Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates

[Display omitted] •The surface wettability of the superhydrophobic samples is regulated by controlling the dimple-pattern dimensions during the laser processing.•A fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules.•Such a f...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science & technology Vol. 89; pp. 59 - 67
Main Authors Tong, Wei, Cui, Lingling, Qiu, Rongxian, Yan, Chengqi, Liu, Yuntong, Wang, Nan, Xiong, Dangsheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The surface wettability of the superhydrophobic samples is regulated by controlling the dimple-pattern dimensions during the laser processing.•A fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules.•Such a fluorescence method can intuitively display the air trapping ability of the superhydrophobic surface.•Laser-textured superhydrophobic samples show strong mechanical stability in comparison with bare aluminum alloy. A laser texturing technique herein can endow bare aluminum alloy surface with regular dimple-pattern array and thus generates a case hardening. After STA treatment, these laser-textured samples become superhydrophobic. The surface wettability of the laser-textured samples can be regulated by controlling the dimple-pattern dimensions during the laser processing. It is noteworthy that a fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules. Compared with a general method of the Cassie-Baxter theoretical calculation, this fluorescence method intuitively exhibits the air trapping ability of the superhydrophobic surface. Furthermore, the laser-textured superhydrophobic samples have a notable hysteresis phenomenon at the initial period of UMT friction because the air cushion trapped within superhydrophobic samples have strong repellency against water droplets on the hydrophilic steel ball. Additionally, such samples display strong mechanical stability in comparison with bare aluminum alloy because of the presence of case hardening on the surface of the laser patterns. The research results above provide a valuable reference for designing a surface with different wettability, which may inspire practical applications in the fields of fluid transport, droplet manipulation, water harvesting and microfluidic devices.
AbstractList [Display omitted] •The surface wettability of the superhydrophobic samples is regulated by controlling the dimple-pattern dimensions during the laser processing.•A fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules.•Such a fluorescence method can intuitively display the air trapping ability of the superhydrophobic surface.•Laser-textured superhydrophobic samples show strong mechanical stability in comparison with bare aluminum alloy. A laser texturing technique herein can endow bare aluminum alloy surface with regular dimple-pattern array and thus generates a case hardening. After STA treatment, these laser-textured samples become superhydrophobic. The surface wettability of the laser-textured samples can be regulated by controlling the dimple-pattern dimensions during the laser processing. It is noteworthy that a fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules. Compared with a general method of the Cassie-Baxter theoretical calculation, this fluorescence method intuitively exhibits the air trapping ability of the superhydrophobic surface. Furthermore, the laser-textured superhydrophobic samples have a notable hysteresis phenomenon at the initial period of UMT friction because the air cushion trapped within superhydrophobic samples have strong repellency against water droplets on the hydrophilic steel ball. Additionally, such samples display strong mechanical stability in comparison with bare aluminum alloy because of the presence of case hardening on the surface of the laser patterns. The research results above provide a valuable reference for designing a surface with different wettability, which may inspire practical applications in the fields of fluid transport, droplet manipulation, water harvesting and microfluidic devices.
Author Tong, Wei
Liu, Yuntong
Qiu, Rongxian
Wang, Nan
Cui, Lingling
Yan, Chengqi
Xiong, Dangsheng
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-8328-7999
  surname: Tong
  fullname: Tong, Wei
  organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 2
  givenname: Lingling
  surname: Cui
  fullname: Cui, Lingling
  organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 3
  givenname: Rongxian
  surname: Qiu
  fullname: Qiu, Rongxian
  organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 4
  givenname: Chengqi
  surname: Yan
  fullname: Yan, Chengqi
  organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 5
  givenname: Yuntong
  surname: Liu
  fullname: Liu, Yuntong
  organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 6
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, China
– sequence: 7
  givenname: Dangsheng
  surname: Xiong
  fullname: Xiong, Dangsheng
  email: xiongds@163.com
  organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP2B3ZCu2DN2U0BcEusle6DFuFGzLSEra_H0d0lUXhQtzGTgDcxZkNvgBCblnkDNg1cM-3_cx5QUULIcpgl-ROWs4yxiritnUAVYZlFDckEWMe4CyXgkxJ3ajIgaa8DsdAlpqXT92mI0qJQxDpMnTT3-cKk07pPEQWmWQfmFKSrvOpRP17bQeMexONvhx57UzVHWH3g2Hno6dShhvyXWruoh3v3NJti_P2_Vbtvl4fV8_bTJTVlXKuC6h5logMMYrvWobJWrLjW44NtxaxQVYKOpGqwJWqMEw0Zat0RYLVtXlkojLWRN8jAFbaVxSyfkhBeU6yUCeZcm9PMuSZ1kSpgg-ocUfdAyuV-H0P_R4gXD66egwyGgcDgatC2iStN79h_8Aka-JGw
CitedBy_id crossref_primary_10_1016_j_surfin_2023_102670
crossref_primary_10_3390_ma15010106
crossref_primary_10_1016_j_colsurfa_2022_129335
crossref_primary_10_1108_ILT_11_2023_0351
crossref_primary_10_1016_j_apsusc_2023_158612
crossref_primary_10_1016_j_corcom_2024_01_001
crossref_primary_10_1016_j_matlet_2023_135453
crossref_primary_10_1016_j_triboint_2024_109550
crossref_primary_10_1016_j_matlet_2024_137955
crossref_primary_10_1016_j_surfcoat_2022_128406
crossref_primary_10_1007_s42235_023_00333_1
crossref_primary_10_1016_j_porgcoat_2023_107786
crossref_primary_10_1016_j_ijmecsci_2022_107946
crossref_primary_10_1016_j_mtcomm_2024_108616
crossref_primary_10_2474_trol_17_318
crossref_primary_10_1016_j_surfcoat_2024_130995
crossref_primary_10_3390_coatings12111717
crossref_primary_10_1016_j_jajp_2024_100249
crossref_primary_10_1016_j_susmat_2023_e00693
crossref_primary_10_1016_j_optlaseng_2024_108529
crossref_primary_10_3390_coatings13061049
crossref_primary_10_1007_s42235_024_00516_4
crossref_primary_10_1016_j_apsusc_2023_158944
crossref_primary_10_1016_j_triboint_2024_109637
crossref_primary_10_1039_D3MA01058A
crossref_primary_10_1016_j_surfin_2025_105877
crossref_primary_10_3390_nano12010044
crossref_primary_10_1088_1742_6596_2933_1_012004
crossref_primary_10_1021_acsaenm_2c00102
crossref_primary_10_1002_smll_202405424
crossref_primary_10_1016_j_mtphys_2022_100651
crossref_primary_10_3390_gels10100648
crossref_primary_10_3390_ma17143423
crossref_primary_10_1007_s44251_023_00033_2
crossref_primary_10_1016_j_porgcoat_2023_107875
crossref_primary_10_1016_j_colsurfa_2024_134330
crossref_primary_10_1016_j_ces_2022_118027
crossref_primary_10_3390_mi14030704
crossref_primary_10_1016_j_ijleo_2023_171581
crossref_primary_10_1016_j_optlastec_2022_108858
crossref_primary_10_1007_s00339_023_06750_7
crossref_primary_10_1016_j_matchemphys_2024_129791
crossref_primary_10_1016_j_jnoncrysol_2022_121771
crossref_primary_10_1016_j_apsusc_2022_155947
crossref_primary_10_1016_j_jmatprotec_2024_118549
Cites_doi 10.1038/s41563-018-0178-2
10.2961/jlmn.2015.01.0001
10.1021/acsami.9b16509
10.1016/j.jcis.2018.08.082
10.1021/acs.jpcc.6b02067
10.1039/C9TA13281C
10.1016/j.surfcoat.2020.126225
10.1038/22883
10.1002/adfm.201910268
10.1007/s10853-020-04733-0
10.1021/jp302794p
10.1016/j.jmatprotec.2019.02.023
10.1021/acsami.5b00558
10.1002/admi.202000997
10.1038/s41563-018-0044-2
10.1038/s41586-020-2331-8
10.1039/tf9444000546
10.1016/j.pmatsci.2019.03.004
10.1021/acsnano.7b04494
10.1021/acsami.7b13182
10.1016/j.jallcom.2017.06.241
10.1021/acsami.8b16893
10.1039/C9CP02132A
10.1039/C7TA01385J
10.1039/C8TA09403A
10.1126/science.aaf2073
10.1126/science.aaa0946
10.1016/j.cej.2018.03.012
10.1039/C8NR03277G
10.1021/acscentsci.8b00504
10.1021/acs.langmuir.8b03969
10.1039/C9NR09620E
10.1016/j.jmst.2020.02.055
10.1021/acsami.9b21438
10.1016/j.compositesb.2019.107267
10.1039/C9TA04484A
10.1039/C8TA01965G
10.1126/science.1207115
10.1021/jp408172v
10.1021/acsami.9b08947
10.1016/j.optlaseng.2017.12.004
10.1126/science.282.5387.265
10.1021/acsnano.7b06371
10.1039/c1sm05452j
10.1002/maco.202011807
10.1021/acs.langmuir.9b02986
10.1016/j.apsusc.2020.148534
10.1002/adma.200290020
10.1016/j.surfcoat.2020.125993
10.1021/cr400083y
10.1021/acs.iecr.7b04887
10.1021/acsnano.0c07417
10.1016/j.surfcoat.2018.08.035
10.1039/C9NR10612J
10.1021/acs.langmuir.9b00690
10.1016/j.jcis.2013.06.068
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.jmst.2021.01.084
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-1162
EndPage 67
ExternalDocumentID 10_1016_j_jmst_2021_01_084
S1005030221002528
GroupedDBID --K
--M
-02
-0B
-SB
-S~
.~1
0R~
1B1
1~.
4.4
457
5GY
5VR
5VS
5XA
5XC
5XL
8P~
92M
9D9
9DB
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CHBEP
CW9
DU5
EBS
EFJIC
EFLBG
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q--
Q38
R-B
ROL
RT2
S..
SDF
SES
SPC
SPCBC
SSM
SSZ
T5K
T8R
U1F
U1G
U5B
U5L
~G-
92H
92I
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFUIB
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
HZ~
RIG
SSH
TCJ
TGT
ID FETCH-LOGICAL-c366t-4b3074b8e01146b5f9a87d4cb94e94dda480d0279ba205eb0c18f3fcbde21673
IEDL.DBID .~1
ISSN 1005-0302
IngestDate Thu Apr 24 23:11:24 EDT 2025
Tue Jul 01 02:20:04 EDT 2025
Fri Feb 23 02:43:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fluorescent stain of water
Superhydrophobic aluminum surface
Mechanical stability
Friction
Laser dimple-pattern
Air trapping ability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-4b3074b8e01146b5f9a87d4cb94e94dda480d0279ba205eb0c18f3fcbde21673
ORCID 0000-0001-8328-7999
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_jmst_2021_01_084
crossref_primary_10_1016_j_jmst_2021_01_084
elsevier_sciencedirect_doi_10_1016_j_jmst_2021_01_084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-30
PublicationDateYYYYMMDD 2021-10-30
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of materials science & technology
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tian, Verho, Ras (bib0290) 2016; 352
Wang, Tang, Cai, Xiong (bib0105) 2019; 21
Shen, Liu, Chen, Zhang, Zhang, Guan, Zhang, Huang, Zhao, Jin, Liu (bib0145) 2020; 400
Zhu, Duan, Wang, Yang, Wang, Huang, Xia (bib0060) 2018; 10
Jiao, Chu, Liu, Mu, Li, Wang, Liao, Wang, Xue, Niu, Jiang, Han, Ren (bib0305) 2020; 12
Liu, Xu, Ma (bib0080) 2012; 116
Niu, Han, Hu, Chao, Song, Howlader, Cao (bib0155) 2021; 22
Deng, Mammen, Butt, Vollmer (bib0190) 2012; 335
Das, Kumar, Samal, Mohanty, Nayak (bib0020) 2018; 57
Cassie, Baxter (bib0045) 1944; 40
Wei, Wang, Liu, Wang, Li, Wang (bib0090) 2021; 404
Shen, Wu, Tao, Zhu, Lai, Chen (bib0030) 2019; 103
Liu, Feng, Guo (bib0085) 2013; 117
Peng, Chen, Tiwari (bib0200) 2018; 17
Song, Gao, Zhao, Lu, Huang, Liu, Carmalt, Deng, Parkin (bib0160) 2017; 11
Guo, Zhu, Zhang, Luo (bib0325) 2020; 32
Milles, Voisiat, Nitschke, Lasagni (bib0245) 2019; 270
Zhang, Liu, Zhang, Li, Wang, Wang, Zhu (bib0320) 2018; 343
Ball (bib0285) 1999; 400
Yang, Liu, Tian (bib0260) 2019; 533
Vercillo, Tonnicchia, Romano, García-Girón, Aguilar-Morales, Alamri, Dimov, Kunze, Lasagni, Bonaccurso (bib0140) 2020; 30
Li, Wang, Moita, Zhang, Wang, Liu (bib0120) 2020; 505
Rico, Mora, García, Agüero, Borrás, González-Elipe, López-Santos (bib0125) 2020; 21
Pan, Guo, Björnmalm, Richardson, Li, Peng, Bertleff-Zieschang, Xu, Jiang, Caruso (bib0205) 2018; 17
Liu, Wang, Huang, Chen, Chen, Lai (bib0010) 2018; 28
Zhang, Huang, Chen, Yang, Lai (bib0040) 2019; 7
Wang, Sun, Hokkanen, Zhang, Lin, Liu, Zhu, Zhou, Chang, He, Zhou, Chen, Wang, Ras, Deng (bib0210) 2020; 582
Song, Huang, Zhao, Wu, Liu, Lu, Deng, Carmalt, Parkin, Sun (bib0165) 2019; 11
Xiao, Wang, Yao, Yu, Zhang (bib0225) 2019; 35
Ahuir-Torres, Arenas, Perrie, de Damborenea (bib0240) 2018; 103
Yan, Jiang, Jia, Wang (bib0035) 2020; 12
Guo, Zhang, Wang, Xu, Geng (bib0230) 2020; 55
Jagdheesh, Diaz, Marimuthu, Ocan (bib0255) 2017; 5
Yao, Wu, Huang, Jiang, Atrens, Pan (bib0025) 2020; 52
Cheng, Lu, Xu, Boukherroub, Szunerits, Liang (bib0220) 2017; 723
Hass, Schneider, Curioni, Andreoni (bib0250) 1998; 282
Yang, Liu, Lu, Song, Huang, Zhou, Jin, Xu (bib0280) 2016; 120
Ou, Ma, Wang, Li, Fang, Lei, Amirfazli (bib0315) 2020; 147
Luo, Li (bib0310) 2019; 15
Samanta, Huang, Chaudhry, Wang, Shaw, Din (bib0150) 2020; 12
Si, Dong, Jiang (bib0075) 2018; 4
Feng, Li, Li, Li, Zhang, Zhai, Song, Liu, Jiang, Zhu (bib0005) 2002; 14
Li, Wang, Tan, Yang, Deng (bib0185) 2019; 11
Sataeva, Boinovich, Emelyanenko, Domantovsky, Emelyanenko (bib0135) 2020; 397
Wang, Xiong, Deng, Shi, Wang (bib0095) 2015; 7
Si, Zhao, Chen, Xu, Tao, Li, Ran (bib0265) 2013; 407
Lopez, Faucon, Devillard, Zaouter, Honninger, Mottay, Kling (bib0235) 2015; 10
Lin, Han, Cai, Liu, Luo, Zhang, Zhong (bib0110) 2018; 6
Qiu, Li, Tong, Xiong, Li, Wu (bib0215) 2020; 71
Wang, Wei, Li, Duan, Han, Xie (bib0295) 2020; 8
Pan, Cai, Liu, Luo, Chen, Zhang, Zhong (bib0115) 2019; 7
Fan, Pan, Zhong (bib0330) 2019; 35
Graeber, Martin Kieliger, Schutzius, Poulikakos (bib0170) 2018; 10
Yang, Zhuang, Lu, Wang (bib0270) 2021; 15
Wang, Liu, Yao, Jiang (bib0015) 2015; 115
Liu, Gu, Wang, Du, Gao, Elbaz, Sun, Liao, Xiao, Gu (bib0175) 2018; 30
Long, Zhou, Huang, Xie (bib0130) 2020; 7
Yang, Choi, Liu, Liu (bib0275) 2019; 35
Wang, Zhao, Bian, Wang, Liu (bib0055) 2017; 11
Tong, Xiong, Wang, Wu, Zhou (bib0065) 2019; 176
Siddiqui, Li, Wang, Ou, Amirfazli (bib0070) 2021; 542
Tong, Xiong, Wang, Yan, Tian (bib0100) 2018; 352
Lu, Sathasivam, Song, Crick, Carmalt, Parkin (bib0195) 2015; 347
Cheng, Li, Zheng, Su, Wang, Jiang (bib0050) 2011; 7
Liu, Gu, Ding, Du, He, Sun, Liao, Xiao, Gu (bib0180) 2019; 15
Zhuang, Liao, Lu, Dixon, Jiamprasertboon, Chen, Sathasivam, Parkin, Carmalt (bib0300) 2017; 9
Deng (10.1016/j.jmst.2021.01.084_bib0190) 2012; 335
Guo (10.1016/j.jmst.2021.01.084_bib0230) 2020; 55
Qiu (10.1016/j.jmst.2021.01.084_bib0215) 2020; 71
Yang (10.1016/j.jmst.2021.01.084_bib0275) 2019; 35
Milles (10.1016/j.jmst.2021.01.084_bib0245) 2019; 270
Liu (10.1016/j.jmst.2021.01.084_bib0010) 2018; 28
Lin (10.1016/j.jmst.2021.01.084_bib0110) 2018; 6
Lu (10.1016/j.jmst.2021.01.084_bib0195) 2015; 347
Yao (10.1016/j.jmst.2021.01.084_bib0025) 2020; 52
Tong (10.1016/j.jmst.2021.01.084_bib0065) 2019; 176
Cheng (10.1016/j.jmst.2021.01.084_bib0220) 2017; 723
Song (10.1016/j.jmst.2021.01.084_bib0165) 2019; 11
Hass (10.1016/j.jmst.2021.01.084_bib0250) 1998; 282
Wang (10.1016/j.jmst.2021.01.084_bib0015) 2015; 115
Tian (10.1016/j.jmst.2021.01.084_bib0290) 2016; 352
Lopez (10.1016/j.jmst.2021.01.084_bib0235) 2015; 10
Guo (10.1016/j.jmst.2021.01.084_bib0325) 2020; 32
Graeber (10.1016/j.jmst.2021.01.084_bib0170) 2018; 10
Pan (10.1016/j.jmst.2021.01.084_bib0115) 2019; 7
Wei (10.1016/j.jmst.2021.01.084_bib0090) 2021; 404
Wang (10.1016/j.jmst.2021.01.084_bib0210) 2020; 582
Li (10.1016/j.jmst.2021.01.084_bib0120) 2020; 505
Zhang (10.1016/j.jmst.2021.01.084_bib0320) 2018; 343
Peng (10.1016/j.jmst.2021.01.084_bib0200) 2018; 17
Song (10.1016/j.jmst.2021.01.084_bib0160) 2017; 11
Cheng (10.1016/j.jmst.2021.01.084_bib0050) 2011; 7
Liu (10.1016/j.jmst.2021.01.084_bib0080) 2012; 116
Liu (10.1016/j.jmst.2021.01.084_bib0175) 2018; 30
Yan (10.1016/j.jmst.2021.01.084_bib0035) 2020; 12
Fan (10.1016/j.jmst.2021.01.084_bib0330) 2019; 35
Sataeva (10.1016/j.jmst.2021.01.084_bib0135) 2020; 397
Si (10.1016/j.jmst.2021.01.084_bib0075) 2018; 4
Wang (10.1016/j.jmst.2021.01.084_bib0105) 2019; 21
Shen (10.1016/j.jmst.2021.01.084_bib0145) 2020; 400
Samanta (10.1016/j.jmst.2021.01.084_bib0150) 2020; 12
Li (10.1016/j.jmst.2021.01.084_bib0185) 2019; 11
Ahuir-Torres (10.1016/j.jmst.2021.01.084_bib0240) 2018; 103
Rico (10.1016/j.jmst.2021.01.084_bib0125) 2020; 21
Long (10.1016/j.jmst.2021.01.084_bib0130) 2020; 7
Yang (10.1016/j.jmst.2021.01.084_bib0260) 2019; 533
Siddiqui (10.1016/j.jmst.2021.01.084_bib0070) 2021; 542
Zhuang (10.1016/j.jmst.2021.01.084_bib0300) 2017; 9
Ball (10.1016/j.jmst.2021.01.084_bib0285) 1999; 400
Zhu (10.1016/j.jmst.2021.01.084_bib0060) 2018; 10
Vercillo (10.1016/j.jmst.2021.01.084_bib0140) 2020; 30
Liu (10.1016/j.jmst.2021.01.084_bib0085) 2013; 117
Shen (10.1016/j.jmst.2021.01.084_bib0030) 2019; 103
Tong (10.1016/j.jmst.2021.01.084_bib0100) 2018; 352
Ou (10.1016/j.jmst.2021.01.084_bib0315) 2020; 147
Feng (10.1016/j.jmst.2021.01.084_bib0005) 2002; 14
Wang (10.1016/j.jmst.2021.01.084_bib0295) 2020; 8
Das (10.1016/j.jmst.2021.01.084_bib0020) 2018; 57
Pan (10.1016/j.jmst.2021.01.084_bib0205) 2018; 17
Wang (10.1016/j.jmst.2021.01.084_bib0055) 2017; 11
Yang (10.1016/j.jmst.2021.01.084_bib0280) 2016; 120
Xiao (10.1016/j.jmst.2021.01.084_bib0225) 2019; 35
Luo (10.1016/j.jmst.2021.01.084_bib0310) 2019; 15
Wang (10.1016/j.jmst.2021.01.084_bib0095) 2015; 7
Jagdheesh (10.1016/j.jmst.2021.01.084_bib0255) 2017; 5
Liu (10.1016/j.jmst.2021.01.084_bib0180) 2019; 15
Yang (10.1016/j.jmst.2021.01.084_bib0270) 2021; 15
Niu (10.1016/j.jmst.2021.01.084_bib0155) 2021; 22
Si (10.1016/j.jmst.2021.01.084_bib0265) 2013; 407
Cassie (10.1016/j.jmst.2021.01.084_bib0045) 1944; 40
Jiao (10.1016/j.jmst.2021.01.084_bib0305) 2020; 12
Zhang (10.1016/j.jmst.2021.01.084_bib0040) 2019; 7
References_xml – volume: 505
  year: 2020
  ident: bib0120
  publication-title: Appl. Surf. Sci.
– volume: 723
  start-page: 225
  year: 2017
  end-page: 236
  ident: bib0220
  publication-title: J. Alloys Compd.
– volume: 15
  start-page: 2589
  year: 2021
  end-page: 2599
  ident: bib0270
  publication-title: ACS Nano
– volume: 35
  start-page: 6650
  year: 2019
  end-page: 6656
  ident: bib0225
  publication-title: Langmuir
– volume: 21
  start-page: 15705
  year: 2019
  end-page: 15711
  ident: bib0105
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 7125
  year: 2017
  end-page: 7136
  ident: bib0255
  publication-title: J. Mater. Chem. A
– volume: 71
  start-page: 1711
  year: 2020
  end-page: 1720
  ident: bib0215
  publication-title: Mater. Corros.
– volume: 352
  start-page: 142
  year: 2016
  end-page: 143
  ident: bib0290
  publication-title: Science
– volume: 32
  start-page: 320
  year: 2020
  end-page: 330
  ident: bib0325
  publication-title: Prog. Chem.
– volume: 17
  start-page: 1040
  year: 2018
  end-page: 1047
  ident: bib0205
  publication-title: Nat. Mater.
– volume: 582
  start-page: 55
  year: 2020
  end-page: 59
  ident: bib0210
  publication-title: Nature
– volume: 352
  start-page: 609
  year: 2018
  end-page: 618
  ident: bib0100
  publication-title: Surf. Coat. Technol.
– volume: 11
  start-page: 12385
  year: 2017
  end-page: 12391
  ident: bib0055
  publication-title: ACS Nano
– volume: 7
  start-page: 5948
  year: 2011
  end-page: 5951
  ident: bib0050
  publication-title: Soft Matter
– volume: 52
  start-page: 100
  year: 2020
  end-page: 118
  ident: bib0025
  publication-title: J. Mater. Sci. Technol.
– volume: 176
  year: 2019
  ident: bib0065
  publication-title: Compos. Pt. B-Eng.
– volume: 103
  start-page: 100
  year: 2018
  end-page: 109
  ident: bib0240
  publication-title: Opt. Lasers Eng.
– volume: 7
  start-page: 38
  year: 2019
  end-page: 63
  ident: bib0040
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 2924
  year: 2020
  end-page: 2938
  ident: bib0035
  publication-title: Nanoscale
– volume: 282
  start-page: 265
  year: 1998
  end-page: 268
  ident: bib0250
  publication-title: Science
– volume: 407
  start-page: 482
  year: 2013
  end-page: 487
  ident: bib0265
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 18050
  year: 2019
  end-page: 18062
  ident: bib0115
  publication-title: J. Mater. Chem. A
– volume: 116
  start-page: 18722
  year: 2012
  end-page: 18727
  ident: bib0080
  publication-title: J. Phys. Chem. C
– volume: 347
  start-page: 1132
  year: 2015
  end-page: 1135
  ident: bib0195
  publication-title: Science
– volume: 8
  start-page: 3509
  year: 2020
  end-page: 3516
  ident: bib0295
  publication-title: J. Mater. Chem. A
– volume: 40
  start-page: 546
  year: 1944
  end-page: 551
  ident: bib0045
  publication-title: Trans. Faraday Soc.
– volume: 21
  year: 2020
  ident: bib0125
  publication-title: Appl. Mater. Today
– volume: 28
  year: 2018
  ident: bib0010
  publication-title: Adv. Funct. Mater.
– volume: 15
  year: 2019
  ident: bib0310
  publication-title: Small
– volume: 12
  start-page: 8536
  year: 2020
  end-page: 8545
  ident: bib0305
  publication-title: Nanoscale
– volume: 30
  year: 2018
  ident: bib0175
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1857
  year: 2002
  end-page: 1860
  ident: bib0005
  publication-title: Adv. Mater.
– volume: 270
  start-page: 142
  year: 2019
  end-page: 151
  ident: bib0245
  publication-title: J. Mater. Process. Technol.
– volume: 397
  year: 2020
  ident: bib0135
  publication-title: Surf. Coat. Technol.
– volume: 11
  start-page: 45345
  year: 2019
  end-page: 45353
  ident: bib0165
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 355
  year: 2018
  end-page: 360
  ident: bib0200
  publication-title: Nat. Mater.
– volume: 115
  start-page: 8230
  year: 2015
  end-page: 8293
  ident: bib0015
  publication-title: Chem. Rev.
– volume: 10
  start-page: 13045
  year: 2018
  end-page: 13054
  ident: bib0060
  publication-title: Nanoscale
– volume: 4
  start-page: 1102
  year: 2018
  end-page: 1112
  ident: bib0075
  publication-title: ACS Cent. Sci.
– volume: 10
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib0235
  publication-title: J. Laser Micro/Nanoeng.
– volume: 117
  start-page: 25519
  year: 2013
  end-page: 25525
  ident: bib0085
  publication-title: J. Phys. Chem. C
– volume: 22
  year: 2021
  ident: bib0155
  publication-title: Surf. Interfaces
– volume: 335
  start-page: 67
  year: 2012
  end-page: 70
  ident: bib0190
  publication-title: Science
– volume: 55
  start-page: 11658
  year: 2020
  end-page: 11668
  ident: bib0230
  publication-title: J. Mater. Sci.
– volume: 7
  start-page: 6260
  year: 2015
  end-page: 6272
  ident: bib0095
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 29458
  year: 2019
  end-page: 29465
  ident: bib0185
  publication-title: ACS Appl. Mater. Interfaces
– volume: 103
  start-page: 509
  year: 2019
  end-page: 557
  ident: bib0030
  publication-title: Prog. Mater. Sci.
– volume: 147
  year: 2020
  ident: bib0315
  publication-title: Prog. Org. Coat.
– volume: 6
  start-page: 9049
  year: 2018
  end-page: 9056
  ident: bib0110
  publication-title: J. Mater. Chem. A
– volume: 120
  start-page: 7233
  year: 2016
  end-page: 7240
  ident: bib0280
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 43275
  year: 2018
  end-page: 43281
  ident: bib0170
  publication-title: ACS Appl. Mater. Interfaces
– volume: 343
  start-page: 699
  year: 2018
  end-page: 707
  ident: bib0320
  publication-title: Chem. Eng. J.
– volume: 400
  start-page: 507
  year: 1999
  end-page: 509
  ident: bib0285
  publication-title: Nature
– volume: 533
  start-page: 268
  year: 2019
  end-page: 277
  ident: bib0260
  publication-title: J. Colloid Interface Sci.
– volume: 35
  start-page: 16693
  year: 2019
  end-page: 16711
  ident: bib0330
  publication-title: Langmuir
– volume: 30
  year: 2020
  ident: bib0140
  publication-title: Adv. Funct. Mater.
– volume: 15
  year: 2019
  ident: bib0180
  publication-title: Small
– volume: 404
  year: 2021
  ident: bib0090
  publication-title: Chem. Eng. J.
– volume: 542
  year: 2021
  ident: bib0070
  publication-title: Appl. Surf. Sci.
– volume: 400
  year: 2020
  ident: bib0145
  publication-title: Surf. Coat. Technol.
– volume: 12
  start-page: 18032
  year: 2020
  end-page: 18045
  ident: bib0150
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 9259
  year: 2017
  end-page: 9267
  ident: bib0160
  publication-title: ACS Nano
– volume: 57
  start-page: 2727
  year: 2018
  end-page: 2745
  ident: bib0020
  publication-title: Ind. Eng. Chem. Res.
– volume: 35
  start-page: 935
  year: 2019
  end-page: 942
  ident: bib0275
  publication-title: Langmuir
– volume: 9
  start-page: 42327
  year: 2017
  end-page: 42335
  ident: bib0300
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2020
  ident: bib0130
  publication-title: Adv. Mater. Interfaces
– volume: 17
  start-page: 1040
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0205
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0178-2
– volume: 10
  start-page: 1
  year: 2015
  ident: 10.1016/j.jmst.2021.01.084_bib0235
  publication-title: J. Laser Micro/Nanoeng.
  doi: 10.2961/jlmn.2015.01.0001
– volume: 11
  start-page: 45345
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0165
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16509
– volume: 533
  start-page: 268
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0260
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.08.082
– volume: 120
  start-page: 7233
  year: 2016
  ident: 10.1016/j.jmst.2021.01.084_bib0280
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b02067
– volume: 8
  start-page: 3509
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0295
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13281C
– volume: 400
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0145
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.126225
– volume: 400
  start-page: 507
  year: 1999
  ident: 10.1016/j.jmst.2021.01.084_bib0285
  publication-title: Nature
  doi: 10.1038/22883
– volume: 30
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0140
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910268
– volume: 147
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0315
  publication-title: Prog. Org. Coat.
– volume: 32
  start-page: 320
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0325
  publication-title: Prog. Chem.
– volume: 55
  start-page: 11658
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0230
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-04733-0
– volume: 116
  start-page: 18722
  year: 2012
  ident: 10.1016/j.jmst.2021.01.084_bib0080
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp302794p
– volume: 270
  start-page: 142
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0245
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2019.02.023
– volume: 7
  start-page: 6260
  year: 2015
  ident: 10.1016/j.jmst.2021.01.084_bib0095
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00558
– volume: 7
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0130
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000997
– volume: 17
  start-page: 355
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0200
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0044-2
– volume: 582
  start-page: 55
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0210
  publication-title: Nature
  doi: 10.1038/s41586-020-2331-8
– volume: 40
  start-page: 546
  year: 1944
  ident: 10.1016/j.jmst.2021.01.084_bib0045
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9444000546
– volume: 103
  start-page: 509
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0030
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.03.004
– volume: 11
  start-page: 9259
  year: 2017
  ident: 10.1016/j.jmst.2021.01.084_bib0160
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04494
– volume: 21
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0125
  publication-title: Appl. Mater. Today
– volume: 9
  start-page: 42327
  year: 2017
  ident: 10.1016/j.jmst.2021.01.084_bib0300
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13182
– volume: 723
  start-page: 225
  year: 2017
  ident: 10.1016/j.jmst.2021.01.084_bib0220
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.06.241
– volume: 10
  start-page: 43275
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0170
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16893
– volume: 21
  start-page: 15705
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0105
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP02132A
– volume: 5
  start-page: 7125
  year: 2017
  ident: 10.1016/j.jmst.2021.01.084_bib0255
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01385J
– volume: 7
  start-page: 38
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0040
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09403A
– volume: 404
  year: 2021
  ident: 10.1016/j.jmst.2021.01.084_bib0090
  publication-title: Chem. Eng. J.
– volume: 22
  year: 2021
  ident: 10.1016/j.jmst.2021.01.084_bib0155
  publication-title: Surf. Interfaces
– volume: 352
  start-page: 142
  year: 2016
  ident: 10.1016/j.jmst.2021.01.084_bib0290
  publication-title: Science
  doi: 10.1126/science.aaf2073
– volume: 347
  start-page: 1132
  year: 2015
  ident: 10.1016/j.jmst.2021.01.084_bib0195
  publication-title: Science
  doi: 10.1126/science.aaa0946
– volume: 30
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0175
  publication-title: Adv. Mater.
– volume: 15
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0180
  publication-title: Small
– volume: 343
  start-page: 699
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0320
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.012
– volume: 10
  start-page: 13045
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0060
  publication-title: Nanoscale
  doi: 10.1039/C8NR03277G
– volume: 4
  start-page: 1102
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0075
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00504
– volume: 35
  start-page: 935
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0275
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03969
– volume: 12
  start-page: 2924
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0035
  publication-title: Nanoscale
  doi: 10.1039/C9NR09620E
– volume: 52
  start-page: 100
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0025
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.02.055
– volume: 12
  start-page: 18032
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0150
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21438
– volume: 176
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0065
  publication-title: Compos. Pt. B-Eng.
  doi: 10.1016/j.compositesb.2019.107267
– volume: 7
  start-page: 18050
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0115
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04484A
– volume: 505
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0120
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 9049
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0110
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01965G
– volume: 335
  start-page: 67
  year: 2012
  ident: 10.1016/j.jmst.2021.01.084_bib0190
  publication-title: Science
  doi: 10.1126/science.1207115
– volume: 117
  start-page: 25519
  year: 2013
  ident: 10.1016/j.jmst.2021.01.084_bib0085
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp408172v
– volume: 11
  start-page: 29458
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0185
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08947
– volume: 103
  start-page: 100
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0240
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2017.12.004
– volume: 15
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0310
  publication-title: Small
– volume: 282
  start-page: 265
  year: 1998
  ident: 10.1016/j.jmst.2021.01.084_bib0250
  publication-title: Science
  doi: 10.1126/science.282.5387.265
– volume: 11
  start-page: 12385
  year: 2017
  ident: 10.1016/j.jmst.2021.01.084_bib0055
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06371
– volume: 7
  start-page: 5948
  year: 2011
  ident: 10.1016/j.jmst.2021.01.084_bib0050
  publication-title: Soft Matter
  doi: 10.1039/c1sm05452j
– volume: 71
  start-page: 1711
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0215
  publication-title: Mater. Corros.
  doi: 10.1002/maco.202011807
– volume: 35
  start-page: 16693
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0330
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b02986
– volume: 542
  year: 2021
  ident: 10.1016/j.jmst.2021.01.084_bib0070
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148534
– volume: 14
  start-page: 1857
  year: 2002
  ident: 10.1016/j.jmst.2021.01.084_bib0005
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200290020
– volume: 397
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0135
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125993
– volume: 115
  start-page: 8230
  year: 2015
  ident: 10.1016/j.jmst.2021.01.084_bib0015
  publication-title: Chem. Rev.
  doi: 10.1021/cr400083y
– volume: 28
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0010
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 2727
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0020
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b04887
– volume: 15
  start-page: 2589
  year: 2021
  ident: 10.1016/j.jmst.2021.01.084_bib0270
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07417
– volume: 352
  start-page: 609
  year: 2018
  ident: 10.1016/j.jmst.2021.01.084_bib0100
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.08.035
– volume: 12
  start-page: 8536
  year: 2020
  ident: 10.1016/j.jmst.2021.01.084_bib0305
  publication-title: Nanoscale
  doi: 10.1039/C9NR10612J
– volume: 35
  start-page: 6650
  year: 2019
  ident: 10.1016/j.jmst.2021.01.084_bib0225
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00690
– volume: 407
  start-page: 482
  year: 2013
  ident: 10.1016/j.jmst.2021.01.084_bib0265
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.06.068
SSID ssj0037588
Score 2.4578054
Snippet [Display omitted] •The surface wettability of the superhydrophobic samples is regulated by controlling the dimple-pattern dimensions during the laser...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms Air trapping ability
Fluorescent stain of water
Friction
Laser dimple-pattern
Mechanical stability
Superhydrophobic aluminum surface
Title Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates
URI https://dx.doi.org/10.1016/j.jmst.2021.01.084
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409aIH4zNatdmDN4PlsbvQY9PY1Fcv1qQ3wj6wNC0QCjG9-NvdAVprYnow4cKGScgwzDcD33yL0C0IfriSScNSlBmECcfwhM0NU2ksF4Trtgi-Q76O2PCdPE3opIH661kYoFXWub_K6WW2rlc6tTc7aRR13qxSy0RjEKiIUhsGfglxIcrvvzY0D0fXw9U4HJDUHGDztH44XrPFEviUtlVKd3rkb3DaApzBETqsK0Xcq27mGDVUfIIOtvQDT5F80RiUYSBvFJmSWEag9WukpWZmvMR5gj_KvXSxLvPwssjCQCj8qfK8Uude4STUy6nKpiuZJek04ZHAgc5XUVwscDqHQvQMjQcP4_7QqLdNMITDWG4Qrt9bwj0FvQ7jNOwGniuJ4F2iukTKgHim1N1olwe2SRU3heWFTii4VLbFXOccNeMkVhcIW4EkrggDJqkkFnEDqvtFHXrwr1G6VF4ia-0uX9SS4rCzxdxfc8dmPrjYBxf7pj48conuNjZpJaix82q6fgr-r7DwdcbfYdf6p90V2oezEpzMa9TMs0Ld6Koj5-0yrNpor_f4PBx9A9i82Oo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remg5IPoSj0J9aE9VunnYTvbQA6JFS1m4dCtxs-JH2CBIomxWaC_8KH4hM0mWUglxqISUkxNHyng030z8-RuAzyT4EVtpvcAJ6XFpIi8xofZ8h1huuMayiP5DnpzK0R_-60ycrcDt8iwM0Sr72N_F9DZa9yOD3pqDKs8Hv4NWywQxiFRERZj0zMpjt7jGum32_egHLvKXMDz8OTkYeX1rAc9EUjYe1-jbXCeO6gGpRTZMk9hyo4fcDbm1KU98ixXbUKehL5z2TZBkUWa0dWEg4whf-wJecowW1DXh2809rSTC_Ls7fkekuIjYQ9t_OWUXVzPib4ZBKxWa8MfB8AHAHW7Aep-Zsv3u49_AiivewtoDvcJ3YMeIeTUjssi8dpbZnLSFvarV6CxmrCnZedu7l2FayWbzOkuNY9euaTo18AUrMxyuXD1d2LqspqXODUsxPubF_IpVl5T4vofJc9jyA6wWZeE2gQWp5bHJUmmF5QGPU4H1Kbo67W3aWNgtCJbmUqaXMKdOGpdqyVW7UGRiRSZWPl4J34Kv93OqTsDjyafFchXUP26oEGGemLf9n_M-wavR5GSsxkenxzvwmu60wOh_hNWmnrtdzHgavde6GAP1zC59Bzh2FEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+textured+dimple-patterns+to+govern+the+surface+wettability+of+superhydrophobic+aluminum+plates&rft.jtitle=Journal+of+materials+science+%26+technology&rft.au=Tong%2C+Wei&rft.au=Cui%2C+Lingling&rft.au=Qiu%2C+Rongxian&rft.au=Yan%2C+Chengqi&rft.date=2021-10-30&rft.pub=Elsevier+Ltd&rft.issn=1005-0302&rft.eissn=1941-1162&rft.volume=89&rft.spage=59&rft.epage=67&rft_id=info:doi/10.1016%2Fj.jmst.2021.01.084&rft.externalDocID=S1005030221002528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-0302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-0302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-0302&client=summon