Influencing Factors in Estimation of Leaf Angle Distribution of an Individual Tree from Terrestrial Laser Scanning Data

Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomp...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 6; p. 1159
Main Authors Jiang, Hailan, Hu, Ronghai, Yan, Guangjian, Cheng, Shiyu, Li, Fan, Qi, Jianbo, Li, Linyuan, Xie, Donghui, Mu, Xihan
Format Journal Article
LanguageEnglish
Published MDPI AG 18.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomplete scanning and depends on measurement strategies such as the number of scans and scanner location. Evaluating these factors is important to understand how to improve LAD, which is still lacking. Here, we introduce an easy way of estimating the LAD using open source software. Importantly, the influence of the occlusion effect on the LAD was evaluated by combining the proposed complete point clouds (CPCs) with the simulated data of 3D tree models of Aspen, Pin Oak and White Oak. We analyzed the effects of the point density, the number of scans and the scanner height on the LAD and G-function. Results show that: (1) the CPC can be used to evaluate the TLS-based normal vector reconstruction accuracy without an occlusion effect; (2) the accuracy is slightly affected by the normal vector reconstruction method and is greatly affected by the point density and the occlusion effect. The higher the point density (with a number of points per unit leaf area of 0.2 cm−2 to 27 cm−2 tested), the better the result is; (3) the performance is more sensitive to the scanner location than the number of scans. Increasing the scanner height improves LAD estimation, which has not been seriously considered in previous studies. It is worth noting that relatively tall trees suffer from a more severe occlusion effect, which deserves further attention in further study.
AbstractList Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomplete scanning and depends on measurement strategies such as the number of scans and scanner location. Evaluating these factors is important to understand how to improve LAD, which is still lacking. Here, we introduce an easy way of estimating the LAD using open source software. Importantly, the influence of the occlusion effect on the LAD was evaluated by combining the proposed complete point clouds (CPCs) with the simulated data of 3D tree models of Aspen, Pin Oak and White Oak. We analyzed the effects of the point density, the number of scans and the scanner height on the LAD and G-function. Results show that: (1) the CPC can be used to evaluate the TLS-based normal vector reconstruction accuracy without an occlusion effect; (2) the accuracy is slightly affected by the normal vector reconstruction method and is greatly affected by the point density and the occlusion effect. The higher the point density (with a number of points per unit leaf area of 0.2 cm⁻² to 27 cm⁻² tested), the better the result is; (3) the performance is more sensitive to the scanner location than the number of scans. Increasing the scanner height improves LAD estimation, which has not been seriously considered in previous studies. It is worth noting that relatively tall trees suffer from a more severe occlusion effect, which deserves further attention in further study.
Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomplete scanning and depends on measurement strategies such as the number of scans and scanner location. Evaluating these factors is important to understand how to improve LAD, which is still lacking. Here, we introduce an easy way of estimating the LAD using open source software. Importantly, the influence of the occlusion effect on the LAD was evaluated by combining the proposed complete point clouds (CPCs) with the simulated data of 3D tree models of Aspen, Pin Oak and White Oak. We analyzed the effects of the point density, the number of scans and the scanner height on the LAD and G-function. Results show that: (1) the CPC can be used to evaluate the TLS-based normal vector reconstruction accuracy without an occlusion effect; (2) the accuracy is slightly affected by the normal vector reconstruction method and is greatly affected by the point density and the occlusion effect. The higher the point density (with a number of points per unit leaf area of 0.2 cm−2 to 27 cm−2 tested), the better the result is; (3) the performance is more sensitive to the scanner location than the number of scans. Increasing the scanner height improves LAD estimation, which has not been seriously considered in previous studies. It is worth noting that relatively tall trees suffer from a more severe occlusion effect, which deserves further attention in further study.
Author Li, Fan
Qi, Jianbo
Xie, Donghui
Cheng, Shiyu
Li, Linyuan
Jiang, Hailan
Hu, Ronghai
Yan, Guangjian
Mu, Xihan
Author_xml – sequence: 1
  givenname: Hailan
  surname: Jiang
  fullname: Jiang, Hailan
– sequence: 2
  givenname: Ronghai
  surname: Hu
  fullname: Hu, Ronghai
– sequence: 3
  givenname: Guangjian
  orcidid: 0000-0001-5030-748X
  surname: Yan
  fullname: Yan, Guangjian
– sequence: 4
  givenname: Shiyu
  orcidid: 0000-0002-5556-989X
  surname: Cheng
  fullname: Cheng, Shiyu
– sequence: 5
  givenname: Fan
  surname: Li
  fullname: Li, Fan
– sequence: 6
  givenname: Jianbo
  orcidid: 0000-0001-6601-7882
  surname: Qi
  fullname: Qi, Jianbo
– sequence: 7
  givenname: Linyuan
  surname: Li
  fullname: Li, Linyuan
– sequence: 8
  givenname: Donghui
  orcidid: 0000-0003-3923-6056
  surname: Xie
  fullname: Xie, Donghui
– sequence: 9
  givenname: Xihan
  orcidid: 0000-0003-4812-3045
  surname: Mu
  fullname: Mu, Xihan
BookMark eNptUclqHDEQFcGBeLv4C3Q0hkm09aKj8ZIMDOTgyVmU1NWDTI9kS2ob_701HpuYkLpUUfXeq-2IHIQYkJAzzr5LqdmPlLlkLeeN_kIOBevEQgktDj7F38hpzvesmpRcM3VInpdhnGYMzocNvQVXYsrUB3qTi99C8THQONIVwkgvw2ZCeu1zSd7OHyUIdBkG_-SHGSa6Toh0THFL15gS7qA1u4KMid45CGHX5hoKnJCvI0wZT9_9Mflze7O--rVY_f65vLpcLZxs27JQSgMTIKzgrmPKQdtZ3sIAGvrRou66vpUdYx1YqYDjwJtG9VjHlRy5auQxWe51hwj35iHVpdKLieDNWyKmjYFUvJvQcNErK5pGKDso1gprJXKshx31IPSgq9b5Xushxce5Lme2PjucJggY52x2XMb6vmEVyvZQl2LOCUfjfHk7Z0ngJ8OZ2b3M_H1ZpVz8Q_mY9j_gVzPUmEA
CitedBy_id crossref_primary_10_1016_j_rse_2023_113959
crossref_primary_10_1109_TGRS_2024_3353225
crossref_primary_10_1109_TGRS_2023_3272913
crossref_primary_10_34133_remotesensing_0133
crossref_primary_10_1016_j_cj_2022_04_003
crossref_primary_10_1109_TGRS_2021_3118925
crossref_primary_10_1016_j_agrformet_2024_109964
Cites_doi 10.1016/j.isprsjprs.2020.03.008
10.1016/j.envsoft.2013.09.034
10.1080/02757259409532252
10.1016/j.rse.2017.08.013
10.1016/j.isprsjprs.2018.07.015
10.1109/IGARSS.2013.6723464
10.3390/rs12010004
10.1016/j.agrformet.2012.10.011
10.1080/01431168308948548
10.1007/s11676-015-0204-z
10.2480/agrmet.D-14-00049
10.1111/j.1365-3040.1992.tb00992.x
10.1186/s40663-019-0203-1
10.1016/j.agrformet.2017.01.004
10.3390/rs10101580
10.2134/agronj1984.00021962007600050021x
10.1111/2041-210X.12301
10.5194/isprs-annals-III-3-161-2016
10.1007/s00468-019-01922-6
10.1109/LGRS.2010.2079913
10.1016/0168-1923(89)90002-6
10.3390/rs11030344
10.1016/j.rse.2016.07.010
10.1016/j.agrformet.2018.10.021
10.1016/j.isprsjprs.2017.06.006
10.1007/978-94-009-8647-3
10.3390/rs11212536
10.1016/j.agrformet.2003.08.027
10.1016/j.agrformet.2015.03.008
10.3390/rs4061519
10.1016/j.agrformet.2018.09.006
10.1109/36.544559
10.1117/12.2194779
10.1109/TGRS.2020.2999413
10.1016/j.rse.2018.12.034
10.1016/j.agrformet.2013.09.005
10.1098/rsfs.2017.0046
10.1016/S0168-1923(99)00089-1
10.1016/j.agrformet.2018.11.033
10.1016/j.agrformet.2011.05.004
10.1016/j.isprsjprs.2018.11.001
10.1117/1.2939008
10.1016/j.rse.2018.11.036
10.1109/TGRS.2014.2315649
10.1016/j.agrformet.2006.12.003
10.1016/j.rse.2020.111836
10.1016/0034-4257(94)00059-V
10.1016/j.isprsjprs.2019.01.005
10.1109/TGRS.2012.2188533
10.1016/j.rse.2021.112299
10.1016/j.foreco.2016.09.036
10.1051/agro:19990302
10.1016/0168-1923(90)90030-A
10.1088/1361-6501/aa5cfd
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs13061159
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_1284b25524bd4062bb3e1e390f9d29d9
10_3390_rs13061159
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7S9
L.6
PQGLB
PUEGO
ID FETCH-LOGICAL-c366t-449a02a2b21c704ca67b16ada9a8fbe9778637007ab34a1ed15548eeaf31e1453
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:15:34 EDT 2025
Thu Jul 10 22:46:43 EDT 2025
Tue Jul 01 01:58:33 EDT 2025
Thu Apr 24 23:11:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-449a02a2b21c704ca67b16ada9a8fbe9778637007ab34a1ed15548eeaf31e1453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6601-7882
0000-0002-5556-989X
0000-0003-4812-3045
0000-0001-5030-748X
0000-0003-3923-6056
OpenAccessLink https://doaj.org/article/1284b25524bd4062bb3e1e390f9d29d9
PQID 2552008850
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_1284b25524bd4062bb3e1e390f9d29d9
proquest_miscellaneous_2552008850
crossref_citationtrail_10_3390_rs13061159
crossref_primary_10_3390_rs13061159
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210318
PublicationDateYYYYMMDD 2021-03-18
PublicationDate_xml – month: 03
  year: 2021
  text: 20210318
  day: 18
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lin (ref_49) 2021; 256
Hu (ref_41) 2018; 144
Liu (ref_47) 2018; 146
Bechtold (ref_32) 2016; III-3
ref_58
Soma (ref_53) 2018; 10
Shao (ref_28) 2020; 163
ref_11
Jin (ref_24) 2016; 27
Chen (ref_4) 1996; 34
Baldocchi (ref_29) 2014; 184
Kuusk (ref_27) 2020; 34
Myneni (ref_40) 1989; 45
Wan (ref_39) 2019; 6
Ma (ref_19) 2017; 236
Calders (ref_55) 2015; 6
Chen (ref_5) 1992; 15
Hosoi (ref_22) 2015; 71
ref_25
Bailey (ref_18) 2017; 28
ref_23
Bartholomeus (ref_48) 2020; 12
Lin (ref_43) 2010; 8
Wallace (ref_46) 2014; 52
Stovall (ref_56) 2017; 200
Campbell (ref_14) 1990; 49
Vicari (ref_20) 2019; 264
Kimes (ref_10) 1983; 4
Zhao (ref_21) 2015; 209–210
Liu (ref_26) 2019; 148
Chen (ref_50) 2018; 263
ref_33
Li (ref_51) 2017; 130
Yan (ref_1) 2019; 265
Zheng (ref_17) 2012; 50
Mandlburger (ref_44) 2015; 9637
McHale (ref_54) 2008; 2
ref_38
Wallace (ref_42) 2012; 4
Wang (ref_12) 2007; 143
Goel (ref_13) 1984; 76
ref_37
Goel (ref_3) 1994; 10
Thomas (ref_15) 2000; 100
Lewis (ref_31) 1999; 19
Kuusk (ref_16) 1995; 51
Morsdorf (ref_36) 2018; 8
Jonckheere (ref_6) 2004; 121
Widlowski (ref_7) 2011; 151
Yin (ref_45) 2019; 223
Widlowski (ref_35) 2014; 51
Seidel (ref_57) 2016; 381
Pisek (ref_2) 2013; 169
Soma (ref_52) 2020; 245
ref_9
ref_8
Yin (ref_34) 2016; 184
Qi (ref_30) 2019; 221
References_xml – volume: 163
  start-page: 214
  year: 2020
  ident: ref_28
  article-title: SLAM-aided forest plot mapping combining terrestrial and mobile laser scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.03.008
– volume: 51
  start-page: 184
  year: 2014
  ident: ref_35
  article-title: A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2013.09.034
– volume: 10
  start-page: 309
  year: 1994
  ident: ref_3
  article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757259409532252
– volume: 200
  start-page: 31
  year: 2017
  ident: ref_56
  article-title: Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.013
– volume: 144
  start-page: 357
  year: 2018
  ident: ref_41
  article-title: Estimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path length distribution model
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.07.015
– ident: ref_33
  doi: 10.1109/IGARSS.2013.6723464
– volume: 12
  start-page: 1
  year: 2020
  ident: ref_48
  article-title: Biomass and Crop Height Estimation of Di ff erent
  publication-title: Remote Sens.
– ident: ref_58
  doi: 10.3390/rs12010004
– volume: 169
  start-page: 186
  year: 2013
  ident: ref_2
  article-title: Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species?
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.10.011
– volume: 4
  start-page: 299
  year: 1983
  ident: ref_10
  article-title: Directional radiometric measurements of row-crop temperatures
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168308948548
– volume: 27
  start-page: 631
  year: 2016
  ident: ref_24
  article-title: A new approach to retrieve leaf normal distribution using terrestrial laser scanners
  publication-title: J. For. Res.
  doi: 10.1007/s11676-015-0204-z
– volume: 71
  start-page: 136
  year: 2015
  ident: ref_22
  article-title: Estimating leaf inclination angle distribution of broad-leaved trees in each part of the canopies by a high-resolution portable scanning lidar
  publication-title: J. Agric. Meteorol.
  doi: 10.2480/agrmet.D-14-00049
– volume: 15
  start-page: 421
  year: 1992
  ident: ref_5
  article-title: Defining leaf area index for non-flat leaves
  publication-title: Plant. Cell Environ.
  doi: 10.1111/j.1365-3040.1992.tb00992.x
– volume: 6
  start-page: 1
  year: 2019
  ident: ref_39
  article-title: Quantification of occlusions influencing the tree stem curve retrieving from single-scan terrestrial laser scanning data
  publication-title: For. Ecosyst.
  doi: 10.1186/s40663-019-0203-1
– volume: 236
  start-page: 1
  year: 2017
  ident: ref_19
  article-title: Retrieving forest canopy extinction coefficient from terrestrial and airborne lidar
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.01.004
– volume: 10
  start-page: 1580
  year: 2018
  ident: ref_53
  article-title: Enhanced measurements of leaf area density with T-LiDAR: Evaluating and calibrating the effects of vegetation heterogeneity and scanner properties
  publication-title: Remote Sens.
  doi: 10.3390/rs10101580
– volume: 76
  start-page: 800
  year: 1984
  ident: ref_13
  article-title: Simple Beta Distribution Representation of Leaf Orientation in Vegetation Canopies 1
  publication-title: Agron. J.
  doi: 10.2134/agronj1984.00021962007600050021x
– volume: 6
  start-page: 198
  year: 2015
  ident: ref_55
  article-title: Nondestructive estimates of above-ground biomass using terrestrial laser scanning
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12301
– ident: ref_8
– volume: III-3
  start-page: 161
  year: 2016
  ident: ref_32
  article-title: HELIOS: A Multi-Purpose Lidar Simulation Framework for Research, Planning and Training of Laser Scanning Operations With Airborne, Ground-Based Mobile and Stationary Platforms
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-annals-III-3-161-2016
– volume: 34
  start-page: 371
  year: 2020
  ident: ref_27
  article-title: Leaf orientation measurement in a mixed hemiboreal broadleaf forest stand using terrestrial laser scanner
  publication-title: Trees Struct. Funct.
  doi: 10.1007/s00468-019-01922-6
– volume: 8
  start-page: 426
  year: 2010
  ident: ref_43
  article-title: Mini-UAV-Borne LIDAR for Fine-Scale Mapping
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2079913
– volume: 45
  start-page: 1
  year: 1989
  ident: ref_40
  article-title: A review on the theory of photon transport in leaf canopies
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(89)90002-6
– ident: ref_25
  doi: 10.3390/rs11030344
– volume: 184
  start-page: 418
  year: 2016
  ident: ref_34
  article-title: Simulation of satellite, airborne and terrestrial LiDAR with DART (I): Waveform simulation with quasi-Monte Carlo ray tracing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.07.010
– ident: ref_38
– volume: 264
  start-page: 322
  year: 2019
  ident: ref_20
  article-title: New estimates of leaf angle distribution from terrestrial LiDAR: Comparison with measured and modelled estimates from nine broadleaf tree species
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.10.021
– volume: 130
  start-page: 308
  year: 2017
  ident: ref_51
  article-title: Retrieving the gap fraction, element clumping index, and leaf area index of individual trees using single-scan data from a terrestrial laser scanner
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.006
– ident: ref_9
  doi: 10.1007/978-94-009-8647-3
– ident: ref_23
  doi: 10.3390/rs11212536
– volume: 121
  start-page: 19
  year: 2004
  ident: ref_6
  article-title: Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2003.08.027
– volume: 209–210
  start-page: 100
  year: 2015
  ident: ref_21
  article-title: Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.03.008
– volume: 4
  start-page: 1519
  year: 2012
  ident: ref_42
  article-title: Development of a UAV-LiDAR system with application to forest inventory
  publication-title: Remote Sens.
  doi: 10.3390/rs4061519
– volume: 263
  start-page: 323
  year: 2018
  ident: ref_50
  article-title: Estimation of forest leaf area index using terrestrial laser scanning data and path length distribution model in open-canopy forests
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.09.006
– volume: 34
  start-page: 1353
  year: 1996
  ident: ref_4
  article-title: Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.544559
– volume: 9637
  start-page: 96370A
  year: 2015
  ident: ref_44
  article-title: Complementing airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes
  publication-title: Remote Sens. Agric. Ecosyst. Hydrol. XVII
  doi: 10.1117/12.2194779
– ident: ref_37
  doi: 10.1109/TGRS.2020.2999413
– ident: ref_11
– volume: 223
  start-page: 34
  year: 2019
  ident: ref_45
  article-title: Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.034
– volume: 184
  start-page: 82
  year: 2014
  ident: ref_29
  article-title: On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2013.09.005
– volume: 8
  start-page: 20170046
  year: 2018
  ident: ref_36
  article-title: Close-range laser scanning in forests: Towards physically based semantics across scales
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2017.0046
– volume: 100
  start-page: 19
  year: 2000
  ident: ref_15
  article-title: A rotated ellipsoidal angle density function improves estimation of foliage inclination distributions in forest canopies
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00089-1
– volume: 265
  start-page: 390
  year: 2019
  ident: ref_1
  article-title: Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.11.033
– volume: 151
  start-page: 1252
  year: 2011
  ident: ref_7
  article-title: Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.05.004
– volume: 146
  start-page: 465
  year: 2018
  ident: ref_47
  article-title: Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.001
– volume: 2
  start-page: 023521
  year: 2008
  ident: ref_54
  article-title: Volume estimates of trees with complex architecture from terrestrial laser scanning
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.2939008
– volume: 221
  start-page: 695
  year: 2019
  ident: ref_30
  article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.036
– volume: 52
  start-page: 7619
  year: 2014
  ident: ref_46
  article-title: Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR ata
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2315649
– volume: 143
  start-page: 106
  year: 2007
  ident: ref_12
  article-title: Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.12.003
– volume: 245
  start-page: 111836
  year: 2020
  ident: ref_52
  article-title: Mitigating occlusion effects in Leaf Area Density estimates from Terrestrial LiDAR through a specific kriging method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111836
– volume: 51
  start-page: 342
  year: 1995
  ident: ref_16
  article-title: A fast, invertible canopy reflectance model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)00059-V
– volume: 148
  start-page: 208
  year: 2019
  ident: ref_26
  article-title: Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.01.005
– volume: 50
  start-page: 3970
  year: 2012
  ident: ref_17
  article-title: Leaf Orientation Retrieval from Terrestrial Laser Scanning (TLS) Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2188533
– volume: 256
  start-page: 112299
  year: 2021
  ident: ref_49
  article-title: Quality control and crop characterization framework for multi-temporal UAV LiDAR data over mechanized agricultural fields
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112299
– volume: 381
  start-page: 196
  year: 2016
  ident: ref_57
  article-title: Assessing different components of three-dimensional forest structure with single-scan terrestrial laser scanning: A case study
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2016.09.036
– volume: 19
  start-page: 185
  year: 1999
  ident: ref_31
  article-title: Three-dimensional plant modelling for remote sensing simulation studies using the Botanical Plant Modelling System
  publication-title: Agronomie
  doi: 10.1051/agro:19990302
– volume: 49
  start-page: 173
  year: 1990
  ident: ref_14
  article-title: Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(90)90030-A
– volume: 28
  start-page: 63
  year: 2017
  ident: ref_18
  article-title: Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa5cfd
SSID ssj0000331904
Score 2.3093774
Snippet Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1159
SubjectTerms computer simulation
computer software
forest canopy
leaf angle
leaf angle distribution
leaf area
occlusion effect
Quercus alba
Quercus palustris
scanners
solar radiation
terrestrial laser scanning
trees
Title Influencing Factors in Estimation of Leaf Angle Distribution of an Individual Tree from Terrestrial Laser Scanning Data
URI https://www.proquest.com/docview/2552008850
https://doaj.org/article/1284b25524bd4062bb3e1e390f9d29d9
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEF3RcGgviK-qKRBt1V44WPF6P7x7DCSBoIBQCVJu1q53DUjIqUKiqv-eGduEVFTi0pMteyyvZsfzZuWd9wj5keoiBZjJI2cEj0QhNZxZFnnpc0AbZZXEBufLK3V-Ky6mcrom9YV7wmp64NpxXcyfDureRDgP4JM4xwMLsFIvjE-Mr1r3APPWFlNVDuYQWrGo-Ug5WHfnT5CtFdQ_5i8Eqoj63-ThClyG22SrqQpprx7NDtkI5S752AiU3__ZI79HjZgIIA0d1ho59KGkA_hC6-ZDOivoONiC9sq7x0D7SIjbaFnhLVvS0ar3ik7mIVDsLKGTUKlzYBjSMSDanN7ktYwR7duF3Se3w8Hk9DxqNBOinCu1iIQwNk5s4hKWp7HIrUodU9ZbY3XhgkG6OJ5CYWAdF5YFj_WEDjA8zgITkn8mrXJWhi-Eehk7p3URW8aF9tIox4qgsISKTS5Fmxy_-DHLG0Jx1LV4zGBhgT7PXn3eJt9Xtr9qGo1_Wp3gdKwskPq6ugABkTUBkb0XEG3y7WUyM_hU8P-HLcNs-ZThQ1DyaBl__R8vOiCfEtzggpv79CFpLebLcAQVysJ1yAc9POuQzV7_cnwDx5PB1fXPThWiz37B5t4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influencing+Factors+in+Estimation+of+Leaf+Angle+Distribution+of+an+Individual+Tree+from+Terrestrial+Laser+Scanning+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Hailan&rft.au=Hu%2C+Ronghai&rft.au=Yan%2C+Guangjian&rft.au=Cheng%2C+Shiyu&rft.date=2021-03-18&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=6&rft_id=info:doi/10.3390%2Frs13061159&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon