A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction

Financial time series prediction is a hot topic in machine learning field, but existing works barely catch the point of such data. In this study, we employ the most suitable preprocessing technology, machine learning model, and training algorithm to construct a novel seasonal-trend decomposition-bas...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 108; p. 107488
Main Authors He, Houtian, Gao, Shangce, Jin, Ting, Sato, Syuhei, Zhang, Xingyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Financial time series prediction is a hot topic in machine learning field, but existing works barely catch the point of such data. In this study, we employ the most suitable preprocessing technology, machine learning model, and training algorithm to construct a novel seasonal-trend decomposition-based dendritic neuron model (STLDNM) to tackle this issue. The model’s unique part is to use the seasonal-trend decomposition based on loess (STL) as preprocessing technology. Particularly, the STL can extract seasonal and trend features from the original data, so that a simple polynomial fitting method can be used to handle these sub-series. Next, the remained complex residual component is predicted by an anti-overfitting dendritic neuron model (DNM) trained by an efficient back-propagation algorithm. Finally, the processed components are added up to obtain the predicting result. sixteen real-world stock market indices are used to test STLDNM. The experimental results show that it can perform significantly better than other previous convinced models under different assessment criteria. This model successfully reveals the internal feature of financial data and certainly improves the predicting accuracy due to the rightful methodology selection. Therefore, the newly designed STLDNM not only has high potentials for practical applications in the financial aspect but also provides novel inspirations for complex time series prediction problem researchers. •The proposed model employed the most suitable methods with convincing evidence.•The employed STL is the best choice for preprocessing the financial data.•The proposed model is the first attempt to employ a separate processing procedure.•The proposed model shows a significantly superior predicting capability.
AbstractList Financial time series prediction is a hot topic in machine learning field, but existing works barely catch the point of such data. In this study, we employ the most suitable preprocessing technology, machine learning model, and training algorithm to construct a novel seasonal-trend decomposition-based dendritic neuron model (STLDNM) to tackle this issue. The model’s unique part is to use the seasonal-trend decomposition based on loess (STL) as preprocessing technology. Particularly, the STL can extract seasonal and trend features from the original data, so that a simple polynomial fitting method can be used to handle these sub-series. Next, the remained complex residual component is predicted by an anti-overfitting dendritic neuron model (DNM) trained by an efficient back-propagation algorithm. Finally, the processed components are added up to obtain the predicting result. sixteen real-world stock market indices are used to test STLDNM. The experimental results show that it can perform significantly better than other previous convinced models under different assessment criteria. This model successfully reveals the internal feature of financial data and certainly improves the predicting accuracy due to the rightful methodology selection. Therefore, the newly designed STLDNM not only has high potentials for practical applications in the financial aspect but also provides novel inspirations for complex time series prediction problem researchers. •The proposed model employed the most suitable methods with convincing evidence.•The employed STL is the best choice for preprocessing the financial data.•The proposed model is the first attempt to employ a separate processing procedure.•The proposed model shows a significantly superior predicting capability.
ArticleNumber 107488
Author Jin, Ting
Zhang, Xingyi
He, Houtian
Sato, Syuhei
Gao, Shangce
Author_xml – sequence: 1
  givenname: Houtian
  surname: He
  fullname: He, Houtian
  organization: Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan
– sequence: 2
  givenname: Shangce
  surname: Gao
  fullname: Gao, Shangce
  email: gaosc@eng.u-toyama.ac.jp
  organization: Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan
– sequence: 3
  givenname: Ting
  surname: Jin
  fullname: Jin, Ting
  organization: School of Science, Nanjing Forestry University, Nanjing, 210037, China
– sequence: 4
  givenname: Syuhei
  surname: Sato
  fullname: Sato, Syuhei
  organization: Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan
– sequence: 5
  givenname: Xingyi
  surname: Zhang
  fullname: Zhang, Xingyi
  email: zhangxingyi@msn.com
  organization: Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A1uT7G42C15K8QsKXvQcs5MJpGyTkqyC_94s9eTB0wwvPC8zz4osQgxIyC1nG864vDtsTI6wEUzwEnSNUhdkyVUnql4qvih7K1XV9I28IqucD6xAvVBL8rGlGQsbzFhNCYOlFiEeTzH7ycdQDSbjnAWbSgA04GeKgR6jxZG6mKjzwQTwZqSTP2IpSx4zPSW0HuaGa3LpzJjx5neuyfvjw9vuudq_Pr3stvsKaimnqlVSdE4xMTgQAK52g2TAhAPe1P3AEZUQsmMMbGcEurbvOO-boW9rC65p6jUR515IMeeETp-SP5r0rTnTsyN90LMjPTvSZ0cFUn8g8JOZz56S8eP_6P0ZxfLUl8ekM3gMUP5OCJO20f-H_wBuYoZc
CitedBy_id crossref_primary_10_1007_s10666_023_09918_w
crossref_primary_10_1007_s00521_023_08513_0
crossref_primary_10_1016_j_ress_2024_110089
crossref_primary_10_3390_sym14061227
crossref_primary_10_3390_math11051251
crossref_primary_10_1002_ente_202300914
crossref_primary_10_1007_s10666_023_09931_z
crossref_primary_10_1016_j_ecss_2023_108335
crossref_primary_10_1007_s10489_022_04110_1
crossref_primary_10_3934_era_2023145
crossref_primary_10_3390_su152316264
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_3390_app14020866
crossref_primary_10_3390_su151411123
crossref_primary_10_1109_JAS_2023_123978
crossref_primary_10_1109_TMECH_2022_3166538
crossref_primary_10_1016_j_energy_2024_130880
crossref_primary_10_1016_j_iref_2022_11_023
crossref_primary_10_1088_1361_6382_adb2d5
crossref_primary_10_1016_j_cie_2021_107770
crossref_primary_10_3390_app13116542
crossref_primary_10_1016_j_asoc_2022_109714
crossref_primary_10_1016_j_knosys_2021_107536
crossref_primary_10_1016_j_sciaf_2023_e01988
crossref_primary_10_1016_j_aei_2024_102449
crossref_primary_10_1016_j_apenergy_2024_123386
crossref_primary_10_1080_10807039_2022_2087176
crossref_primary_10_1007_s41870_023_01425_1
crossref_primary_10_1155_2022_9649825
crossref_primary_10_1109_TETCI_2024_3367819
crossref_primary_10_3390_s23136118
crossref_primary_10_1016_j_jhydrol_2024_132197
crossref_primary_10_1063_5_0089059
crossref_primary_10_1016_j_eswa_2023_121202
crossref_primary_10_1016_j_asoc_2023_110801
crossref_primary_10_1007_s12665_023_11110_y
crossref_primary_10_1016_j_eswa_2023_121286
crossref_primary_10_1016_j_heliyon_2023_e16589
crossref_primary_10_1016_j_knosys_2024_111442
crossref_primary_10_1016_j_measurement_2024_116040
crossref_primary_10_1002_dac_5097
crossref_primary_10_1088_2515_7620_adb941
crossref_primary_10_3390_ijerph21070867
crossref_primary_10_1016_j_envpol_2025_125800
crossref_primary_10_1016_j_iref_2022_05_003
crossref_primary_10_1088_1361_6501_ada849
crossref_primary_10_1007_s10489_023_05205_z
crossref_primary_10_1080_09599916_2021_1996446
crossref_primary_10_1186_s40854_025_00754_3
crossref_primary_10_18307_2024_0415
crossref_primary_10_1109_TETC_2023_3258503
crossref_primary_10_1016_j_eswa_2022_118006
crossref_primary_10_1080_00036846_2024_2370494
crossref_primary_10_1007_s00521_023_09299_x
crossref_primary_10_1016_j_cjche_2022_01_033
crossref_primary_10_1038_s41598_024_52240_y
crossref_primary_10_1177_0309524X221106184
crossref_primary_10_1016_j_energy_2021_122768
crossref_primary_10_1155_2023_5953102
crossref_primary_10_34110_forecasting_1468420
crossref_primary_10_1007_s41066_022_00345_y
crossref_primary_10_1109_JSEN_2023_3297067
crossref_primary_10_1109_JIOT_2022_3185010
crossref_primary_10_1007_s00521_023_08878_2
crossref_primary_10_1007_s10462_024_10790_7
crossref_primary_10_1109_ACCESS_2022_3233529
crossref_primary_10_3390_en18030664
crossref_primary_10_1007_s12145_024_01546_6
crossref_primary_10_1016_j_asoc_2024_112423
crossref_primary_10_1155_2022_3259222
crossref_primary_10_1016_j_scitotenv_2022_158342
crossref_primary_10_1080_10293523_2023_2179160
crossref_primary_10_1016_j_scitotenv_2022_159714
crossref_primary_10_1051_e3sconf_202338909039
crossref_primary_10_1109_ACCESS_2025_3541074
crossref_primary_10_3390_s24061729
crossref_primary_10_1089_big_2021_0471
crossref_primary_10_1080_15481603_2024_2315708
Cites_doi 10.1007/s00521-019-04212-x
10.1016/j.physa.2018.11.061
10.1080/00220973.1993.9943832
10.1016/j.engappai.2020.103873
10.1109/TSP.2007.906771
10.1016/S0167-2789(98)00240-1
10.1016/S0006-3207(00)00199-3
10.1016/j.eswa.2020.113481
10.1016/j.asoc.2006.03.004
10.1016/j.eswa.2020.114332
10.1016/j.swevo.2017.05.003
10.1109/TPWRS.2002.804943
10.1109/TSMCB.2005.847740
10.1016/j.asoc.2014.12.028
10.1016/j.ijforecast.2010.11.002
10.1007/s00500-013-1070-2
10.1016/j.ymssp.2012.09.015
10.1109/TNNLS.2018.2846646
10.46281/ijafr.v5i4.888
10.1109/TVCG.2010.82
10.1109/TVT.2019.2960110
10.1016/0165-1765(94)90140-6
10.1016/j.prevetmed.2011.11.003
10.1007/BF02478259
10.1016/j.knosys.2016.05.031
10.1016/0167-2789(85)90011-9
10.1016/0304-405X(83)90044-2
10.1016/j.chaos.2019.07.011
10.1016/j.asoc.2013.10.014
10.1080/758522126
10.1016/j.asoc.2020.106181
10.1016/j.amc.2017.09.049
10.1109/TGRS.2013.2268161
10.1016/j.jmva.2015.10.003
10.1155/2018/9390410
10.1038/81444
10.1016/j.energy.2020.118750
10.1038/nature08227
10.1109/TFUZZ.2012.2226890
10.1016/j.neucom.2020.04.086
10.1016/j.jeconom.2005.01.016
10.1016/j.neunet.2014.07.011
10.1016/j.knosys.2018.10.034
10.1111/j.1540-6261.1987.tb04569.x
10.1109/72.935093
10.1016/j.physa.2018.10.053
10.1109/TNNLS.2015.2404823
10.1371/journal.pone.0103656
10.1016/j.eswa.2018.07.019
10.1126/science.1177302
10.1007/s00484-016-1215-y
10.1016/j.asoc.2008.09.002
10.1016/j.neucom.2019.08.105
10.1016/j.eswa.2019.01.012
10.1016/0167-2789(96)00054-1
10.1016/j.chaos.2020.110071
10.1016/j.asoc.2020.106996
10.1037/h0042519
10.1111/j.1540-6288.1989.tb00359.x
10.1016/j.neucom.2020.05.075
10.1038/323533a0
10.1016/j.specom.2016.12.004
10.1016/j.jmva.2007.04.010
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107488
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107488
S1568494621004117
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-58627f802bfc2ccf3fb60c02fc1439b1ee8226700cd7a2ef5971194b953dcf443
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:10:31 EDT 2025
Tue Jul 01 01:50:10 EDT 2025
Fri Feb 23 02:43:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Preprocessing technology
Dendritic neuron model
Separate processing
Machine learning
Seasonal-trend decomposition
Artificial neural network
Financial time series prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-58627f802bfc2ccf3fb60c02fc1439b1ee8226700cd7a2ef5971194b953dcf443
ParticipantIDs crossref_primary_10_1016_j_asoc_2021_107488
crossref_citationtrail_10_1016_j_asoc_2021_107488
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Peiro (b49) 1994; 45
Cantú-Paz, Kamath (b71) 2005; 35
Kajol, Nath, Singh, Singh, Das (b50) 2020; 5
Maciejewski, Hafen, Rudolph, Larew, Mitchell, Cleveland, Ebert (b60) 2010; 17
Koch, Segev (b65) 2000; 3
Kar, Das, Ghosh (b39) 2014; 15
Altan (b9) 2020
Sweeney-Reed, Nasuto, Vieira, Andrade (b57) 2018; 10
Aggarwal, Rivoli (b48) 1989; 24
Rosenblatt (b20) 1958; 65
Todo, Tamura, Yamashita, Tang (b66) 2014; 60
Chiou, Yang, Chen (b8) 2016; 146
Rojo, Rivero, Romero-Morte, Fernández-González, Pérez-Badia (b62) 2017; 61
Scheffer, Bascompte, Brock, Brovkin, Carpenter, Dakos, Held, Van Nes, Rietkerk, Sugihara (b2) 2009; 461
Yang, Tian, He, Zhang, Tan, Jin (b31) 2021
Kim, He, Wang, Cao, Liang (b61) 2013; 52
Lahmiri (b34) 2018; 320
Ravi, Pradeepkumar, Deb (b37) 2017; 36
Contreras, Espinola, Nogales, Conejo (b5) 2003; 18
Lei, Lin, He, Zuo (b55) 2013; 35
Wolf, Swift, Swinney, Vastano (b76) 1985; 16
McCulloch, Pitts (b18) 1943; 5
Gao, Zhou, Wang, Cheng, Yachi, Wang (b67) 2019; 30
Aneiros-Perez, Vieu (b6) 2008; 99
Kim, Eykholt, Salas (b41) 1999; 127
Fethi, Katircioglu (b75) 2015; 28
Sanchez-Vazquez, Nielen, Gunn, Lewis (b73) 2012; 104
Yu, Yan (b42) 2020; 32
De Bondt, Thaler (b47) 1987; 42
Chaloupka (b72) 2001; 101
Bhardwaj, Swanson (b7) 2006; 131
Krajbich, Camerer, Ledyard, Rangel (b1) 2009; 326
Yan, Aasma (b27) 2020; 159
Zhang, Ding, Sun (b78) 2020; 410
Kim, Shin (b23) 2007; 7
Cleveland, Cleveland, McRae, Terpenning (b59) 1990; 6
Theodosiou (b63) 2011; 27
Kugiumtzis (b40) 1996; 95
Sharma, Vignolo, Schlotthauer, Colominas, Rufiner, Prasanna (b56) 2017; 88
Altan, Parlak (b10) 2020
Van Gestel, Suykens, Baestaens, Lambrechts, Lanckriet, Vandaele, De Moor, Vandewalle (b33) 2001; 12
Zhang, Lv, Ma, Zhao, Wang, O’Hare (b69) 2020; 397
Mel, Koch (b64) 1990
Altan, Karasu (b15) 2020; 140
Rezaei, Faaljou, Mansourfar (b44) 2021; 169
Long, Lu, Cui (b11) 2019; 164
Chandra (b24) 2015; 26
Hebb (b19) 2005
Yolcu, Egrioglu, Uslu, Basaran, Aladag (b38) 2009; 9
Zhang, Jiang, Fang, Zeng, Xu (b53) 2019; 517
Cao, Li, Li (b26) 2019; 519
Henrique, Sobreiro, Kimura (b3) 2019; 124
Sezer, Gudelek, Ozbayoglu (b4) 2020; 90
Rumelhart, Hinton, Williams (b22) 1986; 323
Tang, Ji, Gao, Dai, Yu, Todo (b70) 2018; 2018
Alhnaity, Abbod (b45) 2020; 95
Gultekin, Gultekin (b46) 1983; 12
Walczak (b21) 2019
Warrier, Manju, Sreedharan (b58) 2020
Altan, Karasu, Zio (b16) 2021; 100
Baek, Kim (b28) 2018; 113
Reid, Hussain, Tawfik (b30) 2014; 9
Karasu, Altan, Bekiros, Ahmad (b14) 2020; 212
Niu, Wang (b29) 2014; 18
Shanaev, Ghimire (b51) 2020
Li, Chiang (b35) 2012; 21
Yan-Ki Ho, Cheung (b74) 1994; 4
Xing, Lv, Cao (b12) 2019; 69
Vidal, Kristjanpoller (b13) 2020
Song, Tang, Ji, Todo (b68) 2020; 201–202
Qian (b17) 2017
Zhou, Gao, Wang, Chu, Todo, Tang (b36) 2016; 105
Altan, Karasu, Bekiros (b25) 2019; 126
Huang, Gao, Gan, Ye (b43) 2021; 425
Zimmerman, Zumbo (b77) 1993; 62
Rilling, Flandrin (b54) 2007; 56
Hafezi, Shahrabi, Hadavandi (b32) 2015; 29
Yu, Chen, Wang, Lai (b52) 2008; 13
Van Gestel (10.1016/j.asoc.2021.107488_b33) 2001; 12
Cao (10.1016/j.asoc.2021.107488_b26) 2019; 519
Baek (10.1016/j.asoc.2021.107488_b28) 2018; 113
Ravi (10.1016/j.asoc.2021.107488_b37) 2017; 36
Walczak (10.1016/j.asoc.2021.107488_b21) 2019
Rilling (10.1016/j.asoc.2021.107488_b54) 2007; 56
Qian (10.1016/j.asoc.2021.107488_b17) 2017
Shanaev (10.1016/j.asoc.2021.107488_b51) 2020
Zhang (10.1016/j.asoc.2021.107488_b78) 2020; 410
Xing (10.1016/j.asoc.2021.107488_b12) 2019; 69
Peiro (10.1016/j.asoc.2021.107488_b49) 1994; 45
Chiou (10.1016/j.asoc.2021.107488_b8) 2016; 146
Altan (10.1016/j.asoc.2021.107488_b15) 2020; 140
Kajol (10.1016/j.asoc.2021.107488_b50) 2020; 5
Rojo (10.1016/j.asoc.2021.107488_b62) 2017; 61
Kim (10.1016/j.asoc.2021.107488_b61) 2013; 52
Cleveland (10.1016/j.asoc.2021.107488_b59) 1990; 6
Kim (10.1016/j.asoc.2021.107488_b41) 1999; 127
Li (10.1016/j.asoc.2021.107488_b35) 2012; 21
Henrique (10.1016/j.asoc.2021.107488_b3) 2019; 124
Song (10.1016/j.asoc.2021.107488_b68) 2020; 201–202
Gultekin (10.1016/j.asoc.2021.107488_b46) 1983; 12
De Bondt (10.1016/j.asoc.2021.107488_b47) 1987; 42
Huang (10.1016/j.asoc.2021.107488_b43) 2021; 425
Scheffer (10.1016/j.asoc.2021.107488_b2) 2009; 461
Kim (10.1016/j.asoc.2021.107488_b23) 2007; 7
Kugiumtzis (10.1016/j.asoc.2021.107488_b40) 1996; 95
Lahmiri (10.1016/j.asoc.2021.107488_b34) 2018; 320
Rosenblatt (10.1016/j.asoc.2021.107488_b20) 1958; 65
Long (10.1016/j.asoc.2021.107488_b11) 2019; 164
Zhou (10.1016/j.asoc.2021.107488_b36) 2016; 105
Rumelhart (10.1016/j.asoc.2021.107488_b22) 1986; 323
Chaloupka (10.1016/j.asoc.2021.107488_b72) 2001; 101
Zhang (10.1016/j.asoc.2021.107488_b69) 2020; 397
Altan (10.1016/j.asoc.2021.107488_b25) 2019; 126
Altan (10.1016/j.asoc.2021.107488_b9) 2020
Yu (10.1016/j.asoc.2021.107488_b42) 2020; 32
Yang (10.1016/j.asoc.2021.107488_b31) 2021
Hebb (10.1016/j.asoc.2021.107488_b19) 2005
Krajbich (10.1016/j.asoc.2021.107488_b1) 2009; 326
Altan (10.1016/j.asoc.2021.107488_b10) 2020
Rezaei (10.1016/j.asoc.2021.107488_b44) 2021; 169
Yan (10.1016/j.asoc.2021.107488_b27) 2020; 159
Aneiros-Perez (10.1016/j.asoc.2021.107488_b6) 2008; 99
Chandra (10.1016/j.asoc.2021.107488_b24) 2015; 26
Bhardwaj (10.1016/j.asoc.2021.107488_b7) 2006; 131
Alhnaity (10.1016/j.asoc.2021.107488_b45) 2020; 95
McCulloch (10.1016/j.asoc.2021.107488_b18) 1943; 5
Sanchez-Vazquez (10.1016/j.asoc.2021.107488_b73) 2012; 104
Tang (10.1016/j.asoc.2021.107488_b70) 2018; 2018
Maciejewski (10.1016/j.asoc.2021.107488_b60) 2010; 17
Zhang (10.1016/j.asoc.2021.107488_b53) 2019; 517
Yu (10.1016/j.asoc.2021.107488_b52) 2008; 13
Niu (10.1016/j.asoc.2021.107488_b29) 2014; 18
Warrier (10.1016/j.asoc.2021.107488_b58) 2020
Kar (10.1016/j.asoc.2021.107488_b39) 2014; 15
Yan-Ki Ho (10.1016/j.asoc.2021.107488_b74) 1994; 4
Contreras (10.1016/j.asoc.2021.107488_b5) 2003; 18
Sweeney-Reed (10.1016/j.asoc.2021.107488_b57) 2018; 10
Mel (10.1016/j.asoc.2021.107488_b64) 1990
Todo (10.1016/j.asoc.2021.107488_b66) 2014; 60
Hafezi (10.1016/j.asoc.2021.107488_b32) 2015; 29
Sharma (10.1016/j.asoc.2021.107488_b56) 2017; 88
Wolf (10.1016/j.asoc.2021.107488_b76) 1985; 16
Sezer (10.1016/j.asoc.2021.107488_b4) 2020; 90
Koch (10.1016/j.asoc.2021.107488_b65) 2000; 3
Karasu (10.1016/j.asoc.2021.107488_b14) 2020; 212
Lei (10.1016/j.asoc.2021.107488_b55) 2013; 35
Fethi (10.1016/j.asoc.2021.107488_b75) 2015; 28
Gao (10.1016/j.asoc.2021.107488_b67) 2019; 30
Altan (10.1016/j.asoc.2021.107488_b16) 2021; 100
Theodosiou (10.1016/j.asoc.2021.107488_b63) 2011; 27
Aggarwal (10.1016/j.asoc.2021.107488_b48) 1989; 24
Vidal (10.1016/j.asoc.2021.107488_b13) 2020
Reid (10.1016/j.asoc.2021.107488_b30) 2014; 9
Zimmerman (10.1016/j.asoc.2021.107488_b77) 1993; 62
Yolcu (10.1016/j.asoc.2021.107488_b38) 2009; 9
Cantú-Paz (10.1016/j.asoc.2021.107488_b71) 2005; 35
References_xml – volume: 159
  year: 2020
  ident: b27
  article-title: A novel deep learning framework: Prediction and analysis of financial time series using CEEMD and LSTM
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 285
  year: 1985
  end-page: 317
  ident: b76
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
– volume: 69
  start-page: 1341
  year: 2019
  end-page: 1352
  ident: b12
  article-title: Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles
  publication-title: IEEE Trans. Veh. Technol.
– volume: 28
  start-page: 717
  year: 2015
  end-page: 737
  ident: b75
  article-title: The role of the financial sector in the UK economy: evidence from a seasonal cointegration analysis
  publication-title: Econ. Res-.Ekon. Istraž.
– volume: 12
  start-page: 469
  year: 1983
  end-page: 481
  ident: b46
  article-title: Stock market seasonality: International evidence
  publication-title: J. Financ. Econ.
– volume: 131
  start-page: 539
  year: 2006
  end-page: 578
  ident: b7
  article-title: An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series
  publication-title: J. Econometrics
– volume: 21
  start-page: 567
  year: 2012
  end-page: 584
  ident: b35
  article-title: Complex neurofuzzy ARIMA forecasting—a new approach using complex fuzzy sets
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 24
  start-page: 541
  year: 1989
  end-page: 550
  ident: b48
  article-title: Seasonal and day-of-the-week effects in four emerging stock markets
  publication-title: Financ. Rev.
– volume: 126
  start-page: 325
  year: 2019
  end-page: 336
  ident: b25
  article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques
  publication-title: Chaos Solitons Fractals
– volume: 201–202
  year: 2020
  ident: b68
  article-title: Evaluating a dendritic neuron model for wind speed forecasting
  publication-title: Knowl.-Based Syst.
– volume: 9
  start-page: 647
  year: 2009
  end-page: 651
  ident: b38
  article-title: A new approach for determining the length of intervals for fuzzy time series
  publication-title: Appl. Soft Comput.
– volume: 30
  start-page: 601
  year: 2019
  end-page: 614
  ident: b67
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 18
  start-page: 1014
  year: 2003
  end-page: 1020
  ident: b5
  article-title: ARIMA Models to predict next-day electricity prices
  publication-title: IEEE Trans. Power Syst.
– year: 2020
  ident: b51
  article-title: A generalised seasonality test and applications for stock market seasonality
– volume: 425
  start-page: 207
  year: 2021
  end-page: 218
  ident: b43
  article-title: A new financial data forecasting model using genetic algorithm and long short-term memory network
  publication-title: Neurocomputing
– volume: 104
  start-page: 65
  year: 2012
  end-page: 73
  ident: b73
  article-title: Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005–2011
  publication-title: Prevent. Vet. Med.
– volume: 410
  start-page: 185
  year: 2020
  end-page: 201
  ident: b78
  article-title: A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task
  publication-title: Neurocomputing
– volume: 60
  start-page: 96
  year: 2014
  end-page: 103
  ident: b66
  article-title: Unsupervised learnable neuron model with nonlinear interaction on dendrites
  publication-title: Neural Netw.
– volume: 18
  start-page: 497
  year: 2014
  end-page: 508
  ident: b29
  article-title: Financial time series prediction by a random data-time effective rbf neural network
  publication-title: Soft Comput.
– volume: 320
  start-page: 444
  year: 2018
  end-page: 451
  ident: b34
  article-title: Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression
  publication-title: Appl. Math. Comput.
– volume: 326
  start-page: 596
  year: 2009
  end-page: 599
  ident: b1
  article-title: Using neural measures of economic value to solve the public goods free-rider problem
  publication-title: Science
– volume: 9
  year: 2014
  ident: b30
  article-title: Financial time series prediction using spiking neural networks
  publication-title: PLoS One
– volume: 52
  start-page: 2960
  year: 2013
  end-page: 2976
  ident: b61
  article-title: Assessment of long-term sensor radiometric degradation using time series analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 99
  start-page: 834
  year: 2008
  end-page: 857
  ident: b6
  article-title: Nonparametric time series prediction: A semi-functional partial linear modeling
  publication-title: J. Multivariate Anal.
– volume: 29
  start-page: 196
  year: 2015
  end-page: 210
  ident: b32
  article-title: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price
  publication-title: Appl. Soft Comput.
– volume: 100
  year: 2021
  ident: b16
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl. Soft Comput.
– start-page: 474
  year: 1990
  end-page: 481
  ident: b64
  article-title: Sigma-pi learning: On radial basis functions and cortical associative learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 65
  start-page: 386
  year: 1958
  ident: b20
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain.
  publication-title: Psychol. Rev.
– volume: 212
  year: 2020
  ident: b14
  article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series
  publication-title: Energy
– volume: 517
  start-page: 1
  year: 2019
  end-page: 12
  ident: b53
  article-title: High-order hidden Markov model for trend prediction in financial time series
  publication-title: Physica A
– volume: 105
  start-page: 214
  year: 2016
  end-page: 224
  ident: b36
  article-title: Financial time series prediction using a dendritic neuron model
  publication-title: Knowl.-Based Syst.
– year: 2021
  ident: b31
  article-title: A gradient-guided evolutionary approach to training deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 15
  start-page: 243
  year: 2014
  end-page: 259
  ident: b39
  article-title: Applications of neuro fuzzy systems: A brief review and future outline
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 61
  year: 1994
  end-page: 67
  ident: b74
  article-title: Seasonal pattern in volatility in Asian stock markets
  publication-title: Appl. Financial Econ.
– volume: 95
  start-page: 13
  year: 1996
  end-page: 28
  ident: b40
  article-title: State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length
  publication-title: Physica D
– volume: 42
  start-page: 557
  year: 1987
  end-page: 581
  ident: b47
  article-title: Further evidence on investor overreaction and stock market seasonality
  publication-title: J. Finance
– volume: 124
  start-page: 226
  year: 2019
  end-page: 251
  ident: b3
  article-title: Literature review: Machine learning techniques applied to financial market prediction
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 3123
  year: 2015
  end-page: 3136
  ident: b24
  article-title: Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time-series prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 95
  year: 2020
  ident: b45
  article-title: A new hybrid financial time series prediction model
  publication-title: Eng. Appl. Artif. Intell.
– volume: 6
  start-page: 3
  year: 1990
  end-page: 73
  ident: b59
  article-title: STL: A seasonal-trend decomposition
  publication-title: J. Off. Statist.
– volume: 17
  start-page: 440
  year: 2010
  end-page: 453
  ident: b60
  article-title: Forecasting hotspots—A predictive analytics approach
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 2018
  start-page: 410
  year: 2018
  end-page: 422
  ident: b70
  article-title: A pruning neural network model in credit classification analysis
  publication-title: Comput. Intell. Neurosci.
– start-page: 40
  year: 2019
  end-page: 53
  ident: b21
  article-title: Artificial neural networks
  publication-title: Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction
– volume: 397
  start-page: 438
  year: 2020
  end-page: 446
  ident: b69
  article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform
  publication-title: Neurocomputing
– volume: 62
  start-page: 75
  year: 1993
  end-page: 86
  ident: b77
  article-title: Relative power of the wilcoxon test, the friedman test, and repeated-measures ANOVA on ranks
  publication-title: J. Exp. Educ.
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: b18
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b22
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– start-page: 1
  year: 2020
  end-page: 6
  ident: b9
  article-title: Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following
  publication-title: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)
– volume: 35
  start-page: 108
  year: 2013
  end-page: 126
  ident: b55
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
– volume: 461
  start-page: 53
  year: 2009
  end-page: 59
  ident: b2
  article-title: Early-warning signals for critical transitions
  publication-title: Nature
– volume: 32
  start-page: 1609
  year: 2020
  end-page: 1628
  ident: b42
  article-title: Stock price prediction based on deep neural networks
  publication-title: Neural Comput. Appl.
– volume: 56
  start-page: 85
  year: 2007
  end-page: 95
  ident: b54
  article-title: One or two frequencies? The empirical mode decomposition answers
  publication-title: IEEE Trans. Signal Process.
– volume: 146
  start-page: 301
  year: 2016
  end-page: 312
  ident: b8
  article-title: Multivariate functional linear regression and prediction
  publication-title: J. Multivariate Anal.
– volume: 519
  start-page: 127
  year: 2019
  end-page: 139
  ident: b26
  article-title: Financial time series forecasting model based on CEEMDAN and LSTM
  publication-title: Physica A
– start-page: 1
  year: 2020
  end-page: 5
  ident: b10
  article-title: Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs
  publication-title: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU)
– volume: 36
  start-page: 136
  year: 2017
  end-page: 149
  ident: b37
  article-title: Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective evolutionary algorithms
  publication-title: Swarm Evol. Comput.
– volume: 7
  start-page: 569
  year: 2007
  end-page: 576
  ident: b23
  article-title: A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets
  publication-title: Appl. Soft Comput.
– volume: 140
  year: 2020
  ident: b15
  article-title: Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique
  publication-title: Chaos Solitons Fractals
– volume: 35
  start-page: 915
  year: 2005
  end-page: 927
  ident: b71
  article-title: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 90
  year: 2020
  ident: b4
  article-title: Financial time series forecasting with deep learning: A systematic literature review: 2005–2019
  publication-title: Appl. Soft Comput.
– volume: 127
  start-page: 48
  year: 1999
  end-page: 60
  ident: b41
  article-title: Nonlinear dynamics, delay times, and embedding windows
  publication-title: Physica D
– volume: 45
  start-page: 227
  year: 1994
  end-page: 232
  ident: b49
  article-title: Daily seasonality in stock returns: Further international evidence
  publication-title: Econom. Lett.
– start-page: 1
  year: 2017
  end-page: 9
  ident: b17
  article-title: Financial series prediction: Comparison between precision of time series models and machine learning methods
– year: 2005
  ident: b19
  article-title: The Organization of Behavior: A Neuropsychological Theory
– volume: 88
  start-page: 39
  year: 2017
  end-page: 64
  ident: b56
  article-title: Empirical mode decomposition for adaptive AM-fm analysis of speech: A review
  publication-title: Speech Commun.
– volume: 3
  start-page: 1171
  year: 2000
  end-page: 1177
  ident: b65
  article-title: The role of single neurons in information processing
  publication-title: Nature Neurosci.
– volume: 61
  start-page: 335
  year: 2017
  end-page: 348
  ident: b62
  article-title: Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing
  publication-title: Int. J. Biometeorol.
– start-page: 993
  year: 2020
  end-page: 1002
  ident: b58
  article-title: A survey of pre-processing techniques using wavelets and empirical-mode decomposition on biomedical signals
  publication-title: Inventive Communication and Computational Technologies
– volume: 12
  start-page: 809
  year: 2001
  end-page: 821
  ident: b33
  article-title: Financial time series prediction using least squares support vector machines within the evidence framework
  publication-title: IEEE Trans. Neural Netw.
– volume: 169
  year: 2021
  ident: b44
  article-title: Stock price prediction using deep learning and frequency decomposition
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 87
  year: 2008
  end-page: 102
  ident: b52
  article-title: Evolving least squares support vector machines for stock market trend mining
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  year: 2018
  ident: b57
  article-title: Empirical mode decomposition and its extensions applied to eeg analysis: a review
  publication-title: Adv. Data Sci. Adapt. Anal.
– volume: 27
  start-page: 1178
  year: 2011
  end-page: 1195
  ident: b63
  article-title: Forecasting monthly and quarterly time series using STL decomposition
  publication-title: Int. J. Forecast.
– volume: 101
  start-page: 263
  year: 2001
  end-page: 279
  ident: b72
  article-title: Historical trends, seasonality and spatial synchrony in green sea turtle egg production
  publication-title: Biol. Cons.
– volume: 164
  start-page: 163
  year: 2019
  end-page: 173
  ident: b11
  article-title: Deep learning-based feature engineering for stock price movement prediction
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b13
  article-title: Gold volatility prediction using a CNN-LSTM approach
  publication-title: Expert Syst. Appl.
– volume: 113
  start-page: 457
  year: 2018
  end-page: 480
  ident: b28
  article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 39
  year: 2020
  end-page: 59
  ident: b50
  article-title: Factors affecting seasonality in the stock market: a social network analysis approach
  publication-title: Int. J. Account. Financ. Rev.
– volume: 32
  start-page: 1609
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b42
  article-title: Stock price prediction based on deep neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04212-x
– volume: 519
  start-page: 127
  year: 2019
  ident: 10.1016/j.asoc.2021.107488_b26
  article-title: Financial time series forecasting model based on CEEMDAN and LSTM
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.11.061
– volume: 62
  start-page: 75
  issue: 1
  year: 1993
  ident: 10.1016/j.asoc.2021.107488_b77
  article-title: Relative power of the wilcoxon test, the friedman test, and repeated-measures ANOVA on ranks
  publication-title: J. Exp. Educ.
  doi: 10.1080/00220973.1993.9943832
– volume: 13
  start-page: 87
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2021.107488_b52
  article-title: Evolving least squares support vector machines for stock market trend mining
  publication-title: IEEE Trans. Evol. Comput.
– volume: 95
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b45
  article-title: A new hybrid financial time series prediction model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103873
– volume: 56
  start-page: 85
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2021.107488_b54
  article-title: One or two frequencies? The empirical mode decomposition answers
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.906771
– volume: 127
  start-page: 48
  issue: 1–2
  year: 1999
  ident: 10.1016/j.asoc.2021.107488_b41
  article-title: Nonlinear dynamics, delay times, and embedding windows
  publication-title: Physica D
  doi: 10.1016/S0167-2789(98)00240-1
– volume: 101
  start-page: 263
  issue: 3
  year: 2001
  ident: 10.1016/j.asoc.2021.107488_b72
  article-title: Historical trends, seasonality and spatial synchrony in green sea turtle egg production
  publication-title: Biol. Cons.
  doi: 10.1016/S0006-3207(00)00199-3
– year: 2020
  ident: 10.1016/j.asoc.2021.107488_b13
  article-title: Gold volatility prediction using a CNN-LSTM approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113481
– volume: 7
  start-page: 569
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2021.107488_b23
  article-title: A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2006.03.004
– volume: 169
  year: 2021
  ident: 10.1016/j.asoc.2021.107488_b44
  article-title: Stock price prediction using deep learning and frequency decomposition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114332
– volume: 36
  start-page: 136
  year: 2017
  ident: 10.1016/j.asoc.2021.107488_b37
  article-title: Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective evolutionary algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.05.003
– volume: 18
  start-page: 1014
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2021.107488_b5
  article-title: ARIMA Models to predict next-day electricity prices
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2002.804943
– volume: 35
  start-page: 915
  issue: 5
  year: 2005
  ident: 10.1016/j.asoc.2021.107488_b71
  article-title: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2005.847740
– volume: 29
  start-page: 196
  year: 2015
  ident: 10.1016/j.asoc.2021.107488_b32
  article-title: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.12.028
– volume: 27
  start-page: 1178
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2021.107488_b63
  article-title: Forecasting monthly and quarterly time series using STL decomposition
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2010.11.002
– volume: 201–202
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b68
  article-title: Evaluating a dendritic neuron model for wind speed forecasting
  publication-title: Knowl.-Based Syst.
– volume: 18
  start-page: 497
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2021.107488_b29
  article-title: Financial time series prediction by a random data-time effective rbf neural network
  publication-title: Soft Comput.
  doi: 10.1007/s00500-013-1070-2
– volume: 35
  start-page: 108
  issue: 1–2
  year: 2013
  ident: 10.1016/j.asoc.2021.107488_b55
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.09.015
– volume: 30
  start-page: 601
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107488_b67
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2846646
– volume: 5
  start-page: 39
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b50
  article-title: Factors affecting seasonality in the stock market: a social network analysis approach
  publication-title: Int. J. Account. Financ. Rev.
  doi: 10.46281/ijafr.v5i4.888
– volume: 17
  start-page: 440
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2021.107488_b60
  article-title: Forecasting hotspots—A predictive analytics approach
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2010.82
– volume: 69
  start-page: 1341
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107488_b12
  article-title: Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2960110
– volume: 45
  start-page: 227
  issue: 2
  year: 1994
  ident: 10.1016/j.asoc.2021.107488_b49
  article-title: Daily seasonality in stock returns: Further international evidence
  publication-title: Econom. Lett.
  doi: 10.1016/0165-1765(94)90140-6
– volume: 104
  start-page: 65
  issue: 1–2
  year: 2012
  ident: 10.1016/j.asoc.2021.107488_b73
  article-title: Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005–2011
  publication-title: Prevent. Vet. Med.
  doi: 10.1016/j.prevetmed.2011.11.003
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 10.1016/j.asoc.2021.107488_b18
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 105
  start-page: 214
  year: 2016
  ident: 10.1016/j.asoc.2021.107488_b36
  article-title: Financial time series prediction using a dendritic neuron model
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.05.031
– volume: 16
  start-page: 285
  issue: 3
  year: 1985
  ident: 10.1016/j.asoc.2021.107488_b76
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
  doi: 10.1016/0167-2789(85)90011-9
– start-page: 474
  year: 1990
  ident: 10.1016/j.asoc.2021.107488_b64
  article-title: Sigma-pi learning: On radial basis functions and cortical associative learning
– volume: 12
  start-page: 469
  issue: 4
  year: 1983
  ident: 10.1016/j.asoc.2021.107488_b46
  article-title: Stock market seasonality: International evidence
  publication-title: J. Financ. Econ.
  doi: 10.1016/0304-405X(83)90044-2
– volume: 126
  start-page: 325
  year: 2019
  ident: 10.1016/j.asoc.2021.107488_b25
  article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.07.011
– start-page: 993
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b58
  article-title: A survey of pre-processing techniques using wavelets and empirical-mode decomposition on biomedical signals
– year: 2005
  ident: 10.1016/j.asoc.2021.107488_b19
– volume: 28
  start-page: 717
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2021.107488_b75
  article-title: The role of the financial sector in the UK economy: evidence from a seasonal cointegration analysis
  publication-title: Econ. Res-.Ekon. Istraž.
– volume: 15
  start-page: 243
  year: 2014
  ident: 10.1016/j.asoc.2021.107488_b39
  article-title: Applications of neuro fuzzy systems: A brief review and future outline
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.10.014
– volume: 4
  start-page: 61
  issue: 1
  year: 1994
  ident: 10.1016/j.asoc.2021.107488_b74
  article-title: Seasonal pattern in volatility in Asian stock markets
  publication-title: Appl. Financial Econ.
  doi: 10.1080/758522126
– volume: 90
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b4
  article-title: Financial time series forecasting with deep learning: A systematic literature review: 2005–2019
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106181
– volume: 320
  start-page: 444
  year: 2018
  ident: 10.1016/j.asoc.2021.107488_b34
  article-title: Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.09.049
– volume: 52
  start-page: 2960
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2021.107488_b61
  article-title: Assessment of long-term sensor radiometric degradation using time series analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2268161
– volume: 146
  start-page: 301
  year: 2016
  ident: 10.1016/j.asoc.2021.107488_b8
  article-title: Multivariate functional linear regression and prediction
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2015.10.003
– volume: 2018
  start-page: 410
  year: 2018
  ident: 10.1016/j.asoc.2021.107488_b70
  article-title: A pruning neural network model in credit classification analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/9390410
– year: 2021
  ident: 10.1016/j.asoc.2021.107488_b31
  article-title: A gradient-guided evolutionary approach to training deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 3
  start-page: 1171
  issue: 11
  year: 2000
  ident: 10.1016/j.asoc.2021.107488_b65
  article-title: The role of single neurons in information processing
  publication-title: Nature Neurosci.
  doi: 10.1038/81444
– volume: 159
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b27
  article-title: A novel deep learning framework: Prediction and analysis of financial time series using CEEMD and LSTM
  publication-title: Expert Syst. Appl.
– volume: 212
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b14
  article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118750
– volume: 461
  start-page: 53
  issue: 7260
  year: 2009
  ident: 10.1016/j.asoc.2021.107488_b2
  article-title: Early-warning signals for critical transitions
  publication-title: Nature
  doi: 10.1038/nature08227
– volume: 21
  start-page: 567
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2021.107488_b35
  article-title: Complex neurofuzzy ARIMA forecasting—a new approach using complex fuzzy sets
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2012.2226890
– volume: 425
  start-page: 207
  year: 2021
  ident: 10.1016/j.asoc.2021.107488_b43
  article-title: A new financial data forecasting model using genetic algorithm and long short-term memory network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.086
– volume: 131
  start-page: 539
  issue: 1–2
  year: 2006
  ident: 10.1016/j.asoc.2021.107488_b7
  article-title: An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series
  publication-title: J. Econometrics
  doi: 10.1016/j.jeconom.2005.01.016
– volume: 60
  start-page: 96
  year: 2014
  ident: 10.1016/j.asoc.2021.107488_b66
  article-title: Unsupervised learnable neuron model with nonlinear interaction on dendrites
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.07.011
– start-page: 40
  year: 2019
  ident: 10.1016/j.asoc.2021.107488_b21
  article-title: Artificial neural networks
– volume: 164
  start-page: 163
  year: 2019
  ident: 10.1016/j.asoc.2021.107488_b11
  article-title: Deep learning-based feature engineering for stock price movement prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.034
– volume: 10
  issue: 02
  year: 2018
  ident: 10.1016/j.asoc.2021.107488_b57
  article-title: Empirical mode decomposition and its extensions applied to eeg analysis: a review
  publication-title: Adv. Data Sci. Adapt. Anal.
– volume: 42
  start-page: 557
  issue: 3
  year: 1987
  ident: 10.1016/j.asoc.2021.107488_b47
  article-title: Further evidence on investor overreaction and stock market seasonality
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.1987.tb04569.x
– year: 2020
  ident: 10.1016/j.asoc.2021.107488_b51
– volume: 12
  start-page: 809
  issue: 4
  year: 2001
  ident: 10.1016/j.asoc.2021.107488_b33
  article-title: Financial time series prediction using least squares support vector machines within the evidence framework
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.935093
– volume: 6
  start-page: 3
  issue: 1
  year: 1990
  ident: 10.1016/j.asoc.2021.107488_b59
  article-title: STL: A seasonal-trend decomposition
  publication-title: J. Off. Statist.
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b10
  article-title: Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs
– volume: 517
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107488_b53
  article-title: High-order hidden Markov model for trend prediction in financial time series
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.10.053
– volume: 26
  start-page: 3123
  issue: 12
  year: 2015
  ident: 10.1016/j.asoc.2021.107488_b24
  article-title: Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time-series prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2404823
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b9
  article-title: Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.asoc.2021.107488_b30
  article-title: Financial time series prediction using spiking neural networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0103656
– volume: 113
  start-page: 457
  year: 2018
  ident: 10.1016/j.asoc.2021.107488_b28
  article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.019
– volume: 326
  start-page: 596
  issue: 5952
  year: 2009
  ident: 10.1016/j.asoc.2021.107488_b1
  article-title: Using neural measures of economic value to solve the public goods free-rider problem
  publication-title: Science
  doi: 10.1126/science.1177302
– volume: 61
  start-page: 335
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2021.107488_b62
  article-title: Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-016-1215-y
– volume: 9
  start-page: 647
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2021.107488_b38
  article-title: A new approach for determining the length of intervals for fuzzy time series
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.09.002
– volume: 397
  start-page: 438
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b69
  article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.105
– volume: 124
  start-page: 226
  year: 2019
  ident: 10.1016/j.asoc.2021.107488_b3
  article-title: Literature review: Machine learning techniques applied to financial market prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.012
– volume: 95
  start-page: 13
  issue: 1
  year: 1996
  ident: 10.1016/j.asoc.2021.107488_b40
  article-title: State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length
  publication-title: Physica D
  doi: 10.1016/0167-2789(96)00054-1
– volume: 140
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b15
  article-title: Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110071
– volume: 100
  year: 2021
  ident: 10.1016/j.asoc.2021.107488_b16
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106996
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 10.1016/j.asoc.2021.107488_b20
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain.
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 24
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.asoc.2021.107488_b48
  article-title: Seasonal and day-of-the-week effects in four emerging stock markets
  publication-title: Financ. Rev.
  doi: 10.1111/j.1540-6288.1989.tb00359.x
– volume: 410
  start-page: 185
  year: 2020
  ident: 10.1016/j.asoc.2021.107488_b78
  article-title: A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.075
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.asoc.2021.107488_b22
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 88
  start-page: 39
  year: 2017
  ident: 10.1016/j.asoc.2021.107488_b56
  article-title: Empirical mode decomposition for adaptive AM-fm analysis of speech: A review
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2016.12.004
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.107488_b17
– volume: 99
  start-page: 834
  issue: 5
  year: 2008
  ident: 10.1016/j.asoc.2021.107488_b6
  article-title: Nonparametric time series prediction: A semi-functional partial linear modeling
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2007.04.010
SSID ssj0016928
Score 2.6094532
Snippet Financial time series prediction is a hot topic in machine learning field, but existing works barely catch the point of such data. In this study, we employ the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107488
SubjectTerms Artificial neural network
Dendritic neuron model
Financial time series prediction
Machine learning
Preprocessing technology
Seasonal-trend decomposition
Separate processing
Title A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction
URI https://dx.doi.org/10.1016/j.asoc.2021.107488
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3ybakadoex3DMryHqYLfYpAlMpI5Zr_7t5qWpKMgOnkpLUsrL68vvtb_3fgidg4aIcLCAuOTBEM5yTpShUAVCRUq1iWNfx303FZMZv57H8xYaNbUwQKsMsb-O6T5ahyv9YM3-crHoP7rMI-UZFwyanlEKFeWcJ-Dlvc9vmgcVmddXhcEERofCmZrjlTsLuByR0R7wEr36yh-b048NZ7yDtgJSxMP6YXZRy5R7aLtRYcDhpdxHz0MMH_oAUZMKGK64MEAUD2wsAvsUXCsLr2qAfQfLEnsJHOwgK7ZN0w0MQvMYfNK84-UKfuHAHQ7QbHz5NJqQoJtAdCRERWKXpSQ2HTBlNdPaRlaJgR4wqx04yhQ1xqECKM_RRZIzY11OQWnGVRZHhbacR4eoXb6V5ghhY3SsiyLVKlE8ybSChoTULaZDHSwvVAfRxmBSh6bioG3xKhv22IsEI0swsqyN3EEX33OWdUuNtaPjZh3kL8eQLuavmXf8z3knaBPOahrZKWpXqw9z5nBHpbresbpoYzh6uL2H49XNZPoFZtrZHw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PbAh09pxXmOFqFL6WGilbqZ2HKkIhaqE_48vcSqQUAdWJxdFZ-f8XfzdfQB3qCESWFhAbfJgqOALQZVhWAXCgohp4_tlHfd4EiQz8Tz35w14rGthkFbpYn8V08to7UY6zpud1XLZebGZRyRiEXBsesZYuAMt7E7lN6HVGwyTyeYwIYhLiVW8n6KBq52paF4L6wSbJnL2gNTEUoDlj_3px57TP4R9BxZJr3qfI2iY_BgOaiEG4r7LE3jtEfzXh6CaFkhyJalBrrgjZFHcqnAsT0thA1I2scxJqYJDLGolWd13g6DWPMFlaT7Jao2nOPiEU5j1n6aPCXXSCVR7QVBQ3yYqYRZ1uco01zrzMhV0dZdn2uKjWDFjLDDACh2dhgtuMptWMBYLFfteqjMhvDNo5h-5OQdijPZ1mkZahUqEsVbYk5DZ-bTAgy9S1QZWO0xq11cc5S3eZU0ge5PoZIlOlpWT23C_sVlVXTW23u3X8yB_rQ1pw_4Wu4t_2t3CbjIdj-RoMBlewh5eqVhlV9As1l_m2sKQQt24ZfYNEZDaOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+seasonal-trend+decomposition-based+dendritic+neuron+model+for+financial+time+series+prediction&rft.jtitle=Applied+soft+computing&rft.au=He%2C+Houtian&rft.au=Gao%2C+Shangce&rft.au=Jin%2C+Ting&rft.au=Sato%2C+Syuhei&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=108&rft_id=info:doi/10.1016%2Fj.asoc.2021.107488&rft.externalDocID=S1568494621004117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon