Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates
[Display omitted] •The surface wettability of the superhydrophobic samples is regulated by controlling the dimple-pattern dimensions during the laser processing.•A fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules.•Such a f...
Saved in:
Published in | Journal of materials science & technology Vol. 89; pp. 59 - 67 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The surface wettability of the superhydrophobic samples is regulated by controlling the dimple-pattern dimensions during the laser processing.•A fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules.•Such a fluorescence method can intuitively display the air trapping ability of the superhydrophobic surface.•Laser-textured superhydrophobic samples show strong mechanical stability in comparison with bare aluminum alloy.
A laser texturing technique herein can endow bare aluminum alloy surface with regular dimple-pattern array and thus generates a case hardening. After STA treatment, these laser-textured samples become superhydrophobic. The surface wettability of the laser-textured samples can be regulated by controlling the dimple-pattern dimensions during the laser processing. It is noteworthy that a fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules. Compared with a general method of the Cassie-Baxter theoretical calculation, this fluorescence method intuitively exhibits the air trapping ability of the superhydrophobic surface. Furthermore, the laser-textured superhydrophobic samples have a notable hysteresis phenomenon at the initial period of UMT friction because the air cushion trapped within superhydrophobic samples have strong repellency against water droplets on the hydrophilic steel ball. Additionally, such samples display strong mechanical stability in comparison with bare aluminum alloy because of the presence of case hardening on the surface of the laser patterns. The research results above provide a valuable reference for designing a surface with different wettability, which may inspire practical applications in the fields of fluid transport, droplet manipulation, water harvesting and microfluidic devices. |
---|---|
AbstractList | [Display omitted]
•The surface wettability of the superhydrophobic samples is regulated by controlling the dimple-pattern dimensions during the laser processing.•A fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules.•Such a fluorescence method can intuitively display the air trapping ability of the superhydrophobic surface.•Laser-textured superhydrophobic samples show strong mechanical stability in comparison with bare aluminum alloy.
A laser texturing technique herein can endow bare aluminum alloy surface with regular dimple-pattern array and thus generates a case hardening. After STA treatment, these laser-textured samples become superhydrophobic. The surface wettability of the laser-textured samples can be regulated by controlling the dimple-pattern dimensions during the laser processing. It is noteworthy that a fluorescence method is utilized to record the zones on the superhydrophobic surface penetrated by small enough water molecules. Compared with a general method of the Cassie-Baxter theoretical calculation, this fluorescence method intuitively exhibits the air trapping ability of the superhydrophobic surface. Furthermore, the laser-textured superhydrophobic samples have a notable hysteresis phenomenon at the initial period of UMT friction because the air cushion trapped within superhydrophobic samples have strong repellency against water droplets on the hydrophilic steel ball. Additionally, such samples display strong mechanical stability in comparison with bare aluminum alloy because of the presence of case hardening on the surface of the laser patterns. The research results above provide a valuable reference for designing a surface with different wettability, which may inspire practical applications in the fields of fluid transport, droplet manipulation, water harvesting and microfluidic devices. |
Author | Tong, Wei Liu, Yuntong Qiu, Rongxian Wang, Nan Cui, Lingling Yan, Chengqi Xiong, Dangsheng |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-8328-7999 surname: Tong fullname: Tong, Wei organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 2 givenname: Lingling surname: Cui fullname: Cui, Lingling organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 3 givenname: Rongxian surname: Qiu fullname: Qiu, Rongxian organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 4 givenname: Chengqi surname: Yan fullname: Yan, Chengqi organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 5 givenname: Yuntong surname: Liu fullname: Liu, Yuntong organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 6 givenname: Nan surname: Wang fullname: Wang, Nan organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, China – sequence: 7 givenname: Dangsheng surname: Xiong fullname: Xiong, Dangsheng email: xiongds@163.com organization: School of Materials Science & Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China |
BookMark | eNp9kMtqwzAQRUVJoUnaH-hKP2B3ZCu2DN2U0BcEusle6DFuFGzLSEra_H0d0lUXhQtzGTgDcxZkNvgBCblnkDNg1cM-3_cx5QUULIcpgl-ROWs4yxiritnUAVYZlFDckEWMe4CyXgkxJ3ajIgaa8DsdAlpqXT92mI0qJQxDpMnTT3-cKk07pPEQWmWQfmFKSrvOpRP17bQeMexONvhx57UzVHWH3g2Hno6dShhvyXWruoh3v3NJti_P2_Vbtvl4fV8_bTJTVlXKuC6h5logMMYrvWobJWrLjW44NtxaxQVYKOpGqwJWqMEw0Zat0RYLVtXlkojLWRN8jAFbaVxSyfkhBeU6yUCeZcm9PMuSZ1kSpgg-ocUfdAyuV-H0P_R4gXD66egwyGgcDgatC2iStN79h_8Aka-JGw |
CitedBy_id | crossref_primary_10_1016_j_surfin_2023_102670 crossref_primary_10_3390_ma15010106 crossref_primary_10_1016_j_colsurfa_2022_129335 crossref_primary_10_1108_ILT_11_2023_0351 crossref_primary_10_1016_j_apsusc_2023_158612 crossref_primary_10_1016_j_corcom_2024_01_001 crossref_primary_10_1016_j_matlet_2023_135453 crossref_primary_10_1016_j_triboint_2024_109550 crossref_primary_10_1016_j_matlet_2024_137955 crossref_primary_10_1016_j_surfcoat_2022_128406 crossref_primary_10_1007_s42235_023_00333_1 crossref_primary_10_1016_j_porgcoat_2023_107786 crossref_primary_10_1016_j_ijmecsci_2022_107946 crossref_primary_10_1016_j_mtcomm_2024_108616 crossref_primary_10_2474_trol_17_318 crossref_primary_10_1016_j_surfcoat_2024_130995 crossref_primary_10_3390_coatings12111717 crossref_primary_10_1016_j_jajp_2024_100249 crossref_primary_10_1016_j_susmat_2023_e00693 crossref_primary_10_1016_j_optlaseng_2024_108529 crossref_primary_10_3390_coatings13061049 crossref_primary_10_1007_s42235_024_00516_4 crossref_primary_10_1016_j_apsusc_2023_158944 crossref_primary_10_1016_j_triboint_2024_109637 crossref_primary_10_1039_D3MA01058A crossref_primary_10_1016_j_surfin_2025_105877 crossref_primary_10_3390_nano12010044 crossref_primary_10_1088_1742_6596_2933_1_012004 crossref_primary_10_1021_acsaenm_2c00102 crossref_primary_10_1002_smll_202405424 crossref_primary_10_1016_j_mtphys_2022_100651 crossref_primary_10_3390_gels10100648 crossref_primary_10_3390_ma17143423 crossref_primary_10_1007_s44251_023_00033_2 crossref_primary_10_1016_j_porgcoat_2023_107875 crossref_primary_10_1016_j_colsurfa_2024_134330 crossref_primary_10_1016_j_ces_2022_118027 crossref_primary_10_3390_mi14030704 crossref_primary_10_1016_j_ijleo_2023_171581 crossref_primary_10_1016_j_optlastec_2022_108858 crossref_primary_10_1007_s00339_023_06750_7 crossref_primary_10_1016_j_matchemphys_2024_129791 crossref_primary_10_1016_j_jnoncrysol_2022_121771 crossref_primary_10_1016_j_apsusc_2022_155947 crossref_primary_10_1016_j_jmatprotec_2024_118549 |
Cites_doi | 10.1038/s41563-018-0178-2 10.2961/jlmn.2015.01.0001 10.1021/acsami.9b16509 10.1016/j.jcis.2018.08.082 10.1021/acs.jpcc.6b02067 10.1039/C9TA13281C 10.1016/j.surfcoat.2020.126225 10.1038/22883 10.1002/adfm.201910268 10.1007/s10853-020-04733-0 10.1021/jp302794p 10.1016/j.jmatprotec.2019.02.023 10.1021/acsami.5b00558 10.1002/admi.202000997 10.1038/s41563-018-0044-2 10.1038/s41586-020-2331-8 10.1039/tf9444000546 10.1016/j.pmatsci.2019.03.004 10.1021/acsnano.7b04494 10.1021/acsami.7b13182 10.1016/j.jallcom.2017.06.241 10.1021/acsami.8b16893 10.1039/C9CP02132A 10.1039/C7TA01385J 10.1039/C8TA09403A 10.1126/science.aaf2073 10.1126/science.aaa0946 10.1016/j.cej.2018.03.012 10.1039/C8NR03277G 10.1021/acscentsci.8b00504 10.1021/acs.langmuir.8b03969 10.1039/C9NR09620E 10.1016/j.jmst.2020.02.055 10.1021/acsami.9b21438 10.1016/j.compositesb.2019.107267 10.1039/C9TA04484A 10.1039/C8TA01965G 10.1126/science.1207115 10.1021/jp408172v 10.1021/acsami.9b08947 10.1016/j.optlaseng.2017.12.004 10.1126/science.282.5387.265 10.1021/acsnano.7b06371 10.1039/c1sm05452j 10.1002/maco.202011807 10.1021/acs.langmuir.9b02986 10.1016/j.apsusc.2020.148534 10.1002/adma.200290020 10.1016/j.surfcoat.2020.125993 10.1021/cr400083y 10.1021/acs.iecr.7b04887 10.1021/acsnano.0c07417 10.1016/j.surfcoat.2018.08.035 10.1039/C9NR10612J 10.1021/acs.langmuir.9b00690 10.1016/j.jcis.2013.06.068 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmst.2021.01.084 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-1162 |
EndPage | 67 |
ExternalDocumentID | 10_1016_j_jmst_2021_01_084 S1005030221002528 |
GroupedDBID | --K --M -02 -0B -SB -S~ .~1 0R~ 1B1 1~. 4.4 457 5GY 5VR 5VS 5XA 5XC 5XL 8P~ 92M 9D9 9DB AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJEB CAJUS CCEZO CDRFL CHBEP CW9 DU5 EBS EFJIC EFLBG FA0 FDB FIRID FNPLU FYGXN GBLVA J1W JUIAU KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OK1 P-8 P-9 P2P PC. Q-- Q38 R-B ROL RT2 S.. SDF SES SPC SPCBC SSM SSZ T5K T8R U1F U1G U5B U5L ~G- 92H 92I AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFUIB AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD HZ~ RIG SSH TCJ TGT |
ID | FETCH-LOGICAL-c366t-4b3074b8e01146b5f9a87d4cb94e94dda480d0279ba205eb0c18f3fcbde21673 |
IEDL.DBID | .~1 |
ISSN | 1005-0302 |
IngestDate | Thu Apr 24 23:11:24 EDT 2025 Tue Jul 01 02:20:04 EDT 2025 Fri Feb 23 02:43:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluorescent stain of water Superhydrophobic aluminum surface Mechanical stability Friction Laser dimple-pattern Air trapping ability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-4b3074b8e01146b5f9a87d4cb94e94dda480d0279ba205eb0c18f3fcbde21673 |
ORCID | 0000-0001-8328-7999 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jmst_2021_01_084 crossref_primary_10_1016_j_jmst_2021_01_084 elsevier_sciencedirect_doi_10_1016_j_jmst_2021_01_084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-30 |
PublicationDateYYYYMMDD | 2021-10-30 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials science & technology |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tian, Verho, Ras (bib0290) 2016; 352 Wang, Tang, Cai, Xiong (bib0105) 2019; 21 Shen, Liu, Chen, Zhang, Zhang, Guan, Zhang, Huang, Zhao, Jin, Liu (bib0145) 2020; 400 Zhu, Duan, Wang, Yang, Wang, Huang, Xia (bib0060) 2018; 10 Jiao, Chu, Liu, Mu, Li, Wang, Liao, Wang, Xue, Niu, Jiang, Han, Ren (bib0305) 2020; 12 Liu, Xu, Ma (bib0080) 2012; 116 Niu, Han, Hu, Chao, Song, Howlader, Cao (bib0155) 2021; 22 Deng, Mammen, Butt, Vollmer (bib0190) 2012; 335 Das, Kumar, Samal, Mohanty, Nayak (bib0020) 2018; 57 Cassie, Baxter (bib0045) 1944; 40 Wei, Wang, Liu, Wang, Li, Wang (bib0090) 2021; 404 Shen, Wu, Tao, Zhu, Lai, Chen (bib0030) 2019; 103 Liu, Feng, Guo (bib0085) 2013; 117 Peng, Chen, Tiwari (bib0200) 2018; 17 Song, Gao, Zhao, Lu, Huang, Liu, Carmalt, Deng, Parkin (bib0160) 2017; 11 Guo, Zhu, Zhang, Luo (bib0325) 2020; 32 Milles, Voisiat, Nitschke, Lasagni (bib0245) 2019; 270 Zhang, Liu, Zhang, Li, Wang, Wang, Zhu (bib0320) 2018; 343 Ball (bib0285) 1999; 400 Yang, Liu, Tian (bib0260) 2019; 533 Vercillo, Tonnicchia, Romano, García-Girón, Aguilar-Morales, Alamri, Dimov, Kunze, Lasagni, Bonaccurso (bib0140) 2020; 30 Li, Wang, Moita, Zhang, Wang, Liu (bib0120) 2020; 505 Rico, Mora, García, Agüero, Borrás, González-Elipe, López-Santos (bib0125) 2020; 21 Pan, Guo, Björnmalm, Richardson, Li, Peng, Bertleff-Zieschang, Xu, Jiang, Caruso (bib0205) 2018; 17 Liu, Wang, Huang, Chen, Chen, Lai (bib0010) 2018; 28 Zhang, Huang, Chen, Yang, Lai (bib0040) 2019; 7 Wang, Sun, Hokkanen, Zhang, Lin, Liu, Zhu, Zhou, Chang, He, Zhou, Chen, Wang, Ras, Deng (bib0210) 2020; 582 Song, Huang, Zhao, Wu, Liu, Lu, Deng, Carmalt, Parkin, Sun (bib0165) 2019; 11 Xiao, Wang, Yao, Yu, Zhang (bib0225) 2019; 35 Ahuir-Torres, Arenas, Perrie, de Damborenea (bib0240) 2018; 103 Yan, Jiang, Jia, Wang (bib0035) 2020; 12 Guo, Zhang, Wang, Xu, Geng (bib0230) 2020; 55 Jagdheesh, Diaz, Marimuthu, Ocan (bib0255) 2017; 5 Yao, Wu, Huang, Jiang, Atrens, Pan (bib0025) 2020; 52 Cheng, Lu, Xu, Boukherroub, Szunerits, Liang (bib0220) 2017; 723 Hass, Schneider, Curioni, Andreoni (bib0250) 1998; 282 Yang, Liu, Lu, Song, Huang, Zhou, Jin, Xu (bib0280) 2016; 120 Ou, Ma, Wang, Li, Fang, Lei, Amirfazli (bib0315) 2020; 147 Luo, Li (bib0310) 2019; 15 Samanta, Huang, Chaudhry, Wang, Shaw, Din (bib0150) 2020; 12 Si, Dong, Jiang (bib0075) 2018; 4 Feng, Li, Li, Li, Zhang, Zhai, Song, Liu, Jiang, Zhu (bib0005) 2002; 14 Li, Wang, Tan, Yang, Deng (bib0185) 2019; 11 Sataeva, Boinovich, Emelyanenko, Domantovsky, Emelyanenko (bib0135) 2020; 397 Wang, Xiong, Deng, Shi, Wang (bib0095) 2015; 7 Si, Zhao, Chen, Xu, Tao, Li, Ran (bib0265) 2013; 407 Lopez, Faucon, Devillard, Zaouter, Honninger, Mottay, Kling (bib0235) 2015; 10 Lin, Han, Cai, Liu, Luo, Zhang, Zhong (bib0110) 2018; 6 Qiu, Li, Tong, Xiong, Li, Wu (bib0215) 2020; 71 Wang, Wei, Li, Duan, Han, Xie (bib0295) 2020; 8 Pan, Cai, Liu, Luo, Chen, Zhang, Zhong (bib0115) 2019; 7 Fan, Pan, Zhong (bib0330) 2019; 35 Graeber, Martin Kieliger, Schutzius, Poulikakos (bib0170) 2018; 10 Yang, Zhuang, Lu, Wang (bib0270) 2021; 15 Wang, Liu, Yao, Jiang (bib0015) 2015; 115 Liu, Gu, Wang, Du, Gao, Elbaz, Sun, Liao, Xiao, Gu (bib0175) 2018; 30 Long, Zhou, Huang, Xie (bib0130) 2020; 7 Yang, Choi, Liu, Liu (bib0275) 2019; 35 Wang, Zhao, Bian, Wang, Liu (bib0055) 2017; 11 Tong, Xiong, Wang, Wu, Zhou (bib0065) 2019; 176 Siddiqui, Li, Wang, Ou, Amirfazli (bib0070) 2021; 542 Tong, Xiong, Wang, Yan, Tian (bib0100) 2018; 352 Lu, Sathasivam, Song, Crick, Carmalt, Parkin (bib0195) 2015; 347 Cheng, Li, Zheng, Su, Wang, Jiang (bib0050) 2011; 7 Liu, Gu, Ding, Du, He, Sun, Liao, Xiao, Gu (bib0180) 2019; 15 Zhuang, Liao, Lu, Dixon, Jiamprasertboon, Chen, Sathasivam, Parkin, Carmalt (bib0300) 2017; 9 Deng (10.1016/j.jmst.2021.01.084_bib0190) 2012; 335 Guo (10.1016/j.jmst.2021.01.084_bib0230) 2020; 55 Qiu (10.1016/j.jmst.2021.01.084_bib0215) 2020; 71 Yang (10.1016/j.jmst.2021.01.084_bib0275) 2019; 35 Milles (10.1016/j.jmst.2021.01.084_bib0245) 2019; 270 Liu (10.1016/j.jmst.2021.01.084_bib0010) 2018; 28 Lin (10.1016/j.jmst.2021.01.084_bib0110) 2018; 6 Lu (10.1016/j.jmst.2021.01.084_bib0195) 2015; 347 Yao (10.1016/j.jmst.2021.01.084_bib0025) 2020; 52 Tong (10.1016/j.jmst.2021.01.084_bib0065) 2019; 176 Cheng (10.1016/j.jmst.2021.01.084_bib0220) 2017; 723 Song (10.1016/j.jmst.2021.01.084_bib0165) 2019; 11 Hass (10.1016/j.jmst.2021.01.084_bib0250) 1998; 282 Wang (10.1016/j.jmst.2021.01.084_bib0015) 2015; 115 Tian (10.1016/j.jmst.2021.01.084_bib0290) 2016; 352 Lopez (10.1016/j.jmst.2021.01.084_bib0235) 2015; 10 Guo (10.1016/j.jmst.2021.01.084_bib0325) 2020; 32 Graeber (10.1016/j.jmst.2021.01.084_bib0170) 2018; 10 Pan (10.1016/j.jmst.2021.01.084_bib0115) 2019; 7 Wei (10.1016/j.jmst.2021.01.084_bib0090) 2021; 404 Wang (10.1016/j.jmst.2021.01.084_bib0210) 2020; 582 Li (10.1016/j.jmst.2021.01.084_bib0120) 2020; 505 Zhang (10.1016/j.jmst.2021.01.084_bib0320) 2018; 343 Peng (10.1016/j.jmst.2021.01.084_bib0200) 2018; 17 Song (10.1016/j.jmst.2021.01.084_bib0160) 2017; 11 Cheng (10.1016/j.jmst.2021.01.084_bib0050) 2011; 7 Liu (10.1016/j.jmst.2021.01.084_bib0080) 2012; 116 Liu (10.1016/j.jmst.2021.01.084_bib0175) 2018; 30 Yan (10.1016/j.jmst.2021.01.084_bib0035) 2020; 12 Fan (10.1016/j.jmst.2021.01.084_bib0330) 2019; 35 Sataeva (10.1016/j.jmst.2021.01.084_bib0135) 2020; 397 Si (10.1016/j.jmst.2021.01.084_bib0075) 2018; 4 Wang (10.1016/j.jmst.2021.01.084_bib0105) 2019; 21 Shen (10.1016/j.jmst.2021.01.084_bib0145) 2020; 400 Samanta (10.1016/j.jmst.2021.01.084_bib0150) 2020; 12 Li (10.1016/j.jmst.2021.01.084_bib0185) 2019; 11 Ahuir-Torres (10.1016/j.jmst.2021.01.084_bib0240) 2018; 103 Rico (10.1016/j.jmst.2021.01.084_bib0125) 2020; 21 Long (10.1016/j.jmst.2021.01.084_bib0130) 2020; 7 Yang (10.1016/j.jmst.2021.01.084_bib0260) 2019; 533 Siddiqui (10.1016/j.jmst.2021.01.084_bib0070) 2021; 542 Zhuang (10.1016/j.jmst.2021.01.084_bib0300) 2017; 9 Ball (10.1016/j.jmst.2021.01.084_bib0285) 1999; 400 Zhu (10.1016/j.jmst.2021.01.084_bib0060) 2018; 10 Vercillo (10.1016/j.jmst.2021.01.084_bib0140) 2020; 30 Liu (10.1016/j.jmst.2021.01.084_bib0085) 2013; 117 Shen (10.1016/j.jmst.2021.01.084_bib0030) 2019; 103 Tong (10.1016/j.jmst.2021.01.084_bib0100) 2018; 352 Ou (10.1016/j.jmst.2021.01.084_bib0315) 2020; 147 Feng (10.1016/j.jmst.2021.01.084_bib0005) 2002; 14 Wang (10.1016/j.jmst.2021.01.084_bib0295) 2020; 8 Das (10.1016/j.jmst.2021.01.084_bib0020) 2018; 57 Pan (10.1016/j.jmst.2021.01.084_bib0205) 2018; 17 Wang (10.1016/j.jmst.2021.01.084_bib0055) 2017; 11 Yang (10.1016/j.jmst.2021.01.084_bib0280) 2016; 120 Xiao (10.1016/j.jmst.2021.01.084_bib0225) 2019; 35 Luo (10.1016/j.jmst.2021.01.084_bib0310) 2019; 15 Wang (10.1016/j.jmst.2021.01.084_bib0095) 2015; 7 Jagdheesh (10.1016/j.jmst.2021.01.084_bib0255) 2017; 5 Liu (10.1016/j.jmst.2021.01.084_bib0180) 2019; 15 Yang (10.1016/j.jmst.2021.01.084_bib0270) 2021; 15 Niu (10.1016/j.jmst.2021.01.084_bib0155) 2021; 22 Si (10.1016/j.jmst.2021.01.084_bib0265) 2013; 407 Cassie (10.1016/j.jmst.2021.01.084_bib0045) 1944; 40 Jiao (10.1016/j.jmst.2021.01.084_bib0305) 2020; 12 Zhang (10.1016/j.jmst.2021.01.084_bib0040) 2019; 7 |
References_xml | – volume: 505 year: 2020 ident: bib0120 publication-title: Appl. Surf. Sci. – volume: 723 start-page: 225 year: 2017 end-page: 236 ident: bib0220 publication-title: J. Alloys Compd. – volume: 15 start-page: 2589 year: 2021 end-page: 2599 ident: bib0270 publication-title: ACS Nano – volume: 35 start-page: 6650 year: 2019 end-page: 6656 ident: bib0225 publication-title: Langmuir – volume: 21 start-page: 15705 year: 2019 end-page: 15711 ident: bib0105 publication-title: Phys. Chem. Chem. Phys. – volume: 5 start-page: 7125 year: 2017 end-page: 7136 ident: bib0255 publication-title: J. Mater. Chem. A – volume: 71 start-page: 1711 year: 2020 end-page: 1720 ident: bib0215 publication-title: Mater. Corros. – volume: 352 start-page: 142 year: 2016 end-page: 143 ident: bib0290 publication-title: Science – volume: 32 start-page: 320 year: 2020 end-page: 330 ident: bib0325 publication-title: Prog. Chem. – volume: 17 start-page: 1040 year: 2018 end-page: 1047 ident: bib0205 publication-title: Nat. Mater. – volume: 582 start-page: 55 year: 2020 end-page: 59 ident: bib0210 publication-title: Nature – volume: 352 start-page: 609 year: 2018 end-page: 618 ident: bib0100 publication-title: Surf. Coat. Technol. – volume: 11 start-page: 12385 year: 2017 end-page: 12391 ident: bib0055 publication-title: ACS Nano – volume: 7 start-page: 5948 year: 2011 end-page: 5951 ident: bib0050 publication-title: Soft Matter – volume: 52 start-page: 100 year: 2020 end-page: 118 ident: bib0025 publication-title: J. Mater. Sci. Technol. – volume: 176 year: 2019 ident: bib0065 publication-title: Compos. Pt. B-Eng. – volume: 103 start-page: 100 year: 2018 end-page: 109 ident: bib0240 publication-title: Opt. Lasers Eng. – volume: 7 start-page: 38 year: 2019 end-page: 63 ident: bib0040 publication-title: J. Mater. Chem. A – volume: 12 start-page: 2924 year: 2020 end-page: 2938 ident: bib0035 publication-title: Nanoscale – volume: 282 start-page: 265 year: 1998 end-page: 268 ident: bib0250 publication-title: Science – volume: 407 start-page: 482 year: 2013 end-page: 487 ident: bib0265 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 18050 year: 2019 end-page: 18062 ident: bib0115 publication-title: J. Mater. Chem. A – volume: 116 start-page: 18722 year: 2012 end-page: 18727 ident: bib0080 publication-title: J. Phys. Chem. C – volume: 347 start-page: 1132 year: 2015 end-page: 1135 ident: bib0195 publication-title: Science – volume: 8 start-page: 3509 year: 2020 end-page: 3516 ident: bib0295 publication-title: J. Mater. Chem. A – volume: 40 start-page: 546 year: 1944 end-page: 551 ident: bib0045 publication-title: Trans. Faraday Soc. – volume: 21 year: 2020 ident: bib0125 publication-title: Appl. Mater. Today – volume: 28 year: 2018 ident: bib0010 publication-title: Adv. Funct. Mater. – volume: 15 year: 2019 ident: bib0310 publication-title: Small – volume: 12 start-page: 8536 year: 2020 end-page: 8545 ident: bib0305 publication-title: Nanoscale – volume: 30 year: 2018 ident: bib0175 publication-title: Adv. Mater. – volume: 14 start-page: 1857 year: 2002 end-page: 1860 ident: bib0005 publication-title: Adv. Mater. – volume: 270 start-page: 142 year: 2019 end-page: 151 ident: bib0245 publication-title: J. Mater. Process. Technol. – volume: 397 year: 2020 ident: bib0135 publication-title: Surf. Coat. Technol. – volume: 11 start-page: 45345 year: 2019 end-page: 45353 ident: bib0165 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 355 year: 2018 end-page: 360 ident: bib0200 publication-title: Nat. Mater. – volume: 115 start-page: 8230 year: 2015 end-page: 8293 ident: bib0015 publication-title: Chem. Rev. – volume: 10 start-page: 13045 year: 2018 end-page: 13054 ident: bib0060 publication-title: Nanoscale – volume: 4 start-page: 1102 year: 2018 end-page: 1112 ident: bib0075 publication-title: ACS Cent. Sci. – volume: 10 start-page: 1 year: 2015 end-page: 10 ident: bib0235 publication-title: J. Laser Micro/Nanoeng. – volume: 117 start-page: 25519 year: 2013 end-page: 25525 ident: bib0085 publication-title: J. Phys. Chem. C – volume: 22 year: 2021 ident: bib0155 publication-title: Surf. Interfaces – volume: 335 start-page: 67 year: 2012 end-page: 70 ident: bib0190 publication-title: Science – volume: 55 start-page: 11658 year: 2020 end-page: 11668 ident: bib0230 publication-title: J. Mater. Sci. – volume: 7 start-page: 6260 year: 2015 end-page: 6272 ident: bib0095 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 29458 year: 2019 end-page: 29465 ident: bib0185 publication-title: ACS Appl. Mater. Interfaces – volume: 103 start-page: 509 year: 2019 end-page: 557 ident: bib0030 publication-title: Prog. Mater. Sci. – volume: 147 year: 2020 ident: bib0315 publication-title: Prog. Org. Coat. – volume: 6 start-page: 9049 year: 2018 end-page: 9056 ident: bib0110 publication-title: J. Mater. Chem. A – volume: 120 start-page: 7233 year: 2016 end-page: 7240 ident: bib0280 publication-title: J. Phys. Chem. C – volume: 10 start-page: 43275 year: 2018 end-page: 43281 ident: bib0170 publication-title: ACS Appl. Mater. Interfaces – volume: 343 start-page: 699 year: 2018 end-page: 707 ident: bib0320 publication-title: Chem. Eng. J. – volume: 400 start-page: 507 year: 1999 end-page: 509 ident: bib0285 publication-title: Nature – volume: 533 start-page: 268 year: 2019 end-page: 277 ident: bib0260 publication-title: J. Colloid Interface Sci. – volume: 35 start-page: 16693 year: 2019 end-page: 16711 ident: bib0330 publication-title: Langmuir – volume: 30 year: 2020 ident: bib0140 publication-title: Adv. Funct. Mater. – volume: 15 year: 2019 ident: bib0180 publication-title: Small – volume: 404 year: 2021 ident: bib0090 publication-title: Chem. Eng. J. – volume: 542 year: 2021 ident: bib0070 publication-title: Appl. Surf. Sci. – volume: 400 year: 2020 ident: bib0145 publication-title: Surf. Coat. Technol. – volume: 12 start-page: 18032 year: 2020 end-page: 18045 ident: bib0150 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 9259 year: 2017 end-page: 9267 ident: bib0160 publication-title: ACS Nano – volume: 57 start-page: 2727 year: 2018 end-page: 2745 ident: bib0020 publication-title: Ind. Eng. Chem. Res. – volume: 35 start-page: 935 year: 2019 end-page: 942 ident: bib0275 publication-title: Langmuir – volume: 9 start-page: 42327 year: 2017 end-page: 42335 ident: bib0300 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2020 ident: bib0130 publication-title: Adv. Mater. Interfaces – volume: 17 start-page: 1040 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0205 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0178-2 – volume: 10 start-page: 1 year: 2015 ident: 10.1016/j.jmst.2021.01.084_bib0235 publication-title: J. Laser Micro/Nanoeng. doi: 10.2961/jlmn.2015.01.0001 – volume: 11 start-page: 45345 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0165 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16509 – volume: 533 start-page: 268 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0260 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.08.082 – volume: 120 start-page: 7233 year: 2016 ident: 10.1016/j.jmst.2021.01.084_bib0280 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b02067 – volume: 8 start-page: 3509 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0295 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13281C – volume: 400 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0145 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126225 – volume: 400 start-page: 507 year: 1999 ident: 10.1016/j.jmst.2021.01.084_bib0285 publication-title: Nature doi: 10.1038/22883 – volume: 30 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0140 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910268 – volume: 147 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0315 publication-title: Prog. Org. Coat. – volume: 32 start-page: 320 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0325 publication-title: Prog. Chem. – volume: 55 start-page: 11658 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0230 publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04733-0 – volume: 116 start-page: 18722 year: 2012 ident: 10.1016/j.jmst.2021.01.084_bib0080 publication-title: J. Phys. Chem. C doi: 10.1021/jp302794p – volume: 270 start-page: 142 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0245 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2019.02.023 – volume: 7 start-page: 6260 year: 2015 ident: 10.1016/j.jmst.2021.01.084_bib0095 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00558 – volume: 7 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0130 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000997 – volume: 17 start-page: 355 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0200 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0044-2 – volume: 582 start-page: 55 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0210 publication-title: Nature doi: 10.1038/s41586-020-2331-8 – volume: 40 start-page: 546 year: 1944 ident: 10.1016/j.jmst.2021.01.084_bib0045 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9444000546 – volume: 103 start-page: 509 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0030 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.03.004 – volume: 11 start-page: 9259 year: 2017 ident: 10.1016/j.jmst.2021.01.084_bib0160 publication-title: ACS Nano doi: 10.1021/acsnano.7b04494 – volume: 21 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0125 publication-title: Appl. Mater. Today – volume: 9 start-page: 42327 year: 2017 ident: 10.1016/j.jmst.2021.01.084_bib0300 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13182 – volume: 723 start-page: 225 year: 2017 ident: 10.1016/j.jmst.2021.01.084_bib0220 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.06.241 – volume: 10 start-page: 43275 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0170 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16893 – volume: 21 start-page: 15705 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0105 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP02132A – volume: 5 start-page: 7125 year: 2017 ident: 10.1016/j.jmst.2021.01.084_bib0255 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01385J – volume: 7 start-page: 38 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0040 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09403A – volume: 404 year: 2021 ident: 10.1016/j.jmst.2021.01.084_bib0090 publication-title: Chem. Eng. J. – volume: 22 year: 2021 ident: 10.1016/j.jmst.2021.01.084_bib0155 publication-title: Surf. Interfaces – volume: 352 start-page: 142 year: 2016 ident: 10.1016/j.jmst.2021.01.084_bib0290 publication-title: Science doi: 10.1126/science.aaf2073 – volume: 347 start-page: 1132 year: 2015 ident: 10.1016/j.jmst.2021.01.084_bib0195 publication-title: Science doi: 10.1126/science.aaa0946 – volume: 30 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0175 publication-title: Adv. Mater. – volume: 15 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0180 publication-title: Small – volume: 343 start-page: 699 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0320 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.012 – volume: 10 start-page: 13045 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0060 publication-title: Nanoscale doi: 10.1039/C8NR03277G – volume: 4 start-page: 1102 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0075 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00504 – volume: 35 start-page: 935 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0275 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03969 – volume: 12 start-page: 2924 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0035 publication-title: Nanoscale doi: 10.1039/C9NR09620E – volume: 52 start-page: 100 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0025 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.02.055 – volume: 12 start-page: 18032 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0150 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21438 – volume: 176 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0065 publication-title: Compos. Pt. B-Eng. doi: 10.1016/j.compositesb.2019.107267 – volume: 7 start-page: 18050 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0115 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04484A – volume: 505 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0120 publication-title: Appl. Surf. Sci. – volume: 6 start-page: 9049 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0110 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01965G – volume: 335 start-page: 67 year: 2012 ident: 10.1016/j.jmst.2021.01.084_bib0190 publication-title: Science doi: 10.1126/science.1207115 – volume: 117 start-page: 25519 year: 2013 ident: 10.1016/j.jmst.2021.01.084_bib0085 publication-title: J. Phys. Chem. C doi: 10.1021/jp408172v – volume: 11 start-page: 29458 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0185 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08947 – volume: 103 start-page: 100 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0240 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2017.12.004 – volume: 15 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0310 publication-title: Small – volume: 282 start-page: 265 year: 1998 ident: 10.1016/j.jmst.2021.01.084_bib0250 publication-title: Science doi: 10.1126/science.282.5387.265 – volume: 11 start-page: 12385 year: 2017 ident: 10.1016/j.jmst.2021.01.084_bib0055 publication-title: ACS Nano doi: 10.1021/acsnano.7b06371 – volume: 7 start-page: 5948 year: 2011 ident: 10.1016/j.jmst.2021.01.084_bib0050 publication-title: Soft Matter doi: 10.1039/c1sm05452j – volume: 71 start-page: 1711 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0215 publication-title: Mater. Corros. doi: 10.1002/maco.202011807 – volume: 35 start-page: 16693 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0330 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b02986 – volume: 542 year: 2021 ident: 10.1016/j.jmst.2021.01.084_bib0070 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148534 – volume: 14 start-page: 1857 year: 2002 ident: 10.1016/j.jmst.2021.01.084_bib0005 publication-title: Adv. Mater. doi: 10.1002/adma.200290020 – volume: 397 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0135 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125993 – volume: 115 start-page: 8230 year: 2015 ident: 10.1016/j.jmst.2021.01.084_bib0015 publication-title: Chem. Rev. doi: 10.1021/cr400083y – volume: 28 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0010 publication-title: Adv. Funct. Mater. – volume: 57 start-page: 2727 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0020 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b04887 – volume: 15 start-page: 2589 year: 2021 ident: 10.1016/j.jmst.2021.01.084_bib0270 publication-title: ACS Nano doi: 10.1021/acsnano.0c07417 – volume: 352 start-page: 609 year: 2018 ident: 10.1016/j.jmst.2021.01.084_bib0100 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.08.035 – volume: 12 start-page: 8536 year: 2020 ident: 10.1016/j.jmst.2021.01.084_bib0305 publication-title: Nanoscale doi: 10.1039/C9NR10612J – volume: 35 start-page: 6650 year: 2019 ident: 10.1016/j.jmst.2021.01.084_bib0225 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00690 – volume: 407 start-page: 482 year: 2013 ident: 10.1016/j.jmst.2021.01.084_bib0265 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.06.068 |
SSID | ssj0037588 |
Score | 2.4578054 |
Snippet | [Display omitted]
•The surface wettability of the superhydrophobic samples is regulated by controlling the dimple-pattern dimensions during the laser... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 59 |
SubjectTerms | Air trapping ability Fluorescent stain of water Friction Laser dimple-pattern Mechanical stability Superhydrophobic aluminum surface |
Title | Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates |
URI | https://dx.doi.org/10.1016/j.jmst.2021.01.084 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409aIH4zNatdmDN4PlsbvQY9PY1Fcv1qQ3wj6wNC0QCjG9-NvdAVprYnow4cKGScgwzDcD33yL0C0IfriSScNSlBmECcfwhM0NU2ksF4Trtgi-Q76O2PCdPE3opIH661kYoFXWub_K6WW2rlc6tTc7aRR13qxSy0RjEKiIUhsGfglxIcrvvzY0D0fXw9U4HJDUHGDztH44XrPFEviUtlVKd3rkb3DaApzBETqsK0Xcq27mGDVUfIIOtvQDT5F80RiUYSBvFJmSWEag9WukpWZmvMR5gj_KvXSxLvPwssjCQCj8qfK8Uude4STUy6nKpiuZJek04ZHAgc5XUVwscDqHQvQMjQcP4_7QqLdNMITDWG4Qrt9bwj0FvQ7jNOwGniuJ4F2iukTKgHim1N1olwe2SRU3heWFTii4VLbFXOccNeMkVhcIW4EkrggDJqkkFnEDqvtFHXrwr1G6VF4ia-0uX9SS4rCzxdxfc8dmPrjYBxf7pj48conuNjZpJaix82q6fgr-r7DwdcbfYdf6p90V2oezEpzMa9TMs0Ld6Koj5-0yrNpor_f4PBx9A9i82Oo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remg5IPoSj0J9aE9VunnYTvbQA6JFS1m4dCtxs-JH2CBIomxWaC_8KH4hM0mWUglxqISUkxNHyng030z8-RuAzyT4EVtpvcAJ6XFpIi8xofZ8h1huuMayiP5DnpzK0R_-60ycrcDt8iwM0Sr72N_F9DZa9yOD3pqDKs8Hv4NWywQxiFRERZj0zMpjt7jGum32_egHLvKXMDz8OTkYeX1rAc9EUjYe1-jbXCeO6gGpRTZMk9hyo4fcDbm1KU98ixXbUKehL5z2TZBkUWa0dWEg4whf-wJecowW1DXh2809rSTC_Ls7fkekuIjYQ9t_OWUXVzPib4ZBKxWa8MfB8AHAHW7Aep-Zsv3u49_AiivewtoDvcJ3YMeIeTUjssi8dpbZnLSFvarV6CxmrCnZedu7l2FayWbzOkuNY9euaTo18AUrMxyuXD1d2LqspqXODUsxPubF_IpVl5T4vofJc9jyA6wWZeE2gQWp5bHJUmmF5QGPU4H1Kbo67W3aWNgtCJbmUqaXMKdOGpdqyVW7UGRiRSZWPl4J34Kv93OqTsDjyafFchXUP26oEGGemLf9n_M-wavR5GSsxkenxzvwmu60wOh_hNWmnrtdzHgavde6GAP1zC59Bzh2FEU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+textured+dimple-patterns+to+govern+the+surface+wettability+of+superhydrophobic+aluminum+plates&rft.jtitle=Journal+of+materials+science+%26+technology&rft.au=Tong%2C+Wei&rft.au=Cui%2C+Lingling&rft.au=Qiu%2C+Rongxian&rft.au=Yan%2C+Chengqi&rft.date=2021-10-30&rft.pub=Elsevier+Ltd&rft.issn=1005-0302&rft.eissn=1941-1162&rft.volume=89&rft.spage=59&rft.epage=67&rft_id=info:doi/10.1016%2Fj.jmst.2021.01.084&rft.externalDocID=S1005030221002528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-0302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-0302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-0302&client=summon |