A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction
Financial time series prediction is a hot topic in machine learning field, but existing works barely catch the point of such data. In this study, we employ the most suitable preprocessing technology, machine learning model, and training algorithm to construct a novel seasonal-trend decomposition-bas...
Saved in:
Published in | Applied soft computing Vol. 108; p. 107488 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Financial time series prediction is a hot topic in machine learning field, but existing works barely catch the point of such data. In this study, we employ the most suitable preprocessing technology, machine learning model, and training algorithm to construct a novel seasonal-trend decomposition-based dendritic neuron model (STLDNM) to tackle this issue. The model’s unique part is to use the seasonal-trend decomposition based on loess (STL) as preprocessing technology. Particularly, the STL can extract seasonal and trend features from the original data, so that a simple polynomial fitting method can be used to handle these sub-series. Next, the remained complex residual component is predicted by an anti-overfitting dendritic neuron model (DNM) trained by an efficient back-propagation algorithm. Finally, the processed components are added up to obtain the predicting result. sixteen real-world stock market indices are used to test STLDNM. The experimental results show that it can perform significantly better than other previous convinced models under different assessment criteria. This model successfully reveals the internal feature of financial data and certainly improves the predicting accuracy due to the rightful methodology selection. Therefore, the newly designed STLDNM not only has high potentials for practical applications in the financial aspect but also provides novel inspirations for complex time series prediction problem researchers.
•The proposed model employed the most suitable methods with convincing evidence.•The employed STL is the best choice for preprocessing the financial data.•The proposed model is the first attempt to employ a separate processing procedure.•The proposed model shows a significantly superior predicting capability. |
---|---|
AbstractList | Financial time series prediction is a hot topic in machine learning field, but existing works barely catch the point of such data. In this study, we employ the most suitable preprocessing technology, machine learning model, and training algorithm to construct a novel seasonal-trend decomposition-based dendritic neuron model (STLDNM) to tackle this issue. The model’s unique part is to use the seasonal-trend decomposition based on loess (STL) as preprocessing technology. Particularly, the STL can extract seasonal and trend features from the original data, so that a simple polynomial fitting method can be used to handle these sub-series. Next, the remained complex residual component is predicted by an anti-overfitting dendritic neuron model (DNM) trained by an efficient back-propagation algorithm. Finally, the processed components are added up to obtain the predicting result. sixteen real-world stock market indices are used to test STLDNM. The experimental results show that it can perform significantly better than other previous convinced models under different assessment criteria. This model successfully reveals the internal feature of financial data and certainly improves the predicting accuracy due to the rightful methodology selection. Therefore, the newly designed STLDNM not only has high potentials for practical applications in the financial aspect but also provides novel inspirations for complex time series prediction problem researchers.
•The proposed model employed the most suitable methods with convincing evidence.•The employed STL is the best choice for preprocessing the financial data.•The proposed model is the first attempt to employ a separate processing procedure.•The proposed model shows a significantly superior predicting capability. |
ArticleNumber | 107488 |
Author | Jin, Ting Zhang, Xingyi He, Houtian Sato, Syuhei Gao, Shangce |
Author_xml | – sequence: 1 givenname: Houtian surname: He fullname: He, Houtian organization: Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan – sequence: 2 givenname: Shangce surname: Gao fullname: Gao, Shangce email: gaosc@eng.u-toyama.ac.jp organization: Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan – sequence: 3 givenname: Ting surname: Jin fullname: Jin, Ting organization: School of Science, Nanjing Forestry University, Nanjing, 210037, China – sequence: 4 givenname: Syuhei surname: Sato fullname: Sato, Syuhei organization: Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan – sequence: 5 givenname: Xingyi surname: Zhang fullname: Zhang, Xingyi email: zhangxingyi@msn.com organization: Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China |
BookMark | eNp9kE1LAzEQhoNUsK3-AU_5A1uT7G42C15K8QsKXvQcs5MJpGyTkqyC_94s9eTB0wwvPC8zz4osQgxIyC1nG864vDtsTI6wEUzwEnSNUhdkyVUnql4qvih7K1XV9I28IqucD6xAvVBL8rGlGQsbzFhNCYOlFiEeTzH7ycdQDSbjnAWbSgA04GeKgR6jxZG6mKjzwQTwZqSTP2IpSx4zPSW0HuaGa3LpzJjx5neuyfvjw9vuudq_Pr3stvsKaimnqlVSdE4xMTgQAK52g2TAhAPe1P3AEZUQsmMMbGcEurbvOO-boW9rC65p6jUR515IMeeETp-SP5r0rTnTsyN90LMjPTvSZ0cFUn8g8JOZz56S8eP_6P0ZxfLUl8ekM3gMUP5OCJO20f-H_wBuYoZc |
CitedBy_id | crossref_primary_10_1007_s10666_023_09918_w crossref_primary_10_1007_s00521_023_08513_0 crossref_primary_10_1016_j_ress_2024_110089 crossref_primary_10_3390_sym14061227 crossref_primary_10_3390_math11051251 crossref_primary_10_1002_ente_202300914 crossref_primary_10_1007_s10666_023_09931_z crossref_primary_10_1016_j_ecss_2023_108335 crossref_primary_10_1007_s10489_022_04110_1 crossref_primary_10_3934_era_2023145 crossref_primary_10_3390_su152316264 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_3390_app14020866 crossref_primary_10_3390_su151411123 crossref_primary_10_1109_JAS_2023_123978 crossref_primary_10_1109_TMECH_2022_3166538 crossref_primary_10_1016_j_energy_2024_130880 crossref_primary_10_1016_j_iref_2022_11_023 crossref_primary_10_1088_1361_6382_adb2d5 crossref_primary_10_1016_j_cie_2021_107770 crossref_primary_10_3390_app13116542 crossref_primary_10_1016_j_asoc_2022_109714 crossref_primary_10_1016_j_knosys_2021_107536 crossref_primary_10_1016_j_sciaf_2023_e01988 crossref_primary_10_1016_j_aei_2024_102449 crossref_primary_10_1016_j_apenergy_2024_123386 crossref_primary_10_1080_10807039_2022_2087176 crossref_primary_10_1007_s41870_023_01425_1 crossref_primary_10_1155_2022_9649825 crossref_primary_10_1109_TETCI_2024_3367819 crossref_primary_10_3390_s23136118 crossref_primary_10_1016_j_jhydrol_2024_132197 crossref_primary_10_1063_5_0089059 crossref_primary_10_1016_j_eswa_2023_121202 crossref_primary_10_1016_j_asoc_2023_110801 crossref_primary_10_1007_s12665_023_11110_y crossref_primary_10_1016_j_eswa_2023_121286 crossref_primary_10_1016_j_heliyon_2023_e16589 crossref_primary_10_1016_j_knosys_2024_111442 crossref_primary_10_1016_j_measurement_2024_116040 crossref_primary_10_1002_dac_5097 crossref_primary_10_1088_2515_7620_adb941 crossref_primary_10_3390_ijerph21070867 crossref_primary_10_1016_j_envpol_2025_125800 crossref_primary_10_1016_j_iref_2022_05_003 crossref_primary_10_1088_1361_6501_ada849 crossref_primary_10_1007_s10489_023_05205_z crossref_primary_10_1080_09599916_2021_1996446 crossref_primary_10_1186_s40854_025_00754_3 crossref_primary_10_18307_2024_0415 crossref_primary_10_1109_TETC_2023_3258503 crossref_primary_10_1016_j_eswa_2022_118006 crossref_primary_10_1080_00036846_2024_2370494 crossref_primary_10_1007_s00521_023_09299_x crossref_primary_10_1016_j_cjche_2022_01_033 crossref_primary_10_1038_s41598_024_52240_y crossref_primary_10_1177_0309524X221106184 crossref_primary_10_1016_j_energy_2021_122768 crossref_primary_10_1155_2023_5953102 crossref_primary_10_34110_forecasting_1468420 crossref_primary_10_1007_s41066_022_00345_y crossref_primary_10_1109_JSEN_2023_3297067 crossref_primary_10_1109_JIOT_2022_3185010 crossref_primary_10_1007_s00521_023_08878_2 crossref_primary_10_1007_s10462_024_10790_7 crossref_primary_10_1109_ACCESS_2022_3233529 crossref_primary_10_3390_en18030664 crossref_primary_10_1007_s12145_024_01546_6 crossref_primary_10_1016_j_asoc_2024_112423 crossref_primary_10_1155_2022_3259222 crossref_primary_10_1016_j_scitotenv_2022_158342 crossref_primary_10_1080_10293523_2023_2179160 crossref_primary_10_1016_j_scitotenv_2022_159714 crossref_primary_10_1051_e3sconf_202338909039 crossref_primary_10_1109_ACCESS_2025_3541074 crossref_primary_10_3390_s24061729 crossref_primary_10_1089_big_2021_0471 crossref_primary_10_1080_15481603_2024_2315708 |
Cites_doi | 10.1007/s00521-019-04212-x 10.1016/j.physa.2018.11.061 10.1080/00220973.1993.9943832 10.1016/j.engappai.2020.103873 10.1109/TSP.2007.906771 10.1016/S0167-2789(98)00240-1 10.1016/S0006-3207(00)00199-3 10.1016/j.eswa.2020.113481 10.1016/j.asoc.2006.03.004 10.1016/j.eswa.2020.114332 10.1016/j.swevo.2017.05.003 10.1109/TPWRS.2002.804943 10.1109/TSMCB.2005.847740 10.1016/j.asoc.2014.12.028 10.1016/j.ijforecast.2010.11.002 10.1007/s00500-013-1070-2 10.1016/j.ymssp.2012.09.015 10.1109/TNNLS.2018.2846646 10.46281/ijafr.v5i4.888 10.1109/TVCG.2010.82 10.1109/TVT.2019.2960110 10.1016/0165-1765(94)90140-6 10.1016/j.prevetmed.2011.11.003 10.1007/BF02478259 10.1016/j.knosys.2016.05.031 10.1016/0167-2789(85)90011-9 10.1016/0304-405X(83)90044-2 10.1016/j.chaos.2019.07.011 10.1016/j.asoc.2013.10.014 10.1080/758522126 10.1016/j.asoc.2020.106181 10.1016/j.amc.2017.09.049 10.1109/TGRS.2013.2268161 10.1016/j.jmva.2015.10.003 10.1155/2018/9390410 10.1038/81444 10.1016/j.energy.2020.118750 10.1038/nature08227 10.1109/TFUZZ.2012.2226890 10.1016/j.neucom.2020.04.086 10.1016/j.jeconom.2005.01.016 10.1016/j.neunet.2014.07.011 10.1016/j.knosys.2018.10.034 10.1111/j.1540-6261.1987.tb04569.x 10.1109/72.935093 10.1016/j.physa.2018.10.053 10.1109/TNNLS.2015.2404823 10.1371/journal.pone.0103656 10.1016/j.eswa.2018.07.019 10.1126/science.1177302 10.1007/s00484-016-1215-y 10.1016/j.asoc.2008.09.002 10.1016/j.neucom.2019.08.105 10.1016/j.eswa.2019.01.012 10.1016/0167-2789(96)00054-1 10.1016/j.chaos.2020.110071 10.1016/j.asoc.2020.106996 10.1037/h0042519 10.1111/j.1540-6288.1989.tb00359.x 10.1016/j.neucom.2020.05.075 10.1038/323533a0 10.1016/j.specom.2016.12.004 10.1016/j.jmva.2007.04.010 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107488 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107488 S1568494621004117 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-58627f802bfc2ccf3fb60c02fc1439b1ee8226700cd7a2ef5971194b953dcf443 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:10:31 EDT 2025 Tue Jul 01 01:50:10 EDT 2025 Fri Feb 23 02:43:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Preprocessing technology Dendritic neuron model Separate processing Machine learning Seasonal-trend decomposition Artificial neural network Financial time series prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-58627f802bfc2ccf3fb60c02fc1439b1ee8226700cd7a2ef5971194b953dcf443 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2021_107488 crossref_citationtrail_10_1016_j_asoc_2021_107488 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107488 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Peiro (b49) 1994; 45 Cantú-Paz, Kamath (b71) 2005; 35 Kajol, Nath, Singh, Singh, Das (b50) 2020; 5 Maciejewski, Hafen, Rudolph, Larew, Mitchell, Cleveland, Ebert (b60) 2010; 17 Koch, Segev (b65) 2000; 3 Kar, Das, Ghosh (b39) 2014; 15 Altan (b9) 2020 Sweeney-Reed, Nasuto, Vieira, Andrade (b57) 2018; 10 Aggarwal, Rivoli (b48) 1989; 24 Rosenblatt (b20) 1958; 65 Todo, Tamura, Yamashita, Tang (b66) 2014; 60 Chiou, Yang, Chen (b8) 2016; 146 Rojo, Rivero, Romero-Morte, Fernández-González, Pérez-Badia (b62) 2017; 61 Scheffer, Bascompte, Brock, Brovkin, Carpenter, Dakos, Held, Van Nes, Rietkerk, Sugihara (b2) 2009; 461 Yang, Tian, He, Zhang, Tan, Jin (b31) 2021 Kim, He, Wang, Cao, Liang (b61) 2013; 52 Lahmiri (b34) 2018; 320 Ravi, Pradeepkumar, Deb (b37) 2017; 36 Contreras, Espinola, Nogales, Conejo (b5) 2003; 18 Lei, Lin, He, Zuo (b55) 2013; 35 Wolf, Swift, Swinney, Vastano (b76) 1985; 16 McCulloch, Pitts (b18) 1943; 5 Gao, Zhou, Wang, Cheng, Yachi, Wang (b67) 2019; 30 Aneiros-Perez, Vieu (b6) 2008; 99 Kim, Eykholt, Salas (b41) 1999; 127 Fethi, Katircioglu (b75) 2015; 28 Sanchez-Vazquez, Nielen, Gunn, Lewis (b73) 2012; 104 Yu, Yan (b42) 2020; 32 De Bondt, Thaler (b47) 1987; 42 Chaloupka (b72) 2001; 101 Bhardwaj, Swanson (b7) 2006; 131 Krajbich, Camerer, Ledyard, Rangel (b1) 2009; 326 Yan, Aasma (b27) 2020; 159 Zhang, Ding, Sun (b78) 2020; 410 Kim, Shin (b23) 2007; 7 Cleveland, Cleveland, McRae, Terpenning (b59) 1990; 6 Theodosiou (b63) 2011; 27 Kugiumtzis (b40) 1996; 95 Sharma, Vignolo, Schlotthauer, Colominas, Rufiner, Prasanna (b56) 2017; 88 Altan, Parlak (b10) 2020 Van Gestel, Suykens, Baestaens, Lambrechts, Lanckriet, Vandaele, De Moor, Vandewalle (b33) 2001; 12 Zhang, Lv, Ma, Zhao, Wang, O’Hare (b69) 2020; 397 Mel, Koch (b64) 1990 Altan, Karasu (b15) 2020; 140 Rezaei, Faaljou, Mansourfar (b44) 2021; 169 Long, Lu, Cui (b11) 2019; 164 Chandra (b24) 2015; 26 Hebb (b19) 2005 Yolcu, Egrioglu, Uslu, Basaran, Aladag (b38) 2009; 9 Zhang, Jiang, Fang, Zeng, Xu (b53) 2019; 517 Cao, Li, Li (b26) 2019; 519 Henrique, Sobreiro, Kimura (b3) 2019; 124 Sezer, Gudelek, Ozbayoglu (b4) 2020; 90 Rumelhart, Hinton, Williams (b22) 1986; 323 Tang, Ji, Gao, Dai, Yu, Todo (b70) 2018; 2018 Alhnaity, Abbod (b45) 2020; 95 Gultekin, Gultekin (b46) 1983; 12 Walczak (b21) 2019 Warrier, Manju, Sreedharan (b58) 2020 Altan, Karasu, Zio (b16) 2021; 100 Baek, Kim (b28) 2018; 113 Reid, Hussain, Tawfik (b30) 2014; 9 Karasu, Altan, Bekiros, Ahmad (b14) 2020; 212 Niu, Wang (b29) 2014; 18 Shanaev, Ghimire (b51) 2020 Li, Chiang (b35) 2012; 21 Yan-Ki Ho, Cheung (b74) 1994; 4 Xing, Lv, Cao (b12) 2019; 69 Vidal, Kristjanpoller (b13) 2020 Song, Tang, Ji, Todo (b68) 2020; 201–202 Qian (b17) 2017 Zhou, Gao, Wang, Chu, Todo, Tang (b36) 2016; 105 Altan, Karasu, Bekiros (b25) 2019; 126 Huang, Gao, Gan, Ye (b43) 2021; 425 Zimmerman, Zumbo (b77) 1993; 62 Rilling, Flandrin (b54) 2007; 56 Hafezi, Shahrabi, Hadavandi (b32) 2015; 29 Yu, Chen, Wang, Lai (b52) 2008; 13 Van Gestel (10.1016/j.asoc.2021.107488_b33) 2001; 12 Cao (10.1016/j.asoc.2021.107488_b26) 2019; 519 Baek (10.1016/j.asoc.2021.107488_b28) 2018; 113 Ravi (10.1016/j.asoc.2021.107488_b37) 2017; 36 Walczak (10.1016/j.asoc.2021.107488_b21) 2019 Rilling (10.1016/j.asoc.2021.107488_b54) 2007; 56 Qian (10.1016/j.asoc.2021.107488_b17) 2017 Shanaev (10.1016/j.asoc.2021.107488_b51) 2020 Zhang (10.1016/j.asoc.2021.107488_b78) 2020; 410 Xing (10.1016/j.asoc.2021.107488_b12) 2019; 69 Peiro (10.1016/j.asoc.2021.107488_b49) 1994; 45 Chiou (10.1016/j.asoc.2021.107488_b8) 2016; 146 Altan (10.1016/j.asoc.2021.107488_b15) 2020; 140 Kajol (10.1016/j.asoc.2021.107488_b50) 2020; 5 Rojo (10.1016/j.asoc.2021.107488_b62) 2017; 61 Kim (10.1016/j.asoc.2021.107488_b61) 2013; 52 Cleveland (10.1016/j.asoc.2021.107488_b59) 1990; 6 Kim (10.1016/j.asoc.2021.107488_b41) 1999; 127 Li (10.1016/j.asoc.2021.107488_b35) 2012; 21 Henrique (10.1016/j.asoc.2021.107488_b3) 2019; 124 Song (10.1016/j.asoc.2021.107488_b68) 2020; 201–202 Gultekin (10.1016/j.asoc.2021.107488_b46) 1983; 12 De Bondt (10.1016/j.asoc.2021.107488_b47) 1987; 42 Huang (10.1016/j.asoc.2021.107488_b43) 2021; 425 Scheffer (10.1016/j.asoc.2021.107488_b2) 2009; 461 Kim (10.1016/j.asoc.2021.107488_b23) 2007; 7 Kugiumtzis (10.1016/j.asoc.2021.107488_b40) 1996; 95 Lahmiri (10.1016/j.asoc.2021.107488_b34) 2018; 320 Rosenblatt (10.1016/j.asoc.2021.107488_b20) 1958; 65 Long (10.1016/j.asoc.2021.107488_b11) 2019; 164 Zhou (10.1016/j.asoc.2021.107488_b36) 2016; 105 Rumelhart (10.1016/j.asoc.2021.107488_b22) 1986; 323 Chaloupka (10.1016/j.asoc.2021.107488_b72) 2001; 101 Zhang (10.1016/j.asoc.2021.107488_b69) 2020; 397 Altan (10.1016/j.asoc.2021.107488_b25) 2019; 126 Altan (10.1016/j.asoc.2021.107488_b9) 2020 Yu (10.1016/j.asoc.2021.107488_b42) 2020; 32 Yang (10.1016/j.asoc.2021.107488_b31) 2021 Hebb (10.1016/j.asoc.2021.107488_b19) 2005 Krajbich (10.1016/j.asoc.2021.107488_b1) 2009; 326 Altan (10.1016/j.asoc.2021.107488_b10) 2020 Rezaei (10.1016/j.asoc.2021.107488_b44) 2021; 169 Yan (10.1016/j.asoc.2021.107488_b27) 2020; 159 Aneiros-Perez (10.1016/j.asoc.2021.107488_b6) 2008; 99 Chandra (10.1016/j.asoc.2021.107488_b24) 2015; 26 Bhardwaj (10.1016/j.asoc.2021.107488_b7) 2006; 131 Alhnaity (10.1016/j.asoc.2021.107488_b45) 2020; 95 McCulloch (10.1016/j.asoc.2021.107488_b18) 1943; 5 Sanchez-Vazquez (10.1016/j.asoc.2021.107488_b73) 2012; 104 Tang (10.1016/j.asoc.2021.107488_b70) 2018; 2018 Maciejewski (10.1016/j.asoc.2021.107488_b60) 2010; 17 Zhang (10.1016/j.asoc.2021.107488_b53) 2019; 517 Yu (10.1016/j.asoc.2021.107488_b52) 2008; 13 Niu (10.1016/j.asoc.2021.107488_b29) 2014; 18 Warrier (10.1016/j.asoc.2021.107488_b58) 2020 Kar (10.1016/j.asoc.2021.107488_b39) 2014; 15 Yan-Ki Ho (10.1016/j.asoc.2021.107488_b74) 1994; 4 Contreras (10.1016/j.asoc.2021.107488_b5) 2003; 18 Sweeney-Reed (10.1016/j.asoc.2021.107488_b57) 2018; 10 Mel (10.1016/j.asoc.2021.107488_b64) 1990 Todo (10.1016/j.asoc.2021.107488_b66) 2014; 60 Hafezi (10.1016/j.asoc.2021.107488_b32) 2015; 29 Sharma (10.1016/j.asoc.2021.107488_b56) 2017; 88 Wolf (10.1016/j.asoc.2021.107488_b76) 1985; 16 Sezer (10.1016/j.asoc.2021.107488_b4) 2020; 90 Koch (10.1016/j.asoc.2021.107488_b65) 2000; 3 Karasu (10.1016/j.asoc.2021.107488_b14) 2020; 212 Lei (10.1016/j.asoc.2021.107488_b55) 2013; 35 Fethi (10.1016/j.asoc.2021.107488_b75) 2015; 28 Gao (10.1016/j.asoc.2021.107488_b67) 2019; 30 Altan (10.1016/j.asoc.2021.107488_b16) 2021; 100 Theodosiou (10.1016/j.asoc.2021.107488_b63) 2011; 27 Aggarwal (10.1016/j.asoc.2021.107488_b48) 1989; 24 Vidal (10.1016/j.asoc.2021.107488_b13) 2020 Reid (10.1016/j.asoc.2021.107488_b30) 2014; 9 Zimmerman (10.1016/j.asoc.2021.107488_b77) 1993; 62 Yolcu (10.1016/j.asoc.2021.107488_b38) 2009; 9 Cantú-Paz (10.1016/j.asoc.2021.107488_b71) 2005; 35 |
References_xml | – volume: 159 year: 2020 ident: b27 article-title: A novel deep learning framework: Prediction and analysis of financial time series using CEEMD and LSTM publication-title: Expert Syst. Appl. – volume: 16 start-page: 285 year: 1985 end-page: 317 ident: b76 article-title: Determining Lyapunov exponents from a time series publication-title: Physica D – volume: 69 start-page: 1341 year: 2019 end-page: 1352 ident: b12 article-title: Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles publication-title: IEEE Trans. Veh. Technol. – volume: 28 start-page: 717 year: 2015 end-page: 737 ident: b75 article-title: The role of the financial sector in the UK economy: evidence from a seasonal cointegration analysis publication-title: Econ. Res-.Ekon. Istraž. – volume: 12 start-page: 469 year: 1983 end-page: 481 ident: b46 article-title: Stock market seasonality: International evidence publication-title: J. Financ. Econ. – volume: 131 start-page: 539 year: 2006 end-page: 578 ident: b7 article-title: An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series publication-title: J. Econometrics – volume: 21 start-page: 567 year: 2012 end-page: 584 ident: b35 article-title: Complex neurofuzzy ARIMA forecasting—a new approach using complex fuzzy sets publication-title: IEEE Trans. Fuzzy Syst. – volume: 24 start-page: 541 year: 1989 end-page: 550 ident: b48 article-title: Seasonal and day-of-the-week effects in four emerging stock markets publication-title: Financ. Rev. – volume: 126 start-page: 325 year: 2019 end-page: 336 ident: b25 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques publication-title: Chaos Solitons Fractals – volume: 201–202 year: 2020 ident: b68 article-title: Evaluating a dendritic neuron model for wind speed forecasting publication-title: Knowl.-Based Syst. – volume: 9 start-page: 647 year: 2009 end-page: 651 ident: b38 article-title: A new approach for determining the length of intervals for fuzzy time series publication-title: Appl. Soft Comput. – volume: 30 start-page: 601 year: 2019 end-page: 614 ident: b67 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 18 start-page: 1014 year: 2003 end-page: 1020 ident: b5 article-title: ARIMA Models to predict next-day electricity prices publication-title: IEEE Trans. Power Syst. – year: 2020 ident: b51 article-title: A generalised seasonality test and applications for stock market seasonality – volume: 425 start-page: 207 year: 2021 end-page: 218 ident: b43 article-title: A new financial data forecasting model using genetic algorithm and long short-term memory network publication-title: Neurocomputing – volume: 104 start-page: 65 year: 2012 end-page: 73 ident: b73 article-title: Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005–2011 publication-title: Prevent. Vet. Med. – volume: 410 start-page: 185 year: 2020 end-page: 201 ident: b78 article-title: A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task publication-title: Neurocomputing – volume: 60 start-page: 96 year: 2014 end-page: 103 ident: b66 article-title: Unsupervised learnable neuron model with nonlinear interaction on dendrites publication-title: Neural Netw. – volume: 18 start-page: 497 year: 2014 end-page: 508 ident: b29 article-title: Financial time series prediction by a random data-time effective rbf neural network publication-title: Soft Comput. – volume: 320 start-page: 444 year: 2018 end-page: 451 ident: b34 article-title: Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression publication-title: Appl. Math. Comput. – volume: 326 start-page: 596 year: 2009 end-page: 599 ident: b1 article-title: Using neural measures of economic value to solve the public goods free-rider problem publication-title: Science – volume: 9 year: 2014 ident: b30 article-title: Financial time series prediction using spiking neural networks publication-title: PLoS One – volume: 52 start-page: 2960 year: 2013 end-page: 2976 ident: b61 article-title: Assessment of long-term sensor radiometric degradation using time series analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 99 start-page: 834 year: 2008 end-page: 857 ident: b6 article-title: Nonparametric time series prediction: A semi-functional partial linear modeling publication-title: J. Multivariate Anal. – volume: 29 start-page: 196 year: 2015 end-page: 210 ident: b32 article-title: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price publication-title: Appl. Soft Comput. – volume: 100 year: 2021 ident: b16 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl. Soft Comput. – start-page: 474 year: 1990 end-page: 481 ident: b64 article-title: Sigma-pi learning: On radial basis functions and cortical associative learning publication-title: Advances in Neural Information Processing Systems – volume: 65 start-page: 386 year: 1958 ident: b20 article-title: The perceptron: a probabilistic model for information storage and organization in the brain. publication-title: Psychol. Rev. – volume: 212 year: 2020 ident: b14 article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series publication-title: Energy – volume: 517 start-page: 1 year: 2019 end-page: 12 ident: b53 article-title: High-order hidden Markov model for trend prediction in financial time series publication-title: Physica A – volume: 105 start-page: 214 year: 2016 end-page: 224 ident: b36 article-title: Financial time series prediction using a dendritic neuron model publication-title: Knowl.-Based Syst. – year: 2021 ident: b31 article-title: A gradient-guided evolutionary approach to training deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 15 start-page: 243 year: 2014 end-page: 259 ident: b39 article-title: Applications of neuro fuzzy systems: A brief review and future outline publication-title: Appl. Soft Comput. – volume: 4 start-page: 61 year: 1994 end-page: 67 ident: b74 article-title: Seasonal pattern in volatility in Asian stock markets publication-title: Appl. Financial Econ. – volume: 95 start-page: 13 year: 1996 end-page: 28 ident: b40 article-title: State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length publication-title: Physica D – volume: 42 start-page: 557 year: 1987 end-page: 581 ident: b47 article-title: Further evidence on investor overreaction and stock market seasonality publication-title: J. Finance – volume: 124 start-page: 226 year: 2019 end-page: 251 ident: b3 article-title: Literature review: Machine learning techniques applied to financial market prediction publication-title: Expert Syst. Appl. – volume: 26 start-page: 3123 year: 2015 end-page: 3136 ident: b24 article-title: Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time-series prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 95 year: 2020 ident: b45 article-title: A new hybrid financial time series prediction model publication-title: Eng. Appl. Artif. Intell. – volume: 6 start-page: 3 year: 1990 end-page: 73 ident: b59 article-title: STL: A seasonal-trend decomposition publication-title: J. Off. Statist. – volume: 17 start-page: 440 year: 2010 end-page: 453 ident: b60 article-title: Forecasting hotspots—A predictive analytics approach publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 2018 start-page: 410 year: 2018 end-page: 422 ident: b70 article-title: A pruning neural network model in credit classification analysis publication-title: Comput. Intell. Neurosci. – start-page: 40 year: 2019 end-page: 53 ident: b21 article-title: Artificial neural networks publication-title: Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction – volume: 397 start-page: 438 year: 2020 end-page: 446 ident: b69 article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform publication-title: Neurocomputing – volume: 62 start-page: 75 year: 1993 end-page: 86 ident: b77 article-title: Relative power of the wilcoxon test, the friedman test, and repeated-measures ANOVA on ranks publication-title: J. Exp. Educ. – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: b18 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b22 article-title: Learning representations by back-propagating errors publication-title: Nature – start-page: 1 year: 2020 end-page: 6 ident: b9 article-title: Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following publication-title: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) – volume: 35 start-page: 108 year: 2013 end-page: 126 ident: b55 article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery publication-title: Mech. Syst. Signal Process. – volume: 461 start-page: 53 year: 2009 end-page: 59 ident: b2 article-title: Early-warning signals for critical transitions publication-title: Nature – volume: 32 start-page: 1609 year: 2020 end-page: 1628 ident: b42 article-title: Stock price prediction based on deep neural networks publication-title: Neural Comput. Appl. – volume: 56 start-page: 85 year: 2007 end-page: 95 ident: b54 article-title: One or two frequencies? The empirical mode decomposition answers publication-title: IEEE Trans. Signal Process. – volume: 146 start-page: 301 year: 2016 end-page: 312 ident: b8 article-title: Multivariate functional linear regression and prediction publication-title: J. Multivariate Anal. – volume: 519 start-page: 127 year: 2019 end-page: 139 ident: b26 article-title: Financial time series forecasting model based on CEEMDAN and LSTM publication-title: Physica A – start-page: 1 year: 2020 end-page: 5 ident: b10 article-title: Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs publication-title: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU) – volume: 36 start-page: 136 year: 2017 end-page: 149 ident: b37 article-title: Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective evolutionary algorithms publication-title: Swarm Evol. Comput. – volume: 7 start-page: 569 year: 2007 end-page: 576 ident: b23 article-title: A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets publication-title: Appl. Soft Comput. – volume: 140 year: 2020 ident: b15 article-title: Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique publication-title: Chaos Solitons Fractals – volume: 35 start-page: 915 year: 2005 end-page: 927 ident: b71 article-title: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 90 year: 2020 ident: b4 article-title: Financial time series forecasting with deep learning: A systematic literature review: 2005–2019 publication-title: Appl. Soft Comput. – volume: 127 start-page: 48 year: 1999 end-page: 60 ident: b41 article-title: Nonlinear dynamics, delay times, and embedding windows publication-title: Physica D – volume: 45 start-page: 227 year: 1994 end-page: 232 ident: b49 article-title: Daily seasonality in stock returns: Further international evidence publication-title: Econom. Lett. – start-page: 1 year: 2017 end-page: 9 ident: b17 article-title: Financial series prediction: Comparison between precision of time series models and machine learning methods – year: 2005 ident: b19 article-title: The Organization of Behavior: A Neuropsychological Theory – volume: 88 start-page: 39 year: 2017 end-page: 64 ident: b56 article-title: Empirical mode decomposition for adaptive AM-fm analysis of speech: A review publication-title: Speech Commun. – volume: 3 start-page: 1171 year: 2000 end-page: 1177 ident: b65 article-title: The role of single neurons in information processing publication-title: Nature Neurosci. – volume: 61 start-page: 335 year: 2017 end-page: 348 ident: b62 article-title: Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing publication-title: Int. J. Biometeorol. – start-page: 993 year: 2020 end-page: 1002 ident: b58 article-title: A survey of pre-processing techniques using wavelets and empirical-mode decomposition on biomedical signals publication-title: Inventive Communication and Computational Technologies – volume: 12 start-page: 809 year: 2001 end-page: 821 ident: b33 article-title: Financial time series prediction using least squares support vector machines within the evidence framework publication-title: IEEE Trans. Neural Netw. – volume: 169 year: 2021 ident: b44 article-title: Stock price prediction using deep learning and frequency decomposition publication-title: Expert Syst. Appl. – volume: 13 start-page: 87 year: 2008 end-page: 102 ident: b52 article-title: Evolving least squares support vector machines for stock market trend mining publication-title: IEEE Trans. Evol. Comput. – volume: 10 year: 2018 ident: b57 article-title: Empirical mode decomposition and its extensions applied to eeg analysis: a review publication-title: Adv. Data Sci. Adapt. Anal. – volume: 27 start-page: 1178 year: 2011 end-page: 1195 ident: b63 article-title: Forecasting monthly and quarterly time series using STL decomposition publication-title: Int. J. Forecast. – volume: 101 start-page: 263 year: 2001 end-page: 279 ident: b72 article-title: Historical trends, seasonality and spatial synchrony in green sea turtle egg production publication-title: Biol. Cons. – volume: 164 start-page: 163 year: 2019 end-page: 173 ident: b11 article-title: Deep learning-based feature engineering for stock price movement prediction publication-title: Knowl.-Based Syst. – year: 2020 ident: b13 article-title: Gold volatility prediction using a CNN-LSTM approach publication-title: Expert Syst. Appl. – volume: 113 start-page: 457 year: 2018 end-page: 480 ident: b28 article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module publication-title: Expert Syst. Appl. – volume: 5 start-page: 39 year: 2020 end-page: 59 ident: b50 article-title: Factors affecting seasonality in the stock market: a social network analysis approach publication-title: Int. J. Account. Financ. Rev. – volume: 32 start-page: 1609 issue: 6 year: 2020 ident: 10.1016/j.asoc.2021.107488_b42 article-title: Stock price prediction based on deep neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04212-x – volume: 519 start-page: 127 year: 2019 ident: 10.1016/j.asoc.2021.107488_b26 article-title: Financial time series forecasting model based on CEEMDAN and LSTM publication-title: Physica A doi: 10.1016/j.physa.2018.11.061 – volume: 62 start-page: 75 issue: 1 year: 1993 ident: 10.1016/j.asoc.2021.107488_b77 article-title: Relative power of the wilcoxon test, the friedman test, and repeated-measures ANOVA on ranks publication-title: J. Exp. Educ. doi: 10.1080/00220973.1993.9943832 – volume: 13 start-page: 87 issue: 1 year: 2008 ident: 10.1016/j.asoc.2021.107488_b52 article-title: Evolving least squares support vector machines for stock market trend mining publication-title: IEEE Trans. Evol. Comput. – volume: 95 year: 2020 ident: 10.1016/j.asoc.2021.107488_b45 article-title: A new hybrid financial time series prediction model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103873 – volume: 56 start-page: 85 issue: 1 year: 2007 ident: 10.1016/j.asoc.2021.107488_b54 article-title: One or two frequencies? The empirical mode decomposition answers publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.906771 – volume: 127 start-page: 48 issue: 1–2 year: 1999 ident: 10.1016/j.asoc.2021.107488_b41 article-title: Nonlinear dynamics, delay times, and embedding windows publication-title: Physica D doi: 10.1016/S0167-2789(98)00240-1 – volume: 101 start-page: 263 issue: 3 year: 2001 ident: 10.1016/j.asoc.2021.107488_b72 article-title: Historical trends, seasonality and spatial synchrony in green sea turtle egg production publication-title: Biol. Cons. doi: 10.1016/S0006-3207(00)00199-3 – year: 2020 ident: 10.1016/j.asoc.2021.107488_b13 article-title: Gold volatility prediction using a CNN-LSTM approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113481 – volume: 7 start-page: 569 issue: 2 year: 2007 ident: 10.1016/j.asoc.2021.107488_b23 article-title: A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2006.03.004 – volume: 169 year: 2021 ident: 10.1016/j.asoc.2021.107488_b44 article-title: Stock price prediction using deep learning and frequency decomposition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114332 – volume: 36 start-page: 136 year: 2017 ident: 10.1016/j.asoc.2021.107488_b37 article-title: Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective evolutionary algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.05.003 – volume: 18 start-page: 1014 issue: 3 year: 2003 ident: 10.1016/j.asoc.2021.107488_b5 article-title: ARIMA Models to predict next-day electricity prices publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2002.804943 – volume: 35 start-page: 915 issue: 5 year: 2005 ident: 10.1016/j.asoc.2021.107488_b71 article-title: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2005.847740 – volume: 29 start-page: 196 year: 2015 ident: 10.1016/j.asoc.2021.107488_b32 article-title: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.12.028 – volume: 27 start-page: 1178 issue: 4 year: 2011 ident: 10.1016/j.asoc.2021.107488_b63 article-title: Forecasting monthly and quarterly time series using STL decomposition publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2010.11.002 – volume: 201–202 year: 2020 ident: 10.1016/j.asoc.2021.107488_b68 article-title: Evaluating a dendritic neuron model for wind speed forecasting publication-title: Knowl.-Based Syst. – volume: 18 start-page: 497 issue: 3 year: 2014 ident: 10.1016/j.asoc.2021.107488_b29 article-title: Financial time series prediction by a random data-time effective rbf neural network publication-title: Soft Comput. doi: 10.1007/s00500-013-1070-2 – volume: 35 start-page: 108 issue: 1–2 year: 2013 ident: 10.1016/j.asoc.2021.107488_b55 article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.09.015 – volume: 30 start-page: 601 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107488_b67 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2846646 – volume: 5 start-page: 39 issue: 4 year: 2020 ident: 10.1016/j.asoc.2021.107488_b50 article-title: Factors affecting seasonality in the stock market: a social network analysis approach publication-title: Int. J. Account. Financ. Rev. doi: 10.46281/ijafr.v5i4.888 – volume: 17 start-page: 440 issue: 4 year: 2010 ident: 10.1016/j.asoc.2021.107488_b60 article-title: Forecasting hotspots—A predictive analytics approach publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2010.82 – volume: 69 start-page: 1341 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107488_b12 article-title: Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2960110 – volume: 45 start-page: 227 issue: 2 year: 1994 ident: 10.1016/j.asoc.2021.107488_b49 article-title: Daily seasonality in stock returns: Further international evidence publication-title: Econom. Lett. doi: 10.1016/0165-1765(94)90140-6 – volume: 104 start-page: 65 issue: 1–2 year: 2012 ident: 10.1016/j.asoc.2021.107488_b73 article-title: Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005–2011 publication-title: Prevent. Vet. Med. doi: 10.1016/j.prevetmed.2011.11.003 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 10.1016/j.asoc.2021.107488_b18 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 105 start-page: 214 year: 2016 ident: 10.1016/j.asoc.2021.107488_b36 article-title: Financial time series prediction using a dendritic neuron model publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.05.031 – volume: 16 start-page: 285 issue: 3 year: 1985 ident: 10.1016/j.asoc.2021.107488_b76 article-title: Determining Lyapunov exponents from a time series publication-title: Physica D doi: 10.1016/0167-2789(85)90011-9 – start-page: 474 year: 1990 ident: 10.1016/j.asoc.2021.107488_b64 article-title: Sigma-pi learning: On radial basis functions and cortical associative learning – volume: 12 start-page: 469 issue: 4 year: 1983 ident: 10.1016/j.asoc.2021.107488_b46 article-title: Stock market seasonality: International evidence publication-title: J. Financ. Econ. doi: 10.1016/0304-405X(83)90044-2 – volume: 126 start-page: 325 year: 2019 ident: 10.1016/j.asoc.2021.107488_b25 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.07.011 – start-page: 993 year: 2020 ident: 10.1016/j.asoc.2021.107488_b58 article-title: A survey of pre-processing techniques using wavelets and empirical-mode decomposition on biomedical signals – year: 2005 ident: 10.1016/j.asoc.2021.107488_b19 – volume: 28 start-page: 717 issue: 1 year: 2015 ident: 10.1016/j.asoc.2021.107488_b75 article-title: The role of the financial sector in the UK economy: evidence from a seasonal cointegration analysis publication-title: Econ. Res-.Ekon. Istraž. – volume: 15 start-page: 243 year: 2014 ident: 10.1016/j.asoc.2021.107488_b39 article-title: Applications of neuro fuzzy systems: A brief review and future outline publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.10.014 – volume: 4 start-page: 61 issue: 1 year: 1994 ident: 10.1016/j.asoc.2021.107488_b74 article-title: Seasonal pattern in volatility in Asian stock markets publication-title: Appl. Financial Econ. doi: 10.1080/758522126 – volume: 90 year: 2020 ident: 10.1016/j.asoc.2021.107488_b4 article-title: Financial time series forecasting with deep learning: A systematic literature review: 2005–2019 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106181 – volume: 320 start-page: 444 year: 2018 ident: 10.1016/j.asoc.2021.107488_b34 article-title: Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2017.09.049 – volume: 52 start-page: 2960 issue: 5 year: 2013 ident: 10.1016/j.asoc.2021.107488_b61 article-title: Assessment of long-term sensor radiometric degradation using time series analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2268161 – volume: 146 start-page: 301 year: 2016 ident: 10.1016/j.asoc.2021.107488_b8 article-title: Multivariate functional linear regression and prediction publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2015.10.003 – volume: 2018 start-page: 410 year: 2018 ident: 10.1016/j.asoc.2021.107488_b70 article-title: A pruning neural network model in credit classification analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/9390410 – year: 2021 ident: 10.1016/j.asoc.2021.107488_b31 article-title: A gradient-guided evolutionary approach to training deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 3 start-page: 1171 issue: 11 year: 2000 ident: 10.1016/j.asoc.2021.107488_b65 article-title: The role of single neurons in information processing publication-title: Nature Neurosci. doi: 10.1038/81444 – volume: 159 year: 2020 ident: 10.1016/j.asoc.2021.107488_b27 article-title: A novel deep learning framework: Prediction and analysis of financial time series using CEEMD and LSTM publication-title: Expert Syst. Appl. – volume: 212 year: 2020 ident: 10.1016/j.asoc.2021.107488_b14 article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series publication-title: Energy doi: 10.1016/j.energy.2020.118750 – volume: 461 start-page: 53 issue: 7260 year: 2009 ident: 10.1016/j.asoc.2021.107488_b2 article-title: Early-warning signals for critical transitions publication-title: Nature doi: 10.1038/nature08227 – volume: 21 start-page: 567 issue: 3 year: 2012 ident: 10.1016/j.asoc.2021.107488_b35 article-title: Complex neurofuzzy ARIMA forecasting—a new approach using complex fuzzy sets publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2012.2226890 – volume: 425 start-page: 207 year: 2021 ident: 10.1016/j.asoc.2021.107488_b43 article-title: A new financial data forecasting model using genetic algorithm and long short-term memory network publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.086 – volume: 131 start-page: 539 issue: 1–2 year: 2006 ident: 10.1016/j.asoc.2021.107488_b7 article-title: An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series publication-title: J. Econometrics doi: 10.1016/j.jeconom.2005.01.016 – volume: 60 start-page: 96 year: 2014 ident: 10.1016/j.asoc.2021.107488_b66 article-title: Unsupervised learnable neuron model with nonlinear interaction on dendrites publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.07.011 – start-page: 40 year: 2019 ident: 10.1016/j.asoc.2021.107488_b21 article-title: Artificial neural networks – volume: 164 start-page: 163 year: 2019 ident: 10.1016/j.asoc.2021.107488_b11 article-title: Deep learning-based feature engineering for stock price movement prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.10.034 – volume: 10 issue: 02 year: 2018 ident: 10.1016/j.asoc.2021.107488_b57 article-title: Empirical mode decomposition and its extensions applied to eeg analysis: a review publication-title: Adv. Data Sci. Adapt. Anal. – volume: 42 start-page: 557 issue: 3 year: 1987 ident: 10.1016/j.asoc.2021.107488_b47 article-title: Further evidence on investor overreaction and stock market seasonality publication-title: J. Finance doi: 10.1111/j.1540-6261.1987.tb04569.x – year: 2020 ident: 10.1016/j.asoc.2021.107488_b51 – volume: 12 start-page: 809 issue: 4 year: 2001 ident: 10.1016/j.asoc.2021.107488_b33 article-title: Financial time series prediction using least squares support vector machines within the evidence framework publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.935093 – volume: 6 start-page: 3 issue: 1 year: 1990 ident: 10.1016/j.asoc.2021.107488_b59 article-title: STL: A seasonal-trend decomposition publication-title: J. Off. Statist. – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2021.107488_b10 article-title: Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs – volume: 517 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2021.107488_b53 article-title: High-order hidden Markov model for trend prediction in financial time series publication-title: Physica A doi: 10.1016/j.physa.2018.10.053 – volume: 26 start-page: 3123 issue: 12 year: 2015 ident: 10.1016/j.asoc.2021.107488_b24 article-title: Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time-series prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2404823 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2021.107488_b9 article-title: Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.asoc.2021.107488_b30 article-title: Financial time series prediction using spiking neural networks publication-title: PLoS One doi: 10.1371/journal.pone.0103656 – volume: 113 start-page: 457 year: 2018 ident: 10.1016/j.asoc.2021.107488_b28 article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.07.019 – volume: 326 start-page: 596 issue: 5952 year: 2009 ident: 10.1016/j.asoc.2021.107488_b1 article-title: Using neural measures of economic value to solve the public goods free-rider problem publication-title: Science doi: 10.1126/science.1177302 – volume: 61 start-page: 335 issue: 2 year: 2017 ident: 10.1016/j.asoc.2021.107488_b62 article-title: Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-016-1215-y – volume: 9 start-page: 647 issue: 2 year: 2009 ident: 10.1016/j.asoc.2021.107488_b38 article-title: A new approach for determining the length of intervals for fuzzy time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2008.09.002 – volume: 397 start-page: 438 year: 2020 ident: 10.1016/j.asoc.2021.107488_b69 article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.105 – volume: 124 start-page: 226 year: 2019 ident: 10.1016/j.asoc.2021.107488_b3 article-title: Literature review: Machine learning techniques applied to financial market prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.012 – volume: 95 start-page: 13 issue: 1 year: 1996 ident: 10.1016/j.asoc.2021.107488_b40 article-title: State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length publication-title: Physica D doi: 10.1016/0167-2789(96)00054-1 – volume: 140 year: 2020 ident: 10.1016/j.asoc.2021.107488_b15 article-title: Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110071 – volume: 100 year: 2021 ident: 10.1016/j.asoc.2021.107488_b16 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106996 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.asoc.2021.107488_b20 article-title: The perceptron: a probabilistic model for information storage and organization in the brain. publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 24 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.asoc.2021.107488_b48 article-title: Seasonal and day-of-the-week effects in four emerging stock markets publication-title: Financ. Rev. doi: 10.1111/j.1540-6288.1989.tb00359.x – volume: 410 start-page: 185 year: 2020 ident: 10.1016/j.asoc.2021.107488_b78 article-title: A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.075 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.asoc.2021.107488_b22 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 88 start-page: 39 year: 2017 ident: 10.1016/j.asoc.2021.107488_b56 article-title: Empirical mode decomposition for adaptive AM-fm analysis of speech: A review publication-title: Speech Commun. doi: 10.1016/j.specom.2016.12.004 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2021.107488_b17 – volume: 99 start-page: 834 issue: 5 year: 2008 ident: 10.1016/j.asoc.2021.107488_b6 article-title: Nonparametric time series prediction: A semi-functional partial linear modeling publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2007.04.010 |
SSID | ssj0016928 |
Score | 2.6094532 |
Snippet | Financial time series prediction is a hot topic in machine learning field, but existing works barely catch the point of such data. In this study, we employ the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107488 |
SubjectTerms | Artificial neural network Dendritic neuron model Financial time series prediction Machine learning Preprocessing technology Seasonal-trend decomposition Separate processing |
Title | A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107488 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3ybakadoex3DMryHqYLfYpAlMpI5Zr_7t5qWpKMgOnkpLUsrL68vvtb_3fgidg4aIcLCAuOTBEM5yTpShUAVCRUq1iWNfx303FZMZv57H8xYaNbUwQKsMsb-O6T5ahyv9YM3-crHoP7rMI-UZFwyanlEKFeWcJ-Dlvc9vmgcVmddXhcEERofCmZrjlTsLuByR0R7wEr36yh-b048NZ7yDtgJSxMP6YXZRy5R7aLtRYcDhpdxHz0MMH_oAUZMKGK64MEAUD2wsAvsUXCsLr2qAfQfLEnsJHOwgK7ZN0w0MQvMYfNK84-UKfuHAHQ7QbHz5NJqQoJtAdCRERWKXpSQ2HTBlNdPaRlaJgR4wqx04yhQ1xqECKM_RRZIzY11OQWnGVRZHhbacR4eoXb6V5ghhY3SsiyLVKlE8ybSChoTULaZDHSwvVAfRxmBSh6bioG3xKhv22IsEI0swsqyN3EEX33OWdUuNtaPjZh3kL8eQLuavmXf8z3knaBPOahrZKWpXqw9z5nBHpbresbpoYzh6uL2H49XNZPoFZtrZHw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PbAh09pxXmOFqFL6WGilbqZ2HKkIhaqE_48vcSqQUAdWJxdFZ-f8XfzdfQB3qCESWFhAbfJgqOALQZVhWAXCgohp4_tlHfd4EiQz8Tz35w14rGthkFbpYn8V08to7UY6zpud1XLZebGZRyRiEXBsesZYuAMt7E7lN6HVGwyTyeYwIYhLiVW8n6KBq52paF4L6wSbJnL2gNTEUoDlj_3px57TP4R9BxZJr3qfI2iY_BgOaiEG4r7LE3jtEfzXh6CaFkhyJalBrrgjZFHcqnAsT0thA1I2scxJqYJDLGolWd13g6DWPMFlaT7Jao2nOPiEU5j1n6aPCXXSCVR7QVBQ3yYqYRZ1uco01zrzMhV0dZdn2uKjWDFjLDDACh2dhgtuMptWMBYLFfteqjMhvDNo5h-5OQdijPZ1mkZahUqEsVbYk5DZ-bTAgy9S1QZWO0xq11cc5S3eZU0ge5PoZIlOlpWT23C_sVlVXTW23u3X8yB_rQ1pw_4Wu4t_2t3CbjIdj-RoMBlewh5eqVhlV9As1l_m2sKQQt24ZfYNEZDaOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+seasonal-trend+decomposition-based+dendritic+neuron+model+for+financial+time+series+prediction&rft.jtitle=Applied+soft+computing&rft.au=He%2C+Houtian&rft.au=Gao%2C+Shangce&rft.au=Jin%2C+Ting&rft.au=Sato%2C+Syuhei&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=108&rft_id=info:doi/10.1016%2Fj.asoc.2021.107488&rft.externalDocID=S1568494621004117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |