Constraining white dwarf viscosity through tidal heating in detached binary systems

Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly disc...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 443; no. 2; pp. 1057 - 1064
Main Authors Dall'Osso, Simone, Rossi, Elena M.
Format Journal Article
LanguageEnglish
Published London Oxford University Press 11.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly discovered ∼12.8 min system (J0651). These binaries are wide enough that mass transfer has not yet started but close enough that the secondary (least massive) component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity as the secondary gets spun up. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of synchronization (ratio of stellar spin to orbital period) as a function of the viscous time. Specializing to the case of J0651, we find that an ∼10 per cent discrepancy between the measured radius of the secondary star and predictions of He white dwarf models can be interpreted as tidal inflation if the viscous time-scale is ∼4 × 104 yr. Such value is well in the range of various non-microscopic viscosities proposed in the literature like, e.g. tidally induced turbulence, non-linear damping of dynamical tides or internal magnetic stresses with a magnetic field strength ∼10–100 G. A 10 per cent tidal inflation is the maximum possible effect in J0651, at its current orbital separation, hence it selects a single value of the viscous time-scale: the latter implies that the system is still far from synchronization. Smaller effects of tidal inflation – well consistent with current uncertainties – would instead correspond to two different viscous time-scales, one longer and one shorter than 4 × 104 yr. In this more general case, the degeneracy can be broken by a joint measurement of the secondary's spin, since the two time-scales imply very different degrees of synchronization. Extrapolating the secondary's expansion into the future, we find that the star will fill its Roche lobe at a separation which is ∼1.2–1.5 smaller than the current one. Applying this method to a future sample of systems can allow us to learn whether viscosity changes with mass and/or nuclear composition.
AbstractList Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly discovered similar to 12.8 min system (J0651). These binaries are wide enough that mass transfer has not yet started but close enough that the secondary (least massive) component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity as the secondary gets spun up. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of synchronization (ratio of stellar spin to orbital period) as a function of the viscous time. Specializing to the case of J0651, we find that an similar to 10 per cent discrepancy between the measured radius of the secondary star and predictions of He white dwarf models can be interpreted as tidal inflation if the viscous time-scale is similar to 4 x 10 super( 4) yr. Such value is well in the range of various non-microscopic viscosities proposed in the literature like, e.g. tidally induced turbulence, non-linear damping of dynamical tides or internal magnetic stresses with a magnetic field strength similar to 10-100 G. A 10 per cent tidal inflation is the maximum possible effect in J0651, at its current orbital separation, hence it selects a single value of the viscous time-scale: the latter implies that the system is still far from synchronization. Smaller effects of tidal inflation -- well consistent with current uncertainties -- would instead correspond to two different viscous time-scales, one longer and one shorter than 4 x 10 super( 4) yr. In this more general case, the degeneracy can be broken by a joint measurement of the secondary's spin, since the two time-scales imply very different degrees of synchronization. Extrapolating the secondary's expansion into the future, we find that the star will fill its Roche lobe at a separation which is similar to 1.2-1.5 smaller than the current one. Applying this method to a future sample of systems can allow us to learn whether viscosity changes with mass and/or nuclear composition.
Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly discovered ∼12.8 min system (J0651). These binaries are wide enough that mass transfer has not yet started but close enough that the secondary (least massive) component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity as the secondary gets spun up. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of synchronization (ratio of stellar spin to orbital period) as a function of the viscous time. Specializing to the case of J0651, we find that an ∼10 per cent discrepancy between the measured radius of the secondary star and predictions of He white dwarf models can be interpreted as tidal inflation if the viscous time-scale is ∼4 × 104 yr. Such value is well in the range of various non-microscopic viscosities proposed in the literature like, e.g. tidally induced turbulence, non-linear damping of dynamical tides or internal magnetic stresses with a magnetic field strength ∼10–100 G. A 10 per cent tidal inflation is the maximum possible effect in J0651, at its current orbital separation, hence it selects a single value of the viscous time-scale: the latter implies that the system is still far from synchronization. Smaller effects of tidal inflation – well consistent with current uncertainties – would instead correspond to two different viscous time-scales, one longer and one shorter than 4 × 104 yr. In this more general case, the degeneracy can be broken by a joint measurement of the secondary's spin, since the two time-scales imply very different degrees of synchronization. Extrapolating the secondary's expansion into the future, we find that the star will fill its Roche lobe at a separation which is ∼1.2–1.5 smaller than the current one. Applying this method to a future sample of systems can allow us to learn whether viscosity changes with mass and/or nuclear composition.
Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short-period (<1 h), detached white dwarf binaries, such as the newly discovered ∼12.8 min system (J0651). These binaries are wide enough that mass transfer has not yet started but close enough that the secondary (least massive) component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity as the secondary gets spun up. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of synchronization (ratio of stellar spin to orbital period) as a function of the viscous time. Specializing to the case of J0651, we find that an ∼10 per cent discrepancy between the measured radius of the secondary star and predictions of He white dwarf models can be interpreted as tidal inflation if the viscous time-scale is ∼4 x 10^sup 4^ yr. Such value is well in the range of various non-microscopic viscosities proposed in the literature like, e.g. tidally induced turbulence, non-linear damping of dynamical tides or internal magnetic stresses with a magnetic field strength ∼10-100 G. A 10 per cent tidal inflation is the maximum possible effect in J0651, at its current orbital separation, hence it selects a single value of the viscous time-scale: the latter implies that the system is still far from synchronization. Smaller effects of tidal inflation -- well consistent with current uncertainties -- would instead correspond to two different viscous time-scales, one longer and one shorter than 4 x 10^sup 4^ yr. In this more general case, the degeneracy can be broken by a joint measurement of the secondary's spin, since the two time-scales imply very different degrees of synchronization. Extrapolating the secondary's expansion into the future, we find that the star will fill its Roche lobe at a separation which is ∼1.2-1.5 smaller than the current one. Applying this method to a future sample of systems can allow us to learn whether viscosity changes with mass and/or nuclear composition.
Author Rossi, Elena M.
Dall'Osso, Simone
Author_xml – sequence: 1
  givenname: Simone
  surname: Dall'Osso
  fullname: Dall'Osso, Simone
  organization: 1Theoretical Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
– sequence: 2
  givenname: Elena M.
  surname: Rossi
  fullname: Rossi, Elena M.
  organization: 1Theoretical Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
BookMark eNp9kL1OwzAYRS1UJNrCxgNYYoCBUP8kTjKiij-pEgMwR47tNK4Su9gOVd8elzBVgulbzr2635mBibFGAXCJ0R1GJV30xnG_8GEoET4BU0xZlpCSsQmYIkSzpMgxPgMz7zcIoZQSNgVvS2t8cFwbbdZw1-qgoNxx18Av7YX1OuxhaJ0d1i0MWvIOtoqHA6sNlCpw0SoJa22420O_90H1_hycNrzz6uL3zsHH48P78jlZvT69LO9XiaCMhYTlNGWykIwhVTYZLghHqeIM44YQLgSSUlJFSMRQUxcNJgrXuJQxxeuUCToHN2Pv1tnPQflQ9XGz6jpulB18hTOGMKE0TyN6dYRu7OBMXBepjOA0K3MaqduREs5671RTbZ3u42cVRtXBcPVjuBoNR5wc4UKHKMeag9Dur9D1GLLD9v_6bxw_kl4
CitedBy_id crossref_primary_10_1088_0004_637X_806_1_50
crossref_primary_10_1007_s11433_023_2308_x
crossref_primary_10_1093_mnras_stu1698
crossref_primary_10_1103_PhysRevD_101_083503
crossref_primary_10_1007_s41114_022_00041_y
crossref_primary_10_1093_mnras_stx1285
crossref_primary_10_1093_mnras_stz965
crossref_primary_10_1103_PhysRevD_102_063021
crossref_primary_10_1103_PhysRevD_100_035008
crossref_primary_10_1093_mnras_stad2293
crossref_primary_10_1088_1674_4527_aca8ed
Cites_doi 10.1093/mnras/sts037
10.1086/533487
10.1093/mnras/69.6.476
10.1086/154524
10.1086/175562
10.1007/BF00717917
10.1088/0004-637X/751/2/141
10.1093/mnras/sts606
10.1086/190932
10.1007/BF00645172
10.1088/2041-8205/757/2/L21
10.1086/160960
10.1088/0004-637X/723/2/1072
10.1088/0004-637X/713/1/239
10.1086/519489
10.1093/mnras/207.3.433
10.1086/181997
10.1086/171983
10.1103/PhysRev.136.B1224
10.1086/305972
10.1111/j.1745-3933.2011.01044.x
10.1111/j.1365-2966.2007.12400.x
10.1088/2041-8205/740/2/L53
10.1086/161701
10.1051/0004-6361/201321868
10.1088/0004-637X/716/1/122
10.1086/152221
10.1086/159682
10.1088/2041-8205/737/1/L23
10.1111/j.1745-3933.2011.01165.x
10.1093/mnras/stt726
ContentType Journal Article
Copyright 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2014
Copyright Oxford University Press, UK Sep 11, 2014
Copyright_xml – notice: 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2014
– notice: Copyright Oxford University Press, UK Sep 11, 2014
DBID AAYXX
CITATION
8FD
H8D
L7M
7TG
KL.
DOI 10.1093/mnras/stu901
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 1064
ExternalDocumentID 3397139901
10_1093_mnras_stu901
10.1093/mnras/stu901
Genre Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
8FD
H8D
L7M
7TG
KL.
ID FETCH-LOGICAL-c366t-67346d8d660e9f5182a04ea611f22acc0ddd3e227340fb8f12e1b19d346ab46c3
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Fri Jul 11 08:25:33 EDT 2025
Mon Jun 30 04:15:35 EDT 2025
Tue Jul 01 00:31:17 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Wed Aug 28 03:22:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords methods: analytical
binaries: close
gravitational waves
white dwarfs
stars: interiors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-67346d8d660e9f5182a04ea611f22acc0ddd3e227340fb8f12e1b19d346ab46c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/443/2/1057/3710582/stu901.pdf
PQID 1552145973
PQPubID 42411
PageCount 8
ParticipantIDs proquest_miscellaneous_1560123374
proquest_journals_1552145973
crossref_primary_10_1093_mnras_stu901
crossref_citationtrail_10_1093_mnras_stu901
oup_primary_10_1093_mnras_stu901
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-11
PublicationDateYYYYMMDD 2014-09-11
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-11
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Mon. Not. R. Astron. Soc
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Durisen ( key 20171013034627_bib9) 1973; 183
Bildsten ( key 20171013034627_bib3) 2007; 662
Lai ( key 20171013034627_bib21a) 1995; 443
Brown ( key 20171013034627_bib4) 2010; 723
Piro ( key 20171013034627_bib25) 2011; 740
Fuller ( key 20171013034627_bib11) 2011; 412
Hermes ( key 20171013034627_bib13) 2012; 757
Love ( key 20171013034627_bib22) 1909; 69
Verbunt ( key 20171013034627_bib31) 1983; 127
Willems ( key 20171013034627_bib33) 2010; 713
Panei ( key 20171013034627_bib24) 2007; 382
Althaus ( key 20171013034627_bib1) 2013; 557
Webbink ( key 20171013034627_bib32) 1984; 277
Kilic ( key 20171013034627_bib19) 2011; 418
Press ( key 20171013034627_bib26) 1975; 202
Peters ( key 20171013034627_bib24a) 1964; 136
Spruit ( key 20171013034627_bib29a) 1998; 333
Fuller ( key 20171013034627_bib12) 2013; 430
Valsecchi ( key 20171013034627_bib30) 2013
Iben ( key 20171013034627_bib15) 1984; 54
Kilic ( key 20171013034627_bib20) 2012; 751
Campbell ( key 20171013034627_bib7) 1984; 207
Bildsten ( key 20171013034627_bib2) 1992; 400
Kilic ( key 20171013034627_bib18) 2011; 413
Eggleton ( key 20171013034627_bib10) 1983; 268
Kopal ( key 20171013034627_bib21) 1968; 1
Zahn ( key 20171013034627_bib35) 1977; 57
Nomoto ( key 20171013034627_bib23) 1982; 253
Shapiro ( key 20171013034627_bib27) 1983
Smarr ( key 20171013034627_bib28) 1976; 207
Sutantyo ( key 20171013034627_bib29) 1974; 35
Burkart ( key 20171013034627_bib6) 2013; 433
Kilic ( key 20171013034627_bib17) 2010; 716
Hinderer ( key 20171013034627_bib14) 2008; 677
Iben ( key 20171013034627_bib16) 1998; 503
Dall'Osso ( key 20171013034627_bib8) 2013; 428
Zahn ( key 20171013034627_bib34) 1966; 29
Alexander ( key 20171013034627_bib1a) 1973; 23
Brown ( key 20171013034627_bib5) 2011; 737
References_xml – volume: 428
  start-page: 518
  year: 2013
  ident: key 20171013034627_bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/sts037
– volume: 677
  start-page: 1216
  year: 2008
  ident: key 20171013034627_bib14
  publication-title: ApJ
  doi: 10.1086/533487
– volume: 69
  start-page: 476
  year: 1909
  ident: key 20171013034627_bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/69.6.476
– volume: 207
  start-page: 574
  year: 1976
  ident: key 20171013034627_bib28
  publication-title: ApJ
  doi: 10.1086/154524
– volume: 443
  start-page: 705
  year: 1995
  ident: key 20171013034627_bib21a
  publication-title: ApJ
  doi: 10.1086/175562
– volume: 127
  start-page: 161
  year: 1983
  ident: key 20171013034627_bib31
  publication-title: A&A
– volume: 1
  start-page: 179
  year: 1968
  ident: key 20171013034627_bib21
  publication-title: Ap&SS
  doi: 10.1007/BF00717917
– volume: 751
  start-page: 141
  year: 2012
  ident: key 20171013034627_bib20
  publication-title: ApJ
  doi: 10.1088/0004-637X/751/2/141
– volume: 430
  start-page: 274
  year: 2013
  ident: key 20171013034627_bib12
  publication-title: MNRAS
  doi: 10.1093/mnras/sts606
– volume: 54
  start-page: 335
  year: 1984
  ident: key 20171013034627_bib15
  publication-title: ApJS
  doi: 10.1086/190932
– start-page: 663
  volume-title: Research Supported by the National Science Foundation
  year: 1983
  ident: key 20171013034627_bib27
– volume: 23
  start-page: 459
  year: 1973
  ident: key 20171013034627_bib1a
  publication-title: Ap&SS
  doi: 10.1007/BF00645172
– volume: 412
  start-page: 1331
  year: 2011
  ident: key 20171013034627_bib11
  publication-title: MNRAS
– volume: 757
  start-page: L21
  year: 2012
  ident: key 20171013034627_bib13
  publication-title: ApJ
  doi: 10.1088/2041-8205/757/2/L21
– volume: 268
  start-page: 368
  year: 1983
  ident: key 20171013034627_bib10
  publication-title: ApJ
  doi: 10.1086/160960
– volume: 35
  start-page: 251
  year: 1974
  ident: key 20171013034627_bib29
  publication-title: A&A
– volume: 723
  start-page: 1072
  year: 2010
  ident: key 20171013034627_bib4
  publication-title: ApJ
  doi: 10.1088/0004-637X/723/2/1072
– volume: 713
  start-page: 239
  year: 2010
  ident: key 20171013034627_bib33
  publication-title: ApJ
  doi: 10.1088/0004-637X/713/1/239
– volume: 662
  start-page: L95
  year: 2007
  ident: key 20171013034627_bib3
  publication-title: ApJ
  doi: 10.1086/519489
– volume: 207
  start-page: 4
  year: 1984
  ident: key 20171013034627_bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/207.3.433
– volume: 202
  start-page: L135
  year: 1975
  ident: key 20171013034627_bib26
  publication-title: ApJ
  doi: 10.1086/181997
– volume: 400
  start-page: 175
  year: 1992
  ident: key 20171013034627_bib2
  publication-title: ApJ
  doi: 10.1086/171983
– volume: 136
  start-page: 1224
  year: 1964
  ident: key 20171013034627_bib24a
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRev.136.B1224
– volume: 503
  start-page: 344
  year: 1998
  ident: key 20171013034627_bib16
  publication-title: ApJ
  doi: 10.1086/305972
– volume: 413
  start-page: L101
  year: 2011
  ident: key 20171013034627_bib18
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2011.01044.x
– volume: 382
  start-page: 779
  year: 2007
  ident: key 20171013034627_bib24
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12400.x
– volume: 333
  start-page: 603
  year: 1998
  ident: key 20171013034627_bib29a
  publication-title: A&A
– volume: 57
  start-page: 383
  year: 1977
  ident: key 20171013034627_bib35
  publication-title: A&A
– volume: 29
  start-page: 313
  year: 1966
  ident: key 20171013034627_bib34
  publication-title: Ann. Astrophys.
– volume: 740
  start-page: L53
  year: 2011
  ident: key 20171013034627_bib25
  publication-title: ApJ
  doi: 10.1088/2041-8205/740/2/L53
– year: 2013
  ident: key 20171013034627_bib30
– volume: 277
  start-page: 355
  year: 1984
  ident: key 20171013034627_bib32
  publication-title: ApJ
  doi: 10.1086/161701
– volume: 557
  start-page: A19
  year: 2013
  ident: key 20171013034627_bib1
  publication-title: A&A
  doi: 10.1051/0004-6361/201321868
– volume: 716
  start-page: 122
  year: 2010
  ident: key 20171013034627_bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/716/1/122
– volume: 183
  start-page: 215
  year: 1973
  ident: key 20171013034627_bib9
  publication-title: ApJ
  doi: 10.1086/152221
– volume: 253
  start-page: 798
  year: 1982
  ident: key 20171013034627_bib23
  publication-title: ApJ
  doi: 10.1086/159682
– volume: 737
  start-page: L23
  year: 2011
  ident: key 20171013034627_bib5
  publication-title: ApJ
  doi: 10.1088/2041-8205/737/1/L23
– volume: 418
  start-page: L157
  year: 2011
  ident: key 20171013034627_bib19
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2011.01165.x
– volume: 433
  start-page: 332
  year: 2013
  ident: key 20171013034627_bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stt726
SSID ssj0004326
Score 2.2438984
Snippet Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of their viscosity is still very...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1057
SubjectTerms Double stars
Gravity
Star & galaxy formation
Viscosity
White dwarfs
Title Constraining white dwarf viscosity through tidal heating in detached binary systems
URI https://www.proquest.com/docview/1552145973
https://www.proquest.com/docview/1560123374
Volume 443
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA_iky_iJ06nRFBfpNg0ado8ijhEUEEn7K2k-YCBdrJ2iv-9d2k3mSi-teTS0lyT_C539ztCTpxKU8OtilyiTSRUySOd52Xks4wZLzOTppiNfHcvb57F7SgddSRJ9S8ufMUvXqupri_qZqZCnhbsv8iRP3wYfec_8lBWLdAvggHAugD3n52Xtp6ldLb5-hs2lcEGWe_QIL1s1bdJVly1RfYuazyfnrx-0jMartvjh3qL9O4A406m4SgcGq9exgA4w902ecLam_OKD_QD3QMUKzJ7-j6uDcZmfdKuKg9txhZei-swyo4ripGkoD5Ly5CfS1uC53qHPA-uh1c3UVcyITJcygYD-YW0uZUydsqnYDzoWDgtGfMJKMPE1lruEuS0iX2Ze5Y4VjJloZcuhTR8l6xWk8rtEQryMF3jPFPeC9Ca0iJD804yj8_TPXI-H83CdHzi-JEvRevX5kUY-6Id-x45XUi_tTwaf8hRUMw_Iv251opuwtUFMskxAdYR75HjRTNMFfR_6MpNZigjEUHyTOz__5YDsgbYSGBoCGN9stpMZ-4Q8EdTHgHyfkyOwi_4BY0u3YM
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+white+dwarf+viscosity+through+tidal+heating+in+detached+binary+systems&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Dall%27Osso%2C+Simone&rft.au=Rossi%2C+Elena+M&rft.date=2014-09-11&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=443&rft.issue=2&rft.spage=1057&rft.epage=1057&rft_id=info:doi/10.1093%2Fmnras%2Fstu901&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon