In–human testing of a non-invasive continuous low–energy microwave glucose sensor with advanced machine learning capabilities

Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In thi...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 241; p. 115668
Main Authors Kazemi, Nazli, Abdolrazzaghi, Mohammad, Light, Peter E., Musilek, Petr
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2023
Subjects
Online AccessGet full text
ISSN0956-5663
1873-4235
1873-4235
DOI10.1016/j.bios.2023.115668

Cover

Loading…
Abstract Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn. •A reflection-based resonator is comprised of two coupled resonators to enhance sensitivity.•Glucose level in Interstitial fluid is linearly measured within a microfluidic channel.•Participants are asked for time-based glucose monitoring with a periodic chocolate intake.•The sensor response is highly correlated with the glucose level measured by a commercial device.•System anomalies are recognized by machine learning algorithm and removed.
AbstractList Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn. •A reflection-based resonator is comprised of two coupled resonators to enhance sensitivity.•Glucose level in Interstitial fluid is linearly measured within a microfluidic channel.•Participants are asked for time-based glucose monitoring with a periodic chocolate intake.•The sensor response is highly correlated with the glucose level measured by a commercial device.•System anomalies are recognized by machine learning algorithm and removed.
Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R² ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.
Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.
ArticleNumber 115668
Author Musilek, Petr
Light, Peter E.
Kazemi, Nazli
Abdolrazzaghi, Mohammad
Author_xml – sequence: 1
  givenname: Nazli
  orcidid: 0000-0002-6541-0233
  surname: Kazemi
  fullname: Kazemi, Nazli
  email: nazli@ualberta.ca
  organization: Electrical and Computer Engineering, University of Alberta, 116 St., Edmonton, T6G 2R3, AB, Canada
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0002-4811-8660
  surname: Abdolrazzaghi
  fullname: Abdolrazzaghi, Mohammad
  email: abdolra3@ece.utoronto.ca
  organization: University of Toronto, 10 King's College Rd, Toronto, M5S 3G4, ON, Canada
– sequence: 3
  givenname: Peter E.
  orcidid: 0000-0003-1049-4721
  surname: Light
  fullname: Light, Peter E.
  email: plight@ualberta.ca
  organization: Faculty of Medicine and Dentistry Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 112 St., Edmonton, T6G 2R3, AB, Canada
– sequence: 4
  givenname: Petr
  surname: Musilek
  fullname: Musilek, Petr
  email: pmusilek@ualberta.ca
  organization: Electrical and Computer Engineering, University of Alberta, 116 St., Edmonton, T6G 2R3, AB, Canada
BookMark eNqFkc2O0zAUhS00SHQGXoCVl2xS7DhxYokNGvEz0khsYG3d2rftrRK72Emr2cEzzBvyJDgqKxYzK1u-5_PVOeeaXYUYkLG3UqylkPr9Yb2hmNe1qNVaylbr_gVbyb5TVVOr9oqthGl1Vd7VK3ad80EI0UkjVuz3Xfjz63E_jxD4hHmisONxy4GXBRWFE2Q6IXcxlMkc58yHeC4ABky7Bz6SS_EMRbEbZhcz8owhx8TPNO05-BMEh56P4PYUkA8IKSwbHBxhQwNNhPk1e7mFIeObf-cN-_H50_fbr9X9ty93tx_vK6e0nooP573ssRFOtICiA2F6YwC6bd_rRhsHG-X9pqm91-CkgcYJbBss1xqxVzfs3eXfY4o_52LVjpQdDgMELMaskq3SxtRKPSut-04Yo2VtirS_SEsQOSfcWkcTTFQCS0CDlcIuBdmDXQqyS0H2UlBB6__QY6IR0sPT0IcLhCWqE2Gy2REuKVNCN1kf6Sn8L7QEsWg
CitedBy_id crossref_primary_10_1109_JSEN_2024_3374282
crossref_primary_10_1109_JSEN_2024_3384328
crossref_primary_10_3390_chemosensors11100534
crossref_primary_10_1088_1402_4896_ad1964
crossref_primary_10_1109_JERM_2024_3373537
crossref_primary_10_3390_s23229103
crossref_primary_10_1109_JSEN_2024_3516571
crossref_primary_10_1109_JSEN_2024_3362698
crossref_primary_10_1109_JSEN_2024_3409732
crossref_primary_10_1007_s40866_024_00205_5
crossref_primary_10_1109_JSEN_2025_3534066
crossref_primary_10_1002_adfm_202416673
crossref_primary_10_1038_s41598_024_76741_y
crossref_primary_10_1038_s41598_024_62287_6
crossref_primary_10_1109_JSEN_2024_3352616
crossref_primary_10_1109_ACCESS_2024_3425159
crossref_primary_10_1016_j_mtphys_2024_101376
crossref_primary_10_1021_acsnano_4c04456
crossref_primary_10_1109_JSEN_2025_3529694
crossref_primary_10_3389_fbioe_2024_1398189
crossref_primary_10_1109_JSEN_2023_3345477
crossref_primary_10_1109_JSEN_2024_3390544
crossref_primary_10_1016_j_snb_2025_137322
crossref_primary_10_1038_s41598_024_57653_3
crossref_primary_10_1002_pssa_202400180
crossref_primary_10_3390_machines11121057
crossref_primary_10_1109_JSEN_2024_3484585
crossref_primary_10_1016_j_talanta_2025_127965
crossref_primary_10_1039_D4NJ04409F
crossref_primary_10_3390_chemosensors13020052
crossref_primary_10_3390_bios14020065
crossref_primary_10_1007_s13534_024_00443_7
crossref_primary_10_3390_s24144515
crossref_primary_10_1109_TBCAS_2024_3421313
crossref_primary_10_1109_TMTT_2024_3382762
crossref_primary_10_1007_s00249_024_01708_w
crossref_primary_10_1002_adsr_202400091
crossref_primary_10_1038_s41598_024_59744_7
crossref_primary_10_1109_JSEN_2024_3371779
crossref_primary_10_1109_ACCESS_2024_3424937
crossref_primary_10_3390_mi15091137
crossref_primary_10_3390_mi15111368
Cites_doi 10.1016/j.bios.2016.07.069
10.1038/nbt1138
10.1038/ncomms6028
10.1002/adhm.201400504
10.1109/JSSC.2011.2170633
10.1002/elan.201501116
10.1016/j.copbio.2004.12.007
10.1016/j.eswa.2022.119252
10.1109/TBCAS.2019.2952841
10.1109/JRFID.2020.3004035
10.1126/sciadv.aba3252
10.1109/JSEN.2021.3090050
10.1016/j.bios.2023.115103
10.1016/j.bios.2017.06.035
10.1038/s41467-022-32852-6
10.1016/S0956-5663(03)00196-9
10.1038/nnano.2016.38
10.1002/advs.201800880
10.1126/sciadv.aba5320
10.1126/sciadv.aap9841
10.1016/j.snb.2016.05.054
10.1007/s10439-016-1679-2
10.2337/db11-0654
10.1109/TMTT.2018.2791942
10.1016/j.snb.2019.01.050
10.1109/TAP.2014.2313139
10.3390/bios11030062
10.1038/s41598-020-69547-1
10.1126/sciadv.1701629
10.1109/TMTT.2020.3002996
10.1038/s41467-021-22109-z
10.1109/TCSI.2021.3074570
10.1016/j.bios.2019.111784
10.1109/TMTT.2021.3081119
10.1109/LSENS.2020.2999031
10.1038/s41928-018-0043-y
10.3390/electronics11071139
10.2337/diacare.27.5.1047
10.3390/s21113759
10.1089/dia.2015.0417
10.1038/s41598-020-72114-3
10.3390/s19081814
10.1126/sciadv.abd0199
10.1109/TMTT.2022.3218015
10.1016/j.amjmed.2013.10.003
10.3390/s23136236
10.1016/j.snb.2020.128414
10.1017/cts.2020.545
10.1126/sciadv.1601314
10.1021/acs.biomac.8b01429
10.1016/j.bios.2019.01.030
10.1038/s41598-022-05570-8
10.1177/1932296820947112
10.1109/TCSI.2020.3003010
10.1109/TMTT.2015.2472019
10.1007/s41666-019-00059-y
10.1016/j.bios.2021.113054
10.2337/dc06-0079
10.1038/nature16521
10.1371/journal.pone.0253125
10.1016/j.bios.2014.10.021
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.bios.2023.115668
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
ExternalDocumentID 10_1016_j_bios_2023_115668
S0956566323006103
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSU
SSZ
T5K
TN5
XPP
Y6R
YK3
ZMT
~G-
~KM
.HR
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HMU
HVGLF
HZ~
R2-
RIG
SBG
SCB
SCH
SSH
WUQ
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c366t-42cdd18e40c05ae07a09899aa7f886469cab3ddb42dd6ac19a4c0e54ec192ee83
IEDL.DBID .~1
ISSN 0956-5663
1873-4235
IngestDate Mon Jul 21 10:05:04 EDT 2025
Fri Jul 11 05:50:07 EDT 2025
Tue Jul 01 01:43:09 EDT 2025
Thu Apr 24 23:13:22 EDT 2025
Fri Feb 23 02:34:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anomaly Detection
Microwave Sensor
LSTM
Glucose
Time Series Neural Network
Machine Learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-42cdd18e40c05ae07a09899aa7f886469cab3ddb42dd6ac19a4c0e54ec192ee83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1049-4721
0000-0002-6541-0233
0000-0002-4811-8660
PQID 2870996129
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153699233
proquest_miscellaneous_2870996129
crossref_citationtrail_10_1016_j_bios_2023_115668
crossref_primary_10_1016_j_bios_2023_115668
elsevier_sciencedirect_doi_10_1016_j_bios_2023_115668
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Biosensors & bioelectronics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Baghelani, Abbasi, Daneshmand, Light (bib11) 2020; 10
Cobelli, Renard, Kovatchev (bib21) 2011; 60
Yilmaz, Foster, Hao (bib65) 2014; 62
Bariya, Nyein, Javey (bib12) 2018; 1
Rabby, Tu, Hossen, Lee, Maida, Hei (bib56) 2021; 21
Amir, Weinstein, Zilberman, Less, Perl-Treves, Primack, Weinstein, Gabis, Fikhte, Karasik (bib8) 2007
Chen, Tee, Chortos, Schwartz, Tse, J Lipomi, Wong, McConnell, Bao (bib17) 2014; 5
Mohammadi, Nadaraja, Luckasavitch, Jain, Roberts, Zarifi (bib47) 2019; 14
Barrett, Komatireddy, Haaser, Topol, Sheard, Encinas, Fought, Topol (bib13) 2014; 127
Pleus, Schauer, Jendrike, Zschornack, Link, Hepp, Haug, Freckmann (bib54) 2021; 15
Gao, Emaminejad, Nyein, Challa, Chen, Peck, Fahad, Ota, Shiraki, Kiriya (bib25) 2016; 529
Zou, Chu, Guo, Liu, Ma, Guo (bib67) 2023
Martinsson, Schliep, Eliasson, Mogren (bib46) 2020; 4
Srichan, Srichan, Danvirutai, Ritsongmuang, Sharma, Anutrakulchai (bib61) 2022; 12
Lee, Choi, Lee, Cho, Ghaffari, Wang, Choi, Chung, Lu, Hyeon (bib41) 2016; 11
Agustini, Bergamini, Marcolino-Junior (bib5) 2017; 98
Jeong, Tentzeris, Kim (bib31) 2020; 4
Hanna, Bteich, Tawk, Ramadan, Dia, Asadallah, Eid, Kanj, Costantine, Eid (bib29) 2020; 6
Rodbard (bib59) 2016; 18
Caduff, Hirt, Feldman, Ali, Heinemann (bib16) 2003; 19
Kazemi, Abdolrazzaghi, Musilek (bib32) 2021; 69
Rawat, Bhamore, Singhal, Kailasa (bib58) 2017; 88
Farandos, Yetisen, Monteiro, Lowe, Yun (bib24) 2015; 4
Gecili, Huang, Khoury, King, Altaye, Bowers, Szczesniak (bib26) 2021; 5
Muckley, Lynch, Kumar, Sumpter, Ivanov (bib48) 2016; 236
Abdolrazzaghi, Daneshmand, Iyer (bib2) 2018; 66
van Doorn, Foreman, Schaper, Savelberg, Koster, van der Kallen, Wesselius, Schram, Henry, Dagnelie (bib22) 2021; 16
Singh (bib60) 2017
Zheng, Patolsky, Cui, Wang, Lieber (bib66) 2005; 23
Kazemi, Musilek (bib33) 2022; 70
Kazemi, Schofield, Musilek (bib35) 2021; 21
Ebrahimi, Coromina, Muñoz-Enano, Vélez, Scott, Ghorbani, Martín (bib23) 2021; 68
Liao, Yao, Lingley, Parviz, Otis (bib44) 2011; 47
Nyein, Bariya, Tran, Ahn, Brown, Ji, Davis, Javey (bib49) 2021; 12
Pankratov, González-Arribas, Blum, Shleev (bib51) 2016; 28
Lee, Song, Hong, Kim, Cho, Kang, Shin, Choi, Hyeon, Kim (bib42) 2017; 3
Rahmani, Archang, Jamali, Forghani, Ambrus, Ramalingam, Sun, Scumpia, Coller, Babakhani (bib57) 2020; 4
Xiao, Yu, Li, Song, Kikkawa (bib64) 2020; 70
Abdolrazzaghi, Kazemi, Nayyeri, Martin (bib4) 2023; 23
Blauw, Keith-Hynes, Koops, DeVries (bib14) 2016; 44
Piekarz, Gorska, Odrobina, Drab, Wincza, Gamian, Gruszczynski (bib53) 2020; 147
Abdolrazzaghi, Katchinskiy, Elezzabi, Light, Daneshmand (bib3) 2021; 21
Lee, Probst, Klonoff, Sode (bib43) 2021; 181
Aliramezani, Norouzi, Koch (bib7) 2020; 321
Choi, Naylon, Luzio, Beutler, Birchall, Martin, Porch (bib20) 2015; 63
Park, Kim, Kim, Cheong, Jang, Park, Na, Kim, Heo, Lee (bib52) 2018; 4
Gorst, Zavyalova, Mironchev (bib27) 2021; 11
Bruttomesso (bib15) 2019
Chen, Periasamy, Chen, Chang (bib19) 2019; 285
Guliy, Zaitsev, Smirnov, Karavaeva, Borodina (bib28) 2019; 130
Kim, Sempionatto, Imani, Hartel, Barfidokht, Tang, Campbell, Mercier, Wang (bib38) 2018; 5
Wild, Roglic, Green, Sicree, King (bib63) 2004; 27
Pu, Zhang, Yu, Tu, Chen, Liu, Su, Wang, Zhang, Li (bib55) 2021; 7
Omer, Shaker, Safavi-Naeini, Kokabi, Alquié, Deshours, Shubair (bib50) 2020; 10
Kazemi, Musilek (bib34) 2023; 213
Abdolrazzaghi, Daneshmand (bib1) 2020; 67
Hitzemann, Dehning, Gehl, Sterr, Zimmermann (bib30) 2022; 11
Kim, Dhakal, Adhikari, Kim, Wang (bib39) 2015; 67
Martínez-Nieto, Medrano-Marqués, Sanz-Pascual, Calvo-López (bib45) 2019; 19
Azimi Dijvejin, Jain, Kozak, Zarifi, Golovin (bib9) 2022; 13
Chen, Lu, Zhang, Li, Qu, Chen, Lu, Wang, Feng (bib18) 2017; 3
Keum, Kim, Koo, Lee, Jeon, Mok, Mun, Lee, Kamrani, Joo (bib36) 2020; 6
Kownacka, Vegelyte, Joosse, Anton, Toebes, Lauko, Buzzacchera, Lipinska, Wilson, Geelhoed-Duijvestijn (bib40) 2018; 19
Wentholt, Hoekstra, DeVries (bib62) 2006; 29
Badugu, Lakowicz, Geddes (bib10) 2005; 16
Kim, Kim, Lee, Kim, Ji, Kim, Park, Na, Bae, Kyun Kim (bib37) 2017; 8
Albishi, El Badawe, Nayyeri, Ramahi (bib6) 2020; 68
Martinsson (10.1016/j.bios.2023.115668_bib46) 2020; 4
Xiao (10.1016/j.bios.2023.115668_bib64) 2020; 70
Kazemi (10.1016/j.bios.2023.115668_bib35) 2021; 21
Gecili (10.1016/j.bios.2023.115668_bib26) 2021; 5
Wild (10.1016/j.bios.2023.115668_bib63) 2004; 27
Aliramezani (10.1016/j.bios.2023.115668_bib7) 2020; 321
Kim (10.1016/j.bios.2023.115668_bib37) 2017; 8
Chen (10.1016/j.bios.2023.115668_bib18) 2017; 3
Ebrahimi (10.1016/j.bios.2023.115668_bib23) 2021; 68
Choi (10.1016/j.bios.2023.115668_bib20) 2015; 63
Albishi (10.1016/j.bios.2023.115668_bib6) 2020; 68
Martínez-Nieto (10.1016/j.bios.2023.115668_bib45) 2019; 19
Abdolrazzaghi (10.1016/j.bios.2023.115668_bib3) 2021; 21
Bruttomesso (10.1016/j.bios.2023.115668_bib15) 2019
Rodbard (10.1016/j.bios.2023.115668_bib59) 2016; 18
Kazemi (10.1016/j.bios.2023.115668_bib32) 2021; 69
Wentholt (10.1016/j.bios.2023.115668_bib62) 2006; 29
Mohammadi (10.1016/j.bios.2023.115668_bib47) 2019; 14
Hanna (10.1016/j.bios.2023.115668_bib29) 2020; 6
Pu (10.1016/j.bios.2023.115668_bib55) 2021; 7
Cobelli (10.1016/j.bios.2023.115668_bib21) 2011; 60
Jeong (10.1016/j.bios.2023.115668_bib31) 2020; 4
Rawat (10.1016/j.bios.2023.115668_bib58) 2017; 88
Hitzemann (10.1016/j.bios.2023.115668_bib30) 2022; 11
Kownacka (10.1016/j.bios.2023.115668_bib40) 2018; 19
Kim (10.1016/j.bios.2023.115668_bib38) 2018; 5
Azimi Dijvejin (10.1016/j.bios.2023.115668_bib9) 2022; 13
Farandos (10.1016/j.bios.2023.115668_bib24) 2015; 4
Chen (10.1016/j.bios.2023.115668_bib17) 2014; 5
Piekarz (10.1016/j.bios.2023.115668_bib53) 2020; 147
Baghelani (10.1016/j.bios.2023.115668_bib11) 2020; 10
Kazemi (10.1016/j.bios.2023.115668_bib33) 2022; 70
Chen (10.1016/j.bios.2023.115668_bib19) 2019; 285
Kazemi (10.1016/j.bios.2023.115668_bib34) 2023; 213
Gorst (10.1016/j.bios.2023.115668_bib27) 2021; 11
Lee (10.1016/j.bios.2023.115668_bib42) 2017; 3
Abdolrazzaghi (10.1016/j.bios.2023.115668_bib1) 2020; 67
van Doorn (10.1016/j.bios.2023.115668_bib22) 2021; 16
Guliy (10.1016/j.bios.2023.115668_bib28) 2019; 130
Keum (10.1016/j.bios.2023.115668_bib36) 2020; 6
Caduff (10.1016/j.bios.2023.115668_bib16) 2003; 19
Rahmani (10.1016/j.bios.2023.115668_bib57) 2020; 4
Barrett (10.1016/j.bios.2023.115668_bib13) 2014; 127
Blauw (10.1016/j.bios.2023.115668_bib14) 2016; 44
Yilmaz (10.1016/j.bios.2023.115668_bib65) 2014; 62
Zou (10.1016/j.bios.2023.115668_bib67) 2023
Kim (10.1016/j.bios.2023.115668_bib39) 2015; 67
Abdolrazzaghi (10.1016/j.bios.2023.115668_bib4) 2023; 23
Agustini (10.1016/j.bios.2023.115668_bib5) 2017; 98
Omer (10.1016/j.bios.2023.115668_bib50) 2020; 10
Rabby (10.1016/j.bios.2023.115668_bib56) 2021; 21
Zheng (10.1016/j.bios.2023.115668_bib66) 2005; 23
Pankratov (10.1016/j.bios.2023.115668_bib51) 2016; 28
Muckley (10.1016/j.bios.2023.115668_bib48) 2016; 236
Singh (10.1016/j.bios.2023.115668_bib60) 2017
Badugu (10.1016/j.bios.2023.115668_bib10) 2005; 16
Gao (10.1016/j.bios.2023.115668_bib25) 2016; 529
Liao (10.1016/j.bios.2023.115668_bib44) 2011; 47
Park (10.1016/j.bios.2023.115668_bib52) 2018; 4
Amir (10.1016/j.bios.2023.115668_bib8) 2007
Abdolrazzaghi (10.1016/j.bios.2023.115668_bib2) 2018; 66
Nyein (10.1016/j.bios.2023.115668_bib49) 2021; 12
Pleus (10.1016/j.bios.2023.115668_bib54) 2021; 15
Srichan (10.1016/j.bios.2023.115668_bib61) 2022; 12
Bariya (10.1016/j.bios.2023.115668_bib12) 2018; 1
Lee (10.1016/j.bios.2023.115668_bib41) 2016; 11
Lee (10.1016/j.bios.2023.115668_bib43) 2021; 181
References_xml – volume: 69
  start-page: 4223
  year: 2021
  end-page: 4236
  ident: bib32
  article-title: Comparative analysis of machine learning techniques for temperature compensation in microwave sensors
  publication-title: IEEE Trans. Microw. Theor. Tech.
– volume: 11
  start-page: 1139
  year: 2022
  ident: bib30
  article-title: Fast readout of split-ring resonators made simple and low-cost for application in hplc
  publication-title: Electronics
– volume: 130
  start-page: 95
  year: 2019
  end-page: 102
  ident: bib28
  article-title: Sensor for ampicillin based on a microwave electrodynamic resonator
  publication-title: Biosens. Bioelectron.
– volume: 19
  start-page: 1814
  year: 2019
  ident: bib45
  article-title: High-level modeling and simulation tool for sensor conditioning circuit based on artificial neural networks
  publication-title: Sensors
– volume: 98
  start-page: 161
  year: 2017
  end-page: 167
  ident: bib5
  article-title: Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis
  publication-title: Biosens. Bioelectron.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib46
  article-title: Blood glucose prediction with variance estimation using recurrent neural networks
  publication-title: Journal of Healthcare Informatics Research
– volume: 27
  start-page: 1047
  year: 2004
  end-page: 1053
  ident: bib63
  article-title: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030
  publication-title: Diabetes Care
– volume: 11
  start-page: 62
  year: 2021
  ident: bib27
  article-title: Non-invasive determination of glucose concentration using a near-field sensor
  publication-title: Biosensors
– volume: 10
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib11
  article-title: Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators
  publication-title: Sci. Rep.
– volume: 60
  start-page: 2672
  year: 2011
  end-page: 2682
  ident: bib21
  article-title: Artificial pancreas: past, present, future
  publication-title: Diabetes
– volume: 29
  start-page: 1805
  year: 2006
  end-page: 1811
  ident: bib62
  article-title: A critical appraisal of the continuous glucose–error grid analysis
  publication-title: Diabetes Care
– volume: 62
  start-page: 3064
  year: 2014
  end-page: 3075
  ident: bib65
  article-title: Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels
  publication-title: IEEE Trans. Antenn. Propag.
– volume: 5
  year: 2018
  ident: bib38
  article-title: Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform
  publication-title: Adv. Sci.
– year: 2017
  ident: bib60
  article-title: Anomaly Detection for Temporal Data Using Long Short-Term Memory (Lstm)
– year: 2007
  ident: bib8
  article-title: Continuous Noninvasive Glucose Monitoring Technology Based on “Occlusion Spectroscopy.”
– volume: 4
  start-page: 186
  year: 2020
  end-page: 194
  ident: bib31
  article-title: Machine learning approach for wirelessly powered rfid-based backscattering sensor system
  publication-title: IEEE Journal of Radio Frequency Identification
– volume: 68
  start-page: 4340
  year: 2020
  end-page: 4347
  ident: bib6
  article-title: Enhancing the sensitivity of dielectric sensors with multiple coupled complementary split-ring resonators
  publication-title: IEEE Trans. Microw. Theor. Tech.
– volume: 3
  year: 2017
  ident: bib18
  article-title: Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring
  publication-title: Sci. Adv.
– volume: 21
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib56
  article-title: Stacked lstm based deep recurrent neural network with kalman smoothing for blood glucose prediction
  publication-title: BMC Med. Inf. Decis. Making
– volume: 12
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib49
  article-title: A wearable patch for continuous analysis of thermoregulatory sweat at rest
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 20
  ident: bib50
  article-title: Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell csrr hexagonal configuration
  publication-title: Sci. Rep.
– volume: 16
  start-page: 100
  year: 2005
  end-page: 107
  ident: bib10
  article-title: A glucose-sensing contact lens: from bench top to patient
  publication-title: Curr. Opin. Biotechnol.
– volume: 4
  year: 2018
  ident: bib52
  article-title: Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays
  publication-title: Sci. Adv.
– volume: 21
  start-page: 3759
  year: 2021
  ident: bib35
  article-title: A high-resolution reflective microwave planar sensor for sensing of vanadium electrolyte
  publication-title: Sensors
– volume: 11
  start-page: 566
  year: 2016
  end-page: 572
  ident: bib41
  article-title: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy
  publication-title: Nat. Nanotechnol.
– volume: 18
  start-page: S2
  year: 2016
  end-page: S3
  ident: bib59
  article-title: Continuous glucose monitoring: a review of successes, challenges, and opportunities
  publication-title: Diabetes Technol. Therapeut.
– volume: 66
  start-page: 1843
  year: 2018
  end-page: 1855
  ident: bib2
  article-title: Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling
  publication-title: IEEE Trans. Microw. Theor. Tech.
– volume: 16
  year: 2021
  ident: bib22
  article-title: Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: the maastricht study
  publication-title: PLoS One
– year: 2023
  ident: bib67
  article-title: Minimally invasive electrochemical continuous glucose monitoring sensors: recent progress and perspective
  publication-title: Biosens. Bioelectron.
– volume: 4
  start-page: 792
  year: 2015
  end-page: 810
  ident: bib24
  article-title: Contact lens sensors in ocular diagnostics
  publication-title: Adv. Healthcare Mater.
– volume: 321
  year: 2020
  ident: bib7
  article-title: A grey-box machine learning based model of an electrochemical gas sensor
  publication-title: Sensor. Actuator. B Chem.
– volume: 88
  start-page: 71
  year: 2017
  end-page: 77
  ident: bib58
  article-title: Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples
  publication-title: Biosens. Bioelectron.
– volume: 19
  start-page: 4504
  year: 2018
  end-page: 4511
  ident: bib40
  article-title: Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating
  publication-title: Biomacromolecules
– volume: 68
  start-page: 2787
  year: 2021
  end-page: 2799
  ident: bib23
  article-title: Highly sensitive phase-variation dielectric constant sensor based on a capacitively-loaded slow-wave transmission line
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– volume: 23
  start-page: 1294
  year: 2005
  end-page: 1301
  ident: bib66
  article-title: Multiplexed electrical detection of cancer markers with nanowire sensor arrays
  publication-title: Nat. Biotechnol.
– volume: 147
  year: 2020
  ident: bib53
  article-title: A microwave matrix sensor for multipoint label-free escherichia coli detection
  publication-title: Biosens. Bioelectron.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib17
  article-title: Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care
  publication-title: Nat. Commun.
– volume: 6
  year: 2020
  ident: bib29
  article-title: Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy
  publication-title: Sci. Adv.
– volume: 67
  start-page: 4382
  year: 2020
  end-page: 4395
  ident: bib1
  article-title: Exploiting sensitivity enhancement in micro-wave planar sensors using intermodulation products with phase noise analysis
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– volume: 8
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib37
  article-title: Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics
  publication-title: Nat. Commun.
– volume: 44
  start-page: 3158
  year: 2016
  end-page: 3172
  ident: bib14
  article-title: A review of safety and design requirements of the artificial pancreas
  publication-title: Ann. Biomed. Eng.
– year: 2019
  ident: bib15
  article-title: Toward Automated Insulin Delivery
– volume: 70
  start-page: 5369
  year: 2022
  end-page: 5382
  ident: bib33
  article-title: Enhancing microwave sensor performance with ultrahigh q features using cyclegan
  publication-title: IEEE Trans. Microw. Theor. Tech.
– volume: 47
  start-page: 335
  year: 2011
  end-page: 344
  ident: bib44
  article-title: A 3-μ w cmos glucose sensor for wireless contact-lens tear glucose monitoring
  publication-title: IEEE J. Solid State Circ.
– volume: 236
  start-page: 91
  year: 2016
  end-page: 98
  ident: bib48
  article-title: Pedot: pss/qcm-based multimodal humidity and pressure sensor
  publication-title: Sensor. Actuator. B Chem.
– volume: 28
  start-page: 1250
  year: 2016
  end-page: 1266
  ident: bib51
  article-title: Tear based bioelectronics
  publication-title: Electroanalysis
– volume: 70
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib64
  article-title: Precise noninvasive estimation of glucose using uwb microwave with improved neural networks and hybrid optimization
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 12
  start-page: 1
  year: 2022
  end-page: 9
  ident: bib61
  article-title: Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with nir monitoring and medical features
  publication-title: Sci. Rep.
– volume: 14
  start-page: 2
  year: 2019
  end-page: 11
  ident: bib47
  article-title: A label-free, non-intrusive, and rapid monitoring of bacterial growth on solid medium using microwave biosensor
  publication-title: IEEE Transactions on Biomedical Circuits and Systems
– volume: 7
  year: 2021
  ident: bib55
  article-title: A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring
  publication-title: Sci. Adv.
– volume: 127
  year: 2014
  ident: bib13
  article-title: Comparison of 24-hour holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring
  publication-title: Am. J. Med.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 4
  ident: bib57
  article-title: Towards a machine-learning-assisted dielectric sensing platform for point-of-care wound monitoring
  publication-title: IEEE Sensors Letters
– volume: 213
  year: 2023
  ident: bib34
  article-title: Resolution enhancement of microwave sensors using super-resolution generative adversarial network
  publication-title: Expert Syst. Appl.
– volume: 67
  start-page: 687
  year: 2015
  end-page: 693
  ident: bib39
  article-title: A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level
  publication-title: Biosens. Bioelectron.
– volume: 3
  year: 2017
  ident: bib42
  article-title: Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module
  publication-title: Sci. Adv.
– volume: 19
  start-page: 209
  year: 2003
  end-page: 217
  ident: bib16
  article-title: First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system
  publication-title: Biosens. Bioelectron.
– volume: 1
  start-page: 160
  year: 2018
  end-page: 171
  ident: bib12
  article-title: Wearable sweat sensors
  publication-title: Nature Electronics
– volume: 285
  start-page: 224
  year: 2019
  end-page: 231
  ident: bib19
  article-title: Quantification of glucose via in situ growth of cu2o/ag nanoparticles
  publication-title: Sensor. Actuator. B Chem.
– volume: 529
  start-page: 509
  year: 2016
  end-page: 514
  ident: bib25
  article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
  publication-title: Nature
– volume: 5
  year: 2021
  ident: bib26
  article-title: Functional data analysis and prediction tools for continuous glucose-monitoring studies
  publication-title: Journal of clinical and translational science
– volume: 6
  year: 2020
  ident: bib36
  article-title: Wireless smart contact lens for diabetic diagnosis and therapy
  publication-title: Sci. Adv.
– volume: 15
  start-page: 11
  year: 2021
  end-page: 18
  ident: bib54
  article-title: Proof of concept for a new Raman-based prototype for noninvasive glucose monitoring
  publication-title: J. Diabetes Sci. Technol.
– volume: 63
  start-page: 3016
  year: 2015
  end-page: 3025
  ident: bib20
  article-title: Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor
  publication-title: IEEE Trans. Microw. Theor. Tech.
– volume: 21
  start-page: 18742
  year: 2021
  end-page: 18755
  ident: bib3
  article-title: Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator
  publication-title: IEEE Sensor. J.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib9
  article-title: Smart low interfacial toughness coatings for on-demand de-icing without melting
  publication-title: Nat. Commun.
– volume: 23
  start-page: 6236
  year: 2023
  ident: bib4
  article-title: Ai-assisted ultra-high-sensitivity/resolution active-coupled csrr-based sensor with embedded selectivity
  publication-title: Sensors
– volume: 181
  year: 2021
  ident: bib43
  article-title: Continuous glucose monitoring systems-current status and future perspectives of the flagship technologies in biosensor research
  publication-title: Biosens. Bioelectron.
– volume: 88
  start-page: 71
  year: 2017
  ident: 10.1016/j.bios.2023.115668_bib58
  article-title: Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.07.069
– volume: 23
  start-page: 1294
  year: 2005
  ident: 10.1016/j.bios.2023.115668_bib66
  article-title: Multiplexed electrical detection of cancer markers with nanowire sensor arrays
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1138
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.bios.2023.115668_bib17
  article-title: Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6028
– volume: 4
  start-page: 792
  year: 2015
  ident: 10.1016/j.bios.2023.115668_bib24
  article-title: Contact lens sensors in ocular diagnostics
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201400504
– volume: 47
  start-page: 335
  year: 2011
  ident: 10.1016/j.bios.2023.115668_bib44
  article-title: A 3-μ w cmos glucose sensor for wireless contact-lens tear glucose monitoring
  publication-title: IEEE J. Solid State Circ.
  doi: 10.1109/JSSC.2011.2170633
– volume: 28
  start-page: 1250
  year: 2016
  ident: 10.1016/j.bios.2023.115668_bib51
  article-title: Tear based bioelectronics
  publication-title: Electroanalysis
  doi: 10.1002/elan.201501116
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib64
  article-title: Precise noninvasive estimation of glucose using uwb microwave with improved neural networks and hybrid optimization
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 16
  start-page: 100
  year: 2005
  ident: 10.1016/j.bios.2023.115668_bib10
  article-title: A glucose-sensing contact lens: from bench top to patient
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2004.12.007
– volume: 213
  year: 2023
  ident: 10.1016/j.bios.2023.115668_bib34
  article-title: Resolution enhancement of microwave sensors using super-resolution generative adversarial network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119252
– volume: 14
  start-page: 2
  year: 2019
  ident: 10.1016/j.bios.2023.115668_bib47
  article-title: A label-free, non-intrusive, and rapid monitoring of bacterial growth on solid medium using microwave biosensor
  publication-title: IEEE Transactions on Biomedical Circuits and Systems
  doi: 10.1109/TBCAS.2019.2952841
– volume: 4
  start-page: 186
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib31
  article-title: Machine learning approach for wirelessly powered rfid-based backscattering sensor system
  publication-title: IEEE Journal of Radio Frequency Identification
  doi: 10.1109/JRFID.2020.3004035
– volume: 6
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib36
  article-title: Wireless smart contact lens for diabetic diagnosis and therapy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba3252
– volume: 21
  start-page: 18742
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib3
  article-title: Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2021.3090050
– year: 2023
  ident: 10.1016/j.bios.2023.115668_bib67
  article-title: Minimally invasive electrochemical continuous glucose monitoring sensors: recent progress and perspective
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2023.115103
– volume: 98
  start-page: 161
  year: 2017
  ident: 10.1016/j.bios.2023.115668_bib5
  article-title: Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.06.035
– volume: 13
  start-page: 1
  year: 2022
  ident: 10.1016/j.bios.2023.115668_bib9
  article-title: Smart low interfacial toughness coatings for on-demand de-icing without melting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32852-6
– volume: 19
  start-page: 209
  year: 2003
  ident: 10.1016/j.bios.2023.115668_bib16
  article-title: First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/S0956-5663(03)00196-9
– volume: 11
  start-page: 566
  year: 2016
  ident: 10.1016/j.bios.2023.115668_bib41
  article-title: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.38
– volume: 5
  year: 2018
  ident: 10.1016/j.bios.2023.115668_bib38
  article-title: Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800880
– volume: 6
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib29
  article-title: Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba5320
– volume: 4
  year: 2018
  ident: 10.1016/j.bios.2023.115668_bib52
  article-title: Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap9841
– volume: 236
  start-page: 91
  year: 2016
  ident: 10.1016/j.bios.2023.115668_bib48
  article-title: Pedot: pss/qcm-based multimodal humidity and pressure sensor
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.05.054
– volume: 44
  start-page: 3158
  year: 2016
  ident: 10.1016/j.bios.2023.115668_bib14
  article-title: A review of safety and design requirements of the artificial pancreas
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1679-2
– volume: 60
  start-page: 2672
  year: 2011
  ident: 10.1016/j.bios.2023.115668_bib21
  article-title: Artificial pancreas: past, present, future
  publication-title: Diabetes
  doi: 10.2337/db11-0654
– year: 2019
  ident: 10.1016/j.bios.2023.115668_bib15
– volume: 66
  start-page: 1843
  year: 2018
  ident: 10.1016/j.bios.2023.115668_bib2
  article-title: Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling
  publication-title: IEEE Trans. Microw. Theor. Tech.
  doi: 10.1109/TMTT.2018.2791942
– volume: 285
  start-page: 224
  year: 2019
  ident: 10.1016/j.bios.2023.115668_bib19
  article-title: Quantification of glucose via in situ growth of cu2o/ag nanoparticles
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2019.01.050
– volume: 62
  start-page: 3064
  year: 2014
  ident: 10.1016/j.bios.2023.115668_bib65
  article-title: Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels
  publication-title: IEEE Trans. Antenn. Propag.
  doi: 10.1109/TAP.2014.2313139
– volume: 11
  start-page: 62
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib27
  article-title: Non-invasive determination of glucose concentration using a near-field sensor
  publication-title: Biosensors
  doi: 10.3390/bios11030062
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib11
  article-title: Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69547-1
– volume: 3
  year: 2017
  ident: 10.1016/j.bios.2023.115668_bib18
  article-title: Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701629
– volume: 68
  start-page: 4340
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib6
  article-title: Enhancing the sensitivity of dielectric sensors with multiple coupled complementary split-ring resonators
  publication-title: IEEE Trans. Microw. Theor. Tech.
  doi: 10.1109/TMTT.2020.3002996
– volume: 12
  start-page: 1
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib49
  article-title: A wearable patch for continuous analysis of thermoregulatory sweat at rest
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22109-z
– volume: 68
  start-page: 2787
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib23
  article-title: Highly sensitive phase-variation dielectric constant sensor based on a capacitively-loaded slow-wave transmission line
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2021.3074570
– year: 2017
  ident: 10.1016/j.bios.2023.115668_bib60
– volume: 147
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib53
  article-title: A microwave matrix sensor for multipoint label-free escherichia coli detection
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111784
– volume: 69
  start-page: 4223
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib32
  article-title: Comparative analysis of machine learning techniques for temperature compensation in microwave sensors
  publication-title: IEEE Trans. Microw. Theor. Tech.
  doi: 10.1109/TMTT.2021.3081119
– volume: 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib57
  article-title: Towards a machine-learning-assisted dielectric sensing platform for point-of-care wound monitoring
  publication-title: IEEE Sensors Letters
  doi: 10.1109/LSENS.2020.2999031
– volume: 1
  start-page: 160
  year: 2018
  ident: 10.1016/j.bios.2023.115668_bib12
  article-title: Wearable sweat sensors
  publication-title: Nature Electronics
  doi: 10.1038/s41928-018-0043-y
– volume: 11
  start-page: 1139
  year: 2022
  ident: 10.1016/j.bios.2023.115668_bib30
  article-title: Fast readout of split-ring resonators made simple and low-cost for application in hplc
  publication-title: Electronics
  doi: 10.3390/electronics11071139
– year: 2007
  ident: 10.1016/j.bios.2023.115668_bib8
– volume: 27
  start-page: 1047
  year: 2004
  ident: 10.1016/j.bios.2023.115668_bib63
  article-title: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.5.1047
– volume: 21
  start-page: 3759
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib35
  article-title: A high-resolution reflective microwave planar sensor for sensing of vanadium electrolyte
  publication-title: Sensors
  doi: 10.3390/s21113759
– volume: 18
  start-page: S2
  year: 2016
  ident: 10.1016/j.bios.2023.115668_bib59
  article-title: Continuous glucose monitoring: a review of successes, challenges, and opportunities
  publication-title: Diabetes Technol. Therapeut.
  doi: 10.1089/dia.2015.0417
– volume: 21
  start-page: 1
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib56
  article-title: Stacked lstm based deep recurrent neural network with kalman smoothing for blood glucose prediction
  publication-title: BMC Med. Inf. Decis. Making
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib50
  article-title: Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell csrr hexagonal configuration
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72114-3
– volume: 19
  start-page: 1814
  year: 2019
  ident: 10.1016/j.bios.2023.115668_bib45
  article-title: High-level modeling and simulation tool for sensor conditioning circuit based on artificial neural networks
  publication-title: Sensors
  doi: 10.3390/s19081814
– volume: 7
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib55
  article-title: A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd0199
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.bios.2023.115668_bib37
  article-title: Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics
  publication-title: Nat. Commun.
– volume: 70
  start-page: 5369
  year: 2022
  ident: 10.1016/j.bios.2023.115668_bib33
  article-title: Enhancing microwave sensor performance with ultrahigh q features using cyclegan
  publication-title: IEEE Trans. Microw. Theor. Tech.
  doi: 10.1109/TMTT.2022.3218015
– volume: 127
  year: 2014
  ident: 10.1016/j.bios.2023.115668_bib13
  article-title: Comparison of 24-hour holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2013.10.003
– volume: 23
  start-page: 6236
  year: 2023
  ident: 10.1016/j.bios.2023.115668_bib4
  article-title: Ai-assisted ultra-high-sensitivity/resolution active-coupled csrr-based sensor with embedded selectivity
  publication-title: Sensors
  doi: 10.3390/s23136236
– volume: 321
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib7
  article-title: A grey-box machine learning based model of an electrochemical gas sensor
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2020.128414
– volume: 5
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib26
  article-title: Functional data analysis and prediction tools for continuous glucose-monitoring studies
  publication-title: Journal of clinical and translational science
  doi: 10.1017/cts.2020.545
– volume: 3
  year: 2017
  ident: 10.1016/j.bios.2023.115668_bib42
  article-title: Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601314
– volume: 19
  start-page: 4504
  year: 2018
  ident: 10.1016/j.bios.2023.115668_bib40
  article-title: Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b01429
– volume: 130
  start-page: 95
  year: 2019
  ident: 10.1016/j.bios.2023.115668_bib28
  article-title: Sensor for ampicillin based on a microwave electrodynamic resonator
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.01.030
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.bios.2023.115668_bib61
  article-title: Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with nir monitoring and medical features
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05570-8
– volume: 15
  start-page: 11
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib54
  article-title: Proof of concept for a new Raman-based prototype for noninvasive glucose monitoring
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296820947112
– volume: 67
  start-page: 4382
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib1
  article-title: Exploiting sensitivity enhancement in micro-wave planar sensors using intermodulation products with phase noise analysis
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2020.3003010
– volume: 63
  start-page: 3016
  year: 2015
  ident: 10.1016/j.bios.2023.115668_bib20
  article-title: Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor
  publication-title: IEEE Trans. Microw. Theor. Tech.
  doi: 10.1109/TMTT.2015.2472019
– volume: 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.bios.2023.115668_bib46
  article-title: Blood glucose prediction with variance estimation using recurrent neural networks
  publication-title: Journal of Healthcare Informatics Research
  doi: 10.1007/s41666-019-00059-y
– volume: 181
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib43
  article-title: Continuous glucose monitoring systems-current status and future perspectives of the flagship technologies in biosensor research
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113054
– volume: 29
  start-page: 1805
  year: 2006
  ident: 10.1016/j.bios.2023.115668_bib62
  article-title: A critical appraisal of the continuous glucose–error grid analysis
  publication-title: Diabetes Care
  doi: 10.2337/dc06-0079
– volume: 529
  start-page: 509
  year: 2016
  ident: 10.1016/j.bios.2023.115668_bib25
  article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
  publication-title: Nature
  doi: 10.1038/nature16521
– volume: 16
  year: 2021
  ident: 10.1016/j.bios.2023.115668_bib22
  article-title: Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: the maastricht study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0253125
– volume: 67
  start-page: 687
  year: 2015
  ident: 10.1016/j.bios.2023.115668_bib39
  article-title: A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.10.021
SSID ssj0007190
Score 2.608271
Snippet Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115668
SubjectTerms Anomaly Detection
biosensors
blood glucose
chemical species
clinical trials
Glucose
lifestyle
LSTM
Machine Learning
Microwave Sensor
Time Series Neural Network
Title In–human testing of a non-invasive continuous low–energy microwave glucose sensor with advanced machine learning capabilities
URI https://dx.doi.org/10.1016/j.bios.2023.115668
https://www.proquest.com/docview/2870996129
https://www.proquest.com/docview/3153699233
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9ZAEN4QCIkeiKJGUMmSeDP1bbsfbY-ESF40cEESbpvZdkpqoC-BF4kXo7-Bf8gvYWa7FTWBA7d-zKbtznY-dp99Roj3ln4iU7QmMTrXia5yTAAqUggabFplFIQd3nv7dnqoPx-ZowWxPe6FYVhltP2DTQ_WOl6ZxN6cnHXd5IAp9CgYURREk1MKjJ9aFzzKP_68g3kU2TDPwnx7LB03zgwYL9_NmLI7V2Q56GZ5n3P6z0wH37PzTKzEoFFuDe_1XCxgvyqWhzKSP1bF079IBV-I37v9za_rUHtPzplDoz-Ws1aCpEQ_6frvwIB1yRD1rr-kvF-ezK6oAYZNgPKUAXpXQBIRzC4vKNGdnUuesJUjYkCeBgwmylh04ljW5HQDzpYy75ficOfT1-1pEgstJLWydp7ovG6arESd1qkBTAtIK8rDAIq2LC0l0DV41TRe501joc4q0HWKRiMd5oileiUW6RvwtZCAJRbe-LLwreaaHgBZ2SrrvYUCVb4msrGHXR1ZyLkYxokb4WbfHGvFsVbcoJU18eFPm7OBg-NBaTMqzv0zkhw5iQfbbY5advSL8boJ9EhqcLwWTGkhRUb3yyjyHLaiaFmtP_L5b8QTPhugMm_F4vz8Et9RwDP3G2FEb4ilrd0v0_1b5wkEcQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQoqrtAbW0VXm0daXeqmiT-JHkiBBot8BeAImbNU4mKBVkEV1AvbW_of-wv6QziYMACQ69RYmtJB57HvY33wjxxdIiMlltIqNTHekixQigIIGgwapWRkGX4X0ws5Nj_e3EnCyJ7SEXhmGVQff3Or3T1uHOOIzm-KJpxodMoUfOiCInmowSM34uMzuVGYnlreneZHarkLOk32phyj3uEHJnepiXb-bM2p0qUh70MH_MPj3Q1J352X0lVoLfKLf6T3stlrBdFc_6SpI_V8XLO7yCb8Tvafv315-u_J5cMI1GeyrntQRJsX7UtNfAmHXJKPWmvaLQX57Nb6gDdnmA8pwxejdALQKeXf6gWHd-KXnPVg6gAXnewTBRhroTp7Iku9tBbSn4fiuOd3eOtidRqLUQlcraRaTTsqqSHHVcxgYwziAuKBQDyOo8txRDl-BVVXmdVpWFMilAlzEajXSZIubqnRjRP-B7IQFzzLzxeeZrzWU9AJK8VtZ7CxmqdE0kwwi7MhCRcz2MMzcgzr47lopjqbheKmvi622fi56G48nWZhCcuzeZHNmJJ_t9HqTsaJXx0Qm0SGJwfBxMkSE5R4-3UWQ8bEEOs1r_z_d_Es8nRwf7bn8629sQL_hJj5zZFKPF5RV-IP9n4T-G-f0PwDYHIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%E2%80%93human+testing+of+a+non-invasive+continuous+low%E2%80%93energy+microwave+glucose+sensor+with+advanced+machine+learning+capabilities&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Kazemi%2C+Nazli&rft.au=Abdolrazzaghi%2C+Mohammad&rft.au=Light%2C+Peter+E.&rft.au=Musilek%2C+Petr&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=0956-5663&rft.eissn=1873-4235&rft.volume=241&rft_id=info:doi/10.1016%2Fj.bios.2023.115668&rft.externalDocID=S0956566323006103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon