Photon shifting and trapping in perovskite solar cells for improved efficiency and stability

Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic stru...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 13; no. 1; pp. 238 - 13
Main Authors Haque, Sirazul, Alexandre, Miguel, Vicente, António T., Li, Kezheng, Schuster, Christian S., Yang, Sui, Águas, Hugo, Martins, Rodrigo, Ferreira, Rute A. S., Mendes, Manuel J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.09.2024
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability. Combining a simple (yet powerful) light-trapping structure with a luminescent down-shifting material (t-U (500)/Eu3 + ) allows remarkable efficiency enhancement (28%) in perovskite solar cells while providing protection against damaging UV radiation.
AbstractList Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability.Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability.
Abstract Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability.
Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability.
Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability. Combining a simple (yet powerful) light-trapping structure with a luminescent down-shifting material (t-U (500)/Eu3 + ) allows remarkable efficiency enhancement (28%) in perovskite solar cells while providing protection against damaging UV radiation.
Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability.Combining a simple (yet powerful) light-trapping structure with a luminescent down-shifting material (t-U (500)/Eu3 + ) allows remarkable efficiency enhancement (28%) in perovskite solar cells while providing protection against damaging UV radiation.
ArticleNumber 238
Author Li, Kezheng
Mendes, Manuel J.
Vicente, António T.
Martins, Rodrigo
Yang, Sui
Águas, Hugo
Haque, Sirazul
Alexandre, Miguel
Schuster, Christian S.
Ferreira, Rute A. S.
Author_xml – sequence: 1
  givenname: Sirazul
  orcidid: 0000-0003-4115-4551
  surname: Haque
  fullname: Haque, Sirazul
  email: sirazzakir1@gmail.com
  organization: CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Materials Science and Engineering, School for Engineering of Matter Transport and Energy, Arizona State University
– sequence: 2
  givenname: Miguel
  orcidid: 0000-0002-7533-9469
  surname: Alexandre
  fullname: Alexandre, Miguel
  organization: CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica
– sequence: 3
  givenname: António T.
  orcidid: 0000-0001-9069-9430
  surname: Vicente
  fullname: Vicente, António T.
  organization: CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica
– sequence: 4
  givenname: Kezheng
  orcidid: 0000-0002-9234-3312
  surname: Li
  fullname: Li, Kezheng
  organization: Department of Physics, University of York
– sequence: 5
  givenname: Christian S.
  orcidid: 0000-0002-7352-4011
  surname: Schuster
  fullname: Schuster, Christian S.
  organization: Department of Physics, University of York
– sequence: 6
  givenname: Sui
  orcidid: 0000-0002-4072-6856
  surname: Yang
  fullname: Yang, Sui
  organization: Materials Science and Engineering, School for Engineering of Matter Transport and Energy, Arizona State University
– sequence: 7
  givenname: Hugo
  orcidid: 0000-0001-7350-649X
  surname: Águas
  fullname: Águas, Hugo
  organization: CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica
– sequence: 8
  givenname: Rodrigo
  orcidid: 0000-0002-1997-7669
  surname: Martins
  fullname: Martins, Rodrigo
  organization: CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica
– sequence: 9
  givenname: Rute A. S.
  orcidid: 0000-0003-1085-7836
  surname: Ferreira
  fullname: Ferreira, Rute A. S.
  organization: Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago
– sequence: 10
  givenname: Manuel J.
  orcidid: 0000-0002-7374-0726
  surname: Mendes
  fullname: Mendes, Manuel J.
  email: mj.mendes@fct.unl.pt
  organization: CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39237491$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1UREvpC7BAkdiwCfia2EtUUahUCRbtDsny5WTqIWMHO4M0b19nUgpigWXJt-_85xz_L9FJTBEQek3we4KZ_FA4YX3fYspbTIRQLX2GzijmfdsLJk_-2p-ii1K2uA7FCZb9C3TKFGU9V-QMff92n-YUm3IfhjnETWOib-Zspmk5hNhMkNOv8iPM0JQ0mtw4GMfSDCk3YTfVN_ANDENwAaI7HMPLbGwYw3x4hZ4PZixw8bieo7urT7eXX9qbr5-vLz_etI513dxy4YWzksg6qSKKOOYd8YAtc5ZUhAP3ZCDeMIl746yyRggjQeKBY0PZObpedX0yWz3lsDP5oJMJ-niR8kabPAc3graywzVBRxQ1XAlvPRiKO0-rLpcgqta7Vav29nMPZda7UJaeTYS0L5oRTCitP6kq-vYfdJv2OdZOjxTGjIqlOLpSLqdSMgxPBRKsFyv1aqWuVuqjlXoJevMovbc78E8hv42rAFuBUp_iBvKf3P-RfQBK0KqH
Cites_doi 10.3389/FNANO.2021.635929/BIBTEX
10.1002/ADFM.201900830
10.1016/J.JOULE.2019.10.003
10.1016/BS.HPCRE.2021.12.001
10.1016/J.JRE.2020.01.007
10.1016/j.matdes.2021.109454
10.1364/OPTICA.394885
10.1039/D3RA00991B
10.1002/AENM.201702960
10.1016/j.solmat.2015.02.032
10.1039/C4EE01842G
10.1155/2016/8543475
10.29026/OEA.2019.190006
10.1002/ADFM.201401658
10.1016/j.solener.2016.11.036
10.1002/SOLR.202100509
10.29026/oea.2019.190006
10.1039/C7TC05271E
10.1021/acsaem.9b00271
10.1515/AOT-2017-0022/MACHINEREADABLECITATION/RIS
10.1016/J.APMT.2020.100720
10.1021/ACSENERGYLETT.1C02768/ASSET/IMAGES/LARGE/NZ1C02768_0027.JPEG
10.1016/J.MATTOD.2019.10.002
10.1039/B406082M
10.1016/B978-0-8155-1582-1.00004-6
10.1063/1.5052164
10.1016/j.solmat.2015.09.037
10.1021/ACS.JPCC.8B02529/SUPPL_FILE/JP8B02529_SI_001.PDF
10.1039/C9EE02020A
10.1038/s41467-018-07255-1
10.1039/C7TC02945D
10.1007/S10854-017-6928-0/FIGURES/10
10.1039/C9TA00551J
10.1039/C9DT04858H
10.1016/B978-0-08-102762-2.00009-4
10.1016/j.nanoen.2020.105019
10.1016/J.NANOEN.2016.05.038
10.1016/j.isci.2018.04.018
10.1016/J.SOLMAT.2009.02.020
10.1088/1402-4896/acce7c
10.1007/978-3-030-72579-2_112
10.1021/ACSPHOTONICS.2C00446
10.1002/PIP.3228
10.1016/j.jechem.2017.11.021
10.1364/OE.21.0A1065
10.1038/s41598-017-07218-4
10.1002/aenm.202200505
10.1038/srep18922
10.1039/D3TA00734K
10.1021/ACS.NANOLETT.7B02834/SUPPL_FILE/NL7B02834_SI_001.PDF
10.1016/S0022-2313(02)00684-1
10.1002/adma.201603326
10.1007/S10971-012-2770-2/FIGURES/7
10.1016/J.NANOEN.2021.106388
10.1038/nmat4388
10.1016/J.SOLMAT.2015.12.025
10.1021/acsami.7b02700
10.1002/adma.201805547
10.1002/ADMA.201800855
10.1038/s41598-018-35356-w
10.1007/978-3-540-68798-6
10.1039/B913877C
10.1039/C3TA11463E
10.1016/J.SOLMAT.2018.12.012
10.1038/ncomms3665
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41377-024-01559-2
DatabaseName Springer Open Access
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 13
ExternalDocumentID oai_doaj_org_article_b86091c6192a495dbdea206d27ac48e5
10_1038_s41377_024_01559_2
39237491
Genre Journal Article
GroupedDBID 0R~
3V.
5VS
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0L
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c366t-45d5cb81881829191c3dc1de0b3cb13664e4d1f1da3807acb9ba55a8e80f40a23
IEDL.DBID BENPR
ISSN 2047-7538
IngestDate Mon Sep 23 19:33:02 EDT 2024
Mon Sep 23 02:50:03 EDT 2024
Thu Oct 10 21:48:56 EDT 2024
Wed Sep 25 14:00:18 EDT 2024
Fri Oct 18 09:23:04 EDT 2024
Fri Oct 11 20:48:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-45d5cb81881829191c3dc1de0b3cb13664e4d1f1da3807acb9ba55a8e80f40a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7533-9469
0000-0002-4072-6856
0000-0002-1997-7669
0000-0002-9234-3312
0000-0002-7352-4011
0000-0001-9069-9430
0000-0003-4115-4551
0000-0002-7374-0726
0000-0001-7350-649X
0000-0003-1085-7836
OpenAccessLink https://www.proquest.com/docview/3101003252?pq-origsite=%requestingapplication%
PMID 39237491
PQID 3101003252
PQPubID 2041947
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_b86091c6192a495dbdea206d27ac48e5
proquest_miscellaneous_3101229419
proquest_journals_3101003252
crossref_primary_10_1038_s41377_024_01559_2
pubmed_primary_39237491
springer_journals_10_1038_s41377_024_01559_2
PublicationCentury 2000
PublicationDate 2024-09-05
PublicationDateYYYYMMDD 2024-09-05
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationTitleAlternate Light Sci Appl
PublicationYear 2024
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References GaoYFlexible Perovskite Solar Cells: From Materials and Device Architectures to ApplicationsACS Energy Lett.202271412144510.1021/ACSENERGYLETT.1C02768/ASSET/IMAGES/LARGE/NZ1C02768_0027.JPEG
FarinhasJUltraviolet-filtering luminescent transparent coatings for high-performance PTB7-Th:ITIC–based organic solar cellsFront. Nanotechnol202131210.3389/FNANO.2021.635929/BIBTEX
Haque, S. et al. Photonic-structured perovskite solar cells: detailed optoelectronic analysis. ACS Photonicshttps://doi.org/10.1021/ACSPHOTONICS.2C00446 (2022).
KlampaftisERossDMcIntoshKRRichardsBSEnhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A reviewSol. Energy Mater. Sol. Cells2009931182119410.1016/J.SOLMAT.2009.02.020
HaqueSDesign of wave-optical structured substrates for ultra-thin perovskite solar cellsAppl. Mater. Today20202010.1016/J.APMT.2020.100720
KirchartzTKrückemeierLUngerELResearch update: recombination and open-circuit voltage in lead-halide perovskitesAPL Mater.201862018APLM....6j0702K10.1063/1.5052164
TessitoreGMandlGAMaurizioSLKaurMCapobiancoJAThe role of lanthanide luminescence in advancing technologyRSC Adv.20231317787178112023RSCAd..1317787T10.1039/D3RA00991B
WangDWrightMElumalaiNKUddinAStability of perovskite solar cellsSol. Energy Mater. Sol. Cells201614725527510.1016/J.SOLMAT.2015.12.025
AlexandreMOptimum luminescent down-shifting properties for high efficiency and stable perovskite solar cellsACS Appl. Energy Mater.201922930293810.1021/acsaem.9b00271
LiKLight trapping in solar cells: simple design rules to maximize absorptionOpt20207137713842020Optic...7.1377L10.1364/OPTICA.394885
MolinaCEnhanced emission from Eu(III) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic–inorganic hybridsJ. Lumin.20031049310110.1016/S0022-2313(02)00684-1
WangBLiBShenTLiMTianJZnSe quantum dots downshifting layer for perovskite solar cellsJ. Energy Chem.20182773674110.1016/j.jechem.2017.11.021
KettleJPrintable luminescent down shifter for enhancing efficiency and stability of organic photovoltaicsSol. Energy Mater. Sol. Cells201614448148710.1016/j.solmat.2015.09.037
Bernal-CorreaRMorales-AcevedoAMontes-MonsalveJRoberto Bernal-Correa, Estimating the performance of solar cells with luminescent down-shifting layersPhys. Scr.2023980659042023PhyS...98f5904B10.1088/1402-4896/acce7c
Luque, A. L. & Viacheslav, A. Concentrator Photovoltaics (Springer Nature, 2007).
FerreiraRASCorreiaSFHMonguzziALiuXMeinardiFSpectral converters for photovoltaics – What’s aheadMater. Today20203310512110.1016/J.MATTOD.2019.10.002
ChenWEffects of down-conversion CeO2:Eu3+ nanophosphors in perovskite solar cellsJ. Mater. Sci. Mater. Electron20172811346113572017sdmp.book.....C10.1007/S10854-017-6928-0/FIGURES/10
KaltenbrunnerMFlexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in airNat. Mater.201514103210392015NatMa..14.1032K10.1038/nmat4388
BünzliJCGPiguetCTaking advantage of luminescent lanthanide ionsChem. Soc. Rev.2005341048107710.1039/B406082M
RahmanNUA promising europium-based down conversion material: organic–inorganic perovskite solar cells with high photovoltaic performance and UV-light stabilityJ. Mater. Chem. A.201976467647410.1039/C9TA00551J
Luttge, R. Nanotechnology. Microfabr. Ind. Appl.https://doi.org/10.1016/B978-0-8155-1582-1.00004-6 (2011).
MendesMJOptimal-enhanced solar cell ultra-thinning with broadband nanophotonic light captureIScience201832382542018iSci....3..238M10.1016/j.isci.2018.04.018
Refractive index database (n.d.). https://refractiveindex.info/ (accessed 1 June 2022).
WalterDTransient photovoltage in perovskite solar cells: Interaction of trap-mediated recombination and migration of multiple ionic speciesJ. Phys. Chem. C2018122112701128110.1021/ACS.JPCC.8B02529/SUPPL_FILE/JP8B02529_SI_001.PDF
SchmagerRGomardGRichardsBSPaetzoldUWNanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cellsSol. Energy Mater. Sol. Cells2019192657110.1016/J.SOLMAT.2018.12.012
HossainMINear field control for enhanced photovoltaic performance and photostability in perovskite solar cellsNano Energy20218910.1016/J.NANOEN.2021.106388
HeumuellerTReducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinityEnergy Environ. Sci.201472974298010.1039/C4EE01842G
YangDLiangHLiuYHouMKanLA large-area luminescent downshifting layer containing an Eu3+ complex for crystalline silicon solar cellsDalt. Trans.2020494725473110.1039/C9DT04858H
YangJBaoQShenLDingLPotential applications for perovskite solar cells in spaceNano Energy20207610.1016/j.nanoen.2020.105019
GreenMASolar cell efficiency tables (Version 55)Prog. Photovolt. Res. Appl.20202831510.1002/PIP.3228
AhmedHMcCormackSJDoranJExternal quantum efficiency improvement with luminescent downshifting layers: experimental and modellingInt. J. Spectrosc.20162016201610.1155/2016/8543475
KimHTPhosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar CellsSci. Rep.201882018NatSR...816974K10.1038/s41598-018-35356-w
LangFRadiation hardness and self-healing of perovskite solar cellsAdv. Mater.2016288726873110.1002/adma.201603326
HossainMIImproved nanophotonic front contact design for high-performance perovskite single-junction and perovskite/perovskite tandem solar cellsSol. Rrl.2021510.1002/SOLR.202100509
Mendes, M. J. et al. Wave-optical front structures on silicon and perovskite thin-film solar cells. Sol. Cells Light Manag. Mater. Strateg. Sustain.https://doi.org/10.1016/B978-0-08-102762-2.00009-4 (2020).
WangD-LHighly efficient light management for perovskite solar cellsSci. Rep.201662016NatSR...618922W10.1038/srep18922
MartinsERDeterministic quasi-random nanostructures for photon controlNat. Commun.201341710.1038/ncomms3665
Schuster, C. S. et al. Empowering Photovoltaics with Smart Light Management Technologies, Handb. Clim. Chang. Mitig. Adapt. https://doi.org/10.1007/978-3-030-72579-2_112 (2022).
WangYDiffraction-grated perovskite induced highly efficient solar cells through nanophotonic light trappingAdv. Energy Mater.2018810.1002/AENM.201702960
ChenWA semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiencyAdv. Mater.20183010.1002/ADMA.201800855
PathakSKPerformance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2Adv. Funct. Mater.2014246046605510.1002/ADFM.201401658
Deng, K., Liu, Z., Wang, M. & Li, L. Nanoimprinted grating-embedded perovskite solar cells with improved light management. Adv. Funct. Mater.https://doi.org/10.1002/ADFM.201900830 (2019).
Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, (n.d.). https://www.nrel.gov/pv/cell-efficiency.html (accessed 12 January 2023).
FDTD Solutions | Lumerical’s Nanophotonic FDTD Simulation Software, (n.d.). https://www.lumerical.com/tcad-products/fdtd/ (accessed 12 January 2022).
BertoluzziLMobile ion concentration measurement and open-access band diagram simulation platform for halide perovskite solar cellsJoule2020410912710.1016/J.JOULE.2019.10.003
MendesMJDesign of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cellsNano Energy20162628629610.1016/J.NANOEN.2016.05.038
LesyukRSimulation study of environmentally friendly quantum-dot-based photovoltaic windowsJ. Mater. Chem. C20175117901179710.1039/C7TC02945D
RondãoRHigh-performance near-infrared luminescent solar concentratorsACS Appl. Mater. Interfaces20179125401254610.1021/acsami.7b02700
CrothersTWPhoton reabsorption masks intrinsic bimolecular charge-carrier recombination in CH3NH3PbI3 perovskiteNano Lett.201717578257892017NanoL..17.5782C10.1021/ACS.NANOLETT.7B02834/SUPPL_FILE/NL7B02834_SI_001.PDF
Van Der EndeBMAartsLMeijerinkALanthanide ions as spectral converters for solar cellsPhys. Chem. Chem. Phys.200911110811109510.1039/B913877C
YangSOrganohalide lead perovskites: more stable than glass under gamma‐ray radiationAdv. Mater.20193110.1002/adma.201805547
KalluvettukuzhyNKMaciejczykMRUnderwoodIRobertsonNVisually attractive and efficient photovoltaics through luminescent downshiftingJ. Mater. Chem. A.202311131951320010.1039/D3TA00734K
CardosoMASolar spectral conversion based on plastic films of lanthanide-doped ionosilicas for photovoltaics: Down-shifting layers and luminescent solar concentratorsJ. Rare Earths.20203853153810.1016/J.JRE.2020.01.007
KimCWDual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar CellsSci. Rep.201771910.1038/s41598-017-07218-4
MengLYouJYangYAddressing the stability issue of perovskite solar cells for commercial applicationsNat. Commun.20189142018NatCo...9....1M10.1038/s41467-018-07255-1
CorreiaSFHLanthanide-based downshifting layers tested in a solar car raceOpto-Electron. Adv.20192190006110.29026/OEA.2019.190006
BerryFLight Management in Perovskite Photovoltaic Solar Cells: A PerspectiveAdv. Energy Mater.20221210.1002/aenm.202200505
VerschuurenMAMegensMNiYVan SprangHPolmanALarge area nanoimprint by substrate conformal imprint lithography (SCIL)Adv. Opt. Technol.201762432642017AdOT....6..243V10.1515/AOT-2017-0022/MACHINEREADABLECITATION/RIS
DaYRole of surface recombination in affecting the efficiency of nanostructured thin-film solar cellsOpt. Express201321A1065A107710.1364/OE.21.0A1065
FreitasVTLuminescent urea cross-linked tripodal siloxane-based hybridsJ. Sol.-Gel Sci. Technol.201365839210.1007/S10971-012-2770-2/FIGURES/7
Ramalho, J. F. C. B., Carneiro Neto, A. N., Carlos, L. D., André, P. S. & Ferreira, R. A. S. Lanthanides for the new generation of optical sensing and Internet of Things. Handb. Phys. Chem. Rare Earthshttps://doi.org/10.1016/BS.HPCRE.2021.12.001 (2022).
T. VicenteAMultifunctional cellulose-paper for light harvesting and smart sensing applicationsJ. Mater. Chem. C201863143318110.1039/C7TC05271E
NolascoMMEngineering highly efficient Eu(III)-based tri-
B Wang (1559_CR18) 2018; 27
HT Kim (1559_CR28) 2018; 8
1559_CR60
L Meng (1559_CR4) 2018; 9
1559_CR61
D Wang (1559_CR9) 2016; 147
1559_CR64
G Tessitore (1559_CR58) 2023; 13
1559_CR23
JCG Bünzli (1559_CR14) 2005; 34
SK Pathak (1559_CR7) 2014; 24
J Kettle (1559_CR52) 2016; 144
R Bernal-Correa (1559_CR22) 2023; 98
C Molina (1559_CR57) 2003; 104
JDH Ahmed (1559_CR17) 2017; 141
K Li (1559_CR40) 2020; 7
M Alexandre (1559_CR8) 2019; 2
MM Nolasco (1559_CR54) 2013; 1
MA Green (1559_CR2) 2020; 28
R Schmager (1559_CR37) 2019; 192
CC Yujuan He (1559_CR21) 2021; 201
Y Gao (1559_CR38) 2022; 7
1559_CR36
1559_CR39
VT Freitas (1559_CR56) 2013; 65
1559_CR1
D-L Wang (1559_CR32) 2016; 6
MJ Mendes (1559_CR50) 2018; 3
R Lesyuk (1559_CR51) 2017; 5
E Klampaftis (1559_CR16) 2009; 93
MJ Mendes (1559_CR35) 2016; 26
S Haque (1559_CR34) 2020; 20
R Rondão (1559_CR12) 2017; 9
T Kirchartz (1559_CR65) 2018; 6
RAS Ferreira (1559_CR13) 2020; 33
SFH Correia (1559_CR11) 2015; 138
M Stolterfoht (1559_CR68) 2019; 12
Y Wang (1559_CR46) 2018; 8
MA Verschuuren (1559_CR47) 2017; 6
NU Rahman (1559_CR31) 2019; 7
A T. Vicente (1559_CR3) 2018; 6
SFH Correia (1559_CR19) 2019; 2
H Ahmed (1559_CR15) 2016; 2016
1559_CR48
TW Crothers (1559_CR49) 2017; 17
S Yang (1559_CR44) 2019; 31
MI Hossain (1559_CR63) 2021; 89
MA Cardoso (1559_CR20) 2020; 38
D Walter (1559_CR67) 2018; 122
NK Kalluvettukuzhy (1559_CR27) 2023; 11
MI Hossain (1559_CR62) 2021; 5
SFH Correia (1559_CR55) 2019; 2
W Chen (1559_CR6) 2018; 30
ER Martins (1559_CR41) 2013; 4
1559_CR53
CW Kim (1559_CR30) 2017; 7
Y Da (1559_CR45) 2013; 21
F Lang (1559_CR43) 2016; 28
1559_CR59
M Kaltenbrunner (1559_CR42) 2015; 14
BM Van Der Ende (1559_CR24) 2009; 11
J Yang (1559_CR5) 2020; 76
L Bertoluzzi (1559_CR66) 2020; 4
D Yang (1559_CR26) 2020; 49
W Chen (1559_CR29) 2017; 28
J Farinhas (1559_CR10) 2021; 3
T Heumueller (1559_CR25) 2014; 7
F Berry (1559_CR33) 2022; 12
References_xml – volume: 3
  start-page: 12
  year: 2021
  ident: 1559_CR10
  publication-title: Front. Nanotechnol
  doi: 10.3389/FNANO.2021.635929/BIBTEX
  contributor:
    fullname: J Farinhas
– ident: 1559_CR39
  doi: 10.1002/ADFM.201900830
– volume: 4
  start-page: 109
  year: 2020
  ident: 1559_CR66
  publication-title: Joule
  doi: 10.1016/J.JOULE.2019.10.003
  contributor:
    fullname: L Bertoluzzi
– ident: 1559_CR23
  doi: 10.1016/BS.HPCRE.2021.12.001
– volume: 38
  start-page: 531
  year: 2020
  ident: 1559_CR20
  publication-title: J. Rare Earths.
  doi: 10.1016/J.JRE.2020.01.007
  contributor:
    fullname: MA Cardoso
– volume: 201
  start-page: 109454
  year: 2021
  ident: 1559_CR21
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109454
  contributor:
    fullname: CC Yujuan He
– volume: 7
  start-page: 1377
  year: 2020
  ident: 1559_CR40
  publication-title: Opt
  doi: 10.1364/OPTICA.394885
  contributor:
    fullname: K Li
– volume: 13
  start-page: 17787
  year: 2023
  ident: 1559_CR58
  publication-title: RSC Adv.
  doi: 10.1039/D3RA00991B
  contributor:
    fullname: G Tessitore
– volume: 8
  year: 2018
  ident: 1559_CR46
  publication-title: Adv. Energy Mater.
  doi: 10.1002/AENM.201702960
  contributor:
    fullname: Y Wang
– volume: 138
  start-page: 51
  year: 2015
  ident: 1559_CR11
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.02.032
  contributor:
    fullname: SFH Correia
– volume: 7
  start-page: 2974
  year: 2014
  ident: 1559_CR25
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01842G
  contributor:
    fullname: T Heumueller
– volume: 2016
  start-page: 2016
  year: 2016
  ident: 1559_CR15
  publication-title: Int. J. Spectrosc.
  doi: 10.1155/2016/8543475
  contributor:
    fullname: H Ahmed
– volume: 2
  start-page: 190006
  year: 2019
  ident: 1559_CR55
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/OEA.2019.190006
  contributor:
    fullname: SFH Correia
– volume: 24
  start-page: 6046
  year: 2014
  ident: 1559_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/ADFM.201401658
  contributor:
    fullname: SK Pathak
– volume: 141
  start-page: 242
  year: 2017
  ident: 1559_CR17
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.11.036
  contributor:
    fullname: JDH Ahmed
– volume: 5
  year: 2021
  ident: 1559_CR62
  publication-title: Sol. Rrl.
  doi: 10.1002/SOLR.202100509
  contributor:
    fullname: MI Hossain
– volume: 2
  start-page: 190006
  year: 2019
  ident: 1559_CR19
  publication-title: Opto-Electron Adv.
  doi: 10.29026/oea.2019.190006
  contributor:
    fullname: SFH Correia
– volume: 6
  start-page: 3143
  year: 2018
  ident: 1559_CR3
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC05271E
  contributor:
    fullname: A T. Vicente
– volume: 2
  start-page: 2930
  year: 2019
  ident: 1559_CR8
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00271
  contributor:
    fullname: M Alexandre
– volume: 6
  start-page: 243
  year: 2017
  ident: 1559_CR47
  publication-title: Adv. Opt. Technol.
  doi: 10.1515/AOT-2017-0022/MACHINEREADABLECITATION/RIS
  contributor:
    fullname: MA Verschuuren
– volume: 20
  year: 2020
  ident: 1559_CR34
  publication-title: Appl. Mater. Today
  doi: 10.1016/J.APMT.2020.100720
  contributor:
    fullname: S Haque
– volume: 7
  start-page: 1412
  year: 2022
  ident: 1559_CR38
  publication-title: ACS Energy Lett.
  doi: 10.1021/ACSENERGYLETT.1C02768/ASSET/IMAGES/LARGE/NZ1C02768_0027.JPEG
  contributor:
    fullname: Y Gao
– volume: 33
  start-page: 105
  year: 2020
  ident: 1559_CR13
  publication-title: Mater. Today
  doi: 10.1016/J.MATTOD.2019.10.002
  contributor:
    fullname: RAS Ferreira
– volume: 34
  start-page: 1048
  year: 2005
  ident: 1559_CR14
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B406082M
  contributor:
    fullname: JCG Bünzli
– ident: 1559_CR48
  doi: 10.1016/B978-0-8155-1582-1.00004-6
– volume: 6
  year: 2018
  ident: 1559_CR65
  publication-title: APL Mater.
  doi: 10.1063/1.5052164
  contributor:
    fullname: T Kirchartz
– volume: 144
  start-page: 481
  year: 2016
  ident: 1559_CR52
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.09.037
  contributor:
    fullname: J Kettle
– volume: 122
  start-page: 11270
  year: 2018
  ident: 1559_CR67
  publication-title: J. Phys. Chem. C
  doi: 10.1021/ACS.JPCC.8B02529/SUPPL_FILE/JP8B02529_SI_001.PDF
  contributor:
    fullname: D Walter
– volume: 12
  start-page: 2778
  year: 2019
  ident: 1559_CR68
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02020A
  contributor:
    fullname: M Stolterfoht
– volume: 9
  start-page: 1
  year: 2018
  ident: 1559_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07255-1
  contributor:
    fullname: L Meng
– volume: 5
  start-page: 11790
  year: 2017
  ident: 1559_CR51
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02945D
  contributor:
    fullname: R Lesyuk
– volume: 28
  start-page: 11346
  year: 2017
  ident: 1559_CR29
  publication-title: J. Mater. Sci. Mater. Electron
  doi: 10.1007/S10854-017-6928-0/FIGURES/10
  contributor:
    fullname: W Chen
– volume: 7
  start-page: 6467
  year: 2019
  ident: 1559_CR31
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA00551J
  contributor:
    fullname: NU Rahman
– volume: 49
  start-page: 4725
  year: 2020
  ident: 1559_CR26
  publication-title: Dalt. Trans.
  doi: 10.1039/C9DT04858H
  contributor:
    fullname: D Yang
– ident: 1559_CR64
  doi: 10.1016/B978-0-08-102762-2.00009-4
– volume: 76
  year: 2020
  ident: 1559_CR5
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105019
  contributor:
    fullname: J Yang
– volume: 26
  start-page: 286
  year: 2016
  ident: 1559_CR35
  publication-title: Nano Energy
  doi: 10.1016/J.NANOEN.2016.05.038
  contributor:
    fullname: MJ Mendes
– volume: 3
  start-page: 238
  year: 2018
  ident: 1559_CR50
  publication-title: IScience
  doi: 10.1016/j.isci.2018.04.018
  contributor:
    fullname: MJ Mendes
– ident: 1559_CR61
– volume: 93
  start-page: 1182
  year: 2009
  ident: 1559_CR16
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/J.SOLMAT.2009.02.020
  contributor:
    fullname: E Klampaftis
– volume: 98
  start-page: 065904
  year: 2023
  ident: 1559_CR22
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/acce7c
  contributor:
    fullname: R Bernal-Correa
– ident: 1559_CR36
  doi: 10.1007/978-3-030-72579-2_112
– ident: 1559_CR60
  doi: 10.1021/ACSPHOTONICS.2C00446
– volume: 28
  start-page: 3
  year: 2020
  ident: 1559_CR2
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/PIP.3228
  contributor:
    fullname: MA Green
– volume: 27
  start-page: 736
  year: 2018
  ident: 1559_CR18
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.11.021
  contributor:
    fullname: B Wang
– ident: 1559_CR1
– volume: 21
  start-page: A1065
  year: 2013
  ident: 1559_CR45
  publication-title: Opt. Express
  doi: 10.1364/OE.21.0A1065
  contributor:
    fullname: Y Da
– volume: 7
  start-page: 1
  year: 2017
  ident: 1559_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07218-4
  contributor:
    fullname: CW Kim
– volume: 12
  year: 2022
  ident: 1559_CR33
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200505
  contributor:
    fullname: F Berry
– volume: 6
  year: 2016
  ident: 1559_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/srep18922
  contributor:
    fullname: D-L Wang
– volume: 11
  start-page: 13195
  year: 2023
  ident: 1559_CR27
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D3TA00734K
  contributor:
    fullname: NK Kalluvettukuzhy
– volume: 17
  start-page: 5782
  year: 2017
  ident: 1559_CR49
  publication-title: Nano Lett.
  doi: 10.1021/ACS.NANOLETT.7B02834/SUPPL_FILE/NL7B02834_SI_001.PDF
  contributor:
    fullname: TW Crothers
– volume: 104
  start-page: 93
  year: 2003
  ident: 1559_CR57
  publication-title: J. Lumin.
  doi: 10.1016/S0022-2313(02)00684-1
  contributor:
    fullname: C Molina
– volume: 28
  start-page: 8726
  year: 2016
  ident: 1559_CR43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603326
  contributor:
    fullname: F Lang
– ident: 1559_CR59
– volume: 65
  start-page: 83
  year: 2013
  ident: 1559_CR56
  publication-title: J. Sol.-Gel Sci. Technol.
  doi: 10.1007/S10971-012-2770-2/FIGURES/7
  contributor:
    fullname: VT Freitas
– volume: 89
  year: 2021
  ident: 1559_CR63
  publication-title: Nano Energy
  doi: 10.1016/J.NANOEN.2021.106388
  contributor:
    fullname: MI Hossain
– volume: 14
  start-page: 1032
  year: 2015
  ident: 1559_CR42
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4388
  contributor:
    fullname: M Kaltenbrunner
– volume: 147
  start-page: 255
  year: 2016
  ident: 1559_CR9
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/J.SOLMAT.2015.12.025
  contributor:
    fullname: D Wang
– volume: 9
  start-page: 12540
  year: 2017
  ident: 1559_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02700
  contributor:
    fullname: R Rondão
– volume: 31
  year: 2019
  ident: 1559_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805547
  contributor:
    fullname: S Yang
– volume: 30
  year: 2018
  ident: 1559_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/ADMA.201800855
  contributor:
    fullname: W Chen
– volume: 8
  year: 2018
  ident: 1559_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35356-w
  contributor:
    fullname: HT Kim
– ident: 1559_CR53
  doi: 10.1007/978-3-540-68798-6
– volume: 11
  start-page: 11081
  year: 2009
  ident: 1559_CR24
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B913877C
  contributor:
    fullname: BM Van Der Ende
– volume: 1
  start-page: 7339
  year: 2013
  ident: 1559_CR54
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C3TA11463E
  contributor:
    fullname: MM Nolasco
– volume: 192
  start-page: 65
  year: 2019
  ident: 1559_CR37
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/J.SOLMAT.2018.12.012
  contributor:
    fullname: R Schmager
– volume: 4
  start-page: 1
  year: 2013
  ident: 1559_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3665
  contributor:
    fullname: ER Martins
SSID ssj0000941087
Score 2.4103808
Snippet Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV...
Abstract Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as...
SourceID doaj
proquest
crossref
pubmed
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 238
SubjectTerms 639/624/1075/401
639/624/1075/524
Efficiency
Hybrids
Lasers
Microwaves
Optical and Electronic Materials
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
RF and Optical Engineering
Trapping
Ultraviolet radiation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9UwFA4yGOxF1E29OkcGe9OwJE3a5HGOjSE49uBgD0JIclJ3fegd653gv99J0nudqPgy6FN72ibfSXu-JCdfCDnQnvte2MACMjemtIzM9sYzaARw5Bsgytqqz-ft2aX6dKWvHmz1lXPCqjxwBe4wmBZDWsw83yOZhwDJS96C7HxUJlX1UqEfdKa-13w5wU03rZLhjTkcVdbWYxiSWKYJlsnfIlER7P8by_xjhrQEntNn5OnEGOlRLelz8iQNL8hmydyM4zb5enG9QP5Gx-t5n1OYqR-ALm991l34RucDzUrgP8Y8SEvH3I-leax-pEhW6byMKCSgqQhJ5FWY5XZkjCVn9ucOuTw9-XJ8xqYtE1hs2naJYIOOAYMwHtJiXyw2EAUkHpoYBJqopED0AnwWmvcx2OC19iYZ3ivuZfOSbAyLIb0mFDtmCSwk5ABeQehshD7xZFNnAzdKzsj7FXzupipjuDKj3RhXwXYItitgO7T-mBFeW2ZV63ICfe0mX7v_-XpGdlf-cdOnNjrkpwJ_TVLjO_bXl_EjyWj6IS3uqo2U2CbsjLyqfl2XBAli0ykrZuTDytG_Hv7vCr15jAq9JVuytEjLuN4lG8vbu_QOSc4y7JX2fA8Bs_ae
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Open Access
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEA5iEXyRtv7oVS0R-qbBJJvsJY_toUih4kMFH4SQZLJ6L3tyexb8751k906k9kHYp93JbnYm2flmkvmWkO_ac98IG1hA5MaUlpHZxngGlQCOeANEqa36fVlfXKtfN_pmoMnJtTCv1u8rc9qpTInH0JOw7N0tw8_tBy1qnkfwpJ6s8ikYpghuxkNdzNtNX_meQtH_Fq78Z020uJrzj2RrwIj0R2_UT2QttZ_JRtmrGbttcnt1P0PERrv7aZM3LVPfAl3MfWZauKPTlmbu779dTsvSLkeuNGfnO4rwlE5LDiEBTYU6ItddluaIEcsu2acdcn1-9mdywYafJLBY1fUC1Qs6BnS7eEiL0VesIApIPFQxCBRRSYFoBPhMLe9jsMFr7U0yvFHcy2qXrLezNn0hFEOxBBYSen2vIIxthCbxZNPYBm6UHJHjpfrcQ8-F4coadmVcr2yHynZF2Q6lf2YNryQzj3U5geZ1w7RwwaAlRcxRnMdQDQIkL3kNEnuqTNIjcrC0jxsmV-cQkQr8GEmNzzhaXcZpkbXp2zR77GWkxDFhR2Svt-uqJwgJq7GyYkROloZ-ufn_X-jr-8T3yaYsY88yrg_I-mL-mA4RwCzCtzJynwG4tubp
  priority: 102
  providerName: Springer Nature
Title Photon shifting and trapping in perovskite solar cells for improved efficiency and stability
URI https://link.springer.com/article/10.1038/s41377-024-01559-2
https://www.ncbi.nlm.nih.gov/pubmed/39237491
https://www.proquest.com/docview/3101003252
https://www.proquest.com/docview/3101229419/abstract/
https://doaj.org/article/b86091c6192a495dbdea206d27ac48e5
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNQqGX0necposKvbUikizZ0qk0S0IoNITSwB4KQi8ne7HT9abQf5-RrN1Q-gBfbI-NPDPyfPPQCKF30lLbMe2IA-RGhOSe6E5ZEmoWKOCNwPLaqi_nzdml-LyQixJwG0tZ5eafmH_UYfApRn4EMISBBnLJP978IGnXqJRdLVto7KA9zkRK0-4dn5xffN1GWcB5YVS1ZbUMrdXRKFKPPQKmiSS4oAn_zSLlxv1_Q5t_ZEqzATp9gh4X5Ig_TaJ-ih7E_hl6mCs4_fgcfb-4HgDH4fF62aVSZmz7gNcrm_ovXOFlj1NH8J9jCtbiMfmzOMXsRwygFS9zZCEGHHNDibQaMz8OyDHXzv56gS5PT77Nz0jZOoH4umnWwPQgvQNjDAfX4JP5OngWInW1dwxIRBSBdSzY1HDeeqedldKqqGgnqOX1S7TbD33cRxgctBh0iIAFrAiu1T50kUYdW-2oErxC7zfsMzdThwyTM9u1MhOzDTDbZGYboD5OHN5Spu7W-cKwujJlshinGoAxPvl2Fhy44EK0nDaBw0iFirJChxv5mDLlRnOvIBV6u70NkyVx0_ZxuJ1oOAed0BV6Ncl1OxIAinUrNKvQh42g71_-7w86-P9YXqNHPOuaJlQeot316ja-ARizdjO00y7aWdFYOJs381kOCdwBSOTx8Q
link.rule.ids 315,786,790,870,2115,12083,21416,27955,27956,31752,31753,33777,33778,41153,42222,43343,43838,51609,74100,74657
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCNEL4tkGChiJG1j1M7FPiFZUC7QVh1baA5LlV9q9JGWzReLfM3ayWyEeUk7JJHJmxvY34_FnhN4oR13LjCcekBuRigdiWu1IFCxSwBuRlb1VJ6f17Fx-nqv5lHAbprLK9ZhYBurYh5wj3wcYwsADueLvr76TfGpUXl2djtC4je5IIWT282bebHIsELowqptprwwVen-QmWGPwMREMlgwhP82HxXa_r9hzT_WScv0c_QA3Z9wI_4wGvohupW6R-huqd8Mw2P07etlDygOD5eLNhcyY9dFvFq6zL5wgRcdznzgP4acqsVDjmZxztgPGCArXpS8Qoo4FTqJvBezvA64sVTO_nyCzo8-nh3OyHRwAgmirleg8qiCh6kYLm4gIgsiBhYT9SJ4BiIyychaFl2mm3fBG--Ucjpp2krquHiKtrq-S7sIQ3iWookJkICT0TcmxDbRZFJjPNWSV-jtWn32auTHsGVdW2g7KtuCsm1RtgXpg6zhjWTmti43-uWFnbqK9boGEBNyZOcgfIs-JsdpHTm0VOqkKrS3to-dOtxgb9yjQq83j6GrZG26LvXXowzn4BOmQjujXTctAZgoGmlYhd6tDX3z8X__0LP_t-UVujc7Ozm2x59OvzxH27z4nSFU7aGt1fI6vQBAs_Ivi9f-AqxN8L8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMQF8SbQgpG4gbW2Yyf2CdGWVXlVPVBpD0iWX2n3kpTNFol_z9jxboV4SDklk8iZGXu-GY9nEHolLbUd0444QG5ESO6J7pQloWaBAt4ILJ-t-nLcHJ2Kjwu5KPlPY0mr3KyJeaEOg08x8hnAEAYayCWfdSUt4uRw_vbiO0kdpNJOa2mncR3dACtJUxuHdtFu4y3gxjCq2nJuhtZqNopUbY-AkSIJOGjCf7NNuYT_33DnH3um2RTN76I7BUPid5PQ76Frsb-PbuZcTj8-QN9OzgdAdHg8X3YpqRnbPuD1yqZKDGd42eNUG_zHmMK2eEyeLU7R-xEDfMXLHGOIAcdcWiKdy8yvA4bMWbQ_H6LT-fuvB0ekNFEgvm6aNbA_SO_ALMPFNXhnvg6ehUhd7R0DEhFFYB0LNpWet95pZ6W0KiraCWp5_Qjt9EMfnyAMrloMOkRABVYE12ofukijjq12VAleodcb9pmLqVaGyXvctTITsw0w22RmG6DeTxzeUqY61_nGsDozZdoYpxoAND55eRZcueBCtJw2gcNIhYqyQrsb-Zgy-UZzpSoVerl9DNMmcdP2cbicaDgHndAVejzJdTsSgIx1KzSr0JuNoK8-_u8fevr_sbxAt0BhzecPx5-eods8q50mVO6infXqMu4Btlm751lpfwH2a_Tr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photon+shifting+and+trapping+in+perovskite+solar+cells+for+improved+efficiency+and+stability&rft.jtitle=Light%2C+science+%26+applications&rft.au=Haque%2C+Sirazul&rft.au=Alexandre%2C+Miguel&rft.au=Vicente%2C+Ant%C3%B3nio+T&rft.au=Li%2C+Kezheng&rft.date=2024-09-05&rft.pub=Springer+Nature+B.V&rft.eissn=2047-7538&rft.volume=13&rft.issue=1&rft.spage=238&rft_id=info:doi/10.1038%2Fs41377-024-01559-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon