Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter

In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 152; pp. 38 - 50
Main Authors Son, Junbo, Zhou, Shiyu, Sankavaram, Chaitanya, Du, Xinyu, Zhang, Yilu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2016
Subjects
Online AccessGet full text
ISSN0951-8320
1879-0836
DOI10.1016/j.ress.2016.02.006

Cover

Loading…
Abstract In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries. •A computationally efficient constrained Kalman filter is proposed.•Proposed filter is integrated into an online failure prognosis framework.•A set of proper constraints significantly improves the failure prediction accuracy.•Promising results are reported in the application of battery failure prognosis.
AbstractList In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries.
In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries. •A computationally efficient constrained Kalman filter is proposed.•Proposed filter is integrated into an online failure prognosis framework.•A set of proper constraints significantly improves the failure prediction accuracy.•Promising results are reported in the application of battery failure prognosis.
Author Son, Junbo
Du, Xinyu
Zhang, Yilu
Zhou, Shiyu
Sankavaram, Chaitanya
Author_xml – sequence: 1
  givenname: Junbo
  surname: Son
  fullname: Son, Junbo
  organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 2
  givenname: Shiyu
  surname: Zhou
  fullname: Zhou, Shiyu
  email: shiyuzhou@wisc.edu
  organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 3
  givenname: Chaitanya
  surname: Sankavaram
  fullname: Sankavaram, Chaitanya
  organization: General Motors Global Research & Development, Warren, MI 48092, USA
– sequence: 4
  givenname: Xinyu
  surname: Du
  fullname: Du, Xinyu
  organization: General Motors Global Research & Development, Warren, MI 48092, USA
– sequence: 5
  givenname: Yilu
  surname: Zhang
  fullname: Zhang, Yilu
  organization: General Motors Global Research & Development, Warren, MI 48092, USA
BookMark eNqNkUFr3DAQhUVJIZtt_0BOPvZiZyTbsgy9lJAmIYFASM9ClkZBiyxtJG8g_75yN6ceQk4zg973QO-dkZMQAxJyTqGhQPnFrkmYc8PK3gBrAPgXsqFiGGsQLT8hGxh7WouWwSk5y3kHAN3YDxviH3FWLrjwXB0y2oOvvLNY7RMapxcXQzWpjKYqS4guv1U6BuP-PcwxuCWmFc3uOSifi8V6FUleUnEt3J3yswqVdX7B9I18tUWG39_nlvz5ffV0eVPfP1zfXv66r3XL-VJ3go3aMsuMmPq2m4SZuB573k9WDQx6rY3tQDFgDIUZBKOj0abnk-XDKHBqt-TH0Xef4ssB8yJnlzV6rwLGQ5ZUsL4TtGPwCSkI3paoVqk4SnWKOSe0UrtFrVGsn_WSgly7kDu5diHXLiQwWbooKPsP3Sc3q_T2MfTzCGGJ6tVhklk7DLo0k1Av0kT3Ef4Xspunrw
CitedBy_id crossref_primary_10_1155_2021_6623810
crossref_primary_10_1109_TII_2018_2869429
crossref_primary_10_1109_TASE_2018_2844204
crossref_primary_10_1109_TIM_2024_3436131
crossref_primary_10_1016_j_aei_2022_101665
crossref_primary_10_1080_21642583_2021_1992684
crossref_primary_10_1109_TR_2023_3283348
crossref_primary_10_1039_D2SE01209J
crossref_primary_10_1016_j_asoc_2021_107195
crossref_primary_10_1016_j_ress_2023_109602
crossref_primary_10_1109_TIM_2021_3054429
crossref_primary_10_1016_j_rser_2019_03_049
crossref_primary_10_1109_TR_2019_2909471
crossref_primary_10_17531_ein_2019_3_17
crossref_primary_10_1016_j_engappai_2021_104552
crossref_primary_10_1016_j_measurement_2019_04_074
crossref_primary_10_1016_j_ress_2019_02_002
crossref_primary_10_1016_j_ymssp_2024_112063
crossref_primary_10_3389_fenrg_2024_1367444
crossref_primary_10_1177_0954410019853995
crossref_primary_10_1109_TR_2019_2930195
crossref_primary_10_1016_j_ress_2019_01_006
crossref_primary_10_1016_j_asoc_2018_10_014
crossref_primary_10_1016_j_ress_2021_107877
crossref_primary_10_1016_j_ress_2024_109954
crossref_primary_10_1016_j_ress_2023_109854
crossref_primary_10_1016_j_ress_2021_108084
crossref_primary_10_3390_s17092123
crossref_primary_10_1016_j_ress_2023_109455
crossref_primary_10_1109_TIM_2019_2924509
crossref_primary_10_1016_j_ress_2017_09_002
crossref_primary_10_1016_j_jmsy_2024_02_011
crossref_primary_10_1109_TR_2023_3295943
crossref_primary_10_1016_j_est_2025_115371
crossref_primary_10_3390_s21155029
crossref_primary_10_3390_en9060409
crossref_primary_10_1177_1748006X211044343
crossref_primary_10_1007_s11708_023_0906_4
crossref_primary_10_1016_j_energy_2024_131888
crossref_primary_10_1016_j_jsv_2018_05_007
crossref_primary_10_1016_j_eswa_2025_126905
crossref_primary_10_1016_j_joule_2019_11_018
crossref_primary_10_1016_j_measurement_2019_107097
crossref_primary_10_1080_24725854_2019_1630868
crossref_primary_10_1109_TIM_2021_3059500
crossref_primary_10_1016_j_energy_2022_123852
crossref_primary_10_1109_TR_2024_3362331
crossref_primary_10_1109_ACCESS_2019_2951197
crossref_primary_10_1002_ese3_1509
crossref_primary_10_1016_j_aei_2023_102094
crossref_primary_10_1016_j_psep_2023_02_081
crossref_primary_10_3390_s20082425
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1177_16878132241239802
crossref_primary_10_1016_j_ress_2018_04_027
crossref_primary_10_1109_TR_2016_2645840
crossref_primary_10_1007_s11704_023_3277_4
crossref_primary_10_1109_TR_2023_3277332
crossref_primary_10_1007_s10845_017_1341_3
crossref_primary_10_1109_JSYST_2021_3080125
crossref_primary_10_1016_j_energy_2021_121269
crossref_primary_10_1088_1742_6596_1053_1_012049
crossref_primary_10_1007_s11760_023_02532_z
crossref_primary_10_3390_app10175760
crossref_primary_10_1016_j_ress_2020_107031
Cites_doi 10.1115/1.1789153
10.1016/j.ress.2010.08.009
10.1002/(SICI)1097-0258(19980930)17:18<2061::AID-SIM896>3.0.CO;2-O
10.1080/07408170590929018
10.1016/j.ymssp.2012.08.016
10.1080/00401706.1993.10485038
10.1080/00401706.2013.830074
10.1109/ICPHM.2014.7036386
10.2307/2529876
10.1111/j.2517-6161.1961.tb00408.x
10.1080/01621459.1995.10476485
10.1109/TASE.2011.2160538
10.1109/7.993234
10.1016/j.automatica.2011.11.002
10.1080/0740817X.2012.706376
10.1109/TR.2010.2046804
10.1016/j.ymssp.2011.10.009
10.1109/TAC.1971.1099833
10.1080/0740817X.2011.618175
10.2307/2347752
10.1109/TR.2010.2044610
10.1007/978-0-85729-320-6_42
10.1109/TR.2013.2259205
10.1016/0165-1765(79)90111-3
10.1049/iet-cta.2009.0032
10.2307/2533118
10.1080/0740817X.2013.876126
10.1080/00207720903042970
10.1016/j.ejor.2010.11.018
10.1109/AFGR.1998.670960
10.1002/qre.1609
10.1016/j.ymssp.2014.08.006
10.1080/03610929008830197
10.1109/TR.2014.2355531
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7ST
C1K
SOI
7TB
8FD
FR3
DOI 10.1016/j.ress.2016.02.006
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
EndPage 50
ExternalDocumentID 10_1016_j_ress_2016_02_006
S0951832016000478
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
C1K
EFKBS
SOI
7TB
8FD
FR3
ID FETCH-LOGICAL-c366t-4829cf2f2d8b534b8db6c9565bfa7205ccdf40a2022e8d78219dcd56bf6798eb3
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Thu Jul 10 23:06:39 EDT 2025
Tue Aug 05 10:41:09 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Thu Jul 03 08:16:11 EDT 2025
Fri Feb 23 02:28:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Condition monitoring signals
Remaining useful life
Constrained Kalman filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-4829cf2f2d8b534b8db6c9565bfa7205ccdf40a2022e8d78219dcd56bf6798eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1808639570
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1825481420
proquest_miscellaneous_1808639570
crossref_citationtrail_10_1016_j_ress_2016_02_006
crossref_primary_10_1016_j_ress_2016_02_006
elsevier_sciencedirect_doi_10_1016_j_ress_2016_02_006
PublicationCentury 2000
PublicationDate August 2016
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationTitle Reliability engineering & system safety
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cartinhour (bib4) 1990; 19
Chen, Vachtsevanos, Orchard (bib5) 2012; 28
Si, Wang, Hu, Zhou (bib19) 2011; 213
Leppard, Tallis (bib12) 1989; 38
Klein, Moeschberger (bib9) 2003
Straka, Dunik, Simandl (bib27) 2012; 48
Tsiatis, DeGruttola, Wulfsohn (bib30) 1995; 90
Son, Zhou, Zhou, Mao, Salman (bib26) 2013; 62
Son, Zhang, Sankavaram, Zhou (bib25) 2015; 64
Shimada N, Shirai Y, Kuno Y, Miura J. Hand gesture estimation and model refinement using monocular camera – ambiguity limitation by inequality constraints. In: Proceedings of the 3rd IEEE international conference on automatic face and gesture recognition; 1998. p. 268−273.
Zhou, Son, Zhou, Mao, Salman (bib36) 2014; 46
Sun, Li, Xi (bib28) 2012; 9
Byon, Ntaimo, Ding (bib3) 2010; 59
Simon (bib24) 2010; 4
Liao H, Zhao W, Guo H. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model. In: Proceedings of the annual reliability and maintainability symposium, Newport Beach, CA; 2006
Lim, Mba (bib14) 2015; 52
Simon, Chia (bib21) 2002; 39
Zhou, Gebraeel, Serban (bib37) 2012; 44
Bluvband Z, Porotsky S, Tropper S. Critical zone recognition: classification vs. regression. In: Proceedings of the IEEE conference on prognostics and health management; 2014. p. 1–5.
Gebraeel, Lawley, Li, Ryan (bib7) 2005; 3
Chen, Tsui (bib6) 2013; 45
Zio, Peloni (bib38) 2011; 96
Gorjian N, Ma L, Mittinty M, Yarlagadda P, Sun Y, A. review on degradation models in reliability analysis. In: engineering asset lifecycle management – Proceedings of the 4th world congress on engineering asset management (WCEAM); 2010. p. 369–384.
Manjunath, Wilhelm (bib16) 2012; 1206
Simon, Simon (bib22) 2005; 127
Bycott, Taylor (bib2) 1998; 17
Rhodes (bib17) 1971; AC-16
Tallis (bib29) 1961; 23
Wulfsohn, Tsiatis (bib31) 1997; 53
Yu, Fuh (bib34) 2010; 59
Si, Wang, Hu, Chen, Zhou (bib20) 2013; 35
Lu, Meeker (bib15) 1993; 35
Ye, Chen (bib32) 2014; 56
Ye, Chen, Tsui (bib33) 2015; 31
Zarchan, Musoff (bib35) 2005
Simon, Simon (bib23) 2010; 41
Laird, Ware (bib10) 1982; 38
Lee (bib11) 1979; 3
Chen (10.1016/j.ress.2016.02.006_bib6) 2013; 45
10.1016/j.ress.2016.02.006_bib18
10.1016/j.ress.2016.02.006_bib13
Wulfsohn (10.1016/j.ress.2016.02.006_bib31) 1997; 53
Simon (10.1016/j.ress.2016.02.006_bib21) 2002; 39
Son (10.1016/j.ress.2016.02.006_bib26) 2013; 62
Zhou (10.1016/j.ress.2016.02.006_bib36) 2014; 46
Zhou (10.1016/j.ress.2016.02.006_bib37) 2012; 44
Son (10.1016/j.ress.2016.02.006_bib25) 2015; 64
Cartinhour (10.1016/j.ress.2016.02.006_bib4) 1990; 19
10.1016/j.ress.2016.02.006_bib8
Zio (10.1016/j.ress.2016.02.006_bib38) 2011; 96
Byon (10.1016/j.ress.2016.02.006_bib3) 2010; 59
Simon (10.1016/j.ress.2016.02.006_bib24) 2010; 4
Lee (10.1016/j.ress.2016.02.006_bib11) 1979; 3
Yu (10.1016/j.ress.2016.02.006_bib34) 2010; 59
Klein (10.1016/j.ress.2016.02.006_bib9) 2003
Chen (10.1016/j.ress.2016.02.006_bib5) 2012; 28
Laird (10.1016/j.ress.2016.02.006_bib10) 1982; 38
Bycott (10.1016/j.ress.2016.02.006_bib2) 1998; 17
Ye (10.1016/j.ress.2016.02.006_bib33) 2015; 31
Leppard (10.1016/j.ress.2016.02.006_bib12) 1989; 38
Rhodes (10.1016/j.ress.2016.02.006_bib17) 1971; AC-16
Si (10.1016/j.ress.2016.02.006_bib19) 2011; 213
Zarchan (10.1016/j.ress.2016.02.006_bib35) 2005
Lim (10.1016/j.ress.2016.02.006_bib14) 2015; 52
Lu (10.1016/j.ress.2016.02.006_bib15) 1993; 35
Si (10.1016/j.ress.2016.02.006_bib20) 2013; 35
10.1016/j.ress.2016.02.006_bib1
Simon (10.1016/j.ress.2016.02.006_bib22) 2005; 127
Ye (10.1016/j.ress.2016.02.006_bib32) 2014; 56
Straka (10.1016/j.ress.2016.02.006_bib27) 2012; 48
Tallis (10.1016/j.ress.2016.02.006_bib29) 1961; 23
Gebraeel (10.1016/j.ress.2016.02.006_bib7) 2005; 3
Tsiatis (10.1016/j.ress.2016.02.006_bib30) 1995; 90
Sun (10.1016/j.ress.2016.02.006_bib28) 2012; 9
Manjunath (10.1016/j.ress.2016.02.006_bib16) 2012; 1206
Simon (10.1016/j.ress.2016.02.006_bib23) 2010; 41
References_xml – year: 2003
  ident: bib9
  publication-title: Survival analysis – techniques for censored and truncated data
– volume: 39
  start-page: 128
  year: 2002
  end-page: 136
  ident: bib21
  article-title: Kalman filtering with state equality constraints
  publication-title: IEEE Trans Aerosp Electron Syst
– volume: 48
  start-page: 273
  year: 2012
  end-page: 286
  ident: bib27
  article-title: Truncation nonlinear filters for state estimation with nonlinear inequality constraints
  publication-title: Automatica
– volume: 17
  start-page: 2061
  year: 1998
  end-page: 2077
  ident: bib2
  article-title: A comparison of smoothing techniques for CD4 data measured with error in a time-dependent Cox proportional hazards model
  publication-title: Stat Med
– volume: 4
  start-page: 1303
  year: 2010
  end-page: 1318
  ident: bib24
  article-title: Kalman filtering with state constraints: a survey of linear and nonlinear algorithms
  publication-title: IET Control Theory Appl
– volume: 53
  start-page: 330
  year: 1997
  end-page: 339
  ident: bib31
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
– volume: 96
  start-page: 403
  year: 2011
  end-page: 409
  ident: bib38
  article-title: Particle filtering prognostic estimation of the remaining useful life of nonlinear components
  publication-title: Reliab Eng Syst Saf
– volume: 38
  start-page: 543
  year: 1989
  end-page: 553
  ident: bib12
  article-title: Algorithm AS 249: evaluation of the mean and covariance of the truncated multinormal distribution
  publication-title: Appl Stat
– volume: 52
  start-page: 426
  year: 2015
  end-page: 435
  ident: bib14
  article-title: Switching Kalman filter for failure prognostics
  publication-title: Mech Syst Signal Process
– reference: Shimada N, Shirai Y, Kuno Y, Miura J. Hand gesture estimation and model refinement using monocular camera – ambiguity limitation by inequality constraints. In: Proceedings of the 3rd IEEE international conference on automatic face and gesture recognition; 1998. p. 268−273.
– volume: 90
  start-page: 27
  year: 1995
  end-page: 37
  ident: bib30
  article-title: Modeling the relationship of survival to longitudinal data measured with error: applications to survival and CD4 counts in patients with AIDS
  publication-title: J Am Stat Assoc
– volume: 59
  start-page: 405
  year: 2010
  end-page: 412
  ident: bib34
  article-title: Estimation of time to hard failure distributions using a three-stage method
  publication-title: IEEE Trans Reliab
– volume: 3
  start-page: 165
  year: 1979
  end-page: 169
  ident: bib11
  article-title: On the first and second moments of the truncated multi-normal distribution and a simple estimator
  publication-title: Econ Lett
– volume: 35
  start-page: 161
  year: 1993
  end-page: 174
  ident: bib15
  article-title: Using degradation measures to estimate a time-to-failure distribution
  publication-title: Technometrics
– reference: Liao H, Zhao W, Guo H. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model. In: Proceedings of the annual reliability and maintainability symposium, Newport Beach, CA; 2006
– reference: Bluvband Z, Porotsky S, Tropper S. Critical zone recognition: classification vs. regression. In: Proceedings of the IEEE conference on prognostics and health management; 2014. p. 1–5.
– volume: 56
  start-page: 302
  year: 2014
  end-page: 311
  ident: bib32
  article-title: The inverse Gaussian process as a degradation model
  publication-title: Technometrics
– volume: 1206
  start-page: 5387v1
  year: 2012
  ident: bib16
  article-title: Moment calculation for the doubly truncated multivariate normal density
  publication-title: arXiv
– volume: 9
  start-page: 209
  year: 2012
  end-page: 212
  ident: bib28
  article-title: Modified two-stage degradation model for dynamic maintenance threshold calculation considering uncertainty
  publication-title: IEEE Trans Autom Sci Eng
– volume: 35
  start-page: 219
  year: 2013
  end-page: 237
  ident: bib20
  article-title: A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation
  publication-title: Mech Syst Signal Process
– volume: 28
  start-page: 597
  year: 2012
  end-page: 607
  ident: bib5
  article-title: Machine remaining useful life prediction: an integrated adaptive neuro-fuzzy and high-order particle filtering approach
  publication-title: Mech Syst Signal Process
– volume: 127
  start-page: 323
  year: 2005
  end-page: 328
  ident: bib22
  article-title: Aircraft turbofan engine health estimation using constrained Kalman filtering
  publication-title: J Eng Gas Turbines Power
– volume: 64
  start-page: 182
  year: 2015
  end-page: 196
  ident: bib25
  article-title: RUL prediction for individual units based on condition monitoring signals with a change point
  publication-title: IEEE Trans Reliab
– volume: 23
  start-page: 223
  year: 1961
  end-page: 229
  ident: bib29
  article-title: The moment generating function of the truncated multinormal distribution
  publication-title: J R Stat Soc, Ser B (Methodol)
– reference: Gorjian N, Ma L, Mittinty M, Yarlagadda P, Sun Y, A. review on degradation models in reliability analysis. In: engineering asset lifecycle management – Proceedings of the 4th world congress on engineering asset management (WCEAM); 2010. p. 369–384.
– volume: 45
  start-page: 939
  year: 2013
  end-page: 952
  ident: bib6
  article-title: Condition monitoring and remaining useful life prediction using degradation signals: revisited
  publication-title: IIE Trans
– volume: 3
  start-page: 543
  year: 2005
  end-page: 557
  ident: bib7
  article-title: Residual-life distribution from component degradation signals: a Bayesian approach
  publication-title: IIE Trans
– volume: 62
  start-page: 379
  year: 2013
  end-page: 394
  ident: bib26
  article-title: Evaluation and comparison of mixed effects model based prognosis for hard failure
  publication-title: IEEE Trans Reliab
– volume: AC-16
  start-page: 688
  year: 1971
  end-page: 706
  ident: bib17
  article-title: A tutorial introduction to estimation and filtering
  publication-title: IEEE Trans Autom Control
– volume: 31
  start-page: 513
  year: 2015
  end-page: 522
  ident: bib33
  article-title: A Bayesian approach to condition monitoring with imperfect inspections
  publication-title: Qual Reliab Eng Int
– volume: 41
  start-page: 159
  year: 2010
  end-page: 171
  ident: bib23
  article-title: Constrained Kalman filtering via density function truncation for turbofan engine health estimation
  publication-title: Int J Syst Sci
– volume: 59
  start-page: 393
  year: 2010
  end-page: 404
  ident: bib3
  article-title: Optimal maintenance strategies for wind turbine systems under stochastic weather conditions
  publication-title: IEEE Trans Reliab
– volume: 46
  start-page: 1017
  year: 2014
  end-page: 1030
  ident: bib36
  article-title: Remaining useful life prediction of individual units subject to hard failure
  publication-title: IIE Trans
– volume: 44
  start-page: 793
  year: 2012
  end-page: 803
  ident: bib37
  article-title: Degradation modeling and monitoring of truncated degradation signals
  publication-title: IIE Trans
– year: 2005
  ident: bib35
  article-title: Polynomial Kalman filters, fundamentals of Kalman filtering; a practical approach
– volume: 19
  start-page: 197
  year: 1990
  end-page: 203
  ident: bib4
  article-title: One-dimensional marginal density functions of a truncated multivariate normal density function
  publication-title: Commun Stat – Theory Method
– volume: 213
  start-page: 1
  year: 2011
  end-page: 14
  ident: bib19
  article-title: Remaining useful life estimation – a review on the statistical data driven approaches
  publication-title: Eur J Oper Res
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  ident: bib10
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
– volume: 127
  start-page: 323
  issue: 2
  year: 2005
  ident: 10.1016/j.ress.2016.02.006_bib22
  article-title: Aircraft turbofan engine health estimation using constrained Kalman filtering
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.1789153
– volume: 96
  start-page: 403
  year: 2011
  ident: 10.1016/j.ress.2016.02.006_bib38
  article-title: Particle filtering prognostic estimation of the remaining useful life of nonlinear components
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2010.08.009
– volume: 17
  start-page: 2061
  issue: 18
  year: 1998
  ident: 10.1016/j.ress.2016.02.006_bib2
  article-title: A comparison of smoothing techniques for CD4 data measured with error in a time-dependent Cox proportional hazards model
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19980930)17:18<2061::AID-SIM896>3.0.CO;2-O
– volume: 3
  start-page: 543
  issue: 4
  year: 2005
  ident: 10.1016/j.ress.2016.02.006_bib7
  article-title: Residual-life distribution from component degradation signals: a Bayesian approach
  publication-title: IIE Trans
  doi: 10.1080/07408170590929018
– volume: 35
  start-page: 219
  year: 2013
  ident: 10.1016/j.ress.2016.02.006_bib20
  article-title: A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2012.08.016
– volume: 35
  start-page: 161
  year: 1993
  ident: 10.1016/j.ress.2016.02.006_bib15
  article-title: Using degradation measures to estimate a time-to-failure distribution
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10485038
– volume: 56
  start-page: 302
  issue: 3
  year: 2014
  ident: 10.1016/j.ress.2016.02.006_bib32
  article-title: The inverse Gaussian process as a degradation model
  publication-title: Technometrics
  doi: 10.1080/00401706.2013.830074
– ident: 10.1016/j.ress.2016.02.006_bib1
  doi: 10.1109/ICPHM.2014.7036386
– volume: 38
  start-page: 963
  issue: 4
  year: 1982
  ident: 10.1016/j.ress.2016.02.006_bib10
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume: 1206
  start-page: 5387v1
  year: 2012
  ident: 10.1016/j.ress.2016.02.006_bib16
  article-title: Moment calculation for the doubly truncated multivariate normal density
  publication-title: arXiv
– volume: 23
  start-page: 223
  issue: 1
  year: 1961
  ident: 10.1016/j.ress.2016.02.006_bib29
  article-title: The moment generating function of the truncated multinormal distribution
  publication-title: J R Stat Soc, Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1961.tb00408.x
– volume: 90
  start-page: 27
  issue: 429
  year: 1995
  ident: 10.1016/j.ress.2016.02.006_bib30
  article-title: Modeling the relationship of survival to longitudinal data measured with error: applications to survival and CD4 counts in patients with AIDS
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1995.10476485
– year: 2005
  ident: 10.1016/j.ress.2016.02.006_bib35
– volume: 9
  start-page: 209
  issue: 1
  year: 2012
  ident: 10.1016/j.ress.2016.02.006_bib28
  article-title: Modified two-stage degradation model for dynamic maintenance threshold calculation considering uncertainty
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2011.2160538
– volume: 39
  start-page: 128
  year: 2002
  ident: 10.1016/j.ress.2016.02.006_bib21
  article-title: Kalman filtering with state equality constraints
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/7.993234
– volume: 48
  start-page: 273
  year: 2012
  ident: 10.1016/j.ress.2016.02.006_bib27
  article-title: Truncation nonlinear filters for state estimation with nonlinear inequality constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.11.002
– volume: 45
  start-page: 939
  issue: 9
  year: 2013
  ident: 10.1016/j.ress.2016.02.006_bib6
  article-title: Condition monitoring and remaining useful life prediction using degradation signals: revisited
  publication-title: IIE Trans
  doi: 10.1080/0740817X.2012.706376
– volume: 59
  start-page: 393
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2016.02.006_bib3
  article-title: Optimal maintenance strategies for wind turbine systems under stochastic weather conditions
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2010.2046804
– volume: 28
  start-page: 597
  year: 2012
  ident: 10.1016/j.ress.2016.02.006_bib5
  article-title: Machine remaining useful life prediction: an integrated adaptive neuro-fuzzy and high-order particle filtering approach
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.10.009
– ident: 10.1016/j.ress.2016.02.006_bib13
– volume: AC-16
  start-page: 688
  issue: 6
  year: 1971
  ident: 10.1016/j.ress.2016.02.006_bib17
  article-title: A tutorial introduction to estimation and filtering
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.1971.1099833
– volume: 44
  start-page: 793
  issue: 9
  year: 2012
  ident: 10.1016/j.ress.2016.02.006_bib37
  article-title: Degradation modeling and monitoring of truncated degradation signals
  publication-title: IIE Trans
  doi: 10.1080/0740817X.2011.618175
– year: 2003
  ident: 10.1016/j.ress.2016.02.006_bib9
– volume: 38
  start-page: 543
  year: 1989
  ident: 10.1016/j.ress.2016.02.006_bib12
  article-title: Algorithm AS 249: evaluation of the mean and covariance of the truncated multinormal distribution
  publication-title: Appl Stat
  doi: 10.2307/2347752
– volume: 59
  start-page: 405
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2016.02.006_bib34
  article-title: Estimation of time to hard failure distributions using a three-stage method
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2010.2044610
– ident: 10.1016/j.ress.2016.02.006_bib8
  doi: 10.1007/978-0-85729-320-6_42
– volume: 62
  start-page: 379
  issue: 2
  year: 2013
  ident: 10.1016/j.ress.2016.02.006_bib26
  article-title: Evaluation and comparison of mixed effects model based prognosis for hard failure
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2259205
– volume: 3
  start-page: 165
  year: 1979
  ident: 10.1016/j.ress.2016.02.006_bib11
  article-title: On the first and second moments of the truncated multi-normal distribution and a simple estimator
  publication-title: Econ Lett
  doi: 10.1016/0165-1765(79)90111-3
– volume: 4
  start-page: 1303
  issue: 8
  year: 2010
  ident: 10.1016/j.ress.2016.02.006_bib24
  article-title: Kalman filtering with state constraints: a survey of linear and nonlinear algorithms
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2009.0032
– volume: 53
  start-page: 330
  year: 1997
  ident: 10.1016/j.ress.2016.02.006_bib31
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
  doi: 10.2307/2533118
– volume: 46
  start-page: 1017
  issue: 10
  year: 2014
  ident: 10.1016/j.ress.2016.02.006_bib36
  article-title: Remaining useful life prediction of individual units subject to hard failure
  publication-title: IIE Trans
  doi: 10.1080/0740817X.2013.876126
– volume: 41
  start-page: 159
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2016.02.006_bib23
  article-title: Constrained Kalman filtering via density function truncation for turbofan engine health estimation
  publication-title: Int J Syst Sci
  doi: 10.1080/00207720903042970
– volume: 213
  start-page: 1
  year: 2011
  ident: 10.1016/j.ress.2016.02.006_bib19
  article-title: Remaining useful life estimation – a review on the statistical data driven approaches
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.11.018
– ident: 10.1016/j.ress.2016.02.006_bib18
  doi: 10.1109/AFGR.1998.670960
– volume: 31
  start-page: 513
  year: 2015
  ident: 10.1016/j.ress.2016.02.006_bib33
  article-title: A Bayesian approach to condition monitoring with imperfect inspections
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.1609
– volume: 52
  start-page: 426
  issue: 53
  year: 2015
  ident: 10.1016/j.ress.2016.02.006_bib14
  article-title: Switching Kalman filter for failure prognostics
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.08.006
– volume: 19
  start-page: 197
  year: 1990
  ident: 10.1016/j.ress.2016.02.006_bib4
  article-title: One-dimensional marginal density functions of a truncated multivariate normal density function
  publication-title: Commun Stat – Theory Method
  doi: 10.1080/03610929008830197
– volume: 64
  start-page: 182
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2016.02.006_bib25
  article-title: RUL prediction for individual units based on condition monitoring signals with a change point
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2014.2355531
SSID ssj0004957
Score 2.449294
Snippet In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38
SubjectTerms Accuracy
Condition monitoring
Condition monitoring signals
Constrained Kalman filter
Constraints
Evolution
Kalman filters
Mathematical models
Noise levels
Random noise
Remaining useful life
Title Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter
URI https://dx.doi.org/10.1016/j.ress.2016.02.006
https://www.proquest.com/docview/1808639570
https://www.proquest.com/docview/1825481420
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIrykpHYUGjiOk46VhVVoaILVOpmOX6goDat-hhY-O3c5cFLogNbEp0d63z23af7fCbk2kGMzSOmPNN21uOMR57ytfC0cpHGEndGIVB8HIr-iD-Mw3GNdKuzMEirLPf-Yk_Pd-vyS7PUZnOeps0nDA7AHrFEGtY8xAO_8Fu08tv3L5oHAICouk4epcuDMwXHCxEt0rtEUbdT_OWcfm3Tue_p7ZHdMmiknWJc-6RmswOy862U4CEBHDktLnug66V16wmdpM7S-QITMah8iv7KUHjIZunyjQIONjldi07zZY3dUGRzgD1SZMO_oMgyv0IC2g3UZKoy6lLMrh-RUe_uudv3ypsUPN0SYuXxmLW1Y46ZOAlbPIlNIjQgozBxKmJ-qLVx3FcMHLqNDQQNQdtoE4rEYZIG8PYxqWezzJ4QGnKNNd2V1RaQG7i6lgmtCyITiQj6ajdIUKlQ6rLMOA51Iis-2atEtUtUu_SZBLU3yM1nm3lRZGOjdFjNjPxhKhK8wMZ2V9U0SlhDmBhRmZ2tlzKIAdhhwtLfJANQOg4480__-f8zso1vBXvwnNRXi7W9gIhmlVzmJntJtjr3g_7wA8v199s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoAeEG2pyrOu1FsVbeK1neSIEGhhYS8FiZvl-FEF7WZX7O6Bf89MHqWtxB64RYntWGN7Zj7N-BuAHwF9bJFyE7k8-EhwkUYmtiqyJqSWKO6cIaB4O1bDe3H9IB824Ly7C0Npla3ub3R6ra3bN_1Wmv15WfZ_kXOA-5Eo0ojzMNuELWKnkj3YOrsaDcev1yPzhvCTKspTh_buTJPmRaCWMrxUQ92p3rJP_2nq2vxc7sFu6zeys2ZqH2HDV5_gw19sgp8BoeS0qffAVgsfVhM2KYNn8yeKxZD8GZksx_ChmpWLZ4ZQ2NUZW2xan2wahlFCB25JRgnxv6nJoq4igf1GZjI1FQslBdj34f7y4u58GLXFFCI7UGoZiYznNvDAXVbIgSgyVyiL4EgWwaQ8lta6IGLD0ab7zKHfkOTOOqmKQHEahNxfoFfNKv8VmBSWaN2Ntx7BG1q7gZM-JKlLVYpj5QeQdCLUtmUap6lOdJdS9qhJ7JrErmOuUewH8PNPn3nDs7G2texWRv-zWzQagrX9vnfLqPEYUWzEVH62WugkQ2xHMct4XRtE01kieHz4zv9_g-3h3e2Nvrkaj45gh740yYTH0Fs-rfwJOjjL4rTdwC9DoPqM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+prediction+based+on+noisy+condition+monitoring+signals+using+constrained+Kalman+filter&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Son%2C+Junbo&rft.au=Zhou%2C+Shiyu&rft.au=Sankavaram%2C+Chaitanya&rft.au=Du%2C+Xinyu&rft.date=2016-08-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=152&rft.spage=38&rft.epage=50&rft_id=info:doi/10.1016%2Fj.ress.2016.02.006&rft.externalDocID=S0951832016000478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon