which is ∼1.2–1.5 smaller than the current one. Applying this method to a future sample of systems can allow us to learn whether viscosity changes with mass and/or nuclear composition. Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly discovered ∼12.8 min system (J0651). These binaries are wide enough that mass transfer has not yet started but close enough that the secondary (least massive) component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity as the secondary gets spun up. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of synchronization (ratio of stellar spin to orbital period) as a function of the viscous time. Specializing to the case of J0651, we find that an ∼10 per cent discrepancy between the measured radius of the secondary star and predictions of He white dwarf models can be interpreted as tidal inflation if the viscous time-scale is ∼4 x 10^sup 4^ yr. Such value is well in the range of various non-microscopic viscosities proposed in the literature like, e.g. tidally induced turbulence, non-linear damping of dynamical tides or internal magnetic stresses with a magnetic field strength ∼10-100 G. A 10 per cent tidal inflation is the maximum possible effect in J0651, at its current orbital separation, hence it selects a single value of the viscous time-scale: the latter implies that the system is still far from synchronization. Smaller effects of tidal inflation -- well consistent with current uncertainties -- would instead correspond to two different viscous time-scales, one longer and one shorter than 4 x 10^sup 4^ yr. In this more general case, the degeneracy can be broken by a joint measurement of the secondary's spin, since the two time-scales imply very different degrees of synchronization. Extrapolating the secondary's expansion into the future, we find that the star will fill its Roche lobe at a separation which is ∼1.2-1.5 smaller than the current one. Applying this method to a future sample of systems can allow us to learn whether viscosity changes with mass and/or nuclear composition. |
Author | Rossi, Elena M. Dall'Osso, Simone |
Author_xml | – sequence: 1 givenname: Simone surname: Dall'Osso fullname: Dall'Osso, Simone organization: 1Theoretical Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany – sequence: 2 givenname: Elena M. surname: Rossi fullname: Rossi, Elena M. organization: 1Theoretical Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany |
BookMark | eNp9kL1OwzAYRS1UJNrCxgNYYoCBUP8kTjKiij-pEgMwR47tNK4Su9gOVd8elzBVgulbzr2635mBibFGAXCJ0R1GJV30xnG_8GEoET4BU0xZlpCSsQmYIkSzpMgxPgMz7zcIoZQSNgVvS2t8cFwbbdZw1-qgoNxx18Av7YX1OuxhaJ0d1i0MWvIOtoqHA6sNlCpw0SoJa22420O_90H1_hycNrzz6uL3zsHH48P78jlZvT69LO9XiaCMhYTlNGWykIwhVTYZLghHqeIM44YQLgSSUlJFSMRQUxcNJgrXuJQxxeuUCToHN2Pv1tnPQflQ9XGz6jpulB18hTOGMKE0TyN6dYRu7OBMXBepjOA0K3MaqduREs5671RTbZ3u42cVRtXBcPVjuBoNR5wc4UKHKMeag9Dur9D1GLLD9v_6bxw_kl4 |
CitedBy_id | crossref_primary_10_1088_0004_637X_806_1_50 crossref_primary_10_1007_s11433_023_2308_x crossref_primary_10_1093_mnras_stu1698 crossref_primary_10_1103_PhysRevD_101_083503 crossref_primary_10_1007_s41114_022_00041_y crossref_primary_10_1093_mnras_stx1285 crossref_primary_10_1093_mnras_stz965 crossref_primary_10_1103_PhysRevD_102_063021 crossref_primary_10_1103_PhysRevD_100_035008 crossref_primary_10_1093_mnras_stad2293 crossref_primary_10_1088_1674_4527_aca8ed |
Cites_doi | 10.1093/mnras/sts037 10.1086/533487 10.1093/mnras/69.6.476 10.1086/154524 10.1086/175562 10.1007/BF00717917 10.1088/0004-637X/751/2/141 10.1093/mnras/sts606 10.1086/190932 10.1007/BF00645172 10.1088/2041-8205/757/2/L21 10.1086/160960 10.1088/0004-637X/723/2/1072 10.1088/0004-637X/713/1/239 10.1086/519489 10.1093/mnras/207.3.433 10.1086/181997 10.1086/171983 10.1103/PhysRev.136.B1224 10.1086/305972 10.1111/j.1745-3933.2011.01044.x 10.1111/j.1365-2966.2007.12400.x 10.1088/2041-8205/740/2/L53 10.1086/161701 10.1051/0004-6361/201321868 10.1088/0004-637X/716/1/122 10.1086/152221 10.1086/159682 10.1088/2041-8205/737/1/L23 10.1111/j.1745-3933.2011.01165.x 10.1093/mnras/stt726 |
ContentType | Journal Article |
Copyright | 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2014 Copyright Oxford University Press, UK Sep 11, 2014 |
Copyright_xml | – notice: 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2014 – notice: Copyright Oxford University Press, UK Sep 11, 2014 |
DBID | AAYXX CITATION 8FD H8D L7M 7TG KL. |
DOI | 10.1093/mnras/stu901 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 1064 |
ExternalDocumentID | 3397139901 10_1093_mnras_stu901 10.1093/mnras/stu901 |
Genre | Feature |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ ALXQX AMNDL ANAKG CITATION JXSIZ 8FD H8D L7M 7TG KL. |
ID | FETCH-LOGICAL-c366t-67346d8d660e9f5182a04ea611f22acc0ddd3e227340fb8f12e1b19d346ab46c3 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Fri Jul 11 08:25:33 EDT 2025 Mon Jun 30 04:15:35 EDT 2025 Tue Jul 01 00:31:17 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Wed Aug 28 03:22:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | methods: analytical binaries: close gravitational waves white dwarfs stars: interiors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-67346d8d660e9f5182a04ea611f22acc0ddd3e227340fb8f12e1b19d346ab46c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/443/2/1057/3710582/stu901.pdf |
PQID | 1552145973 |
PQPubID | 42411 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1560123374 proquest_journals_1552145973 crossref_primary_10_1093_mnras_stu901 crossref_citationtrail_10_1093_mnras_stu901 oup_primary_10_1093_mnras_stu901 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-11 |
PublicationDateYYYYMMDD | 2014-09-11 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationTitleAbbrev | Mon. Not. R. Astron. Soc |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Durisen ( key 20171013034627_bib9) 1973; 183 Bildsten ( key 20171013034627_bib3) 2007; 662 Lai ( key 20171013034627_bib21a) 1995; 443 Brown ( key 20171013034627_bib4) 2010; 723 Piro ( key 20171013034627_bib25) 2011; 740 Fuller ( key 20171013034627_bib11) 2011; 412 Hermes ( key 20171013034627_bib13) 2012; 757 Love ( key 20171013034627_bib22) 1909; 69 Verbunt ( key 20171013034627_bib31) 1983; 127 Willems ( key 20171013034627_bib33) 2010; 713 Panei ( key 20171013034627_bib24) 2007; 382 Althaus ( key 20171013034627_bib1) 2013; 557 Webbink ( key 20171013034627_bib32) 1984; 277 Kilic ( key 20171013034627_bib19) 2011; 418 Press ( key 20171013034627_bib26) 1975; 202 Peters ( key 20171013034627_bib24a) 1964; 136 Spruit ( key 20171013034627_bib29a) 1998; 333 Fuller ( key 20171013034627_bib12) 2013; 430 Valsecchi ( key 20171013034627_bib30) 2013 Iben ( key 20171013034627_bib15) 1984; 54 Kilic ( key 20171013034627_bib20) 2012; 751 Campbell ( key 20171013034627_bib7) 1984; 207 Bildsten ( key 20171013034627_bib2) 1992; 400 Kilic ( key 20171013034627_bib18) 2011; 413 Eggleton ( key 20171013034627_bib10) 1983; 268 Kopal ( key 20171013034627_bib21) 1968; 1 Zahn ( key 20171013034627_bib35) 1977; 57 Nomoto ( key 20171013034627_bib23) 1982; 253 Shapiro ( key 20171013034627_bib27) 1983 Smarr ( key 20171013034627_bib28) 1976; 207 Sutantyo ( key 20171013034627_bib29) 1974; 35 Burkart ( key 20171013034627_bib6) 2013; 433 Kilic ( key 20171013034627_bib17) 2010; 716 Hinderer ( key 20171013034627_bib14) 2008; 677 Iben ( key 20171013034627_bib16) 1998; 503 Dall'Osso ( key 20171013034627_bib8) 2013; 428 Zahn ( key 20171013034627_bib34) 1966; 29 Alexander ( key 20171013034627_bib1a) 1973; 23 Brown ( key 20171013034627_bib5) 2011; 737 |
References_xml | – volume: 428 start-page: 518 year: 2013 ident: key 20171013034627_bib8 publication-title: MNRAS doi: 10.1093/mnras/sts037 – volume: 677 start-page: 1216 year: 2008 ident: key 20171013034627_bib14 publication-title: ApJ doi: 10.1086/533487 – volume: 69 start-page: 476 year: 1909 ident: key 20171013034627_bib22 publication-title: MNRAS doi: 10.1093/mnras/69.6.476 – volume: 207 start-page: 574 year: 1976 ident: key 20171013034627_bib28 publication-title: ApJ doi: 10.1086/154524 – volume: 443 start-page: 705 year: 1995 ident: key 20171013034627_bib21a publication-title: ApJ doi: 10.1086/175562 – volume: 127 start-page: 161 year: 1983 ident: key 20171013034627_bib31 publication-title: A&A – volume: 1 start-page: 179 year: 1968 ident: key 20171013034627_bib21 publication-title: Ap&SS doi: 10.1007/BF00717917 – volume: 751 start-page: 141 year: 2012 ident: key 20171013034627_bib20 publication-title: ApJ doi: 10.1088/0004-637X/751/2/141 – volume: 430 start-page: 274 year: 2013 ident: key 20171013034627_bib12 publication-title: MNRAS doi: 10.1093/mnras/sts606 – volume: 54 start-page: 335 year: 1984 ident: key 20171013034627_bib15 publication-title: ApJS doi: 10.1086/190932 – start-page: 663 volume-title: Research Supported by the National Science Foundation year: 1983 ident: key 20171013034627_bib27 – volume: 23 start-page: 459 year: 1973 ident: key 20171013034627_bib1a publication-title: Ap&SS doi: 10.1007/BF00645172 – volume: 412 start-page: 1331 year: 2011 ident: key 20171013034627_bib11 publication-title: MNRAS – volume: 757 start-page: L21 year: 2012 ident: key 20171013034627_bib13 publication-title: ApJ doi: 10.1088/2041-8205/757/2/L21 – volume: 268 start-page: 368 year: 1983 ident: key 20171013034627_bib10 publication-title: ApJ doi: 10.1086/160960 – volume: 35 start-page: 251 year: 1974 ident: key 20171013034627_bib29 publication-title: A&A – volume: 723 start-page: 1072 year: 2010 ident: key 20171013034627_bib4 publication-title: ApJ doi: 10.1088/0004-637X/723/2/1072 – volume: 713 start-page: 239 year: 2010 ident: key 20171013034627_bib33 publication-title: ApJ doi: 10.1088/0004-637X/713/1/239 – volume: 662 start-page: L95 year: 2007 ident: key 20171013034627_bib3 publication-title: ApJ doi: 10.1086/519489 – volume: 207 start-page: 4 year: 1984 ident: key 20171013034627_bib7 publication-title: MNRAS doi: 10.1093/mnras/207.3.433 – volume: 202 start-page: L135 year: 1975 ident: key 20171013034627_bib26 publication-title: ApJ doi: 10.1086/181997 – volume: 400 start-page: 175 year: 1992 ident: key 20171013034627_bib2 publication-title: ApJ doi: 10.1086/171983 – volume: 136 start-page: 1224 year: 1964 ident: key 20171013034627_bib24a publication-title: Phys. Rev. B doi: 10.1103/PhysRev.136.B1224 – volume: 503 start-page: 344 year: 1998 ident: key 20171013034627_bib16 publication-title: ApJ doi: 10.1086/305972 – volume: 413 start-page: L101 year: 2011 ident: key 20171013034627_bib18 publication-title: MNRAS doi: 10.1111/j.1745-3933.2011.01044.x – volume: 382 start-page: 779 year: 2007 ident: key 20171013034627_bib24 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12400.x – volume: 333 start-page: 603 year: 1998 ident: key 20171013034627_bib29a publication-title: A&A – volume: 57 start-page: 383 year: 1977 ident: key 20171013034627_bib35 publication-title: A&A – volume: 29 start-page: 313 year: 1966 ident: key 20171013034627_bib34 publication-title: Ann. Astrophys. – volume: 740 start-page: L53 year: 2011 ident: key 20171013034627_bib25 publication-title: ApJ doi: 10.1088/2041-8205/740/2/L53 – year: 2013 ident: key 20171013034627_bib30 – volume: 277 start-page: 355 year: 1984 ident: key 20171013034627_bib32 publication-title: ApJ doi: 10.1086/161701 – volume: 557 start-page: A19 year: 2013 ident: key 20171013034627_bib1 publication-title: A&A doi: 10.1051/0004-6361/201321868 – volume: 716 start-page: 122 year: 2010 ident: key 20171013034627_bib17 publication-title: ApJ doi: 10.1088/0004-637X/716/1/122 – volume: 183 start-page: 215 year: 1973 ident: key 20171013034627_bib9 publication-title: ApJ doi: 10.1086/152221 – volume: 253 start-page: 798 year: 1982 ident: key 20171013034627_bib23 publication-title: ApJ doi: 10.1086/159682 – volume: 737 start-page: L23 year: 2011 ident: key 20171013034627_bib5 publication-title: ApJ doi: 10.1088/2041-8205/737/1/L23 – volume: 418 start-page: L157 year: 2011 ident: key 20171013034627_bib19 publication-title: MNRAS doi: 10.1111/j.1745-3933.2011.01165.x – volume: 433 start-page: 332 year: 2013 ident: key 20171013034627_bib6 publication-title: MNRAS doi: 10.1093/mnras/stt726 |
SSID | ssj0004326 |
Score | 2.2438984 |
Snippet | Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1057 |
SubjectTerms | Double stars Gravity Star & galaxy formation Viscosity White dwarfs |
Title | Constraining white dwarf viscosity through tidal heating in detached binary systems |
URI | https://www.proquest.com/docview/1552145973 https://www.proquest.com/docview/1560123374 |
Volume | 443 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA_iky_iJ06nRFBfpNg0ado8ijhEUEEn7K2k-YCBdrJ2iv-9d2k3mSi-teTS0lyT_C539ztCTpxKU8OtilyiTSRUySOd52Xks4wZLzOTppiNfHcvb57F7SgddSRJ9S8ufMUvXqupri_qZqZCnhbsv8iRP3wYfec_8lBWLdAvggHAugD3n52Xtp6ldLb5-hs2lcEGWe_QIL1s1bdJVly1RfYuazyfnrx-0jMartvjh3qL9O4A406m4SgcGq9exgA4w902ecLam_OKD_QD3QMUKzJ7-j6uDcZmfdKuKg9txhZei-swyo4ripGkoD5Ly5CfS1uC53qHPA-uh1c3UVcyITJcygYD-YW0uZUydsqnYDzoWDgtGfMJKMPE1lruEuS0iX2Ze5Y4VjJloZcuhTR8l6xWk8rtEQryMF3jPFPeC9Ca0iJD804yj8_TPXI-H83CdHzi-JEvRevX5kUY-6Id-x45XUi_tTwaf8hRUMw_Iv251opuwtUFMskxAdYR75HjRTNMFfR_6MpNZigjEUHyTOz__5YDsgbYSGBoCGN9stpMZ-4Q8EdTHgHyfkyOwi_4BY0u3YM |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+white+dwarf+viscosity+through+tidal+heating+in+detached+binary+systems&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Dall%27Osso%2C+Simone&rft.au=Rossi%2C+Elena+M&rft.date=2014-09-11&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=443&rft.issue=2&rft.spage=1057&rft.epage=1057&rft_id=info:doi/10.1093%2Fmnras%2Fstu901&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |