Comptonization by reconnection plasmoids in black hole coronae I: Magnetically dominated pair plasma
ABSTRACT We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconne...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 507; no. 4; pp. 5625 - 5640 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ∼25 per cent of the dissipated reconnection power for σ = 10 and ∼40 per cent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ∼ 10, yields a spectrum consistent with the typical hard state of accreting black holes. |
---|---|
AbstractList | ABSTRACT
We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ∼25 per cent of the dissipated reconnection power for σ = 10 and ∼40 per cent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ∼ 10, yields a spectrum consistent with the typical hard state of accreting black holes. We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ∼25 per cent of the dissipated reconnection power for σ = 10 and ∼40 per cent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ∼ 10, yields a spectrum consistent with the typical hard state of accreting black holes. We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ $\gg$ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ~100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ~25 percent of the dissipated reconnection power for σ = 10 and ~40 percent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ~ 10, yields a spectrum consistent with the typical hard state of accreting black holes. |
Author | Sridhar, Navin Beloborodov, Andrei M Sironi, Lorenzo |
Author_xml | – sequence: 1 givenname: Navin orcidid: 0000-0002-5519-9550 surname: Sridhar fullname: Sridhar, Navin email: navin.sridhar@columbia.edu – sequence: 2 givenname: Lorenzo surname: Sironi fullname: Sironi, Lorenzo – sequence: 3 givenname: Andrei M surname: Beloborodov fullname: Beloborodov, Andrei M |
BackLink | https://www.osti.gov/servlets/purl/1979513$$D View this record in Osti.gov |
BookMark | eNqFkD1PwzAQhi1UJNrCymyxMaS149iJ2VDFl1TEAnN0sR1qSOzINkP59YS2LEiI6XS65zndvTM0cd4ZhM4pWVAi2bJ3AeIyJmhyzoojNKVM8CyXQkzQlBDGs6qk9ATNYnwjhBQsF1OkV74fknf2E5L1DjdbHIzyzhm164cOYu-tjtiOww7UO974zmDlg3dg8MMVfoRXZ5JV0HVbrH1vHSSj8QA27HU4RcctdNGcHeocvdzePK_us_XT3cPqep0pJkTKuGhbQbjkilSESSFzKQuiJS0NBdpwTQTjQPOcFrwyTW5UU5iqLPJKc60B2Bxd7Pf6mGwdlU1GbQ7P1FSWklM2QsUeUsHHGExbj9zu-RTAdjUl9Xec9S7O-ifOUVv80oZgewjbv4XLwzEfw3_sF9fai-0 |
CitedBy_id | crossref_primary_10_3389_fspas_2024_1530392 crossref_primary_10_3847_1538_4357_ada385 crossref_primary_10_1093_mnras_stac2730 crossref_primary_10_1103_PhysRevLett_132_085202 crossref_primary_10_3847_2041_8213_ac84db crossref_primary_10_3847_2041_8213_ac8d5a crossref_primary_10_1038_s41467_024_51257_1 crossref_primary_10_1093_mnras_stad3573 crossref_primary_10_3847_1538_4357_acd0b0 crossref_primary_10_1088_1674_4527_acb9de crossref_primary_10_1017_S0022377824000448 crossref_primary_10_1126_science_add5399 crossref_primary_10_3389_fspas_2023_1308056 crossref_primary_10_1051_0004_6361_202450940 crossref_primary_10_1093_mnras_stad3615 crossref_primary_10_3847_2041_8213_ad192b crossref_primary_10_3847_1538_4357_acffc6 crossref_primary_10_1063_5_0201683 crossref_primary_10_3847_1538_4365_acefba crossref_primary_10_1051_0004_6361_202243397 crossref_primary_10_3847_1538_4357_ad03e8 crossref_primary_10_3847_1538_4357_acca17 crossref_primary_10_3389_fspas_2023_1292682 crossref_primary_10_3847_1538_4357_ad3632 crossref_primary_10_3847_1538_4357_acb68a crossref_primary_10_1051_0004_6361_202450861 crossref_primary_10_1093_mnras_stad1588 crossref_primary_10_1051_0004_6361_202451568 crossref_primary_10_1093_mnras_stad3863 crossref_primary_10_3847_1538_4357_ada35e crossref_primary_10_3847_2041_8213_acf135 crossref_primary_10_1093_mnras_stad2936 |
Cites_doi | 10.3847/1538-4357/abcf31 10.3847/1538-4357/aa9380 10.3847/2041-8205/816/1/L8 10.3847/2041-8213/aa7892 10.3847/1538-4357/aac820 10.1088/0004-637X/774/1/41 10.1088/2041-8205/783/1/L21 10.1086/589640 10.1111/j.1365-2966.2009.14841.x 10.1093/mnras/stw1620 10.1111/j.1365-2966.2004.08384.x 10.1093/mnras/stz1599 10.1146/annurev.aa.27.090189.002505 10.1146/annurev.astro.37.1.409 10.1063/1.2141897 10.1086/337972 10.1086/318396 10.1093/mnrasl/sly157 10.1103/PhysRevLett.105.235002 10.1143/PTPS.155.99 10.1103/PhysRevLett.109.265002 10.1086/311810 10.1086/318304 10.1103/PhysRevLett.113.155005 10.3847/1538-4357/abedac 10.1017/S0022377818000624 10.1086/156957 10.3847/1538-4357/ababab 10.3847/1538-4357/ab64f5 10.1086/340436 10.1088/0004-637X/815/2/101 10.1007/s11214-012-9931-z 10.1111/j.1365-2966.2005.08767.x 10.3847/1538-4357/ab287a 10.1887/0750301171 10.3847/1538-4357/ab03d7 10.1063/1.3703318 10.3847/1538-4357/abc32f 10.1086/341877 10.3847/2041-8205/818/1/L9 10.1088/1367-2630/12/12/123005 10.1063/1.2837054 10.1093/mnras/sty2702 10.1063/1.2783986 10.1063/1.3264103 10.3847/2041-8213/ab2a15 10.1093/mnras/staa2346 10.1093/mnras/stv641 10.3847/1538-4357/aba622 10.1093/mnrasl/slu162 10.1007/BF02733547 10.1007/s11214-014-0132-9 10.1093/mnras/stx2530 10.3847/1538-4357/aa8f4f |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 |
Copyright_xml | – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 |
CorporateAuthor | Columbia Univ., New York, NY (United States) |
CorporateAuthor_xml | – name: Columbia Univ., New York, NY (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1093/mnras/stab2534 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 5640 |
ExternalDocumentID | 1979513 10_1093_mnras_stab2534 10.1093/mnras/stab2534 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ AABJS AABMN AAESY AAIYJ ABPTK ADEIU ADORX ADQLU AIKOY ARQIP AUCZF AZQFJ BYORX CASEJ DPORF DPPUQ OIOZB OJZSN OTOTI |
ID | FETCH-LOGICAL-c366t-56ff60595c080396929940d917e1a1b5d0635a1221458eb2ecb4e87428d5ddaa3 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Mon Jan 15 05:23:03 EST 2024 Tue Jul 01 01:23:35 EDT 2025 Thu Apr 24 22:51:09 EDT 2025 Wed Aug 28 03:20:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | radiation mechanisms: non-thermal relativistic processes black hole physics X-rays: binaries acceleration of particles magnetic reconnection radiative transfer |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-56ff60595c080396929940d917e1a1b5d0635a1221458eb2ecb4e87428d5ddaa3 |
Notes | National Aeronautics and Space Administration (NASA) Humboldt Foundation Simons Foundation USDOE Office of Science (SC) Columbia University Sloan Fellowship National Science Foundation (NSF) SC0021254; 80NSSC20K1556; PHY-1903412; AST-1816484; AST-2009453; 446228 |
ORCID | 0000-0002-5519-9550 0000000255199550 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1979513 |
PageCount | 16 |
ParticipantIDs | osti_scitechconnect_1979513 crossref_citationtrail_10_1093_mnras_stab2534 crossref_primary_10_1093_mnras_stab2534 oup_primary_10_1093_mnras_stab2534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Tajima (2022090800081085300_bib47) 1997 Zenitani (2022090800081085300_bib58) 2001; 562 Kagan (2022090800081085300_bib21) 2013; 774 Mehlhaff (2022090800081085300_bib31) 2020; 498 Fender (2022090800081085300_bib11) 2009; 396 Mirabel (2022090800081085300_bib32) 1999; 37 Petropoulou (2022090800081085300_bib37) 2019; 880 Ball (2022090800081085300_bib1) 2018; 862 Loureiro (2022090800081085300_bib25) 2007; 14 Spitkovsky (2022090800081085300_bib45) 2005 Nalewajko (2022090800081085300_bib33) 2015; 815 Frontera (2022090800081085300_bib12) 2001; 546 McClintock (2022090800081085300_bib29) 2006 Liu (2022090800081085300_bib24) 2002; 572 Parfrey (2022090800081085300_bib35) 2015; 446 Werner (2022090800081085300_bib52) 2017; 843 Guo (2022090800081085300_bib16) 2019; 879 McConnell (2022090800081085300_bib30) 2002; 572 Huang (2022090800081085300_bib20) 2012; 109 Sironi (2022090800081085300_bib41) 2020; 899 Yuan (2022090800081085300_bib56) 2019; 487 Beloborodov (2022090800081085300_bib3) 2017; 850 Werner (2022090800081085300_bib55) 2019; 482 Loureiro (2022090800081085300_bib26) 2012; 19 Galeev (2022090800081085300_bib13) 1979; 229 Vay (2022090800081085300_bib51) 2008; 15 Hoshino (2022090800081085300_bib19) 2012; 173 van der Klis (2022090800081085300_bib50) 1989; 27 Bhattacharjee (2022090800081085300_bib5) 2009; 16 Di Salvo (2022090800081085300_bib9) 2001; 547 Rowan (2022090800081085300_bib39) 2017; 850 Werner (2022090800081085300_bib53) 2016; 816 Fender (2022090800081085300_bib10) 2004; 355 Rowan (2022090800081085300_bib40) 2019; 873 Uzdensky (2022090800081085300_bib49) 2010; 105 Ripperda (2022090800081085300_bib38) 2020; 900 Kagan (2022090800081085300_bib22) 2015; 191 Sironi (2022090800081085300_bib42) 2014; 783 Werner (2022090800081085300_bib54) 2018; 473 Guo (2022090800081085300_bib14) 2016; 818 Chashkina (2022090800081085300_bib8) 2021 Sridhar (2022090800081085300_bib46) 2020; 890 Beloborodov (2022090800081085300_bib4) 2020 Krawczynski (2022090800081085300_bib23) 2021; 906 Beloborodov (2022090800081085300_bib2) 1999; 510 Guo (2022090800081085300_bib15) 2014; 113 Zdziarski (2022090800081085300_bib57) 2004; 155 Nalewajko (2022090800081085300_bib34) 2018; 84 Birdsall (2022090800081085300_bib6) 1991 Zhdankin (2022090800081085300_bib60) 2021; 908 Buneman (2022090800081085300_bib7) 1993 Sironi (2022090800081085300_bib43) 2015; 450 Sironi (2022090800081085300_bib44) 2016; 462 Harris (2022090800081085300_bib18) 1962; 23 Hakobyan (2022090800081085300_bib17) 2021; 912 Lyubarsky (2022090800081085300_bib27) 2008; 682 Tamburini (2022090800081085300_bib48) 2010; 12 Petropoulou (2022090800081085300_bib36) 2018; 481 Lyubarsky (2022090800081085300_bib28) 2005; 358 Zhang (2022090800081085300_bib59) 2021 |
References_xml | – start-page: 157 volume-title: Black Hole Binaries year: 2006 ident: 2022090800081085300_bib29 – volume: 908 start-page: 71 year: 2021 ident: 2022090800081085300_bib60 publication-title: ApJ doi: 10.3847/1538-4357/abcf31 – volume: 850 start-page: 29 year: 2017 ident: 2022090800081085300_bib39 publication-title: ApJ doi: 10.3847/1538-4357/aa9380 – volume: 816 start-page: L8 year: 2016 ident: 2022090800081085300_bib53 publication-title: ApJ doi: 10.3847/2041-8205/816/1/L8 – volume: 843 start-page: L27 year: 2017 ident: 2022090800081085300_bib52 publication-title: ApJ doi: 10.3847/2041-8213/aa7892 – volume: 862 start-page: 80 year: 2018 ident: 2022090800081085300_bib1 publication-title: ApJ doi: 10.3847/1538-4357/aac820 – volume-title: MNRAS year: 2021 ident: 2022090800081085300_bib8 – volume: 774 start-page: 41 year: 2013 ident: 2022090800081085300_bib21 publication-title: ApJ doi: 10.1088/0004-637X/774/1/41 – volume: 783 start-page: L21 year: 2014 ident: 2022090800081085300_bib42 publication-title: ApJ doi: 10.1088/2041-8205/783/1/L21 – volume: 682 start-page: 1436 year: 2008 ident: 2022090800081085300_bib27 publication-title: ApJ doi: 10.1086/589640 – volume: 396 start-page: 1370 year: 2009 ident: 2022090800081085300_bib11 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14841.x – volume: 462 start-page: 48 year: 2016 ident: 2022090800081085300_bib44 publication-title: MNRAS doi: 10.1093/mnras/stw1620 – volume: 355 start-page: 1105 year: 2004 ident: 2022090800081085300_bib10 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.08384.x – volume: 487 start-page: 4114 year: 2019 ident: 2022090800081085300_bib56 publication-title: MNRAS doi: 10.1093/mnras/stz1599 – volume: 27 start-page: 517 year: 1989 ident: 2022090800081085300_bib50 publication-title: ARA&A doi: 10.1146/annurev.aa.27.090189.002505 – volume: 37 start-page: 409 year: 1999 ident: 2022090800081085300_bib32 publication-title: ARA&A doi: 10.1146/annurev.astro.37.1.409 – start-page: 345 volume-title: AIP Conf. Proc. Vol. 801, Astrophysical Sources of High Energy Particles and Radiation year: 2005 ident: 2022090800081085300_bib45 doi: 10.1063/1.2141897 – volume: 562 start-page: L63 year: 2001 ident: 2022090800081085300_bib58 publication-title: ApJ doi: 10.1086/337972 – volume: 547 start-page: 1024 year: 2001 ident: 2022090800081085300_bib9 publication-title: ApJ doi: 10.1086/318396 – volume: 482 start-page: L60 year: 2019 ident: 2022090800081085300_bib55 publication-title: MNRAS doi: 10.1093/mnrasl/sly157 – year: 2020 ident: 2022090800081085300_bib4 – volume: 105 start-page: 235002 year: 2010 ident: 2022090800081085300_bib49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.235002 – volume: 155 start-page: 99 year: 2004 ident: 2022090800081085300_bib57 publication-title: Progr. Theoret. Phys. Suppl. doi: 10.1143/PTPS.155.99 – volume-title: Plasma Astrophysics year: 1997 ident: 2022090800081085300_bib47 – volume: 109 start-page: 265002 year: 2012 ident: 2022090800081085300_bib20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.265002 – volume: 510 start-page: L123 year: 1999 ident: 2022090800081085300_bib2 publication-title: ApJ doi: 10.1086/311810 – volume: 546 start-page: 1027 year: 2001 ident: 2022090800081085300_bib12 publication-title: ApJ doi: 10.1086/318304 – volume: 113 start-page: 155005 year: 2014 ident: 2022090800081085300_bib15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.155005 – year: 2021 ident: 2022090800081085300_bib59 – volume: 912 start-page: 48 year: 2021 ident: 2022090800081085300_bib17 publication-title: ApJ doi: 10.3847/1538-4357/abedac – volume: 84 start-page: 755840301 year: 2018 ident: 2022090800081085300_bib34 publication-title: J. Plasma Phys. doi: 10.1017/S0022377818000624 – volume: 229 start-page: 318 year: 1979 ident: 2022090800081085300_bib13 publication-title: ApJ doi: 10.1086/156957 – volume: 900 start-page: 100 year: 2020 ident: 2022090800081085300_bib38 publication-title: ApJ doi: 10.3847/1538-4357/ababab – volume: 890 start-page: 53 year: 2020 ident: 2022090800081085300_bib46 publication-title: ApJ doi: 10.3847/1538-4357/ab64f5 – volume: 572 start-page: 984 year: 2002 ident: 2022090800081085300_bib30 publication-title: ApJ doi: 10.1086/340436 – volume: 815 start-page: 101 year: 2015 ident: 2022090800081085300_bib33 publication-title: ApJ doi: 10.1088/0004-637X/815/2/101 – volume: 173 start-page: 521 year: 2012 ident: 2022090800081085300_bib19 publication-title: Space Sci. Rev. doi: 10.1007/s11214-012-9931-z – volume: 358 start-page: 113 year: 2005 ident: 2022090800081085300_bib28 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.08767.x – volume: 880 start-page: 37 year: 2019 ident: 2022090800081085300_bib37 publication-title: ApJ doi: 10.3847/1538-4357/ab287a – volume-title: Plasma Physics via Computer Simulation year: 1991 ident: 2022090800081085300_bib6 doi: 10.1887/0750301171 – volume: 873 start-page: 2 year: 2019 ident: 2022090800081085300_bib40 publication-title: ApJ doi: 10.3847/1538-4357/ab03d7 – volume: 19 start-page: 042303 year: 2012 ident: 2022090800081085300_bib26 publication-title: Phys. Plasmas doi: 10.1063/1.3703318 – volume: 906 start-page: 34 year: 2021 ident: 2022090800081085300_bib23 publication-title: ApJ doi: 10.3847/1538-4357/abc32f – volume: 572 start-page: L173 year: 2002 ident: 2022090800081085300_bib24 publication-title: ApJ doi: 10.1086/341877 – volume: 818 start-page: L9 year: 2016 ident: 2022090800081085300_bib14 publication-title: ApJ doi: 10.3847/2041-8205/818/1/L9 – volume: 12 start-page: 123005 year: 2010 ident: 2022090800081085300_bib48 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/12/123005 – volume: 15 start-page: 056701 year: 2008 ident: 2022090800081085300_bib51 publication-title: Phys. Plasmas doi: 10.1063/1.2837054 – volume: 481 start-page: 5687 year: 2018 ident: 2022090800081085300_bib36 publication-title: MNRAS doi: 10.1093/mnras/sty2702 – volume: 14 start-page: 100703 year: 2007 ident: 2022090800081085300_bib25 publication-title: Phys. Plasmas doi: 10.1063/1.2783986 – volume: 16 start-page: 112102 year: 2009 ident: 2022090800081085300_bib5 publication-title: Phys. Plasmas doi: 10.1063/1.3264103 – volume: 879 start-page: L23 year: 2019 ident: 2022090800081085300_bib16 publication-title: ApJ doi: 10.3847/2041-8213/ab2a15 – volume: 498 start-page: 799 year: 2020 ident: 2022090800081085300_bib31 publication-title: MNRAS doi: 10.1093/mnras/staa2346 – volume: 450 start-page: 183 year: 2015 ident: 2022090800081085300_bib43 publication-title: MNRAS doi: 10.1093/mnras/stv641 – volume: 899 start-page: 52 year: 2020 ident: 2022090800081085300_bib41 publication-title: ApJ doi: 10.3847/1538-4357/aba622 – start-page: 67 volume-title: ‘Computer Space Plasma Physics’ year: 1993 ident: 2022090800081085300_bib7 – volume: 446 start-page: L61 year: 2015 ident: 2022090800081085300_bib35 publication-title: MNRAS doi: 10.1093/mnrasl/slu162 – volume: 23 start-page: 115 year: 1962 ident: 2022090800081085300_bib18 publication-title: Il Nuovo Cimento doi: 10.1007/BF02733547 – volume: 191 start-page: 545 year: 2015 ident: 2022090800081085300_bib22 publication-title: Space Sci. Rev. doi: 10.1007/s11214-014-0132-9 – volume: 473 start-page: 4840 year: 2018 ident: 2022090800081085300_bib54 publication-title: MNRAS doi: 10.1093/mnras/stx2530 – volume: 850 start-page: 141 year: 2017 ident: 2022090800081085300_bib3 publication-title: ApJ doi: 10.3847/1538-4357/aa8f4f |
SSID | ssj0004326 |
Score | 2.5711455 |
Snippet | ABSTRACT
We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We... We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the... |
SourceID | osti crossref oup |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 5625 |
SubjectTerms | acceleration of particles ASTRONOMY AND ASTROPHYSICS binaries black hole physics magnetic reconnection non-thermal radiation mechanisms radiative transfer relativistic processes X-rays |
Title | Comptonization by reconnection plasmoids in black hole coronae I: Magnetically dominated pair plasma |
URI | https://www.osti.gov/servlets/purl/1979513 |
Volume | 507 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_ITl5Ep7L6RRDRU9naNF3rbQzHFKaXDXYr-aoUtna087D_3pe0mx8oemtI0kNeQn6_l_d-D-CGCaZ0Sj23j-zDDWSoXO7huUpxcwg_CvuprXU4eQ7Hs-BpzuaNWHT1wxN-TLvLvORVF7GS8Bk1yp94AxuV_OnL_CMDktrCalaAESmAt5Nn_D79y_XTKvAY1Zltny6V0SEcNGiQDGrzHcGeztvQGVTGP10sN-SW2O_a_VC1wZkgxi1K6wrHzuEiQ8BpW8egzNFGJNckVhKxIZbt5jbYKicrxMnLIlMVybDT-O2IqY1LpNEw4Jo83pMJf83rpMbFhqjCRMkgICUrnpX1dH4Cs9HDdDh2mxoKrqRhuHZZmKbIWGJmFMVpHCIaioOeQpKmPe6hoRCiMO75RrA8QpatpQh0hHw5UkwpzukptPIi1x0gUkrty5RFkqsgkH4shaDSFC3rxdKPeg6426VNZCMwbupcLJL6oZsm1hTJ1hQO3O3Gr2ppjV9HnhtLJQgKjLJts3SJF_cRH1IHrtGAf_zi7D-DzmHfNyErNtXwAlrr8k1fIuZYiyu73d4BRDrXpQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comptonization+by+reconnection+plasmoids+in+black+hole+coronae+I%3A+Magnetically+dominated+pair+plasma&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Sridhar%2C+Navin&rft.au=Sironi%2C+Lorenzo&rft.au=Beloborodov%2C+Andrei+M&rft.date=2021-11-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=507&rft.issue=4&rft.spage=5625&rft.epage=5640&rft_id=info:doi/10.1093%2Fmnras%2Fstab2534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stab2534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |