An AR-assisted Deep Reinforcement Learning-based approach towards mutual-cognitive safe human-robot interaction
With the emergence of Industry 5.0, the human-centric manufacturing paradigm requires manufacturing equipment (robots, etc.) interactively assist human workers to deal with dynamic and complex production tasks. To achieve symbiotic human–robot interaction (HRI), the safety issue serves as a prerequi...
Saved in:
Published in | Robotics and computer-integrated manufacturing Vol. 80; p. 102471 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the emergence of Industry 5.0, the human-centric manufacturing paradigm requires manufacturing equipment (robots, etc.) interactively assist human workers to deal with dynamic and complex production tasks. To achieve symbiotic human–robot interaction (HRI), the safety issue serves as a prerequisite foundation. Regarding the growing individualized demand of manufacturing tasks, the conventional rule-based safe HRI measures could not well address the safety requirements due to inflexibility and lacking synergy. To fill the gap, this work proposes a mutual-cognitive safe HRI approach including worker visual augmentation, robot velocity control, Digital Twin-enabled motion preview and collision detection, and Deep Reinforcement Learning-based robot collision avoidance motion planning in the Augmented Reality-assisted manner. Finally, the feasibility of the system design and the performance of the proposed approach are validated by establishing and executing the prototype HRI system in a practical scene.
•Introduced an AR-assisted system architecture for mutual-cognitive safe HRI.•Implemented distance-based robot velocity control and area-based workers’ visual aids functions.•Developed the robot DT-enabled motion preview for workers to enhance safe cognition and for robots to detect collision.•Proposed a curriculum learning-based DRL motion planning policy for collision avoidance. |
---|---|
AbstractList | With the emergence of Industry 5.0, the human-centric manufacturing paradigm requires manufacturing equipment (robots, etc.) interactively assist human workers to deal with dynamic and complex production tasks. To achieve symbiotic human–robot interaction (HRI), the safety issue serves as a prerequisite foundation. Regarding the growing individualized demand of manufacturing tasks, the conventional rule-based safe HRI measures could not well address the safety requirements due to inflexibility and lacking synergy. To fill the gap, this work proposes a mutual-cognitive safe HRI approach including worker visual augmentation, robot velocity control, Digital Twin-enabled motion preview and collision detection, and Deep Reinforcement Learning-based robot collision avoidance motion planning in the Augmented Reality-assisted manner. Finally, the feasibility of the system design and the performance of the proposed approach are validated by establishing and executing the prototype HRI system in a practical scene.
•Introduced an AR-assisted system architecture for mutual-cognitive safe HRI.•Implemented distance-based robot velocity control and area-based workers’ visual aids functions.•Developed the robot DT-enabled motion preview for workers to enhance safe cognition and for robots to detect collision.•Proposed a curriculum learning-based DRL motion planning policy for collision avoidance. |
ArticleNumber | 102471 |
Author | Li, Chengxi Yin, Yue Huo, Shengzeng Zheng, Pai Pang, Yat Ming |
Author_xml | – sequence: 1 givenname: Chengxi orcidid: 0000-0003-1921-7448 surname: Li fullname: Li, Chengxi organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China – sequence: 2 givenname: Pai orcidid: 0000-0002-2329-8634 surname: Zheng fullname: Zheng, Pai email: pai.zheng@polyu.edu.hk organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China – sequence: 3 givenname: Yue surname: Yin fullname: Yin, Yue organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China – sequence: 4 givenname: Yat Ming surname: Pang fullname: Pang, Yat Ming organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China – sequence: 5 givenname: Shengzeng surname: Huo fullname: Huo, Shengzeng organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China |
BookMark | eNp9kE1rAjEQhnOwULX9Az3lD8QmWfcLehH7CUJBvIfZ7EQjbrIk0dJ_313sqYeeBmbmGd55ZmTivENCHgRfCC6Kx-MiaNstJJdyaMhlKSZkysusYHm1zG_JLMYj58Mgz6bErxxdbRnEaGPClj4j9nSL1hkfNHboEt0gBGfdnjUQhw3o--BBH2jyXxDaSLtzOsOJab93NtkL0ggG6eHcgWPBNz5R6xIG0Ml6d0duDJwi3v_WOdm9vuzW72zz-faxXm2YzooisSG0bMXSoDQm52VV1W0l20LWdVOIpkaRo8wLBANQcqwEz2QpssbIuiyzFrM5kdezOvgYAxrVB9tB-FaCq9GSOqrRkhotqaulAar-QNomGFOnAPb0P_p0RXH46WIxqKgtOo2tDaiTar39D_8Bp8uI7w |
CitedBy_id | crossref_primary_10_1016_j_rcim_2025_103012 crossref_primary_10_1016_j_cie_2023_109764 crossref_primary_10_3390_app14114564 crossref_primary_10_3390_su151310169 crossref_primary_10_1016_j_technovation_2024_103025 crossref_primary_10_1177_09544089231191906 crossref_primary_10_1016_j_cirpj_2022_11_003 crossref_primary_10_1080_02508281_2024_2390716 crossref_primary_10_3390_pr11123302 crossref_primary_10_3390_s23136024 crossref_primary_10_1177_09544054231180513 crossref_primary_10_1016_j_rcim_2024_102909 crossref_primary_10_1109_TCE_2023_3268296 crossref_primary_10_1080_17567505_2024_2429167 crossref_primary_10_5194_ms_14_209_2023 crossref_primary_10_3390_s24113311 crossref_primary_10_1007_s13369_023_08565_3 crossref_primary_10_1016_j_eswa_2023_122465 crossref_primary_10_1016_j_compag_2023_108446 crossref_primary_10_1016_j_rcim_2024_102845 crossref_primary_10_1109_COMST_2023_3329472 crossref_primary_10_3390_electronics13061147 crossref_primary_10_1016_j_mfglet_2023_08_058 crossref_primary_10_1108_EJIM_02_2024_0139 crossref_primary_10_1109_ACCESS_2024_3455014 crossref_primary_10_1016_j_jobe_2024_110542 crossref_primary_10_55463_issn_1674_2974_52_1_2 crossref_primary_10_1007_s40974_024_00327_7 crossref_primary_10_1007_s12008_023_01257_0 crossref_primary_10_1007_s12008_024_02074_9 crossref_primary_10_1016_j_jmsy_2024_04_016 crossref_primary_10_1080_0951192X_2024_2387775 crossref_primary_10_3390_pr11010193 crossref_primary_10_1016_j_apergo_2025_104475 crossref_primary_10_1016_j_rcim_2022_102515 crossref_primary_10_1016_j_aei_2023_102203 crossref_primary_10_3390_machines12110785 crossref_primary_10_3390_s24072232 crossref_primary_10_1016_j_aei_2024_102466 crossref_primary_10_1007_s13132_024_02498_4 crossref_primary_10_1007_s00170_024_14959_w crossref_primary_10_3390_batteries10110382 crossref_primary_10_7717_peerj_cs_2335 crossref_primary_10_1016_j_jmsy_2024_05_002 crossref_primary_10_1109_ACCESS_2024_3385426 crossref_primary_10_1016_j_cirp_2024_04_003 crossref_primary_10_1080_00207543_2023_2252526 crossref_primary_10_1016_j_jmsy_2024_03_015 |
Cites_doi | 10.1016/j.rcim.2018.10.003 10.1016/j.jmsy.2021.08.002 10.1016/j.aei.2021.101360 10.1016/j.rcim.2021.102304 10.1109/TSMC.2017.2723764 10.1016/j.rcim.2022.102321 10.1016/j.rcim.2020.101997 10.1016/j.rcim.2021.102258 10.1016/j.jmsy.2021.10.006 10.1016/j.rcim.2019.01.008 10.1016/j.rcim.2019.101891 10.1016/j.jmsy.2020.10.017 10.1016/j.cirp.2022.04.016 10.1016/j.rcim.2021.102231 10.1145/1553374.1553380 10.3390/su11164371 10.1016/j.rcim.2019.03.010 10.1109/TIE.2020.3038072 10.1016/j.rcim.2010.06.022 10.1109/TII.2020.3000870 10.1007/s00170-019-03790-3 10.1016/j.ejor.2021.01.019 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rcim.2022.102471 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
ExternalDocumentID | 10_1016_j_rcim_2022_102471 S0736584522001533 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c366t-4712d14fe2ff507889d82d6299b61b9e15e256eafaa70e81032713bf29773de3 |
IEDL.DBID | .~1 |
ISSN | 0736-5845 |
IngestDate | Thu Apr 24 23:07:38 EDT 2025 Tue Jul 01 02:40:47 EDT 2025 Sun Apr 06 06:53:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep reinforcement learning Manufacturing safety Human robot interaction Augmented reality Smart manufacturing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-4712d14fe2ff507889d82d6299b61b9e15e256eafaa70e81032713bf29773de3 |
ORCID | 0000-0003-1921-7448 0000-0002-2329-8634 |
ParticipantIDs | crossref_primary_10_1016_j_rcim_2022_102471 crossref_citationtrail_10_1016_j_rcim_2022_102471 elsevier_sciencedirect_doi_10_1016_j_rcim_2022_102471 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | Robotics and computer-integrated manufacturing |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Wang (b15) 2021 Jost, Kirks, Gupta, Lünsch, Stenzel (b22) 2018 Nguyen, La (b31) 2019 Bi, Wang (b3) 2010; 26 Sangiovanni, Rendiniello, Incremona, Ferrara, Piastra (b27) 2018 Vogel, Walter, Elkmann (b14) 2013 Tao, Qi (b1) 2017; 49 Liu, Wang (b11) 2021; 67 Kroemer, Niekum, Konidaris (b38) 2021; 22 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston, Curriculum learning, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 41–48. Mukherjee, Gupta, Chang, Najjaran (b10) 2022; 73 Baroroh, Chu, Wang (b18) 2021; 61 Haarnoja, Pong, Zhou, Dalal, Abbeel, Levine (b23) 2018 Fan, Zheng, Li (b39) 2022; 75 Rosenstrauch, Krüger (b30) 2017 Hou, Fei, Deng, Xu (b32) 2020; 68 Li, Zheng, Zheng (b7) 2020; 17 Xu, Lu, Vogel-Heuser, Wang (b4) 2021; 61 Zardykhan, Svarny, Hoffmann, Shahriari, Haddadin (b13) 2019 Safeea, Neto (b12) 2019; 58 Narvekar, Peng, Leonetti, Sinapov, Taylor, Stone (b37) 2020; 21 Nikolakis, Maratos, Makris (b2) 2019; 56 Hietanen, Pieters, Lanz, Latokartano, Kämäräinen (b19) 2020; 63 Lin, Zhang, Chen, Zhu, Chen, Wu, Chen (b26) 2019 Siew, Ong, Nee (b21) 2019; 59 Zheng, Xia, Li, Li, Liu (b8) 2021; 61 Choi, Park, Roh, Lee, Mohammed, Ghasemi, Jeong (b16) 2022; 73 Papanastasiou, Kousi, Karagiannis, Gkournelos, Papavasileiou, Dimoulas, Baris, Koukas, Michalos, Makris (b20) 2019; 105 Fragapane, de Koster, Sgarbossa, Strandhagen (b24) 2021; 294 Vogel, Walter, Elkmann (b17) 2017; 11 Liu, Liu, Xiong, Xu, Liu (b25) 2021; 49 El-Shamouty, Wu, Yang, Albus, Huber (b28) 2020 Li, Zheng, Li, Pang, Lee (b29) 2022; 76 Schulman, Wolski, Dhariwal, Radford, Klimov (b36) 2017 Schulman, Moritz, Levine, Jordan, Abbeel (b35) 2015 Fryman, Matthias (b6) 2012 Nahavandi (b5) 2019; 11 Zheng, Li, Xia, Wang, Nassehi (b9) 2022 Sutton, Barto (b34) 2018 Hietanen (10.1016/j.rcim.2022.102471_b19) 2020; 63 Mukherjee (10.1016/j.rcim.2022.102471_b10) 2022; 73 Zheng (10.1016/j.rcim.2022.102471_b8) 2021; 61 Liu (10.1016/j.rcim.2022.102471_b11) 2021; 67 Safeea (10.1016/j.rcim.2022.102471_b12) 2019; 58 Jost (10.1016/j.rcim.2022.102471_b22) 2018 Haarnoja (10.1016/j.rcim.2022.102471_b23) 2018 El-Shamouty (10.1016/j.rcim.2022.102471_b28) 2020 Hou (10.1016/j.rcim.2022.102471_b32) 2020; 68 Sutton (10.1016/j.rcim.2022.102471_b34) 2018 Papanastasiou (10.1016/j.rcim.2022.102471_b20) 2019; 105 Sangiovanni (10.1016/j.rcim.2022.102471_b27) 2018 Nahavandi (10.1016/j.rcim.2022.102471_b5) 2019; 11 Narvekar (10.1016/j.rcim.2022.102471_b37) 2020; 21 Wang (10.1016/j.rcim.2022.102471_b15) 2021 10.1016/j.rcim.2022.102471_b33 Lin (10.1016/j.rcim.2022.102471_b26) 2019 Baroroh (10.1016/j.rcim.2022.102471_b18) 2021; 61 Nguyen (10.1016/j.rcim.2022.102471_b31) 2019 Kroemer (10.1016/j.rcim.2022.102471_b38) 2021; 22 Bi (10.1016/j.rcim.2022.102471_b3) 2010; 26 Tao (10.1016/j.rcim.2022.102471_b1) 2017; 49 Fan (10.1016/j.rcim.2022.102471_b39) 2022; 75 Zheng (10.1016/j.rcim.2022.102471_b9) 2022 Zardykhan (10.1016/j.rcim.2022.102471_b13) 2019 Vogel (10.1016/j.rcim.2022.102471_b17) 2017; 11 Li (10.1016/j.rcim.2022.102471_b29) 2022; 76 Schulman (10.1016/j.rcim.2022.102471_b36) 2017 Liu (10.1016/j.rcim.2022.102471_b25) 2021; 49 Fragapane (10.1016/j.rcim.2022.102471_b24) 2021; 294 Rosenstrauch (10.1016/j.rcim.2022.102471_b30) 2017 Siew (10.1016/j.rcim.2022.102471_b21) 2019; 59 Xu (10.1016/j.rcim.2022.102471_b4) 2021; 61 Fryman (10.1016/j.rcim.2022.102471_b6) 2012 Li (10.1016/j.rcim.2022.102471_b7) 2020; 17 Choi (10.1016/j.rcim.2022.102471_b16) 2022; 73 Nikolakis (10.1016/j.rcim.2022.102471_b2) 2019; 56 Vogel (10.1016/j.rcim.2022.102471_b14) 2013 Schulman (10.1016/j.rcim.2022.102471_b35) 2015 |
References_xml | – volume: 73 year: 2022 ident: b16 article-title: An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation publication-title: Robot. Comput.-Integr. Manuf. – volume: 22 year: 2021 ident: b38 article-title: A review of robot learning for manipulation: Challenges, representations, and algorithms publication-title: J. Mach. Learn. Res. – year: 2017 ident: b36 article-title: Proximal policy optimization algorithms – volume: 26 start-page: 558 year: 2010 end-page: 563 ident: b3 article-title: Dynamic control model of a cobot with three omni-wheels publication-title: Robot. Comput.-Integr. Manuf. – start-page: 4899 year: 2020 end-page: 4905 ident: b28 article-title: Towards safe human-robot collaboration using deep reinforcement learning publication-title: 2020 IEEE International Conference on Robotics and Automation (ICRA) – volume: 49 year: 2021 ident: b25 article-title: Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function publication-title: Adv. Eng. Inf. – volume: 56 start-page: 233 year: 2019 end-page: 243 ident: b2 article-title: A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace publication-title: Robot. Comput.-Integr. Manuf. – start-page: 69 year: 2021 end-page: 87 ident: b15 article-title: Safety strategy and framework for human–robot collaboration publication-title: Advanced Human-Robot Collaboration in Manufacturing – volume: 63 year: 2020 ident: b19 article-title: AR-based interaction for human-robot collaborative manufacturing publication-title: Robot. Comput.-Integr. Manuf. – volume: 61 start-page: 16 year: 2021 end-page: 26 ident: b8 article-title: Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach publication-title: J. Manuf. Syst. – start-page: 5359 year: 2013 end-page: 5364 ident: b14 article-title: A projection-based sensor system for safe physical human-robot collaboration publication-title: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems – start-page: 256 year: 2018 end-page: 260 ident: b22 article-title: Safe human-robot-interaction in highly flexible warehouses using augmented reality and heterogenous fleet management system publication-title: 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR) – volume: 67 year: 2021 ident: b11 article-title: Collision-free human-robot collaboration based on context awareness publication-title: Robot. Comput.-Integr. Manuf. – volume: 76 year: 2022 ident: b29 article-title: AR-assisted digital twin-enabled robot collaborative manufacturing system with human-in-the-loop publication-title: Robot. Comput.-Integr. Manuf. – volume: 49 start-page: 81 year: 2017 end-page: 91 ident: b1 article-title: New IT driven service-oriented smart manufacturing: framework and characteristics publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – start-page: 266 year: 2019 end-page: 273 ident: b13 article-title: Collision preventing phase-progress control for velocity adaptation in human-robot collaboration publication-title: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids) – year: 2018 ident: b34 article-title: Reinforcement Learning: An Introduction – start-page: 590 year: 2019 end-page: 595 ident: b31 article-title: Review of deep reinforcement learning for robot manipulation publication-title: 2019 Third IEEE International Conference on Robotic Computing (IRC) – year: 2022 ident: b9 article-title: A visual reasoning-based approach for mutual-cognitive human-robot collaboration publication-title: CIRP Annal. – volume: 105 start-page: 3881 year: 2019 end-page: 3897 ident: b20 article-title: Towards seamless human robot collaboration: integrating multimodal interaction publication-title: Int. J. Adv. Manuf. Technol. – volume: 11 start-page: 4371 year: 2019 ident: b5 article-title: Industry 5.0—A human-centric solution publication-title: Sustainability – volume: 61 start-page: 696 year: 2021 end-page: 711 ident: b18 article-title: Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence publication-title: J. Manuf. Syst. – volume: 17 start-page: 1721 year: 2020 end-page: 1731 ident: b7 article-title: An ar-assisted deep learning-based approach for automatic inspection of aviation connectors publication-title: IEEE Trans. Ind. Inf. – volume: 59 start-page: 115 year: 2019 end-page: 129 ident: b21 article-title: A practical augmented reality-assisted maintenance system framework for adaptive user support publication-title: Robot. Comput.-Integr. Manuf. – volume: 294 start-page: 405 year: 2021 end-page: 426 ident: b24 article-title: Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda publication-title: European J. Oper. Res. – start-page: 1 year: 2012 end-page: 5 ident: b6 article-title: Safety of industrial robots: From conventional to collaborative applications publication-title: ROBOTIK 2012; 7th German Conference on Robotics – volume: 73 year: 2022 ident: b10 article-title: A survey of robot learning strategies for human-robot collaboration in industrial settings publication-title: Robot. Comput.-Integr. Manuf. – reference: Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston, Curriculum learning, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 41–48. – volume: 21 start-page: 181:1 year: 2020 end-page: 181:50 ident: b37 article-title: Curriculum learning for reinforcement learning domains: A framework and survey publication-title: J. Mach. Learn. Res. – year: 2015 ident: b35 article-title: High-dimensional continuous control using generalized advantage estimation – start-page: 148 year: 2019 end-page: 153 ident: b26 article-title: Reinforcement learning for robotic safe control with force sensing publication-title: 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA) – volume: 75 year: 2022 ident: b39 article-title: Vision-based holistic scene understanding towards proactive human–robot collaboration publication-title: Robot. Comput.-Integr. Manuf. – volume: 11 start-page: 39 year: 2017 end-page: 46 ident: b17 article-title: Safeguarding and supporting future human-robot cooperative manufacturing processes by a projection-and camera-based technology publication-title: Proc. Manuf. – start-page: 2063 year: 2018 end-page: 2068 ident: b27 article-title: Deep reinforcement learning for collision avoidance of robotic manipulators publication-title: 2018 European Control Conference (ECC) – start-page: 740 year: 2017 end-page: 744 ident: b30 article-title: Safe human-robot-collaboration-introduction and experiment using ISO/TS 15066 publication-title: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR) – volume: 68 start-page: 11565 year: 2020 end-page: 11575 ident: b32 article-title: Data-efficient hierarchical reinforcement learning for robotic assembly control applications publication-title: IEEE Trans. Ind. Electron. – start-page: 6244 year: 2018 end-page: 6251 ident: b23 article-title: Composable deep reinforcement learning for robotic manipulation publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA) – volume: 61 start-page: 530 year: 2021 end-page: 535 ident: b4 article-title: Industry 4.0 and Industry 5.0—Inception, conception and perception publication-title: J. Manuf. Syst. – volume: 58 start-page: 33 year: 2019 end-page: 42 ident: b12 article-title: Minimum distance calculation using laser scanner and IMUs for safe human-robot interaction publication-title: Robot. Comput.-Integr. Manuf. – volume: 56 start-page: 233 year: 2019 ident: 10.1016/j.rcim.2022.102471_b2 article-title: A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2018.10.003 – start-page: 69 year: 2021 ident: 10.1016/j.rcim.2022.102471_b15 article-title: Safety strategy and framework for human–robot collaboration – volume: 61 start-page: 16 year: 2021 ident: 10.1016/j.rcim.2022.102471_b8 article-title: Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.08.002 – volume: 49 year: 2021 ident: 10.1016/j.rcim.2022.102471_b25 article-title: Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2021.101360 – start-page: 740 year: 2017 ident: 10.1016/j.rcim.2022.102471_b30 article-title: Safe human-robot-collaboration-introduction and experiment using ISO/TS 15066 – volume: 75 year: 2022 ident: 10.1016/j.rcim.2022.102471_b39 article-title: Vision-based holistic scene understanding towards proactive human–robot collaboration publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2021.102304 – volume: 21 start-page: 181:1 year: 2020 ident: 10.1016/j.rcim.2022.102471_b37 article-title: Curriculum learning for reinforcement learning domains: A framework and survey publication-title: J. Mach. Learn. Res. – volume: 49 start-page: 81 issue: 1 year: 2017 ident: 10.1016/j.rcim.2022.102471_b1 article-title: New IT driven service-oriented smart manufacturing: framework and characteristics publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. doi: 10.1109/TSMC.2017.2723764 – volume: 76 year: 2022 ident: 10.1016/j.rcim.2022.102471_b29 article-title: AR-assisted digital twin-enabled robot collaborative manufacturing system with human-in-the-loop publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2022.102321 – volume: 67 year: 2021 ident: 10.1016/j.rcim.2022.102471_b11 article-title: Collision-free human-robot collaboration based on context awareness publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2020.101997 – volume: 73 year: 2022 ident: 10.1016/j.rcim.2022.102471_b16 article-title: An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2021.102258 – volume: 61 start-page: 530 year: 2021 ident: 10.1016/j.rcim.2022.102471_b4 article-title: Industry 4.0 and Industry 5.0—Inception, conception and perception publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.10.006 – volume: 58 start-page: 33 year: 2019 ident: 10.1016/j.rcim.2022.102471_b12 article-title: Minimum distance calculation using laser scanner and IMUs for safe human-robot interaction publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2019.01.008 – year: 2017 ident: 10.1016/j.rcim.2022.102471_b36 – start-page: 5359 year: 2013 ident: 10.1016/j.rcim.2022.102471_b14 article-title: A projection-based sensor system for safe physical human-robot collaboration – start-page: 4899 year: 2020 ident: 10.1016/j.rcim.2022.102471_b28 article-title: Towards safe human-robot collaboration using deep reinforcement learning – volume: 22 issue: 30 year: 2021 ident: 10.1016/j.rcim.2022.102471_b38 article-title: A review of robot learning for manipulation: Challenges, representations, and algorithms publication-title: J. Mach. Learn. Res. – start-page: 2063 year: 2018 ident: 10.1016/j.rcim.2022.102471_b27 article-title: Deep reinforcement learning for collision avoidance of robotic manipulators – volume: 63 year: 2020 ident: 10.1016/j.rcim.2022.102471_b19 article-title: AR-based interaction for human-robot collaborative manufacturing publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2019.101891 – volume: 61 start-page: 696 year: 2021 ident: 10.1016/j.rcim.2022.102471_b18 article-title: Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.10.017 – volume: 11 start-page: 39 year: 2017 ident: 10.1016/j.rcim.2022.102471_b17 article-title: Safeguarding and supporting future human-robot cooperative manufacturing processes by a projection-and camera-based technology publication-title: Proc. Manuf. – year: 2015 ident: 10.1016/j.rcim.2022.102471_b35 – year: 2022 ident: 10.1016/j.rcim.2022.102471_b9 article-title: A visual reasoning-based approach for mutual-cognitive human-robot collaboration publication-title: CIRP Annal. doi: 10.1016/j.cirp.2022.04.016 – volume: 73 year: 2022 ident: 10.1016/j.rcim.2022.102471_b10 article-title: A survey of robot learning strategies for human-robot collaboration in industrial settings publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2021.102231 – start-page: 6244 year: 2018 ident: 10.1016/j.rcim.2022.102471_b23 article-title: Composable deep reinforcement learning for robotic manipulation – ident: 10.1016/j.rcim.2022.102471_b33 doi: 10.1145/1553374.1553380 – start-page: 590 year: 2019 ident: 10.1016/j.rcim.2022.102471_b31 article-title: Review of deep reinforcement learning for robot manipulation – start-page: 148 year: 2019 ident: 10.1016/j.rcim.2022.102471_b26 article-title: Reinforcement learning for robotic safe control with force sensing – start-page: 266 year: 2019 ident: 10.1016/j.rcim.2022.102471_b13 article-title: Collision preventing phase-progress control for velocity adaptation in human-robot collaboration – start-page: 1 year: 2012 ident: 10.1016/j.rcim.2022.102471_b6 article-title: Safety of industrial robots: From conventional to collaborative applications – volume: 11 start-page: 4371 issue: 16 year: 2019 ident: 10.1016/j.rcim.2022.102471_b5 article-title: Industry 5.0—A human-centric solution publication-title: Sustainability doi: 10.3390/su11164371 – volume: 59 start-page: 115 year: 2019 ident: 10.1016/j.rcim.2022.102471_b21 article-title: A practical augmented reality-assisted maintenance system framework for adaptive user support publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2019.03.010 – year: 2018 ident: 10.1016/j.rcim.2022.102471_b34 – volume: 68 start-page: 11565 issue: 11 year: 2020 ident: 10.1016/j.rcim.2022.102471_b32 article-title: Data-efficient hierarchical reinforcement learning for robotic assembly control applications publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3038072 – volume: 26 start-page: 558 issue: 6 year: 2010 ident: 10.1016/j.rcim.2022.102471_b3 article-title: Dynamic control model of a cobot with three omni-wheels publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2010.06.022 – start-page: 256 year: 2018 ident: 10.1016/j.rcim.2022.102471_b22 article-title: Safe human-robot-interaction in highly flexible warehouses using augmented reality and heterogenous fleet management system – volume: 17 start-page: 1721 issue: 3 year: 2020 ident: 10.1016/j.rcim.2022.102471_b7 article-title: An ar-assisted deep learning-based approach for automatic inspection of aviation connectors publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.3000870 – volume: 105 start-page: 3881 issue: 9 year: 2019 ident: 10.1016/j.rcim.2022.102471_b20 article-title: Towards seamless human robot collaboration: integrating multimodal interaction publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-03790-3 – volume: 294 start-page: 405 issue: 2 year: 2021 ident: 10.1016/j.rcim.2022.102471_b24 article-title: Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2021.01.019 |
SSID | ssj0002453 |
Score | 2.5591497 |
Snippet | With the emergence of Industry 5.0, the human-centric manufacturing paradigm requires manufacturing equipment (robots, etc.) interactively assist human workers... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102471 |
SubjectTerms | Augmented reality Deep reinforcement learning Human robot interaction Manufacturing safety Smart manufacturing |
Title | An AR-assisted Deep Reinforcement Learning-based approach towards mutual-cognitive safe human-robot interaction |
URI | https://dx.doi.org/10.1016/j.rcim.2022.102471 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXvTgW6wv9uBN1jabzaPHUi31QZFaobewyc5KRdvSxqu_3ZlkoxWkB0-BsAvJzmTmm_DNN4xdaO35ISIJEUCABUqGboxlkCdsKi2WuC2pTcG26Ie9Z3U3CkZrrFP1whCt0sX-MqYX0drdabjTbMzG48YTOielTwQQlPh9UvxUKiIvv_r8oXlIVSpR4mJBq13jTMnxmmdj6kaXkhQMVOT9nZyWEk53h205pMjb5cPssjWY7LHtagoDdx_lHttckhTcZ9P2hLcHAiEx2c_wa4AZH0Chj5oVvwK5k1R9EZTBDK9UxXleMGgX_P2DekrEN7GIL7QFXgzzE_NpOs05aUzMy46IAzbs3gw7PeGGKojMD8Nc4FtK4ykL0lrEgnHcMrE0IWalNPTSFngBIAoCbbWOmhCT3h7WsamVCBR9A_4hq02mEzhiHFNf4EsNKpUtlUWBtsZEoMA2LYZYA3XmVYeZZE5wnOZevCUVs-w1IQMkZICkNECdXX7vmZVyGytXB5WNkl9Ok2A-WLHv-J_7TtgGTZsviTunrJbPP-AMMUmenhdOd87W253BwyNdb-97_S8BueKI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSDD9SIzz14Mxvo9gEcCUpAkANiwq3ZdmcNRoFA-f_OtluCieHgtdlJ2s50vm-amW8AHqR03ICYBPfRpwIlpjCmMsjhOhKaStymkCrtthgG3XfvZeJPCtDOZ2FMW6XN_VlOT7O1vVK1b7O6mE6rbxScBj6JQBjgd909KBl1Kr8IpVav3x1uErLwMjFKOs-NgZ2dydq8lvHUDKQLYUQMvLrzNz5tYU7nBI4sWWSt7H5OoYCzMhznixiY_S7LcLilKngG89aMtUacWLFxoWJPiAs2wlQiNU7_BjKrqvrBDYgplguLsyRtol2x77UZK-Gb3iK2khpZus-PL-fRPGFGZmKZDUWcw7jzPG53ud2rwGM3CBJOTymU42kUWhMdbDSaqiFUQMAUBU7URMdHIkIotZT1GjaM5B6VspEWxBVdhe4FFGfzGV4CI_TzXSHRi0TTi-u-1ErV0UNd05RlFVbAyV9mGFvNcbP64ivMm8s-Q-OA0DggzBxQgceNzSJT3Nh52s99FP6Km5AgYYfd1T_t7mG_O34dhIPesH8NB2b5fNbHcwPFZLnGW6IoSXRnQ_AHsOvjpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+AR-assisted+Deep+Reinforcement+Learning-based+approach+towards+mutual-cognitive+safe+human-robot+interaction&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Li%2C+Chengxi&rft.au=Zheng%2C+Pai&rft.au=Yin%2C+Yue&rft.au=Pang%2C+Yat+Ming&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5845&rft.volume=80&rft_id=info:doi/10.1016%2Fj.rcim.2022.102471&rft.externalDocID=S0736584522001533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon |