Tracking DOT1L methyltransferase activity by stable isotope labelling using a selective synthetic co-factor

Epigenetic processes influence health and disease through mechanisms which alter gene expression. In contrast to genetic changes which affect DNA sequences, epigenetic marks include DNA base modifications or post-translational modification (PTM) of proteins. Histone methylation is a prominent and ve...

Full description

Saved in:
Bibliographic Details
Published inCommunications chemistry Vol. 7; no. 1; pp. 145 - 7
Main Authors Trainor, Nicole, Whitwell, Harry J., Jiménez, Beatriz, Addison, Katie, Leonidou, Emily, DiMaggio, Peter A., Fuchter, Matthew J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epigenetic processes influence health and disease through mechanisms which alter gene expression. In contrast to genetic changes which affect DNA sequences, epigenetic marks include DNA base modifications or post-translational modification (PTM) of proteins. Histone methylation is a prominent and versatile example of an epigenetic marker: gene expression or silencing is dependent on the location and extent of the methylation. Protein methyltransferases exhibit functional redundancy and broad preferences for multiple histone residues, which presents a challenge for the study of their individual activities. We developed an isotopically labelled analogue of co-factor S-adenosyl-L-methionine ( 13 CD 3 -BrSAM), with selectivity for the histone lysine methyltransferase DOT1L, permitting tracking of methylation activity by mass spectrometry (MS). This concept could be applied to other methyltransferases, linking PTM discovery to enzymatic mediators. Histone methylation by histone lysine methyltransferases (HKMTs) is a vital post-translational modification regulating gene expression, however, selective mapping of methylation by proteomics analysis remains challenging. Here, the authors develop a heavy co-factor analogue 13 CD 3 -BrSAM for HKMT DOT1L that can selectively heavy label target substrates, and map their methylation by proteomics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2399-3669
2399-3669
DOI:10.1038/s42004-024-01227-x