An AR-assisted Deep Reinforcement Learning-based approach towards mutual-cognitive safe human-robot interaction

With the emergence of Industry 5.0, the human-centric manufacturing paradigm requires manufacturing equipment (robots, etc.) interactively assist human workers to deal with dynamic and complex production tasks. To achieve symbiotic human–robot interaction (HRI), the safety issue serves as a prerequi...

Full description

Saved in:
Bibliographic Details
Published inRobotics and computer-integrated manufacturing Vol. 80; p. 102471
Main Authors Li, Chengxi, Zheng, Pai, Yin, Yue, Pang, Yat Ming, Huo, Shengzeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the emergence of Industry 5.0, the human-centric manufacturing paradigm requires manufacturing equipment (robots, etc.) interactively assist human workers to deal with dynamic and complex production tasks. To achieve symbiotic human–robot interaction (HRI), the safety issue serves as a prerequisite foundation. Regarding the growing individualized demand of manufacturing tasks, the conventional rule-based safe HRI measures could not well address the safety requirements due to inflexibility and lacking synergy. To fill the gap, this work proposes a mutual-cognitive safe HRI approach including worker visual augmentation, robot velocity control, Digital Twin-enabled motion preview and collision detection, and Deep Reinforcement Learning-based robot collision avoidance motion planning in the Augmented Reality-assisted manner. Finally, the feasibility of the system design and the performance of the proposed approach are validated by establishing and executing the prototype HRI system in a practical scene. •Introduced an AR-assisted system architecture for mutual-cognitive safe HRI.•Implemented distance-based robot velocity control and area-based workers’ visual aids functions.•Developed the robot DT-enabled motion preview for workers to enhance safe cognition and for robots to detect collision.•Proposed a curriculum learning-based DRL motion planning policy for collision avoidance.
AbstractList With the emergence of Industry 5.0, the human-centric manufacturing paradigm requires manufacturing equipment (robots, etc.) interactively assist human workers to deal with dynamic and complex production tasks. To achieve symbiotic human–robot interaction (HRI), the safety issue serves as a prerequisite foundation. Regarding the growing individualized demand of manufacturing tasks, the conventional rule-based safe HRI measures could not well address the safety requirements due to inflexibility and lacking synergy. To fill the gap, this work proposes a mutual-cognitive safe HRI approach including worker visual augmentation, robot velocity control, Digital Twin-enabled motion preview and collision detection, and Deep Reinforcement Learning-based robot collision avoidance motion planning in the Augmented Reality-assisted manner. Finally, the feasibility of the system design and the performance of the proposed approach are validated by establishing and executing the prototype HRI system in a practical scene. •Introduced an AR-assisted system architecture for mutual-cognitive safe HRI.•Implemented distance-based robot velocity control and area-based workers’ visual aids functions.•Developed the robot DT-enabled motion preview for workers to enhance safe cognition and for robots to detect collision.•Proposed a curriculum learning-based DRL motion planning policy for collision avoidance.
ArticleNumber 102471
Author Li, Chengxi
Yin, Yue
Huo, Shengzeng
Zheng, Pai
Pang, Yat Ming
Author_xml – sequence: 1
  givenname: Chengxi
  orcidid: 0000-0003-1921-7448
  surname: Li
  fullname: Li, Chengxi
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
– sequence: 2
  givenname: Pai
  orcidid: 0000-0002-2329-8634
  surname: Zheng
  fullname: Zheng, Pai
  email: pai.zheng@polyu.edu.hk
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
– sequence: 3
  givenname: Yue
  surname: Yin
  fullname: Yin, Yue
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
– sequence: 4
  givenname: Yat Ming
  surname: Pang
  fullname: Pang, Yat Ming
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
– sequence: 5
  givenname: Shengzeng
  surname: Huo
  fullname: Huo, Shengzeng
  organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
BookMark eNp9kE1rAjEQhnOwULX9Az3lD8QmWfcLehH7CUJBvIfZ7EQjbrIk0dJ_313sqYeeBmbmGd55ZmTivENCHgRfCC6Kx-MiaNstJJdyaMhlKSZkysusYHm1zG_JLMYj58Mgz6bErxxdbRnEaGPClj4j9nSL1hkfNHboEt0gBGfdnjUQhw3o--BBH2jyXxDaSLtzOsOJab93NtkL0ggG6eHcgWPBNz5R6xIG0Ml6d0duDJwi3v_WOdm9vuzW72zz-faxXm2YzooisSG0bMXSoDQm52VV1W0l20LWdVOIpkaRo8wLBANQcqwEz2QpssbIuiyzFrM5kdezOvgYAxrVB9tB-FaCq9GSOqrRkhotqaulAar-QNomGFOnAPb0P_p0RXH46WIxqKgtOo2tDaiTar39D_8Bp8uI7w
CitedBy_id crossref_primary_10_1016_j_rcim_2025_103012
crossref_primary_10_1016_j_cie_2023_109764
crossref_primary_10_3390_app14114564
crossref_primary_10_3390_su151310169
crossref_primary_10_1016_j_technovation_2024_103025
crossref_primary_10_1177_09544089231191906
crossref_primary_10_1016_j_cirpj_2022_11_003
crossref_primary_10_1080_02508281_2024_2390716
crossref_primary_10_3390_pr11123302
crossref_primary_10_3390_s23136024
crossref_primary_10_1177_09544054231180513
crossref_primary_10_1016_j_rcim_2024_102909
crossref_primary_10_1109_TCE_2023_3268296
crossref_primary_10_1080_17567505_2024_2429167
crossref_primary_10_5194_ms_14_209_2023
crossref_primary_10_3390_s24113311
crossref_primary_10_1007_s13369_023_08565_3
crossref_primary_10_1016_j_eswa_2023_122465
crossref_primary_10_1016_j_compag_2023_108446
crossref_primary_10_1016_j_rcim_2024_102845
crossref_primary_10_1109_COMST_2023_3329472
crossref_primary_10_3390_electronics13061147
crossref_primary_10_1016_j_mfglet_2023_08_058
crossref_primary_10_1108_EJIM_02_2024_0139
crossref_primary_10_1109_ACCESS_2024_3455014
crossref_primary_10_1016_j_jobe_2024_110542
crossref_primary_10_55463_issn_1674_2974_52_1_2
crossref_primary_10_1007_s40974_024_00327_7
crossref_primary_10_1007_s12008_023_01257_0
crossref_primary_10_1007_s12008_024_02074_9
crossref_primary_10_1016_j_jmsy_2024_04_016
crossref_primary_10_1080_0951192X_2024_2387775
crossref_primary_10_3390_pr11010193
crossref_primary_10_1016_j_apergo_2025_104475
crossref_primary_10_1016_j_rcim_2022_102515
crossref_primary_10_1016_j_aei_2023_102203
crossref_primary_10_3390_machines12110785
crossref_primary_10_3390_s24072232
crossref_primary_10_1016_j_aei_2024_102466
crossref_primary_10_1007_s13132_024_02498_4
crossref_primary_10_1007_s00170_024_14959_w
crossref_primary_10_3390_batteries10110382
crossref_primary_10_7717_peerj_cs_2335
crossref_primary_10_1016_j_jmsy_2024_05_002
crossref_primary_10_1109_ACCESS_2024_3385426
crossref_primary_10_1016_j_cirp_2024_04_003
crossref_primary_10_1080_00207543_2023_2252526
crossref_primary_10_1016_j_jmsy_2024_03_015
Cites_doi 10.1016/j.rcim.2018.10.003
10.1016/j.jmsy.2021.08.002
10.1016/j.aei.2021.101360
10.1016/j.rcim.2021.102304
10.1109/TSMC.2017.2723764
10.1016/j.rcim.2022.102321
10.1016/j.rcim.2020.101997
10.1016/j.rcim.2021.102258
10.1016/j.jmsy.2021.10.006
10.1016/j.rcim.2019.01.008
10.1016/j.rcim.2019.101891
10.1016/j.jmsy.2020.10.017
10.1016/j.cirp.2022.04.016
10.1016/j.rcim.2021.102231
10.1145/1553374.1553380
10.3390/su11164371
10.1016/j.rcim.2019.03.010
10.1109/TIE.2020.3038072
10.1016/j.rcim.2010.06.022
10.1109/TII.2020.3000870
10.1007/s00170-019-03790-3
10.1016/j.ejor.2021.01.019
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rcim.2022.102471
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
ExternalDocumentID 10_1016_j_rcim_2022_102471
S0736584522001533
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c366t-4712d14fe2ff507889d82d6299b61b9e15e256eafaa70e81032713bf29773de3
IEDL.DBID .~1
ISSN 0736-5845
IngestDate Thu Apr 24 23:07:38 EDT 2025
Tue Jul 01 02:40:47 EDT 2025
Sun Apr 06 06:53:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep reinforcement learning
Manufacturing safety
Human robot interaction
Augmented reality
Smart manufacturing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-4712d14fe2ff507889d82d6299b61b9e15e256eafaa70e81032713bf29773de3
ORCID 0000-0003-1921-7448
0000-0002-2329-8634
ParticipantIDs crossref_primary_10_1016_j_rcim_2022_102471
crossref_citationtrail_10_1016_j_rcim_2022_102471
elsevier_sciencedirect_doi_10_1016_j_rcim_2022_102471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Wang (b15) 2021
Jost, Kirks, Gupta, Lünsch, Stenzel (b22) 2018
Nguyen, La (b31) 2019
Bi, Wang (b3) 2010; 26
Sangiovanni, Rendiniello, Incremona, Ferrara, Piastra (b27) 2018
Vogel, Walter, Elkmann (b14) 2013
Tao, Qi (b1) 2017; 49
Liu, Wang (b11) 2021; 67
Kroemer, Niekum, Konidaris (b38) 2021; 22
Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston, Curriculum learning, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 41–48.
Mukherjee, Gupta, Chang, Najjaran (b10) 2022; 73
Baroroh, Chu, Wang (b18) 2021; 61
Haarnoja, Pong, Zhou, Dalal, Abbeel, Levine (b23) 2018
Fan, Zheng, Li (b39) 2022; 75
Rosenstrauch, Krüger (b30) 2017
Hou, Fei, Deng, Xu (b32) 2020; 68
Li, Zheng, Zheng (b7) 2020; 17
Xu, Lu, Vogel-Heuser, Wang (b4) 2021; 61
Zardykhan, Svarny, Hoffmann, Shahriari, Haddadin (b13) 2019
Safeea, Neto (b12) 2019; 58
Narvekar, Peng, Leonetti, Sinapov, Taylor, Stone (b37) 2020; 21
Nikolakis, Maratos, Makris (b2) 2019; 56
Hietanen, Pieters, Lanz, Latokartano, Kämäräinen (b19) 2020; 63
Lin, Zhang, Chen, Zhu, Chen, Wu, Chen (b26) 2019
Siew, Ong, Nee (b21) 2019; 59
Zheng, Xia, Li, Li, Liu (b8) 2021; 61
Choi, Park, Roh, Lee, Mohammed, Ghasemi, Jeong (b16) 2022; 73
Papanastasiou, Kousi, Karagiannis, Gkournelos, Papavasileiou, Dimoulas, Baris, Koukas, Michalos, Makris (b20) 2019; 105
Fragapane, de Koster, Sgarbossa, Strandhagen (b24) 2021; 294
Vogel, Walter, Elkmann (b17) 2017; 11
Liu, Liu, Xiong, Xu, Liu (b25) 2021; 49
El-Shamouty, Wu, Yang, Albus, Huber (b28) 2020
Li, Zheng, Li, Pang, Lee (b29) 2022; 76
Schulman, Wolski, Dhariwal, Radford, Klimov (b36) 2017
Schulman, Moritz, Levine, Jordan, Abbeel (b35) 2015
Fryman, Matthias (b6) 2012
Nahavandi (b5) 2019; 11
Zheng, Li, Xia, Wang, Nassehi (b9) 2022
Sutton, Barto (b34) 2018
Hietanen (10.1016/j.rcim.2022.102471_b19) 2020; 63
Mukherjee (10.1016/j.rcim.2022.102471_b10) 2022; 73
Zheng (10.1016/j.rcim.2022.102471_b8) 2021; 61
Liu (10.1016/j.rcim.2022.102471_b11) 2021; 67
Safeea (10.1016/j.rcim.2022.102471_b12) 2019; 58
Jost (10.1016/j.rcim.2022.102471_b22) 2018
Haarnoja (10.1016/j.rcim.2022.102471_b23) 2018
El-Shamouty (10.1016/j.rcim.2022.102471_b28) 2020
Hou (10.1016/j.rcim.2022.102471_b32) 2020; 68
Sutton (10.1016/j.rcim.2022.102471_b34) 2018
Papanastasiou (10.1016/j.rcim.2022.102471_b20) 2019; 105
Sangiovanni (10.1016/j.rcim.2022.102471_b27) 2018
Nahavandi (10.1016/j.rcim.2022.102471_b5) 2019; 11
Narvekar (10.1016/j.rcim.2022.102471_b37) 2020; 21
Wang (10.1016/j.rcim.2022.102471_b15) 2021
10.1016/j.rcim.2022.102471_b33
Lin (10.1016/j.rcim.2022.102471_b26) 2019
Baroroh (10.1016/j.rcim.2022.102471_b18) 2021; 61
Nguyen (10.1016/j.rcim.2022.102471_b31) 2019
Kroemer (10.1016/j.rcim.2022.102471_b38) 2021; 22
Bi (10.1016/j.rcim.2022.102471_b3) 2010; 26
Tao (10.1016/j.rcim.2022.102471_b1) 2017; 49
Fan (10.1016/j.rcim.2022.102471_b39) 2022; 75
Zheng (10.1016/j.rcim.2022.102471_b9) 2022
Zardykhan (10.1016/j.rcim.2022.102471_b13) 2019
Vogel (10.1016/j.rcim.2022.102471_b17) 2017; 11
Li (10.1016/j.rcim.2022.102471_b29) 2022; 76
Schulman (10.1016/j.rcim.2022.102471_b36) 2017
Liu (10.1016/j.rcim.2022.102471_b25) 2021; 49
Fragapane (10.1016/j.rcim.2022.102471_b24) 2021; 294
Rosenstrauch (10.1016/j.rcim.2022.102471_b30) 2017
Siew (10.1016/j.rcim.2022.102471_b21) 2019; 59
Xu (10.1016/j.rcim.2022.102471_b4) 2021; 61
Fryman (10.1016/j.rcim.2022.102471_b6) 2012
Li (10.1016/j.rcim.2022.102471_b7) 2020; 17
Choi (10.1016/j.rcim.2022.102471_b16) 2022; 73
Nikolakis (10.1016/j.rcim.2022.102471_b2) 2019; 56
Vogel (10.1016/j.rcim.2022.102471_b14) 2013
Schulman (10.1016/j.rcim.2022.102471_b35) 2015
References_xml – volume: 73
  year: 2022
  ident: b16
  article-title: An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 22
  year: 2021
  ident: b38
  article-title: A review of robot learning for manipulation: Challenges, representations, and algorithms
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: b36
  article-title: Proximal policy optimization algorithms
– volume: 26
  start-page: 558
  year: 2010
  end-page: 563
  ident: b3
  article-title: Dynamic control model of a cobot with three omni-wheels
  publication-title: Robot. Comput.-Integr. Manuf.
– start-page: 4899
  year: 2020
  end-page: 4905
  ident: b28
  article-title: Towards safe human-robot collaboration using deep reinforcement learning
  publication-title: 2020 IEEE International Conference on Robotics and Automation (ICRA)
– volume: 49
  year: 2021
  ident: b25
  article-title: Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function
  publication-title: Adv. Eng. Inf.
– volume: 56
  start-page: 233
  year: 2019
  end-page: 243
  ident: b2
  article-title: A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace
  publication-title: Robot. Comput.-Integr. Manuf.
– start-page: 69
  year: 2021
  end-page: 87
  ident: b15
  article-title: Safety strategy and framework for human–robot collaboration
  publication-title: Advanced Human-Robot Collaboration in Manufacturing
– volume: 63
  year: 2020
  ident: b19
  article-title: AR-based interaction for human-robot collaborative manufacturing
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 61
  start-page: 16
  year: 2021
  end-page: 26
  ident: b8
  article-title: Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach
  publication-title: J. Manuf. Syst.
– start-page: 5359
  year: 2013
  end-page: 5364
  ident: b14
  article-title: A projection-based sensor system for safe physical human-robot collaboration
  publication-title: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
– start-page: 256
  year: 2018
  end-page: 260
  ident: b22
  article-title: Safe human-robot-interaction in highly flexible warehouses using augmented reality and heterogenous fleet management system
  publication-title: 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR)
– volume: 67
  year: 2021
  ident: b11
  article-title: Collision-free human-robot collaboration based on context awareness
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 76
  year: 2022
  ident: b29
  article-title: AR-assisted digital twin-enabled robot collaborative manufacturing system with human-in-the-loop
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 49
  start-page: 81
  year: 2017
  end-page: 91
  ident: b1
  article-title: New IT driven service-oriented smart manufacturing: framework and characteristics
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– start-page: 266
  year: 2019
  end-page: 273
  ident: b13
  article-title: Collision preventing phase-progress control for velocity adaptation in human-robot collaboration
  publication-title: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
– year: 2018
  ident: b34
  article-title: Reinforcement Learning: An Introduction
– start-page: 590
  year: 2019
  end-page: 595
  ident: b31
  article-title: Review of deep reinforcement learning for robot manipulation
  publication-title: 2019 Third IEEE International Conference on Robotic Computing (IRC)
– year: 2022
  ident: b9
  article-title: A visual reasoning-based approach for mutual-cognitive human-robot collaboration
  publication-title: CIRP Annal.
– volume: 105
  start-page: 3881
  year: 2019
  end-page: 3897
  ident: b20
  article-title: Towards seamless human robot collaboration: integrating multimodal interaction
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 11
  start-page: 4371
  year: 2019
  ident: b5
  article-title: Industry 5.0—A human-centric solution
  publication-title: Sustainability
– volume: 61
  start-page: 696
  year: 2021
  end-page: 711
  ident: b18
  article-title: Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence
  publication-title: J. Manuf. Syst.
– volume: 17
  start-page: 1721
  year: 2020
  end-page: 1731
  ident: b7
  article-title: An ar-assisted deep learning-based approach for automatic inspection of aviation connectors
  publication-title: IEEE Trans. Ind. Inf.
– volume: 59
  start-page: 115
  year: 2019
  end-page: 129
  ident: b21
  article-title: A practical augmented reality-assisted maintenance system framework for adaptive user support
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 294
  start-page: 405
  year: 2021
  end-page: 426
  ident: b24
  article-title: Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda
  publication-title: European J. Oper. Res.
– start-page: 1
  year: 2012
  end-page: 5
  ident: b6
  article-title: Safety of industrial robots: From conventional to collaborative applications
  publication-title: ROBOTIK 2012; 7th German Conference on Robotics
– volume: 73
  year: 2022
  ident: b10
  article-title: A survey of robot learning strategies for human-robot collaboration in industrial settings
  publication-title: Robot. Comput.-Integr. Manuf.
– reference: Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston, Curriculum learning, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 41–48.
– volume: 21
  start-page: 181:1
  year: 2020
  end-page: 181:50
  ident: b37
  article-title: Curriculum learning for reinforcement learning domains: A framework and survey
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: b35
  article-title: High-dimensional continuous control using generalized advantage estimation
– start-page: 148
  year: 2019
  end-page: 153
  ident: b26
  article-title: Reinforcement learning for robotic safe control with force sensing
  publication-title: 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA)
– volume: 75
  year: 2022
  ident: b39
  article-title: Vision-based holistic scene understanding towards proactive human–robot collaboration
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 11
  start-page: 39
  year: 2017
  end-page: 46
  ident: b17
  article-title: Safeguarding and supporting future human-robot cooperative manufacturing processes by a projection-and camera-based technology
  publication-title: Proc. Manuf.
– start-page: 2063
  year: 2018
  end-page: 2068
  ident: b27
  article-title: Deep reinforcement learning for collision avoidance of robotic manipulators
  publication-title: 2018 European Control Conference (ECC)
– start-page: 740
  year: 2017
  end-page: 744
  ident: b30
  article-title: Safe human-robot-collaboration-introduction and experiment using ISO/TS 15066
  publication-title: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR)
– volume: 68
  start-page: 11565
  year: 2020
  end-page: 11575
  ident: b32
  article-title: Data-efficient hierarchical reinforcement learning for robotic assembly control applications
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 6244
  year: 2018
  end-page: 6251
  ident: b23
  article-title: Composable deep reinforcement learning for robotic manipulation
  publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA)
– volume: 61
  start-page: 530
  year: 2021
  end-page: 535
  ident: b4
  article-title: Industry 4.0 and Industry 5.0—Inception, conception and perception
  publication-title: J. Manuf. Syst.
– volume: 58
  start-page: 33
  year: 2019
  end-page: 42
  ident: b12
  article-title: Minimum distance calculation using laser scanner and IMUs for safe human-robot interaction
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 56
  start-page: 233
  year: 2019
  ident: 10.1016/j.rcim.2022.102471_b2
  article-title: A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2018.10.003
– start-page: 69
  year: 2021
  ident: 10.1016/j.rcim.2022.102471_b15
  article-title: Safety strategy and framework for human–robot collaboration
– volume: 61
  start-page: 16
  year: 2021
  ident: 10.1016/j.rcim.2022.102471_b8
  article-title: Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.08.002
– volume: 49
  year: 2021
  ident: 10.1016/j.rcim.2022.102471_b25
  article-title: Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101360
– start-page: 740
  year: 2017
  ident: 10.1016/j.rcim.2022.102471_b30
  article-title: Safe human-robot-collaboration-introduction and experiment using ISO/TS 15066
– volume: 75
  year: 2022
  ident: 10.1016/j.rcim.2022.102471_b39
  article-title: Vision-based holistic scene understanding towards proactive human–robot collaboration
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102304
– volume: 21
  start-page: 181:1
  year: 2020
  ident: 10.1016/j.rcim.2022.102471_b37
  article-title: Curriculum learning for reinforcement learning domains: A framework and survey
  publication-title: J. Mach. Learn. Res.
– volume: 49
  start-page: 81
  issue: 1
  year: 2017
  ident: 10.1016/j.rcim.2022.102471_b1
  article-title: New IT driven service-oriented smart manufacturing: framework and characteristics
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2017.2723764
– volume: 76
  year: 2022
  ident: 10.1016/j.rcim.2022.102471_b29
  article-title: AR-assisted digital twin-enabled robot collaborative manufacturing system with human-in-the-loop
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102321
– volume: 67
  year: 2021
  ident: 10.1016/j.rcim.2022.102471_b11
  article-title: Collision-free human-robot collaboration based on context awareness
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2020.101997
– volume: 73
  year: 2022
  ident: 10.1016/j.rcim.2022.102471_b16
  article-title: An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102258
– volume: 61
  start-page: 530
  year: 2021
  ident: 10.1016/j.rcim.2022.102471_b4
  article-title: Industry 4.0 and Industry 5.0—Inception, conception and perception
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.10.006
– volume: 58
  start-page: 33
  year: 2019
  ident: 10.1016/j.rcim.2022.102471_b12
  article-title: Minimum distance calculation using laser scanner and IMUs for safe human-robot interaction
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2019.01.008
– year: 2017
  ident: 10.1016/j.rcim.2022.102471_b36
– start-page: 5359
  year: 2013
  ident: 10.1016/j.rcim.2022.102471_b14
  article-title: A projection-based sensor system for safe physical human-robot collaboration
– start-page: 4899
  year: 2020
  ident: 10.1016/j.rcim.2022.102471_b28
  article-title: Towards safe human-robot collaboration using deep reinforcement learning
– volume: 22
  issue: 30
  year: 2021
  ident: 10.1016/j.rcim.2022.102471_b38
  article-title: A review of robot learning for manipulation: Challenges, representations, and algorithms
  publication-title: J. Mach. Learn. Res.
– start-page: 2063
  year: 2018
  ident: 10.1016/j.rcim.2022.102471_b27
  article-title: Deep reinforcement learning for collision avoidance of robotic manipulators
– volume: 63
  year: 2020
  ident: 10.1016/j.rcim.2022.102471_b19
  article-title: AR-based interaction for human-robot collaborative manufacturing
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101891
– volume: 61
  start-page: 696
  year: 2021
  ident: 10.1016/j.rcim.2022.102471_b18
  article-title: Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.10.017
– volume: 11
  start-page: 39
  year: 2017
  ident: 10.1016/j.rcim.2022.102471_b17
  article-title: Safeguarding and supporting future human-robot cooperative manufacturing processes by a projection-and camera-based technology
  publication-title: Proc. Manuf.
– year: 2015
  ident: 10.1016/j.rcim.2022.102471_b35
– year: 2022
  ident: 10.1016/j.rcim.2022.102471_b9
  article-title: A visual reasoning-based approach for mutual-cognitive human-robot collaboration
  publication-title: CIRP Annal.
  doi: 10.1016/j.cirp.2022.04.016
– volume: 73
  year: 2022
  ident: 10.1016/j.rcim.2022.102471_b10
  article-title: A survey of robot learning strategies for human-robot collaboration in industrial settings
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102231
– start-page: 6244
  year: 2018
  ident: 10.1016/j.rcim.2022.102471_b23
  article-title: Composable deep reinforcement learning for robotic manipulation
– ident: 10.1016/j.rcim.2022.102471_b33
  doi: 10.1145/1553374.1553380
– start-page: 590
  year: 2019
  ident: 10.1016/j.rcim.2022.102471_b31
  article-title: Review of deep reinforcement learning for robot manipulation
– start-page: 148
  year: 2019
  ident: 10.1016/j.rcim.2022.102471_b26
  article-title: Reinforcement learning for robotic safe control with force sensing
– start-page: 266
  year: 2019
  ident: 10.1016/j.rcim.2022.102471_b13
  article-title: Collision preventing phase-progress control for velocity adaptation in human-robot collaboration
– start-page: 1
  year: 2012
  ident: 10.1016/j.rcim.2022.102471_b6
  article-title: Safety of industrial robots: From conventional to collaborative applications
– volume: 11
  start-page: 4371
  issue: 16
  year: 2019
  ident: 10.1016/j.rcim.2022.102471_b5
  article-title: Industry 5.0—A human-centric solution
  publication-title: Sustainability
  doi: 10.3390/su11164371
– volume: 59
  start-page: 115
  year: 2019
  ident: 10.1016/j.rcim.2022.102471_b21
  article-title: A practical augmented reality-assisted maintenance system framework for adaptive user support
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2019.03.010
– year: 2018
  ident: 10.1016/j.rcim.2022.102471_b34
– volume: 68
  start-page: 11565
  issue: 11
  year: 2020
  ident: 10.1016/j.rcim.2022.102471_b32
  article-title: Data-efficient hierarchical reinforcement learning for robotic assembly control applications
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3038072
– volume: 26
  start-page: 558
  issue: 6
  year: 2010
  ident: 10.1016/j.rcim.2022.102471_b3
  article-title: Dynamic control model of a cobot with three omni-wheels
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2010.06.022
– start-page: 256
  year: 2018
  ident: 10.1016/j.rcim.2022.102471_b22
  article-title: Safe human-robot-interaction in highly flexible warehouses using augmented reality and heterogenous fleet management system
– volume: 17
  start-page: 1721
  issue: 3
  year: 2020
  ident: 10.1016/j.rcim.2022.102471_b7
  article-title: An ar-assisted deep learning-based approach for automatic inspection of aviation connectors
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3000870
– volume: 105
  start-page: 3881
  issue: 9
  year: 2019
  ident: 10.1016/j.rcim.2022.102471_b20
  article-title: Towards seamless human robot collaboration: integrating multimodal interaction
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-03790-3
– volume: 294
  start-page: 405
  issue: 2
  year: 2021
  ident: 10.1016/j.rcim.2022.102471_b24
  article-title: Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2021.01.019
SSID ssj0002453
Score 2.5591497
Snippet With the emergence of Industry 5.0, the human-centric manufacturing paradigm requires manufacturing equipment (robots, etc.) interactively assist human workers...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102471
SubjectTerms Augmented reality
Deep reinforcement learning
Human robot interaction
Manufacturing safety
Smart manufacturing
Title An AR-assisted Deep Reinforcement Learning-based approach towards mutual-cognitive safe human-robot interaction
URI https://dx.doi.org/10.1016/j.rcim.2022.102471
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXvTgW6wv9uBN1jabzaPHUi31QZFaobewyc5KRdvSxqu_3ZlkoxWkB0-BsAvJzmTmm_DNN4xdaO35ISIJEUCABUqGboxlkCdsKi2WuC2pTcG26Ie9Z3U3CkZrrFP1whCt0sX-MqYX0drdabjTbMzG48YTOielTwQQlPh9UvxUKiIvv_r8oXlIVSpR4mJBq13jTMnxmmdj6kaXkhQMVOT9nZyWEk53h205pMjb5cPssjWY7LHtagoDdx_lHttckhTcZ9P2hLcHAiEx2c_wa4AZH0Chj5oVvwK5k1R9EZTBDK9UxXleMGgX_P2DekrEN7GIL7QFXgzzE_NpOs05aUzMy46IAzbs3gw7PeGGKojMD8Nc4FtK4ykL0lrEgnHcMrE0IWalNPTSFngBIAoCbbWOmhCT3h7WsamVCBR9A_4hq02mEzhiHFNf4EsNKpUtlUWBtsZEoMA2LYZYA3XmVYeZZE5wnOZevCUVs-w1IQMkZICkNECdXX7vmZVyGytXB5WNkl9Ok2A-WLHv-J_7TtgGTZsviTunrJbPP-AMMUmenhdOd87W253BwyNdb-97_S8BueKI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSDD9SIzz14Mxvo9gEcCUpAkANiwq3ZdmcNRoFA-f_OtluCieHgtdlJ2s50vm-amW8AHqR03ICYBPfRpwIlpjCmMsjhOhKaStymkCrtthgG3XfvZeJPCtDOZ2FMW6XN_VlOT7O1vVK1b7O6mE6rbxScBj6JQBjgd909KBl1Kr8IpVav3x1uErLwMjFKOs-NgZ2dydq8lvHUDKQLYUQMvLrzNz5tYU7nBI4sWWSt7H5OoYCzMhznixiY_S7LcLilKngG89aMtUacWLFxoWJPiAs2wlQiNU7_BjKrqvrBDYgplguLsyRtol2x77UZK-Gb3iK2khpZus-PL-fRPGFGZmKZDUWcw7jzPG53ud2rwGM3CBJOTymU42kUWhMdbDSaqiFUQMAUBU7URMdHIkIotZT1GjaM5B6VspEWxBVdhe4FFGfzGV4CI_TzXSHRi0TTi-u-1ErV0UNd05RlFVbAyV9mGFvNcbP64ivMm8s-Q-OA0DggzBxQgceNzSJT3Nh52s99FP6Km5AgYYfd1T_t7mG_O34dhIPesH8NB2b5fNbHcwPFZLnGW6IoSXRnQ_AHsOvjpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+AR-assisted+Deep+Reinforcement+Learning-based+approach+towards+mutual-cognitive+safe+human-robot+interaction&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Li%2C+Chengxi&rft.au=Zheng%2C+Pai&rft.au=Yin%2C+Yue&rft.au=Pang%2C+Yat+Ming&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5845&rft.volume=80&rft_id=info:doi/10.1016%2Fj.rcim.2022.102471&rft.externalDocID=S0736584522001533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon