Comptonization by reconnection plasmoids in black hole coronae I: Magnetically dominated pair plasma

ABSTRACT We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconne...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 507; no. 4; pp. 5625 - 5640
Main Authors Sridhar, Navin, Sironi, Lorenzo, Beloborodov, Andrei M
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ∼25 per cent of the dissipated reconnection power for σ = 10 and ∼40 per cent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ∼ 10, yields a spectrum consistent with the typical hard state of accreting black holes.
AbstractList ABSTRACT We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ∼25 per cent of the dissipated reconnection power for σ = 10 and ∼40 per cent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ∼ 10, yields a spectrum consistent with the typical hard state of accreting black holes.
We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ∼25 per cent of the dissipated reconnection power for σ = 10 and ∼40 per cent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ∼ 10, yields a spectrum consistent with the typical hard state of accreting black holes.
We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the magnetization σ $\gg$ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ~100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ~25 percent of the dissipated reconnection power for σ = 10 and ~40 percent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ~ 10, yields a spectrum consistent with the typical hard state of accreting black holes.
Author Sridhar, Navin
Beloborodov, Andrei M
Sironi, Lorenzo
Author_xml – sequence: 1
  givenname: Navin
  orcidid: 0000-0002-5519-9550
  surname: Sridhar
  fullname: Sridhar, Navin
  email: navin.sridhar@columbia.edu
– sequence: 2
  givenname: Lorenzo
  surname: Sironi
  fullname: Sironi, Lorenzo
– sequence: 3
  givenname: Andrei M
  surname: Beloborodov
  fullname: Beloborodov, Andrei M
BackLink https://www.osti.gov/servlets/purl/1979513$$D View this record in Osti.gov
BookMark eNqFkD1PwzAQhi1UJNrCymyxMaS149iJ2VDFl1TEAnN0sR1qSOzINkP59YS2LEiI6XS65zndvTM0cd4ZhM4pWVAi2bJ3AeIyJmhyzoojNKVM8CyXQkzQlBDGs6qk9ATNYnwjhBQsF1OkV74fknf2E5L1DjdbHIzyzhm164cOYu-tjtiOww7UO974zmDlg3dg8MMVfoRXZ5JV0HVbrH1vHSSj8QA27HU4RcctdNGcHeocvdzePK_us_XT3cPqep0pJkTKuGhbQbjkilSESSFzKQuiJS0NBdpwTQTjQPOcFrwyTW5UU5iqLPJKc60B2Bxd7Pf6mGwdlU1GbQ7P1FSWklM2QsUeUsHHGExbj9zu-RTAdjUl9Xec9S7O-ifOUVv80oZgewjbv4XLwzEfw3_sF9fai-0
CitedBy_id crossref_primary_10_3389_fspas_2024_1530392
crossref_primary_10_3847_1538_4357_ada385
crossref_primary_10_1093_mnras_stac2730
crossref_primary_10_1103_PhysRevLett_132_085202
crossref_primary_10_3847_2041_8213_ac84db
crossref_primary_10_3847_2041_8213_ac8d5a
crossref_primary_10_1038_s41467_024_51257_1
crossref_primary_10_1093_mnras_stad3573
crossref_primary_10_3847_1538_4357_acd0b0
crossref_primary_10_1088_1674_4527_acb9de
crossref_primary_10_1017_S0022377824000448
crossref_primary_10_1126_science_add5399
crossref_primary_10_3389_fspas_2023_1308056
crossref_primary_10_1051_0004_6361_202450940
crossref_primary_10_1093_mnras_stad3615
crossref_primary_10_3847_2041_8213_ad192b
crossref_primary_10_3847_1538_4357_acffc6
crossref_primary_10_1063_5_0201683
crossref_primary_10_3847_1538_4365_acefba
crossref_primary_10_1051_0004_6361_202243397
crossref_primary_10_3847_1538_4357_ad03e8
crossref_primary_10_3847_1538_4357_acca17
crossref_primary_10_3389_fspas_2023_1292682
crossref_primary_10_3847_1538_4357_ad3632
crossref_primary_10_3847_1538_4357_acb68a
crossref_primary_10_1051_0004_6361_202450861
crossref_primary_10_1093_mnras_stad1588
crossref_primary_10_1051_0004_6361_202451568
crossref_primary_10_1093_mnras_stad3863
crossref_primary_10_3847_1538_4357_ada35e
crossref_primary_10_3847_2041_8213_acf135
crossref_primary_10_1093_mnras_stad2936
Cites_doi 10.3847/1538-4357/abcf31
10.3847/1538-4357/aa9380
10.3847/2041-8205/816/1/L8
10.3847/2041-8213/aa7892
10.3847/1538-4357/aac820
10.1088/0004-637X/774/1/41
10.1088/2041-8205/783/1/L21
10.1086/589640
10.1111/j.1365-2966.2009.14841.x
10.1093/mnras/stw1620
10.1111/j.1365-2966.2004.08384.x
10.1093/mnras/stz1599
10.1146/annurev.aa.27.090189.002505
10.1146/annurev.astro.37.1.409
10.1063/1.2141897
10.1086/337972
10.1086/318396
10.1093/mnrasl/sly157
10.1103/PhysRevLett.105.235002
10.1143/PTPS.155.99
10.1103/PhysRevLett.109.265002
10.1086/311810
10.1086/318304
10.1103/PhysRevLett.113.155005
10.3847/1538-4357/abedac
10.1017/S0022377818000624
10.1086/156957
10.3847/1538-4357/ababab
10.3847/1538-4357/ab64f5
10.1086/340436
10.1088/0004-637X/815/2/101
10.1007/s11214-012-9931-z
10.1111/j.1365-2966.2005.08767.x
10.3847/1538-4357/ab287a
10.1887/0750301171
10.3847/1538-4357/ab03d7
10.1063/1.3703318
10.3847/1538-4357/abc32f
10.1086/341877
10.3847/2041-8205/818/1/L9
10.1088/1367-2630/12/12/123005
10.1063/1.2837054
10.1093/mnras/sty2702
10.1063/1.2783986
10.1063/1.3264103
10.3847/2041-8213/ab2a15
10.1093/mnras/staa2346
10.1093/mnras/stv641
10.3847/1538-4357/aba622
10.1093/mnrasl/slu162
10.1007/BF02733547
10.1007/s11214-014-0132-9
10.1093/mnras/stx2530
10.3847/1538-4357/aa8f4f
ContentType Journal Article
Copyright 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
Copyright_xml – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
CorporateAuthor Columbia Univ., New York, NY (United States)
CorporateAuthor_xml – name: Columbia Univ., New York, NY (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1093/mnras/stab2534
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 5640
ExternalDocumentID 1979513
10_1093_mnras_stab2534
10.1093/mnras/stab2534
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
AABJS
AABMN
AAESY
AAIYJ
ABPTK
ADEIU
ADORX
ADQLU
AIKOY
ARQIP
AUCZF
AZQFJ
BYORX
CASEJ
DPORF
DPPUQ
OIOZB
OJZSN
OTOTI
ID FETCH-LOGICAL-c366t-56ff60595c080396929940d917e1a1b5d0635a1221458eb2ecb4e87428d5ddaa3
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Mon Jan 15 05:23:03 EST 2024
Tue Jul 01 01:23:35 EDT 2025
Thu Apr 24 22:51:09 EDT 2025
Wed Aug 28 03:20:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords radiation mechanisms: non-thermal
relativistic processes
black hole physics
X-rays: binaries
acceleration of particles
magnetic reconnection
radiative transfer
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-56ff60595c080396929940d917e1a1b5d0635a1221458eb2ecb4e87428d5ddaa3
Notes National Aeronautics and Space Administration (NASA)
Humboldt Foundation
Simons Foundation
USDOE Office of Science (SC)
Columbia University
Sloan Fellowship
National Science Foundation (NSF)
SC0021254; 80NSSC20K1556; PHY-1903412; AST-1816484; AST-2009453; 446228
ORCID 0000-0002-5519-9550
0000000255199550
OpenAccessLink https://www.osti.gov/servlets/purl/1979513
PageCount 16
ParticipantIDs osti_scitechconnect_1979513
crossref_citationtrail_10_1093_mnras_stab2534
crossref_primary_10_1093_mnras_stab2534
oup_primary_10_1093_mnras_stab2534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Tajima (2022090800081085300_bib47) 1997
Zenitani (2022090800081085300_bib58) 2001; 562
Kagan (2022090800081085300_bib21) 2013; 774
Mehlhaff (2022090800081085300_bib31) 2020; 498
Fender (2022090800081085300_bib11) 2009; 396
Mirabel (2022090800081085300_bib32) 1999; 37
Petropoulou (2022090800081085300_bib37) 2019; 880
Ball (2022090800081085300_bib1) 2018; 862
Loureiro (2022090800081085300_bib25) 2007; 14
Spitkovsky (2022090800081085300_bib45) 2005
Nalewajko (2022090800081085300_bib33) 2015; 815
Frontera (2022090800081085300_bib12) 2001; 546
McClintock (2022090800081085300_bib29) 2006
Liu (2022090800081085300_bib24) 2002; 572
Parfrey (2022090800081085300_bib35) 2015; 446
Werner (2022090800081085300_bib52) 2017; 843
Guo (2022090800081085300_bib16) 2019; 879
McConnell (2022090800081085300_bib30) 2002; 572
Huang (2022090800081085300_bib20) 2012; 109
Sironi (2022090800081085300_bib41) 2020; 899
Yuan (2022090800081085300_bib56) 2019; 487
Beloborodov (2022090800081085300_bib3) 2017; 850
Werner (2022090800081085300_bib55) 2019; 482
Loureiro (2022090800081085300_bib26) 2012; 19
Galeev (2022090800081085300_bib13) 1979; 229
Vay (2022090800081085300_bib51) 2008; 15
Hoshino (2022090800081085300_bib19) 2012; 173
van der Klis (2022090800081085300_bib50) 1989; 27
Bhattacharjee (2022090800081085300_bib5) 2009; 16
Di Salvo (2022090800081085300_bib9) 2001; 547
Rowan (2022090800081085300_bib39) 2017; 850
Werner (2022090800081085300_bib53) 2016; 816
Fender (2022090800081085300_bib10) 2004; 355
Rowan (2022090800081085300_bib40) 2019; 873
Uzdensky (2022090800081085300_bib49) 2010; 105
Ripperda (2022090800081085300_bib38) 2020; 900
Kagan (2022090800081085300_bib22) 2015; 191
Sironi (2022090800081085300_bib42) 2014; 783
Werner (2022090800081085300_bib54) 2018; 473
Guo (2022090800081085300_bib14) 2016; 818
Chashkina (2022090800081085300_bib8) 2021
Sridhar (2022090800081085300_bib46) 2020; 890
Beloborodov (2022090800081085300_bib4) 2020
Krawczynski (2022090800081085300_bib23) 2021; 906
Beloborodov (2022090800081085300_bib2) 1999; 510
Guo (2022090800081085300_bib15) 2014; 113
Zdziarski (2022090800081085300_bib57) 2004; 155
Nalewajko (2022090800081085300_bib34) 2018; 84
Birdsall (2022090800081085300_bib6) 1991
Zhdankin (2022090800081085300_bib60) 2021; 908
Buneman (2022090800081085300_bib7) 1993
Sironi (2022090800081085300_bib43) 2015; 450
Sironi (2022090800081085300_bib44) 2016; 462
Harris (2022090800081085300_bib18) 1962; 23
Hakobyan (2022090800081085300_bib17) 2021; 912
Lyubarsky (2022090800081085300_bib27) 2008; 682
Tamburini (2022090800081085300_bib48) 2010; 12
Petropoulou (2022090800081085300_bib36) 2018; 481
Lyubarsky (2022090800081085300_bib28) 2005; 358
Zhang (2022090800081085300_bib59) 2021
References_xml – start-page: 157
  volume-title: Black Hole Binaries
  year: 2006
  ident: 2022090800081085300_bib29
– volume: 908
  start-page: 71
  year: 2021
  ident: 2022090800081085300_bib60
  publication-title: ApJ
  doi: 10.3847/1538-4357/abcf31
– volume: 850
  start-page: 29
  year: 2017
  ident: 2022090800081085300_bib39
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa9380
– volume: 816
  start-page: L8
  year: 2016
  ident: 2022090800081085300_bib53
  publication-title: ApJ
  doi: 10.3847/2041-8205/816/1/L8
– volume: 843
  start-page: L27
  year: 2017
  ident: 2022090800081085300_bib52
  publication-title: ApJ
  doi: 10.3847/2041-8213/aa7892
– volume: 862
  start-page: 80
  year: 2018
  ident: 2022090800081085300_bib1
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac820
– volume-title: MNRAS
  year: 2021
  ident: 2022090800081085300_bib8
– volume: 774
  start-page: 41
  year: 2013
  ident: 2022090800081085300_bib21
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/1/41
– volume: 783
  start-page: L21
  year: 2014
  ident: 2022090800081085300_bib42
  publication-title: ApJ
  doi: 10.1088/2041-8205/783/1/L21
– volume: 682
  start-page: 1436
  year: 2008
  ident: 2022090800081085300_bib27
  publication-title: ApJ
  doi: 10.1086/589640
– volume: 396
  start-page: 1370
  year: 2009
  ident: 2022090800081085300_bib11
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14841.x
– volume: 462
  start-page: 48
  year: 2016
  ident: 2022090800081085300_bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1620
– volume: 355
  start-page: 1105
  year: 2004
  ident: 2022090800081085300_bib10
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08384.x
– volume: 487
  start-page: 4114
  year: 2019
  ident: 2022090800081085300_bib56
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1599
– volume: 27
  start-page: 517
  year: 1989
  ident: 2022090800081085300_bib50
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.27.090189.002505
– volume: 37
  start-page: 409
  year: 1999
  ident: 2022090800081085300_bib32
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.37.1.409
– start-page: 345
  volume-title: AIP Conf. Proc. Vol. 801, Astrophysical Sources of High Energy Particles and Radiation
  year: 2005
  ident: 2022090800081085300_bib45
  doi: 10.1063/1.2141897
– volume: 562
  start-page: L63
  year: 2001
  ident: 2022090800081085300_bib58
  publication-title: ApJ
  doi: 10.1086/337972
– volume: 547
  start-page: 1024
  year: 2001
  ident: 2022090800081085300_bib9
  publication-title: ApJ
  doi: 10.1086/318396
– volume: 482
  start-page: L60
  year: 2019
  ident: 2022090800081085300_bib55
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly157
– year: 2020
  ident: 2022090800081085300_bib4
– volume: 105
  start-page: 235002
  year: 2010
  ident: 2022090800081085300_bib49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.235002
– volume: 155
  start-page: 99
  year: 2004
  ident: 2022090800081085300_bib57
  publication-title: Progr. Theoret. Phys. Suppl.
  doi: 10.1143/PTPS.155.99
– volume-title: Plasma Astrophysics
  year: 1997
  ident: 2022090800081085300_bib47
– volume: 109
  start-page: 265002
  year: 2012
  ident: 2022090800081085300_bib20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.265002
– volume: 510
  start-page: L123
  year: 1999
  ident: 2022090800081085300_bib2
  publication-title: ApJ
  doi: 10.1086/311810
– volume: 546
  start-page: 1027
  year: 2001
  ident: 2022090800081085300_bib12
  publication-title: ApJ
  doi: 10.1086/318304
– volume: 113
  start-page: 155005
  year: 2014
  ident: 2022090800081085300_bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.155005
– year: 2021
  ident: 2022090800081085300_bib59
– volume: 912
  start-page: 48
  year: 2021
  ident: 2022090800081085300_bib17
  publication-title: ApJ
  doi: 10.3847/1538-4357/abedac
– volume: 84
  start-page: 755840301
  year: 2018
  ident: 2022090800081085300_bib34
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377818000624
– volume: 229
  start-page: 318
  year: 1979
  ident: 2022090800081085300_bib13
  publication-title: ApJ
  doi: 10.1086/156957
– volume: 900
  start-page: 100
  year: 2020
  ident: 2022090800081085300_bib38
  publication-title: ApJ
  doi: 10.3847/1538-4357/ababab
– volume: 890
  start-page: 53
  year: 2020
  ident: 2022090800081085300_bib46
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab64f5
– volume: 572
  start-page: 984
  year: 2002
  ident: 2022090800081085300_bib30
  publication-title: ApJ
  doi: 10.1086/340436
– volume: 815
  start-page: 101
  year: 2015
  ident: 2022090800081085300_bib33
  publication-title: ApJ
  doi: 10.1088/0004-637X/815/2/101
– volume: 173
  start-page: 521
  year: 2012
  ident: 2022090800081085300_bib19
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-012-9931-z
– volume: 358
  start-page: 113
  year: 2005
  ident: 2022090800081085300_bib28
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.08767.x
– volume: 880
  start-page: 37
  year: 2019
  ident: 2022090800081085300_bib37
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab287a
– volume-title: Plasma Physics via Computer Simulation
  year: 1991
  ident: 2022090800081085300_bib6
  doi: 10.1887/0750301171
– volume: 873
  start-page: 2
  year: 2019
  ident: 2022090800081085300_bib40
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab03d7
– volume: 19
  start-page: 042303
  year: 2012
  ident: 2022090800081085300_bib26
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3703318
– volume: 906
  start-page: 34
  year: 2021
  ident: 2022090800081085300_bib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc32f
– volume: 572
  start-page: L173
  year: 2002
  ident: 2022090800081085300_bib24
  publication-title: ApJ
  doi: 10.1086/341877
– volume: 818
  start-page: L9
  year: 2016
  ident: 2022090800081085300_bib14
  publication-title: ApJ
  doi: 10.3847/2041-8205/818/1/L9
– volume: 12
  start-page: 123005
  year: 2010
  ident: 2022090800081085300_bib48
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/12/123005
– volume: 15
  start-page: 056701
  year: 2008
  ident: 2022090800081085300_bib51
  publication-title: Phys. Plasmas
  doi: 10.1063/1.2837054
– volume: 481
  start-page: 5687
  year: 2018
  ident: 2022090800081085300_bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2702
– volume: 14
  start-page: 100703
  year: 2007
  ident: 2022090800081085300_bib25
  publication-title: Phys. Plasmas
  doi: 10.1063/1.2783986
– volume: 16
  start-page: 112102
  year: 2009
  ident: 2022090800081085300_bib5
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3264103
– volume: 879
  start-page: L23
  year: 2019
  ident: 2022090800081085300_bib16
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab2a15
– volume: 498
  start-page: 799
  year: 2020
  ident: 2022090800081085300_bib31
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2346
– volume: 450
  start-page: 183
  year: 2015
  ident: 2022090800081085300_bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/stv641
– volume: 899
  start-page: 52
  year: 2020
  ident: 2022090800081085300_bib41
  publication-title: ApJ
  doi: 10.3847/1538-4357/aba622
– start-page: 67
  volume-title: ‘Computer Space Plasma Physics’
  year: 1993
  ident: 2022090800081085300_bib7
– volume: 446
  start-page: L61
  year: 2015
  ident: 2022090800081085300_bib35
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slu162
– volume: 23
  start-page: 115
  year: 1962
  ident: 2022090800081085300_bib18
  publication-title: Il Nuovo Cimento
  doi: 10.1007/BF02733547
– volume: 191
  start-page: 545
  year: 2015
  ident: 2022090800081085300_bib22
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-014-0132-9
– volume: 473
  start-page: 4840
  year: 2018
  ident: 2022090800081085300_bib54
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2530
– volume: 850
  start-page: 141
  year: 2017
  ident: 2022090800081085300_bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8f4f
SSID ssj0004326
Score 2.5711455
Snippet ABSTRACT We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We...
We perform 2D particle-in-cell simulations of reconnection in magnetically dominated electron–positron plasmas subject to strong Compton cooling. We vary the...
SourceID osti
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 5625
SubjectTerms acceleration of particles
ASTRONOMY AND ASTROPHYSICS
binaries
black hole physics
magnetic reconnection
non-thermal
radiation mechanisms
radiative transfer
relativistic processes
X-rays
Title Comptonization by reconnection plasmoids in black hole coronae I: Magnetically dominated pair plasma
URI https://www.osti.gov/servlets/purl/1979513
Volume 507
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_ITl5Ep7L6RRDRU9naNF3rbQzHFKaXDXYr-aoUtna087D_3pe0mx8oemtI0kNeQn6_l_d-D-CGCaZ0Sj23j-zDDWSoXO7huUpxcwg_CvuprXU4eQ7Hs-BpzuaNWHT1wxN-TLvLvORVF7GS8Bk1yp94AxuV_OnL_CMDktrCalaAESmAt5Nn_D79y_XTKvAY1Zltny6V0SEcNGiQDGrzHcGeztvQGVTGP10sN-SW2O_a_VC1wZkgxi1K6wrHzuEiQ8BpW8egzNFGJNckVhKxIZbt5jbYKicrxMnLIlMVybDT-O2IqY1LpNEw4Jo83pMJf83rpMbFhqjCRMkgICUrnpX1dH4Cs9HDdDh2mxoKrqRhuHZZmKbIWGJmFMVpHCIaioOeQpKmPe6hoRCiMO75RrA8QpatpQh0hHw5UkwpzukptPIi1x0gUkrty5RFkqsgkH4shaDSFC3rxdKPeg6426VNZCMwbupcLJL6oZsm1hTJ1hQO3O3Gr2ppjV9HnhtLJQgKjLJts3SJF_cRH1IHrtGAf_zi7D-DzmHfNyErNtXwAlrr8k1fIuZYiyu73d4BRDrXpQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comptonization+by+reconnection+plasmoids+in+black+hole+coronae+I%3A+Magnetically+dominated+pair+plasma&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Sridhar%2C+Navin&rft.au=Sironi%2C+Lorenzo&rft.au=Beloborodov%2C+Andrei+M&rft.date=2021-11-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=507&rft.issue=4&rft.spage=5625&rft.epage=5640&rft_id=info:doi/10.1093%2Fmnras%2Fstab2534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stab2534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon