In–human testing of a non-invasive continuous low–energy microwave glucose sensor with advanced machine learning capabilities
Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In thi...
Saved in:
Published in | Biosensors & bioelectronics Vol. 241; p. 115668 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-5663 1873-4235 1873-4235 |
DOI | 10.1016/j.bios.2023.115668 |
Cover
Loading…
Abstract | Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.
•A reflection-based resonator is comprised of two coupled resonators to enhance sensitivity.•Glucose level in Interstitial fluid is linearly measured within a microfluidic channel.•Participants are asked for time-based glucose monitoring with a periodic chocolate intake.•The sensor response is highly correlated with the glucose level measured by a commercial device.•System anomalies are recognized by machine learning algorithm and removed. |
---|---|
AbstractList | Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.
•A reflection-based resonator is comprised of two coupled resonators to enhance sensitivity.•Glucose level in Interstitial fluid is linearly measured within a microfluidic channel.•Participants are asked for time-based glucose monitoring with a periodic chocolate intake.•The sensor response is highly correlated with the glucose level measured by a commercial device.•System anomalies are recognized by machine learning algorithm and removed. Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R² ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn. Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn. |
ArticleNumber | 115668 |
Author | Musilek, Petr Light, Peter E. Kazemi, Nazli Abdolrazzaghi, Mohammad |
Author_xml | – sequence: 1 givenname: Nazli orcidid: 0000-0002-6541-0233 surname: Kazemi fullname: Kazemi, Nazli email: nazli@ualberta.ca organization: Electrical and Computer Engineering, University of Alberta, 116 St., Edmonton, T6G 2R3, AB, Canada – sequence: 2 givenname: Mohammad orcidid: 0000-0002-4811-8660 surname: Abdolrazzaghi fullname: Abdolrazzaghi, Mohammad email: abdolra3@ece.utoronto.ca organization: University of Toronto, 10 King's College Rd, Toronto, M5S 3G4, ON, Canada – sequence: 3 givenname: Peter E. orcidid: 0000-0003-1049-4721 surname: Light fullname: Light, Peter E. email: plight@ualberta.ca organization: Faculty of Medicine and Dentistry Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 112 St., Edmonton, T6G 2R3, AB, Canada – sequence: 4 givenname: Petr surname: Musilek fullname: Musilek, Petr email: pmusilek@ualberta.ca organization: Electrical and Computer Engineering, University of Alberta, 116 St., Edmonton, T6G 2R3, AB, Canada |
BookMark | eNqFkc2O0zAUhS00SHQGXoCVl2xS7DhxYokNGvEz0khsYG3d2rftrRK72Emr2cEzzBvyJDgqKxYzK1u-5_PVOeeaXYUYkLG3UqylkPr9Yb2hmNe1qNVaylbr_gVbyb5TVVOr9oqthGl1Vd7VK3ad80EI0UkjVuz3Xfjz63E_jxD4hHmisONxy4GXBRWFE2Q6IXcxlMkc58yHeC4ABky7Bz6SS_EMRbEbZhcz8owhx8TPNO05-BMEh56P4PYUkA8IKSwbHBxhQwNNhPk1e7mFIeObf-cN-_H50_fbr9X9ty93tx_vK6e0nooP573ssRFOtICiA2F6YwC6bd_rRhsHG-X9pqm91-CkgcYJbBss1xqxVzfs3eXfY4o_52LVjpQdDgMELMaskq3SxtRKPSut-04Yo2VtirS_SEsQOSfcWkcTTFQCS0CDlcIuBdmDXQqyS0H2UlBB6__QY6IR0sPT0IcLhCWqE2Gy2REuKVNCN1kf6Sn8L7QEsWg |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3374282 crossref_primary_10_1109_JSEN_2024_3384328 crossref_primary_10_3390_chemosensors11100534 crossref_primary_10_1088_1402_4896_ad1964 crossref_primary_10_1109_JERM_2024_3373537 crossref_primary_10_3390_s23229103 crossref_primary_10_1109_JSEN_2024_3516571 crossref_primary_10_1109_JSEN_2024_3362698 crossref_primary_10_1109_JSEN_2024_3409732 crossref_primary_10_1007_s40866_024_00205_5 crossref_primary_10_1109_JSEN_2025_3534066 crossref_primary_10_1002_adfm_202416673 crossref_primary_10_1038_s41598_024_76741_y crossref_primary_10_1038_s41598_024_62287_6 crossref_primary_10_1109_JSEN_2024_3352616 crossref_primary_10_1109_ACCESS_2024_3425159 crossref_primary_10_1016_j_mtphys_2024_101376 crossref_primary_10_1021_acsnano_4c04456 crossref_primary_10_1109_JSEN_2025_3529694 crossref_primary_10_3389_fbioe_2024_1398189 crossref_primary_10_1109_JSEN_2023_3345477 crossref_primary_10_1109_JSEN_2024_3390544 crossref_primary_10_1016_j_snb_2025_137322 crossref_primary_10_1038_s41598_024_57653_3 crossref_primary_10_1002_pssa_202400180 crossref_primary_10_3390_machines11121057 crossref_primary_10_1109_JSEN_2024_3484585 crossref_primary_10_1016_j_talanta_2025_127965 crossref_primary_10_1039_D4NJ04409F crossref_primary_10_3390_chemosensors13020052 crossref_primary_10_3390_bios14020065 crossref_primary_10_1007_s13534_024_00443_7 crossref_primary_10_3390_s24144515 crossref_primary_10_1109_TBCAS_2024_3421313 crossref_primary_10_1109_TMTT_2024_3382762 crossref_primary_10_1007_s00249_024_01708_w crossref_primary_10_1002_adsr_202400091 crossref_primary_10_1038_s41598_024_59744_7 crossref_primary_10_1109_JSEN_2024_3371779 crossref_primary_10_1109_ACCESS_2024_3424937 crossref_primary_10_3390_mi15091137 crossref_primary_10_3390_mi15111368 |
Cites_doi | 10.1016/j.bios.2016.07.069 10.1038/nbt1138 10.1038/ncomms6028 10.1002/adhm.201400504 10.1109/JSSC.2011.2170633 10.1002/elan.201501116 10.1016/j.copbio.2004.12.007 10.1016/j.eswa.2022.119252 10.1109/TBCAS.2019.2952841 10.1109/JRFID.2020.3004035 10.1126/sciadv.aba3252 10.1109/JSEN.2021.3090050 10.1016/j.bios.2023.115103 10.1016/j.bios.2017.06.035 10.1038/s41467-022-32852-6 10.1016/S0956-5663(03)00196-9 10.1038/nnano.2016.38 10.1002/advs.201800880 10.1126/sciadv.aba5320 10.1126/sciadv.aap9841 10.1016/j.snb.2016.05.054 10.1007/s10439-016-1679-2 10.2337/db11-0654 10.1109/TMTT.2018.2791942 10.1016/j.snb.2019.01.050 10.1109/TAP.2014.2313139 10.3390/bios11030062 10.1038/s41598-020-69547-1 10.1126/sciadv.1701629 10.1109/TMTT.2020.3002996 10.1038/s41467-021-22109-z 10.1109/TCSI.2021.3074570 10.1016/j.bios.2019.111784 10.1109/TMTT.2021.3081119 10.1109/LSENS.2020.2999031 10.1038/s41928-018-0043-y 10.3390/electronics11071139 10.2337/diacare.27.5.1047 10.3390/s21113759 10.1089/dia.2015.0417 10.1038/s41598-020-72114-3 10.3390/s19081814 10.1126/sciadv.abd0199 10.1109/TMTT.2022.3218015 10.1016/j.amjmed.2013.10.003 10.3390/s23136236 10.1016/j.snb.2020.128414 10.1017/cts.2020.545 10.1126/sciadv.1601314 10.1021/acs.biomac.8b01429 10.1016/j.bios.2019.01.030 10.1038/s41598-022-05570-8 10.1177/1932296820947112 10.1109/TCSI.2020.3003010 10.1109/TMTT.2015.2472019 10.1007/s41666-019-00059-y 10.1016/j.bios.2021.113054 10.2337/dc06-0079 10.1038/nature16521 10.1371/journal.pone.0253125 10.1016/j.bios.2014.10.021 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2023.115668 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
ExternalDocumentID | 10_1016_j_bios_2023_115668 S0956566323006103 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- RIG SBG SCB SCH SSH WUQ 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c366t-42cdd18e40c05ae07a09899aa7f886469cab3ddb42dd6ac19a4c0e54ec192ee83 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Mon Jul 21 10:05:04 EDT 2025 Fri Jul 11 05:50:07 EDT 2025 Tue Jul 01 01:43:09 EDT 2025 Thu Apr 24 23:13:22 EDT 2025 Fri Feb 23 02:34:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anomaly Detection Microwave Sensor LSTM Glucose Time Series Neural Network Machine Learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-42cdd18e40c05ae07a09899aa7f886469cab3ddb42dd6ac19a4c0e54ec192ee83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1049-4721 0000-0002-6541-0233 0000-0002-4811-8660 |
PQID | 2870996129 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153699233 proquest_miscellaneous_2870996129 crossref_citationtrail_10_1016_j_bios_2023_115668 crossref_primary_10_1016_j_bios_2023_115668 elsevier_sciencedirect_doi_10_1016_j_bios_2023_115668 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Biosensors & bioelectronics |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Baghelani, Abbasi, Daneshmand, Light (bib11) 2020; 10 Cobelli, Renard, Kovatchev (bib21) 2011; 60 Yilmaz, Foster, Hao (bib65) 2014; 62 Bariya, Nyein, Javey (bib12) 2018; 1 Rabby, Tu, Hossen, Lee, Maida, Hei (bib56) 2021; 21 Amir, Weinstein, Zilberman, Less, Perl-Treves, Primack, Weinstein, Gabis, Fikhte, Karasik (bib8) 2007 Chen, Tee, Chortos, Schwartz, Tse, J Lipomi, Wong, McConnell, Bao (bib17) 2014; 5 Mohammadi, Nadaraja, Luckasavitch, Jain, Roberts, Zarifi (bib47) 2019; 14 Barrett, Komatireddy, Haaser, Topol, Sheard, Encinas, Fought, Topol (bib13) 2014; 127 Pleus, Schauer, Jendrike, Zschornack, Link, Hepp, Haug, Freckmann (bib54) 2021; 15 Gao, Emaminejad, Nyein, Challa, Chen, Peck, Fahad, Ota, Shiraki, Kiriya (bib25) 2016; 529 Zou, Chu, Guo, Liu, Ma, Guo (bib67) 2023 Martinsson, Schliep, Eliasson, Mogren (bib46) 2020; 4 Srichan, Srichan, Danvirutai, Ritsongmuang, Sharma, Anutrakulchai (bib61) 2022; 12 Lee, Choi, Lee, Cho, Ghaffari, Wang, Choi, Chung, Lu, Hyeon (bib41) 2016; 11 Agustini, Bergamini, Marcolino-Junior (bib5) 2017; 98 Jeong, Tentzeris, Kim (bib31) 2020; 4 Hanna, Bteich, Tawk, Ramadan, Dia, Asadallah, Eid, Kanj, Costantine, Eid (bib29) 2020; 6 Rodbard (bib59) 2016; 18 Caduff, Hirt, Feldman, Ali, Heinemann (bib16) 2003; 19 Kazemi, Abdolrazzaghi, Musilek (bib32) 2021; 69 Rawat, Bhamore, Singhal, Kailasa (bib58) 2017; 88 Farandos, Yetisen, Monteiro, Lowe, Yun (bib24) 2015; 4 Gecili, Huang, Khoury, King, Altaye, Bowers, Szczesniak (bib26) 2021; 5 Muckley, Lynch, Kumar, Sumpter, Ivanov (bib48) 2016; 236 Abdolrazzaghi, Daneshmand, Iyer (bib2) 2018; 66 van Doorn, Foreman, Schaper, Savelberg, Koster, van der Kallen, Wesselius, Schram, Henry, Dagnelie (bib22) 2021; 16 Singh (bib60) 2017 Zheng, Patolsky, Cui, Wang, Lieber (bib66) 2005; 23 Kazemi, Musilek (bib33) 2022; 70 Kazemi, Schofield, Musilek (bib35) 2021; 21 Ebrahimi, Coromina, Muñoz-Enano, Vélez, Scott, Ghorbani, Martín (bib23) 2021; 68 Liao, Yao, Lingley, Parviz, Otis (bib44) 2011; 47 Nyein, Bariya, Tran, Ahn, Brown, Ji, Davis, Javey (bib49) 2021; 12 Pankratov, González-Arribas, Blum, Shleev (bib51) 2016; 28 Lee, Song, Hong, Kim, Cho, Kang, Shin, Choi, Hyeon, Kim (bib42) 2017; 3 Rahmani, Archang, Jamali, Forghani, Ambrus, Ramalingam, Sun, Scumpia, Coller, Babakhani (bib57) 2020; 4 Xiao, Yu, Li, Song, Kikkawa (bib64) 2020; 70 Abdolrazzaghi, Kazemi, Nayyeri, Martin (bib4) 2023; 23 Blauw, Keith-Hynes, Koops, DeVries (bib14) 2016; 44 Piekarz, Gorska, Odrobina, Drab, Wincza, Gamian, Gruszczynski (bib53) 2020; 147 Abdolrazzaghi, Katchinskiy, Elezzabi, Light, Daneshmand (bib3) 2021; 21 Lee, Probst, Klonoff, Sode (bib43) 2021; 181 Aliramezani, Norouzi, Koch (bib7) 2020; 321 Choi, Naylon, Luzio, Beutler, Birchall, Martin, Porch (bib20) 2015; 63 Park, Kim, Kim, Cheong, Jang, Park, Na, Kim, Heo, Lee (bib52) 2018; 4 Gorst, Zavyalova, Mironchev (bib27) 2021; 11 Bruttomesso (bib15) 2019 Chen, Periasamy, Chen, Chang (bib19) 2019; 285 Guliy, Zaitsev, Smirnov, Karavaeva, Borodina (bib28) 2019; 130 Kim, Sempionatto, Imani, Hartel, Barfidokht, Tang, Campbell, Mercier, Wang (bib38) 2018; 5 Wild, Roglic, Green, Sicree, King (bib63) 2004; 27 Pu, Zhang, Yu, Tu, Chen, Liu, Su, Wang, Zhang, Li (bib55) 2021; 7 Omer, Shaker, Safavi-Naeini, Kokabi, Alquié, Deshours, Shubair (bib50) 2020; 10 Kazemi, Musilek (bib34) 2023; 213 Abdolrazzaghi, Daneshmand (bib1) 2020; 67 Hitzemann, Dehning, Gehl, Sterr, Zimmermann (bib30) 2022; 11 Kim, Dhakal, Adhikari, Kim, Wang (bib39) 2015; 67 Martínez-Nieto, Medrano-Marqués, Sanz-Pascual, Calvo-López (bib45) 2019; 19 Azimi Dijvejin, Jain, Kozak, Zarifi, Golovin (bib9) 2022; 13 Chen, Lu, Zhang, Li, Qu, Chen, Lu, Wang, Feng (bib18) 2017; 3 Keum, Kim, Koo, Lee, Jeon, Mok, Mun, Lee, Kamrani, Joo (bib36) 2020; 6 Kownacka, Vegelyte, Joosse, Anton, Toebes, Lauko, Buzzacchera, Lipinska, Wilson, Geelhoed-Duijvestijn (bib40) 2018; 19 Wentholt, Hoekstra, DeVries (bib62) 2006; 29 Badugu, Lakowicz, Geddes (bib10) 2005; 16 Kim, Kim, Lee, Kim, Ji, Kim, Park, Na, Bae, Kyun Kim (bib37) 2017; 8 Albishi, El Badawe, Nayyeri, Ramahi (bib6) 2020; 68 Martinsson (10.1016/j.bios.2023.115668_bib46) 2020; 4 Xiao (10.1016/j.bios.2023.115668_bib64) 2020; 70 Kazemi (10.1016/j.bios.2023.115668_bib35) 2021; 21 Gecili (10.1016/j.bios.2023.115668_bib26) 2021; 5 Wild (10.1016/j.bios.2023.115668_bib63) 2004; 27 Aliramezani (10.1016/j.bios.2023.115668_bib7) 2020; 321 Kim (10.1016/j.bios.2023.115668_bib37) 2017; 8 Chen (10.1016/j.bios.2023.115668_bib18) 2017; 3 Ebrahimi (10.1016/j.bios.2023.115668_bib23) 2021; 68 Choi (10.1016/j.bios.2023.115668_bib20) 2015; 63 Albishi (10.1016/j.bios.2023.115668_bib6) 2020; 68 Martínez-Nieto (10.1016/j.bios.2023.115668_bib45) 2019; 19 Abdolrazzaghi (10.1016/j.bios.2023.115668_bib3) 2021; 21 Bruttomesso (10.1016/j.bios.2023.115668_bib15) 2019 Rodbard (10.1016/j.bios.2023.115668_bib59) 2016; 18 Kazemi (10.1016/j.bios.2023.115668_bib32) 2021; 69 Wentholt (10.1016/j.bios.2023.115668_bib62) 2006; 29 Mohammadi (10.1016/j.bios.2023.115668_bib47) 2019; 14 Hanna (10.1016/j.bios.2023.115668_bib29) 2020; 6 Pu (10.1016/j.bios.2023.115668_bib55) 2021; 7 Cobelli (10.1016/j.bios.2023.115668_bib21) 2011; 60 Jeong (10.1016/j.bios.2023.115668_bib31) 2020; 4 Rawat (10.1016/j.bios.2023.115668_bib58) 2017; 88 Hitzemann (10.1016/j.bios.2023.115668_bib30) 2022; 11 Kownacka (10.1016/j.bios.2023.115668_bib40) 2018; 19 Kim (10.1016/j.bios.2023.115668_bib38) 2018; 5 Azimi Dijvejin (10.1016/j.bios.2023.115668_bib9) 2022; 13 Farandos (10.1016/j.bios.2023.115668_bib24) 2015; 4 Chen (10.1016/j.bios.2023.115668_bib17) 2014; 5 Piekarz (10.1016/j.bios.2023.115668_bib53) 2020; 147 Baghelani (10.1016/j.bios.2023.115668_bib11) 2020; 10 Kazemi (10.1016/j.bios.2023.115668_bib33) 2022; 70 Chen (10.1016/j.bios.2023.115668_bib19) 2019; 285 Kazemi (10.1016/j.bios.2023.115668_bib34) 2023; 213 Gorst (10.1016/j.bios.2023.115668_bib27) 2021; 11 Lee (10.1016/j.bios.2023.115668_bib42) 2017; 3 Abdolrazzaghi (10.1016/j.bios.2023.115668_bib1) 2020; 67 van Doorn (10.1016/j.bios.2023.115668_bib22) 2021; 16 Guliy (10.1016/j.bios.2023.115668_bib28) 2019; 130 Keum (10.1016/j.bios.2023.115668_bib36) 2020; 6 Caduff (10.1016/j.bios.2023.115668_bib16) 2003; 19 Rahmani (10.1016/j.bios.2023.115668_bib57) 2020; 4 Barrett (10.1016/j.bios.2023.115668_bib13) 2014; 127 Blauw (10.1016/j.bios.2023.115668_bib14) 2016; 44 Yilmaz (10.1016/j.bios.2023.115668_bib65) 2014; 62 Zou (10.1016/j.bios.2023.115668_bib67) 2023 Kim (10.1016/j.bios.2023.115668_bib39) 2015; 67 Abdolrazzaghi (10.1016/j.bios.2023.115668_bib4) 2023; 23 Agustini (10.1016/j.bios.2023.115668_bib5) 2017; 98 Omer (10.1016/j.bios.2023.115668_bib50) 2020; 10 Rabby (10.1016/j.bios.2023.115668_bib56) 2021; 21 Zheng (10.1016/j.bios.2023.115668_bib66) 2005; 23 Pankratov (10.1016/j.bios.2023.115668_bib51) 2016; 28 Muckley (10.1016/j.bios.2023.115668_bib48) 2016; 236 Singh (10.1016/j.bios.2023.115668_bib60) 2017 Badugu (10.1016/j.bios.2023.115668_bib10) 2005; 16 Gao (10.1016/j.bios.2023.115668_bib25) 2016; 529 Liao (10.1016/j.bios.2023.115668_bib44) 2011; 47 Park (10.1016/j.bios.2023.115668_bib52) 2018; 4 Amir (10.1016/j.bios.2023.115668_bib8) 2007 Abdolrazzaghi (10.1016/j.bios.2023.115668_bib2) 2018; 66 Nyein (10.1016/j.bios.2023.115668_bib49) 2021; 12 Pleus (10.1016/j.bios.2023.115668_bib54) 2021; 15 Srichan (10.1016/j.bios.2023.115668_bib61) 2022; 12 Bariya (10.1016/j.bios.2023.115668_bib12) 2018; 1 Lee (10.1016/j.bios.2023.115668_bib41) 2016; 11 Lee (10.1016/j.bios.2023.115668_bib43) 2021; 181 |
References_xml | – volume: 69 start-page: 4223 year: 2021 end-page: 4236 ident: bib32 article-title: Comparative analysis of machine learning techniques for temperature compensation in microwave sensors publication-title: IEEE Trans. Microw. Theor. Tech. – volume: 11 start-page: 1139 year: 2022 ident: bib30 article-title: Fast readout of split-ring resonators made simple and low-cost for application in hplc publication-title: Electronics – volume: 130 start-page: 95 year: 2019 end-page: 102 ident: bib28 article-title: Sensor for ampicillin based on a microwave electrodynamic resonator publication-title: Biosens. Bioelectron. – volume: 19 start-page: 1814 year: 2019 ident: bib45 article-title: High-level modeling and simulation tool for sensor conditioning circuit based on artificial neural networks publication-title: Sensors – volume: 98 start-page: 161 year: 2017 end-page: 167 ident: bib5 article-title: Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis publication-title: Biosens. Bioelectron. – volume: 4 start-page: 1 year: 2020 end-page: 18 ident: bib46 article-title: Blood glucose prediction with variance estimation using recurrent neural networks publication-title: Journal of Healthcare Informatics Research – volume: 27 start-page: 1047 year: 2004 end-page: 1053 ident: bib63 article-title: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030 publication-title: Diabetes Care – volume: 11 start-page: 62 year: 2021 ident: bib27 article-title: Non-invasive determination of glucose concentration using a near-field sensor publication-title: Biosensors – volume: 10 start-page: 1 year: 2020 end-page: 15 ident: bib11 article-title: Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators publication-title: Sci. Rep. – volume: 60 start-page: 2672 year: 2011 end-page: 2682 ident: bib21 article-title: Artificial pancreas: past, present, future publication-title: Diabetes – volume: 29 start-page: 1805 year: 2006 end-page: 1811 ident: bib62 article-title: A critical appraisal of the continuous glucose–error grid analysis publication-title: Diabetes Care – volume: 62 start-page: 3064 year: 2014 end-page: 3075 ident: bib65 article-title: Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels publication-title: IEEE Trans. Antenn. Propag. – volume: 5 year: 2018 ident: bib38 article-title: Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform publication-title: Adv. Sci. – year: 2017 ident: bib60 article-title: Anomaly Detection for Temporal Data Using Long Short-Term Memory (Lstm) – year: 2007 ident: bib8 article-title: Continuous Noninvasive Glucose Monitoring Technology Based on “Occlusion Spectroscopy.” – volume: 4 start-page: 186 year: 2020 end-page: 194 ident: bib31 article-title: Machine learning approach for wirelessly powered rfid-based backscattering sensor system publication-title: IEEE Journal of Radio Frequency Identification – volume: 68 start-page: 4340 year: 2020 end-page: 4347 ident: bib6 article-title: Enhancing the sensitivity of dielectric sensors with multiple coupled complementary split-ring resonators publication-title: IEEE Trans. Microw. Theor. Tech. – volume: 3 year: 2017 ident: bib18 article-title: Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring publication-title: Sci. Adv. – volume: 21 start-page: 1 year: 2021 end-page: 15 ident: bib56 article-title: Stacked lstm based deep recurrent neural network with kalman smoothing for blood glucose prediction publication-title: BMC Med. Inf. Decis. Making – volume: 12 start-page: 1 year: 2021 end-page: 13 ident: bib49 article-title: A wearable patch for continuous analysis of thermoregulatory sweat at rest publication-title: Nat. Commun. – volume: 10 start-page: 1 year: 2020 end-page: 20 ident: bib50 article-title: Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell csrr hexagonal configuration publication-title: Sci. Rep. – volume: 16 start-page: 100 year: 2005 end-page: 107 ident: bib10 article-title: A glucose-sensing contact lens: from bench top to patient publication-title: Curr. Opin. Biotechnol. – volume: 4 year: 2018 ident: bib52 article-title: Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays publication-title: Sci. Adv. – volume: 21 start-page: 3759 year: 2021 ident: bib35 article-title: A high-resolution reflective microwave planar sensor for sensing of vanadium electrolyte publication-title: Sensors – volume: 11 start-page: 566 year: 2016 end-page: 572 ident: bib41 article-title: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy publication-title: Nat. Nanotechnol. – volume: 18 start-page: S2 year: 2016 end-page: S3 ident: bib59 article-title: Continuous glucose monitoring: a review of successes, challenges, and opportunities publication-title: Diabetes Technol. Therapeut. – volume: 66 start-page: 1843 year: 2018 end-page: 1855 ident: bib2 article-title: Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling publication-title: IEEE Trans. Microw. Theor. Tech. – volume: 16 year: 2021 ident: bib22 article-title: Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: the maastricht study publication-title: PLoS One – year: 2023 ident: bib67 article-title: Minimally invasive electrochemical continuous glucose monitoring sensors: recent progress and perspective publication-title: Biosens. Bioelectron. – volume: 4 start-page: 792 year: 2015 end-page: 810 ident: bib24 article-title: Contact lens sensors in ocular diagnostics publication-title: Adv. Healthcare Mater. – volume: 321 year: 2020 ident: bib7 article-title: A grey-box machine learning based model of an electrochemical gas sensor publication-title: Sensor. Actuator. B Chem. – volume: 88 start-page: 71 year: 2017 end-page: 77 ident: bib58 article-title: Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples publication-title: Biosens. Bioelectron. – volume: 19 start-page: 4504 year: 2018 end-page: 4511 ident: bib40 article-title: Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating publication-title: Biomacromolecules – volume: 68 start-page: 2787 year: 2021 end-page: 2799 ident: bib23 article-title: Highly sensitive phase-variation dielectric constant sensor based on a capacitively-loaded slow-wave transmission line publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers – volume: 23 start-page: 1294 year: 2005 end-page: 1301 ident: bib66 article-title: Multiplexed electrical detection of cancer markers with nanowire sensor arrays publication-title: Nat. Biotechnol. – volume: 147 year: 2020 ident: bib53 article-title: A microwave matrix sensor for multipoint label-free escherichia coli detection publication-title: Biosens. Bioelectron. – volume: 5 start-page: 1 year: 2014 end-page: 10 ident: bib17 article-title: Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care publication-title: Nat. Commun. – volume: 6 year: 2020 ident: bib29 article-title: Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy publication-title: Sci. Adv. – volume: 67 start-page: 4382 year: 2020 end-page: 4395 ident: bib1 article-title: Exploiting sensitivity enhancement in micro-wave planar sensors using intermodulation products with phase noise analysis publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers – volume: 8 start-page: 1 year: 2017 end-page: 8 ident: bib37 article-title: Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics publication-title: Nat. Commun. – volume: 44 start-page: 3158 year: 2016 end-page: 3172 ident: bib14 article-title: A review of safety and design requirements of the artificial pancreas publication-title: Ann. Biomed. Eng. – year: 2019 ident: bib15 article-title: Toward Automated Insulin Delivery – volume: 70 start-page: 5369 year: 2022 end-page: 5382 ident: bib33 article-title: Enhancing microwave sensor performance with ultrahigh q features using cyclegan publication-title: IEEE Trans. Microw. Theor. Tech. – volume: 47 start-page: 335 year: 2011 end-page: 344 ident: bib44 article-title: A 3-μ w cmos glucose sensor for wireless contact-lens tear glucose monitoring publication-title: IEEE J. Solid State Circ. – volume: 236 start-page: 91 year: 2016 end-page: 98 ident: bib48 article-title: Pedot: pss/qcm-based multimodal humidity and pressure sensor publication-title: Sensor. Actuator. B Chem. – volume: 28 start-page: 1250 year: 2016 end-page: 1266 ident: bib51 article-title: Tear based bioelectronics publication-title: Electroanalysis – volume: 70 start-page: 1 year: 2020 end-page: 10 ident: bib64 article-title: Precise noninvasive estimation of glucose using uwb microwave with improved neural networks and hybrid optimization publication-title: IEEE Trans. Instrum. Meas. – volume: 12 start-page: 1 year: 2022 end-page: 9 ident: bib61 article-title: Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with nir monitoring and medical features publication-title: Sci. Rep. – volume: 14 start-page: 2 year: 2019 end-page: 11 ident: bib47 article-title: A label-free, non-intrusive, and rapid monitoring of bacterial growth on solid medium using microwave biosensor publication-title: IEEE Transactions on Biomedical Circuits and Systems – volume: 7 year: 2021 ident: bib55 article-title: A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring publication-title: Sci. Adv. – volume: 127 year: 2014 ident: bib13 article-title: Comparison of 24-hour holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring publication-title: Am. J. Med. – volume: 4 start-page: 1 year: 2020 end-page: 4 ident: bib57 article-title: Towards a machine-learning-assisted dielectric sensing platform for point-of-care wound monitoring publication-title: IEEE Sensors Letters – volume: 213 year: 2023 ident: bib34 article-title: Resolution enhancement of microwave sensors using super-resolution generative adversarial network publication-title: Expert Syst. Appl. – volume: 67 start-page: 687 year: 2015 end-page: 693 ident: bib39 article-title: A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level publication-title: Biosens. Bioelectron. – volume: 3 year: 2017 ident: bib42 article-title: Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module publication-title: Sci. Adv. – volume: 19 start-page: 209 year: 2003 end-page: 217 ident: bib16 article-title: First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system publication-title: Biosens. Bioelectron. – volume: 1 start-page: 160 year: 2018 end-page: 171 ident: bib12 article-title: Wearable sweat sensors publication-title: Nature Electronics – volume: 285 start-page: 224 year: 2019 end-page: 231 ident: bib19 article-title: Quantification of glucose via in situ growth of cu2o/ag nanoparticles publication-title: Sensor. Actuator. B Chem. – volume: 529 start-page: 509 year: 2016 end-page: 514 ident: bib25 article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis publication-title: Nature – volume: 5 year: 2021 ident: bib26 article-title: Functional data analysis and prediction tools for continuous glucose-monitoring studies publication-title: Journal of clinical and translational science – volume: 6 year: 2020 ident: bib36 article-title: Wireless smart contact lens for diabetic diagnosis and therapy publication-title: Sci. Adv. – volume: 15 start-page: 11 year: 2021 end-page: 18 ident: bib54 article-title: Proof of concept for a new Raman-based prototype for noninvasive glucose monitoring publication-title: J. Diabetes Sci. Technol. – volume: 63 start-page: 3016 year: 2015 end-page: 3025 ident: bib20 article-title: Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor publication-title: IEEE Trans. Microw. Theor. Tech. – volume: 21 start-page: 18742 year: 2021 end-page: 18755 ident: bib3 article-title: Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator publication-title: IEEE Sensor. J. – volume: 13 start-page: 1 year: 2022 end-page: 12 ident: bib9 article-title: Smart low interfacial toughness coatings for on-demand de-icing without melting publication-title: Nat. Commun. – volume: 23 start-page: 6236 year: 2023 ident: bib4 article-title: Ai-assisted ultra-high-sensitivity/resolution active-coupled csrr-based sensor with embedded selectivity publication-title: Sensors – volume: 181 year: 2021 ident: bib43 article-title: Continuous glucose monitoring systems-current status and future perspectives of the flagship technologies in biosensor research publication-title: Biosens. Bioelectron. – volume: 88 start-page: 71 year: 2017 ident: 10.1016/j.bios.2023.115668_bib58 article-title: Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.07.069 – volume: 23 start-page: 1294 year: 2005 ident: 10.1016/j.bios.2023.115668_bib66 article-title: Multiplexed electrical detection of cancer markers with nanowire sensor arrays publication-title: Nat. Biotechnol. doi: 10.1038/nbt1138 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.bios.2023.115668_bib17 article-title: Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care publication-title: Nat. Commun. doi: 10.1038/ncomms6028 – volume: 4 start-page: 792 year: 2015 ident: 10.1016/j.bios.2023.115668_bib24 article-title: Contact lens sensors in ocular diagnostics publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201400504 – volume: 47 start-page: 335 year: 2011 ident: 10.1016/j.bios.2023.115668_bib44 article-title: A 3-μ w cmos glucose sensor for wireless contact-lens tear glucose monitoring publication-title: IEEE J. Solid State Circ. doi: 10.1109/JSSC.2011.2170633 – volume: 28 start-page: 1250 year: 2016 ident: 10.1016/j.bios.2023.115668_bib51 article-title: Tear based bioelectronics publication-title: Electroanalysis doi: 10.1002/elan.201501116 – volume: 70 start-page: 1 year: 2020 ident: 10.1016/j.bios.2023.115668_bib64 article-title: Precise noninvasive estimation of glucose using uwb microwave with improved neural networks and hybrid optimization publication-title: IEEE Trans. Instrum. Meas. – volume: 16 start-page: 100 year: 2005 ident: 10.1016/j.bios.2023.115668_bib10 article-title: A glucose-sensing contact lens: from bench top to patient publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2004.12.007 – volume: 213 year: 2023 ident: 10.1016/j.bios.2023.115668_bib34 article-title: Resolution enhancement of microwave sensors using super-resolution generative adversarial network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119252 – volume: 14 start-page: 2 year: 2019 ident: 10.1016/j.bios.2023.115668_bib47 article-title: A label-free, non-intrusive, and rapid monitoring of bacterial growth on solid medium using microwave biosensor publication-title: IEEE Transactions on Biomedical Circuits and Systems doi: 10.1109/TBCAS.2019.2952841 – volume: 4 start-page: 186 year: 2020 ident: 10.1016/j.bios.2023.115668_bib31 article-title: Machine learning approach for wirelessly powered rfid-based backscattering sensor system publication-title: IEEE Journal of Radio Frequency Identification doi: 10.1109/JRFID.2020.3004035 – volume: 6 year: 2020 ident: 10.1016/j.bios.2023.115668_bib36 article-title: Wireless smart contact lens for diabetic diagnosis and therapy publication-title: Sci. Adv. doi: 10.1126/sciadv.aba3252 – volume: 21 start-page: 18742 year: 2021 ident: 10.1016/j.bios.2023.115668_bib3 article-title: Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2021.3090050 – year: 2023 ident: 10.1016/j.bios.2023.115668_bib67 article-title: Minimally invasive electrochemical continuous glucose monitoring sensors: recent progress and perspective publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2023.115103 – volume: 98 start-page: 161 year: 2017 ident: 10.1016/j.bios.2023.115668_bib5 article-title: Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.06.035 – volume: 13 start-page: 1 year: 2022 ident: 10.1016/j.bios.2023.115668_bib9 article-title: Smart low interfacial toughness coatings for on-demand de-icing without melting publication-title: Nat. Commun. doi: 10.1038/s41467-022-32852-6 – volume: 19 start-page: 209 year: 2003 ident: 10.1016/j.bios.2023.115668_bib16 article-title: First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(03)00196-9 – volume: 11 start-page: 566 year: 2016 ident: 10.1016/j.bios.2023.115668_bib41 article-title: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.38 – volume: 5 year: 2018 ident: 10.1016/j.bios.2023.115668_bib38 article-title: Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform publication-title: Adv. Sci. doi: 10.1002/advs.201800880 – volume: 6 year: 2020 ident: 10.1016/j.bios.2023.115668_bib29 article-title: Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy publication-title: Sci. Adv. doi: 10.1126/sciadv.aba5320 – volume: 4 year: 2018 ident: 10.1016/j.bios.2023.115668_bib52 article-title: Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays publication-title: Sci. Adv. doi: 10.1126/sciadv.aap9841 – volume: 236 start-page: 91 year: 2016 ident: 10.1016/j.bios.2023.115668_bib48 article-title: Pedot: pss/qcm-based multimodal humidity and pressure sensor publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.05.054 – volume: 44 start-page: 3158 year: 2016 ident: 10.1016/j.bios.2023.115668_bib14 article-title: A review of safety and design requirements of the artificial pancreas publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1679-2 – volume: 60 start-page: 2672 year: 2011 ident: 10.1016/j.bios.2023.115668_bib21 article-title: Artificial pancreas: past, present, future publication-title: Diabetes doi: 10.2337/db11-0654 – year: 2019 ident: 10.1016/j.bios.2023.115668_bib15 – volume: 66 start-page: 1843 year: 2018 ident: 10.1016/j.bios.2023.115668_bib2 article-title: Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling publication-title: IEEE Trans. Microw. Theor. Tech. doi: 10.1109/TMTT.2018.2791942 – volume: 285 start-page: 224 year: 2019 ident: 10.1016/j.bios.2023.115668_bib19 article-title: Quantification of glucose via in situ growth of cu2o/ag nanoparticles publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2019.01.050 – volume: 62 start-page: 3064 year: 2014 ident: 10.1016/j.bios.2023.115668_bib65 article-title: Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels publication-title: IEEE Trans. Antenn. Propag. doi: 10.1109/TAP.2014.2313139 – volume: 11 start-page: 62 year: 2021 ident: 10.1016/j.bios.2023.115668_bib27 article-title: Non-invasive determination of glucose concentration using a near-field sensor publication-title: Biosensors doi: 10.3390/bios11030062 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.bios.2023.115668_bib11 article-title: Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators publication-title: Sci. Rep. doi: 10.1038/s41598-020-69547-1 – volume: 3 year: 2017 ident: 10.1016/j.bios.2023.115668_bib18 article-title: Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring publication-title: Sci. Adv. doi: 10.1126/sciadv.1701629 – volume: 68 start-page: 4340 year: 2020 ident: 10.1016/j.bios.2023.115668_bib6 article-title: Enhancing the sensitivity of dielectric sensors with multiple coupled complementary split-ring resonators publication-title: IEEE Trans. Microw. Theor. Tech. doi: 10.1109/TMTT.2020.3002996 – volume: 12 start-page: 1 year: 2021 ident: 10.1016/j.bios.2023.115668_bib49 article-title: A wearable patch for continuous analysis of thermoregulatory sweat at rest publication-title: Nat. Commun. doi: 10.1038/s41467-021-22109-z – volume: 68 start-page: 2787 year: 2021 ident: 10.1016/j.bios.2023.115668_bib23 article-title: Highly sensitive phase-variation dielectric constant sensor based on a capacitively-loaded slow-wave transmission line publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2021.3074570 – year: 2017 ident: 10.1016/j.bios.2023.115668_bib60 – volume: 147 year: 2020 ident: 10.1016/j.bios.2023.115668_bib53 article-title: A microwave matrix sensor for multipoint label-free escherichia coli detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111784 – volume: 69 start-page: 4223 year: 2021 ident: 10.1016/j.bios.2023.115668_bib32 article-title: Comparative analysis of machine learning techniques for temperature compensation in microwave sensors publication-title: IEEE Trans. Microw. Theor. Tech. doi: 10.1109/TMTT.2021.3081119 – volume: 4 start-page: 1 year: 2020 ident: 10.1016/j.bios.2023.115668_bib57 article-title: Towards a machine-learning-assisted dielectric sensing platform for point-of-care wound monitoring publication-title: IEEE Sensors Letters doi: 10.1109/LSENS.2020.2999031 – volume: 1 start-page: 160 year: 2018 ident: 10.1016/j.bios.2023.115668_bib12 article-title: Wearable sweat sensors publication-title: Nature Electronics doi: 10.1038/s41928-018-0043-y – volume: 11 start-page: 1139 year: 2022 ident: 10.1016/j.bios.2023.115668_bib30 article-title: Fast readout of split-ring resonators made simple and low-cost for application in hplc publication-title: Electronics doi: 10.3390/electronics11071139 – year: 2007 ident: 10.1016/j.bios.2023.115668_bib8 – volume: 27 start-page: 1047 year: 2004 ident: 10.1016/j.bios.2023.115668_bib63 article-title: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030 publication-title: Diabetes Care doi: 10.2337/diacare.27.5.1047 – volume: 21 start-page: 3759 year: 2021 ident: 10.1016/j.bios.2023.115668_bib35 article-title: A high-resolution reflective microwave planar sensor for sensing of vanadium electrolyte publication-title: Sensors doi: 10.3390/s21113759 – volume: 18 start-page: S2 year: 2016 ident: 10.1016/j.bios.2023.115668_bib59 article-title: Continuous glucose monitoring: a review of successes, challenges, and opportunities publication-title: Diabetes Technol. Therapeut. doi: 10.1089/dia.2015.0417 – volume: 21 start-page: 1 year: 2021 ident: 10.1016/j.bios.2023.115668_bib56 article-title: Stacked lstm based deep recurrent neural network with kalman smoothing for blood glucose prediction publication-title: BMC Med. Inf. Decis. Making – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.bios.2023.115668_bib50 article-title: Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell csrr hexagonal configuration publication-title: Sci. Rep. doi: 10.1038/s41598-020-72114-3 – volume: 19 start-page: 1814 year: 2019 ident: 10.1016/j.bios.2023.115668_bib45 article-title: High-level modeling and simulation tool for sensor conditioning circuit based on artificial neural networks publication-title: Sensors doi: 10.3390/s19081814 – volume: 7 year: 2021 ident: 10.1016/j.bios.2023.115668_bib55 article-title: A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring publication-title: Sci. Adv. doi: 10.1126/sciadv.abd0199 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.bios.2023.115668_bib37 article-title: Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics publication-title: Nat. Commun. – volume: 70 start-page: 5369 year: 2022 ident: 10.1016/j.bios.2023.115668_bib33 article-title: Enhancing microwave sensor performance with ultrahigh q features using cyclegan publication-title: IEEE Trans. Microw. Theor. Tech. doi: 10.1109/TMTT.2022.3218015 – volume: 127 year: 2014 ident: 10.1016/j.bios.2023.115668_bib13 article-title: Comparison of 24-hour holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2013.10.003 – volume: 23 start-page: 6236 year: 2023 ident: 10.1016/j.bios.2023.115668_bib4 article-title: Ai-assisted ultra-high-sensitivity/resolution active-coupled csrr-based sensor with embedded selectivity publication-title: Sensors doi: 10.3390/s23136236 – volume: 321 year: 2020 ident: 10.1016/j.bios.2023.115668_bib7 article-title: A grey-box machine learning based model of an electrochemical gas sensor publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2020.128414 – volume: 5 year: 2021 ident: 10.1016/j.bios.2023.115668_bib26 article-title: Functional data analysis and prediction tools for continuous glucose-monitoring studies publication-title: Journal of clinical and translational science doi: 10.1017/cts.2020.545 – volume: 3 year: 2017 ident: 10.1016/j.bios.2023.115668_bib42 article-title: Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module publication-title: Sci. Adv. doi: 10.1126/sciadv.1601314 – volume: 19 start-page: 4504 year: 2018 ident: 10.1016/j.bios.2023.115668_bib40 article-title: Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b01429 – volume: 130 start-page: 95 year: 2019 ident: 10.1016/j.bios.2023.115668_bib28 article-title: Sensor for ampicillin based on a microwave electrodynamic resonator publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.01.030 – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.bios.2023.115668_bib61 article-title: Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with nir monitoring and medical features publication-title: Sci. Rep. doi: 10.1038/s41598-022-05570-8 – volume: 15 start-page: 11 year: 2021 ident: 10.1016/j.bios.2023.115668_bib54 article-title: Proof of concept for a new Raman-based prototype for noninvasive glucose monitoring publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296820947112 – volume: 67 start-page: 4382 year: 2020 ident: 10.1016/j.bios.2023.115668_bib1 article-title: Exploiting sensitivity enhancement in micro-wave planar sensors using intermodulation products with phase noise analysis publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2020.3003010 – volume: 63 start-page: 3016 year: 2015 ident: 10.1016/j.bios.2023.115668_bib20 article-title: Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor publication-title: IEEE Trans. Microw. Theor. Tech. doi: 10.1109/TMTT.2015.2472019 – volume: 4 start-page: 1 year: 2020 ident: 10.1016/j.bios.2023.115668_bib46 article-title: Blood glucose prediction with variance estimation using recurrent neural networks publication-title: Journal of Healthcare Informatics Research doi: 10.1007/s41666-019-00059-y – volume: 181 year: 2021 ident: 10.1016/j.bios.2023.115668_bib43 article-title: Continuous glucose monitoring systems-current status and future perspectives of the flagship technologies in biosensor research publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113054 – volume: 29 start-page: 1805 year: 2006 ident: 10.1016/j.bios.2023.115668_bib62 article-title: A critical appraisal of the continuous glucose–error grid analysis publication-title: Diabetes Care doi: 10.2337/dc06-0079 – volume: 529 start-page: 509 year: 2016 ident: 10.1016/j.bios.2023.115668_bib25 article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis publication-title: Nature doi: 10.1038/nature16521 – volume: 16 year: 2021 ident: 10.1016/j.bios.2023.115668_bib22 article-title: Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: the maastricht study publication-title: PLoS One doi: 10.1371/journal.pone.0253125 – volume: 67 start-page: 687 year: 2015 ident: 10.1016/j.bios.2023.115668_bib39 article-title: A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.10.021 |
SSID | ssj0007190 |
Score | 2.608271 |
Snippet | Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115668 |
SubjectTerms | Anomaly Detection biosensors blood glucose chemical species clinical trials Glucose lifestyle LSTM Machine Learning Microwave Sensor Time Series Neural Network |
Title | In–human testing of a non-invasive continuous low–energy microwave glucose sensor with advanced machine learning capabilities |
URI | https://dx.doi.org/10.1016/j.bios.2023.115668 https://www.proquest.com/docview/2870996129 https://www.proquest.com/docview/3153699233 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9ZAEN4QCIkeiKJGUMmSeDP1bbsfbY-ESF40cEESbpvZdkpqoC-BF4kXo7-Bf8gvYWa7FTWBA7d-zKbtznY-dp99Roj3ln4iU7QmMTrXia5yTAAqUggabFplFIQd3nv7dnqoPx-ZowWxPe6FYVhltP2DTQ_WOl6ZxN6cnHXd5IAp9CgYURREk1MKjJ9aFzzKP_68g3kU2TDPwnx7LB03zgwYL9_NmLI7V2Q56GZ5n3P6z0wH37PzTKzEoFFuDe_1XCxgvyqWhzKSP1bF079IBV-I37v9za_rUHtPzplDoz-Ws1aCpEQ_6frvwIB1yRD1rr-kvF-ezK6oAYZNgPKUAXpXQBIRzC4vKNGdnUuesJUjYkCeBgwmylh04ljW5HQDzpYy75ficOfT1-1pEgstJLWydp7ovG6arESd1qkBTAtIK8rDAIq2LC0l0DV41TRe501joc4q0HWKRiMd5oileiUW6RvwtZCAJRbe-LLwreaaHgBZ2SrrvYUCVb4msrGHXR1ZyLkYxokb4WbfHGvFsVbcoJU18eFPm7OBg-NBaTMqzv0zkhw5iQfbbY5advSL8boJ9EhqcLwWTGkhRUb3yyjyHLaiaFmtP_L5b8QTPhugMm_F4vz8Et9RwDP3G2FEb4ilrd0v0_1b5wkEcQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQoqrtAbW0VXm0daXeqmiT-JHkiBBot8BeAImbNU4mKBVkEV1AvbW_of-wv6QziYMACQ69RYmtJB57HvY33wjxxdIiMlltIqNTHekixQigIIGgwapWRkGX4X0ws5Nj_e3EnCyJ7SEXhmGVQff3Or3T1uHOOIzm-KJpxodMoUfOiCInmowSM34uMzuVGYnlreneZHarkLOk32phyj3uEHJnepiXb-bM2p0qUh70MH_MPj3Q1J352X0lVoLfKLf6T3stlrBdFc_6SpI_V8XLO7yCb8Tvafv315-u_J5cMI1GeyrntQRJsX7UtNfAmHXJKPWmvaLQX57Nb6gDdnmA8pwxejdALQKeXf6gWHd-KXnPVg6gAXnewTBRhroTp7Iku9tBbSn4fiuOd3eOtidRqLUQlcraRaTTsqqSHHVcxgYwziAuKBQDyOo8txRDl-BVVXmdVpWFMilAlzEajXSZIubqnRjRP-B7IQFzzLzxeeZrzWU9AJK8VtZ7CxmqdE0kwwi7MhCRcz2MMzcgzr47lopjqbheKmvi622fi56G48nWZhCcuzeZHNmJJ_t9HqTsaJXx0Qm0SGJwfBxMkSE5R4-3UWQ8bEEOs1r_z_d_Es8nRwf7bn8629sQL_hJj5zZFKPF5RV-IP9n4T-G-f0PwDYHIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%E2%80%93human+testing+of+a+non-invasive+continuous+low%E2%80%93energy+microwave+glucose+sensor+with+advanced+machine+learning+capabilities&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Kazemi%2C+Nazli&rft.au=Abdolrazzaghi%2C+Mohammad&rft.au=Light%2C+Peter+E.&rft.au=Musilek%2C+Petr&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=0956-5663&rft.eissn=1873-4235&rft.volume=241&rft_id=info:doi/10.1016%2Fj.bios.2023.115668&rft.externalDocID=S0956566323006103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |