Influencing Factors in Estimation of Leaf Angle Distribution of an Individual Tree from Terrestrial Laser Scanning Data
Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomp...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 6; p. 1159 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
18.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomplete scanning and depends on measurement strategies such as the number of scans and scanner location. Evaluating these factors is important to understand how to improve LAD, which is still lacking. Here, we introduce an easy way of estimating the LAD using open source software. Importantly, the influence of the occlusion effect on the LAD was evaluated by combining the proposed complete point clouds (CPCs) with the simulated data of 3D tree models of Aspen, Pin Oak and White Oak. We analyzed the effects of the point density, the number of scans and the scanner height on the LAD and G-function. Results show that: (1) the CPC can be used to evaluate the TLS-based normal vector reconstruction accuracy without an occlusion effect; (2) the accuracy is slightly affected by the normal vector reconstruction method and is greatly affected by the point density and the occlusion effect. The higher the point density (with a number of points per unit leaf area of 0.2 cm−2 to 27 cm−2 tested), the better the result is; (3) the performance is more sensitive to the scanner location than the number of scans. Increasing the scanner height improves LAD estimation, which has not been seriously considered in previous studies. It is worth noting that relatively tall trees suffer from a more severe occlusion effect, which deserves further attention in further study. |
---|---|
AbstractList | Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomplete scanning and depends on measurement strategies such as the number of scans and scanner location. Evaluating these factors is important to understand how to improve LAD, which is still lacking. Here, we introduce an easy way of estimating the LAD using open source software. Importantly, the influence of the occlusion effect on the LAD was evaluated by combining the proposed complete point clouds (CPCs) with the simulated data of 3D tree models of Aspen, Pin Oak and White Oak. We analyzed the effects of the point density, the number of scans and the scanner height on the LAD and G-function. Results show that: (1) the CPC can be used to evaluate the TLS-based normal vector reconstruction accuracy without an occlusion effect; (2) the accuracy is slightly affected by the normal vector reconstruction method and is greatly affected by the point density and the occlusion effect. The higher the point density (with a number of points per unit leaf area of 0.2 cm⁻² to 27 cm⁻² tested), the better the result is; (3) the performance is more sensitive to the scanner location than the number of scans. Increasing the scanner height improves LAD estimation, which has not been seriously considered in previous studies. It is worth noting that relatively tall trees suffer from a more severe occlusion effect, which deserves further attention in further study. Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomplete scanning and depends on measurement strategies such as the number of scans and scanner location. Evaluating these factors is important to understand how to improve LAD, which is still lacking. Here, we introduce an easy way of estimating the LAD using open source software. Importantly, the influence of the occlusion effect on the LAD was evaluated by combining the proposed complete point clouds (CPCs) with the simulated data of 3D tree models of Aspen, Pin Oak and White Oak. We analyzed the effects of the point density, the number of scans and the scanner height on the LAD and G-function. Results show that: (1) the CPC can be used to evaluate the TLS-based normal vector reconstruction accuracy without an occlusion effect; (2) the accuracy is slightly affected by the normal vector reconstruction method and is greatly affected by the point density and the occlusion effect. The higher the point density (with a number of points per unit leaf area of 0.2 cm−2 to 27 cm−2 tested), the better the result is; (3) the performance is more sensitive to the scanner location than the number of scans. Increasing the scanner height improves LAD estimation, which has not been seriously considered in previous studies. It is worth noting that relatively tall trees suffer from a more severe occlusion effect, which deserves further attention in further study. |
Author | Li, Fan Qi, Jianbo Xie, Donghui Cheng, Shiyu Li, Linyuan Jiang, Hailan Hu, Ronghai Yan, Guangjian Mu, Xihan |
Author_xml | – sequence: 1 givenname: Hailan surname: Jiang fullname: Jiang, Hailan – sequence: 2 givenname: Ronghai surname: Hu fullname: Hu, Ronghai – sequence: 3 givenname: Guangjian orcidid: 0000-0001-5030-748X surname: Yan fullname: Yan, Guangjian – sequence: 4 givenname: Shiyu orcidid: 0000-0002-5556-989X surname: Cheng fullname: Cheng, Shiyu – sequence: 5 givenname: Fan surname: Li fullname: Li, Fan – sequence: 6 givenname: Jianbo orcidid: 0000-0001-6601-7882 surname: Qi fullname: Qi, Jianbo – sequence: 7 givenname: Linyuan surname: Li fullname: Li, Linyuan – sequence: 8 givenname: Donghui orcidid: 0000-0003-3923-6056 surname: Xie fullname: Xie, Donghui – sequence: 9 givenname: Xihan orcidid: 0000-0003-4812-3045 surname: Mu fullname: Mu, Xihan |
BookMark | eNptUclqHDEQFcGBeLv4C3Q0hkm09aKj8ZIMDOTgyVmU1NWDTI9kS2ob_701HpuYkLpUUfXeq-2IHIQYkJAzzr5LqdmPlLlkLeeN_kIOBevEQgktDj7F38hpzvesmpRcM3VInpdhnGYMzocNvQVXYsrUB3qTi99C8THQONIVwkgvw2ZCeu1zSd7OHyUIdBkG_-SHGSa6Toh0THFL15gS7qA1u4KMid45CGHX5hoKnJCvI0wZT9_9Mflze7O--rVY_f65vLpcLZxs27JQSgMTIKzgrmPKQdtZ3sIAGvrRou66vpUdYx1YqYDjwJtG9VjHlRy5auQxWe51hwj35iHVpdKLieDNWyKmjYFUvJvQcNErK5pGKDso1gprJXKshx31IPSgq9b5Xushxce5Lme2PjucJggY52x2XMb6vmEVyvZQl2LOCUfjfHk7Z0ngJ8OZ2b3M_H1ZpVz8Q_mY9j_gVzPUmEA |
CitedBy_id | crossref_primary_10_1016_j_rse_2023_113959 crossref_primary_10_1109_TGRS_2024_3353225 crossref_primary_10_1109_TGRS_2023_3272913 crossref_primary_10_34133_remotesensing_0133 crossref_primary_10_1016_j_cj_2022_04_003 crossref_primary_10_1109_TGRS_2021_3118925 crossref_primary_10_1016_j_agrformet_2024_109964 |
Cites_doi | 10.1016/j.isprsjprs.2020.03.008 10.1016/j.envsoft.2013.09.034 10.1080/02757259409532252 10.1016/j.rse.2017.08.013 10.1016/j.isprsjprs.2018.07.015 10.1109/IGARSS.2013.6723464 10.3390/rs12010004 10.1016/j.agrformet.2012.10.011 10.1080/01431168308948548 10.1007/s11676-015-0204-z 10.2480/agrmet.D-14-00049 10.1111/j.1365-3040.1992.tb00992.x 10.1186/s40663-019-0203-1 10.1016/j.agrformet.2017.01.004 10.3390/rs10101580 10.2134/agronj1984.00021962007600050021x 10.1111/2041-210X.12301 10.5194/isprs-annals-III-3-161-2016 10.1007/s00468-019-01922-6 10.1109/LGRS.2010.2079913 10.1016/0168-1923(89)90002-6 10.3390/rs11030344 10.1016/j.rse.2016.07.010 10.1016/j.agrformet.2018.10.021 10.1016/j.isprsjprs.2017.06.006 10.1007/978-94-009-8647-3 10.3390/rs11212536 10.1016/j.agrformet.2003.08.027 10.1016/j.agrformet.2015.03.008 10.3390/rs4061519 10.1016/j.agrformet.2018.09.006 10.1109/36.544559 10.1117/12.2194779 10.1109/TGRS.2020.2999413 10.1016/j.rse.2018.12.034 10.1016/j.agrformet.2013.09.005 10.1098/rsfs.2017.0046 10.1016/S0168-1923(99)00089-1 10.1016/j.agrformet.2018.11.033 10.1016/j.agrformet.2011.05.004 10.1016/j.isprsjprs.2018.11.001 10.1117/1.2939008 10.1016/j.rse.2018.11.036 10.1109/TGRS.2014.2315649 10.1016/j.agrformet.2006.12.003 10.1016/j.rse.2020.111836 10.1016/0034-4257(94)00059-V 10.1016/j.isprsjprs.2019.01.005 10.1109/TGRS.2012.2188533 10.1016/j.rse.2021.112299 10.1016/j.foreco.2016.09.036 10.1051/agro:19990302 10.1016/0168-1923(90)90030-A 10.1088/1361-6501/aa5cfd |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/rs13061159 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_1284b25524bd4062bb3e1e390f9d29d9 10_3390_rs13061159 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7S9 L.6 PQGLB PUEGO |
ID | FETCH-LOGICAL-c366t-449a02a2b21c704ca67b16ada9a8fbe9778637007ab34a1ed15548eeaf31e1453 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:15:34 EDT 2025 Thu Jul 10 22:46:43 EDT 2025 Tue Jul 01 01:58:33 EDT 2025 Thu Apr 24 23:11:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-449a02a2b21c704ca67b16ada9a8fbe9778637007ab34a1ed15548eeaf31e1453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6601-7882 0000-0002-5556-989X 0000-0003-4812-3045 0000-0001-5030-748X 0000-0003-3923-6056 |
OpenAccessLink | https://doaj.org/article/1284b25524bd4062bb3e1e390f9d29d9 |
PQID | 2552008850 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1284b25524bd4062bb3e1e390f9d29d9 proquest_miscellaneous_2552008850 crossref_citationtrail_10_3390_rs13061159 crossref_primary_10_3390_rs13061159 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210318 |
PublicationDateYYYYMMDD | 2021-03-18 |
PublicationDate_xml | – month: 03 year: 2021 text: 20210318 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lin (ref_49) 2021; 256 Hu (ref_41) 2018; 144 Liu (ref_47) 2018; 146 Bechtold (ref_32) 2016; III-3 ref_58 Soma (ref_53) 2018; 10 Shao (ref_28) 2020; 163 ref_11 Jin (ref_24) 2016; 27 Chen (ref_4) 1996; 34 Baldocchi (ref_29) 2014; 184 Kuusk (ref_27) 2020; 34 Myneni (ref_40) 1989; 45 Wan (ref_39) 2019; 6 Ma (ref_19) 2017; 236 Calders (ref_55) 2015; 6 Chen (ref_5) 1992; 15 Hosoi (ref_22) 2015; 71 ref_25 Bailey (ref_18) 2017; 28 ref_23 Bartholomeus (ref_48) 2020; 12 Lin (ref_43) 2010; 8 Wallace (ref_46) 2014; 52 Stovall (ref_56) 2017; 200 Campbell (ref_14) 1990; 49 Vicari (ref_20) 2019; 264 Kimes (ref_10) 1983; 4 Zhao (ref_21) 2015; 209–210 Liu (ref_26) 2019; 148 Chen (ref_50) 2018; 263 ref_33 Li (ref_51) 2017; 130 Yan (ref_1) 2019; 265 Zheng (ref_17) 2012; 50 Mandlburger (ref_44) 2015; 9637 McHale (ref_54) 2008; 2 ref_38 Wallace (ref_42) 2012; 4 Wang (ref_12) 2007; 143 Goel (ref_13) 1984; 76 ref_37 Goel (ref_3) 1994; 10 Thomas (ref_15) 2000; 100 Lewis (ref_31) 1999; 19 Kuusk (ref_16) 1995; 51 Morsdorf (ref_36) 2018; 8 Jonckheere (ref_6) 2004; 121 Widlowski (ref_7) 2011; 151 Yin (ref_45) 2019; 223 Widlowski (ref_35) 2014; 51 Seidel (ref_57) 2016; 381 Pisek (ref_2) 2013; 169 Soma (ref_52) 2020; 245 ref_9 ref_8 Yin (ref_34) 2016; 184 Qi (ref_30) 2019; 221 |
References_xml | – volume: 163 start-page: 214 year: 2020 ident: ref_28 article-title: SLAM-aided forest plot mapping combining terrestrial and mobile laser scanning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.03.008 – volume: 51 start-page: 184 year: 2014 ident: ref_35 article-title: A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2013.09.034 – volume: 10 start-page: 309 year: 1994 ident: ref_3 article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation publication-title: Remote Sens. Rev. doi: 10.1080/02757259409532252 – volume: 200 start-page: 31 year: 2017 ident: ref_56 article-title: Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.013 – volume: 144 start-page: 357 year: 2018 ident: ref_41 article-title: Estimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path length distribution model publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.07.015 – ident: ref_33 doi: 10.1109/IGARSS.2013.6723464 – volume: 12 start-page: 1 year: 2020 ident: ref_48 article-title: Biomass and Crop Height Estimation of Di ff erent publication-title: Remote Sens. – ident: ref_58 doi: 10.3390/rs12010004 – volume: 169 start-page: 186 year: 2013 ident: ref_2 article-title: Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species? publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.10.011 – volume: 4 start-page: 299 year: 1983 ident: ref_10 article-title: Directional radiometric measurements of row-crop temperatures publication-title: Int. J. Remote Sens. doi: 10.1080/01431168308948548 – volume: 27 start-page: 631 year: 2016 ident: ref_24 article-title: A new approach to retrieve leaf normal distribution using terrestrial laser scanners publication-title: J. For. Res. doi: 10.1007/s11676-015-0204-z – volume: 71 start-page: 136 year: 2015 ident: ref_22 article-title: Estimating leaf inclination angle distribution of broad-leaved trees in each part of the canopies by a high-resolution portable scanning lidar publication-title: J. Agric. Meteorol. doi: 10.2480/agrmet.D-14-00049 – volume: 15 start-page: 421 year: 1992 ident: ref_5 article-title: Defining leaf area index for non-flat leaves publication-title: Plant. Cell Environ. doi: 10.1111/j.1365-3040.1992.tb00992.x – volume: 6 start-page: 1 year: 2019 ident: ref_39 article-title: Quantification of occlusions influencing the tree stem curve retrieving from single-scan terrestrial laser scanning data publication-title: For. Ecosyst. doi: 10.1186/s40663-019-0203-1 – volume: 236 start-page: 1 year: 2017 ident: ref_19 article-title: Retrieving forest canopy extinction coefficient from terrestrial and airborne lidar publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.01.004 – volume: 10 start-page: 1580 year: 2018 ident: ref_53 article-title: Enhanced measurements of leaf area density with T-LiDAR: Evaluating and calibrating the effects of vegetation heterogeneity and scanner properties publication-title: Remote Sens. doi: 10.3390/rs10101580 – volume: 76 start-page: 800 year: 1984 ident: ref_13 article-title: Simple Beta Distribution Representation of Leaf Orientation in Vegetation Canopies 1 publication-title: Agron. J. doi: 10.2134/agronj1984.00021962007600050021x – volume: 6 start-page: 198 year: 2015 ident: ref_55 article-title: Nondestructive estimates of above-ground biomass using terrestrial laser scanning publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12301 – ident: ref_8 – volume: III-3 start-page: 161 year: 2016 ident: ref_32 article-title: HELIOS: A Multi-Purpose Lidar Simulation Framework for Research, Planning and Training of Laser Scanning Operations With Airborne, Ground-Based Mobile and Stationary Platforms publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-annals-III-3-161-2016 – volume: 34 start-page: 371 year: 2020 ident: ref_27 article-title: Leaf orientation measurement in a mixed hemiboreal broadleaf forest stand using terrestrial laser scanner publication-title: Trees Struct. Funct. doi: 10.1007/s00468-019-01922-6 – volume: 8 start-page: 426 year: 2010 ident: ref_43 article-title: Mini-UAV-Borne LIDAR for Fine-Scale Mapping publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2079913 – volume: 45 start-page: 1 year: 1989 ident: ref_40 article-title: A review on the theory of photon transport in leaf canopies publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(89)90002-6 – ident: ref_25 doi: 10.3390/rs11030344 – volume: 184 start-page: 418 year: 2016 ident: ref_34 article-title: Simulation of satellite, airborne and terrestrial LiDAR with DART (I): Waveform simulation with quasi-Monte Carlo ray tracing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.07.010 – ident: ref_38 – volume: 264 start-page: 322 year: 2019 ident: ref_20 article-title: New estimates of leaf angle distribution from terrestrial LiDAR: Comparison with measured and modelled estimates from nine broadleaf tree species publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.10.021 – volume: 130 start-page: 308 year: 2017 ident: ref_51 article-title: Retrieving the gap fraction, element clumping index, and leaf area index of individual trees using single-scan data from a terrestrial laser scanner publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.006 – ident: ref_9 doi: 10.1007/978-94-009-8647-3 – ident: ref_23 doi: 10.3390/rs11212536 – volume: 121 start-page: 19 year: 2004 ident: ref_6 article-title: Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2003.08.027 – volume: 209–210 start-page: 100 year: 2015 ident: ref_21 article-title: Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.03.008 – volume: 4 start-page: 1519 year: 2012 ident: ref_42 article-title: Development of a UAV-LiDAR system with application to forest inventory publication-title: Remote Sens. doi: 10.3390/rs4061519 – volume: 263 start-page: 323 year: 2018 ident: ref_50 article-title: Estimation of forest leaf area index using terrestrial laser scanning data and path length distribution model in open-canopy forests publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.09.006 – volume: 34 start-page: 1353 year: 1996 ident: ref_4 article-title: Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.544559 – volume: 9637 start-page: 96370A year: 2015 ident: ref_44 article-title: Complementing airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes publication-title: Remote Sens. Agric. Ecosyst. Hydrol. XVII doi: 10.1117/12.2194779 – ident: ref_37 doi: 10.1109/TGRS.2020.2999413 – ident: ref_11 – volume: 223 start-page: 34 year: 2019 ident: ref_45 article-title: Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.034 – volume: 184 start-page: 82 year: 2014 ident: ref_29 article-title: On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2013.09.005 – volume: 8 start-page: 20170046 year: 2018 ident: ref_36 article-title: Close-range laser scanning in forests: Towards physically based semantics across scales publication-title: Interface Focus doi: 10.1098/rsfs.2017.0046 – volume: 100 start-page: 19 year: 2000 ident: ref_15 article-title: A rotated ellipsoidal angle density function improves estimation of foliage inclination distributions in forest canopies publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(99)00089-1 – volume: 265 start-page: 390 year: 2019 ident: ref_1 article-title: Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.11.033 – volume: 151 start-page: 1252 year: 2011 ident: ref_7 article-title: Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.05.004 – volume: 146 start-page: 465 year: 2018 ident: ref_47 article-title: Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.001 – volume: 2 start-page: 023521 year: 2008 ident: ref_54 article-title: Volume estimates of trees with complex architecture from terrestrial laser scanning publication-title: J. Appl. Remote Sens. doi: 10.1117/1.2939008 – volume: 221 start-page: 695 year: 2019 ident: ref_30 article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.036 – volume: 52 start-page: 7619 year: 2014 ident: ref_46 article-title: Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR ata publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2315649 – volume: 143 start-page: 106 year: 2007 ident: ref_12 article-title: Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.12.003 – volume: 245 start-page: 111836 year: 2020 ident: ref_52 article-title: Mitigating occlusion effects in Leaf Area Density estimates from Terrestrial LiDAR through a specific kriging method publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111836 – volume: 51 start-page: 342 year: 1995 ident: ref_16 article-title: A fast, invertible canopy reflectance model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)00059-V – volume: 148 start-page: 208 year: 2019 ident: ref_26 article-title: Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.01.005 – volume: 50 start-page: 3970 year: 2012 ident: ref_17 article-title: Leaf Orientation Retrieval from Terrestrial Laser Scanning (TLS) Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2188533 – volume: 256 start-page: 112299 year: 2021 ident: ref_49 article-title: Quality control and crop characterization framework for multi-temporal UAV LiDAR data over mechanized agricultural fields publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112299 – volume: 381 start-page: 196 year: 2016 ident: ref_57 article-title: Assessing different components of three-dimensional forest structure with single-scan terrestrial laser scanning: A case study publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2016.09.036 – volume: 19 start-page: 185 year: 1999 ident: ref_31 article-title: Three-dimensional plant modelling for remote sensing simulation studies using the Botanical Plant Modelling System publication-title: Agronomie doi: 10.1051/agro:19990302 – volume: 49 start-page: 173 year: 1990 ident: ref_14 article-title: Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(90)90030-A – volume: 28 start-page: 63 year: 2017 ident: ref_18 article-title: Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa5cfd |
SSID | ssj0000331904 |
Score | 2.3093774 |
Snippet | Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1159 |
SubjectTerms | computer simulation computer software forest canopy leaf angle leaf angle distribution leaf area occlusion effect Quercus alba Quercus palustris scanners solar radiation terrestrial laser scanning trees |
Title | Influencing Factors in Estimation of Leaf Angle Distribution of an Individual Tree from Terrestrial Laser Scanning Data |
URI | https://www.proquest.com/docview/2552008850 https://doaj.org/article/1284b25524bd4062bb3e1e390f9d29d9 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEF3RcGgviK-qKRBt1V44WPF6P7x7DCSBoIBQCVJu1q53DUjIqUKiqv-eGduEVFTi0pMteyyvZsfzZuWd9wj5keoiBZjJI2cEj0QhNZxZFnnpc0AbZZXEBufLK3V-Ky6mcrom9YV7wmp64NpxXcyfDureRDgP4JM4xwMLsFIvjE-Mr1r3APPWFlNVDuYQWrGo-Ug5WHfnT5CtFdQ_5i8Eqoj63-ThClyG22SrqQpprx7NDtkI5S752AiU3__ZI79HjZgIIA0d1ho59KGkA_hC6-ZDOivoONiC9sq7x0D7SIjbaFnhLVvS0ar3ik7mIVDsLKGTUKlzYBjSMSDanN7ktYwR7duF3Se3w8Hk9DxqNBOinCu1iIQwNk5s4hKWp7HIrUodU9ZbY3XhgkG6OJ5CYWAdF5YFj_WEDjA8zgITkn8mrXJWhi-Eehk7p3URW8aF9tIox4qgsISKTS5Fmxy_-DHLG0Jx1LV4zGBhgT7PXn3eJt9Xtr9qGo1_Wp3gdKwskPq6ugABkTUBkb0XEG3y7WUyM_hU8P-HLcNs-ZThQ1DyaBl__R8vOiCfEtzggpv79CFpLebLcAQVysJ1yAc9POuQzV7_cnwDx5PB1fXPThWiz37B5t4 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influencing+Factors+in+Estimation+of+Leaf+Angle+Distribution+of+an+Individual+Tree+from+Terrestrial+Laser+Scanning+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Hailan&rft.au=Hu%2C+Ronghai&rft.au=Yan%2C+Guangjian&rft.au=Cheng%2C+Shiyu&rft.date=2021-03-18&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=6&rft_id=info:doi/10.3390%2Frs13061159&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |