In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA
Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miR...
Saved in:
Published in | Journal of biomolecular structure & dynamics Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
29.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of −1.9, −1.7, and −1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.
Communicated by Ramaswamy H. Sarma |
---|---|
AbstractList | Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of −1.9, −1.7, and −1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.
Communicated by Ramaswamy H. Sarma Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma. Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma. |
Author | Baig, Mirza Sarwar Prakash, Prem Deepanshu Krishnan, Anuja Alam, Pravej |
Author_xml | – sequence: 1 givenname: Mirza Sarwar surname: Baig fullname: Baig, Mirza Sarwar organization: Department of Molecular Medicine, Jamia Hamdard – sequence: 2 orcidid: 0000-0002-4684-4239 surname: Deepanshu fullname: Deepanshu organization: Department of Molecular Medicine, Jamia Hamdard – sequence: 3 givenname: Prem surname: Prakash fullname: Prakash, Prem organization: Department of Molecular Medicine, Jamia Hamdard – sequence: 4 givenname: Pravej surname: Alam fullname: Alam, Pravej organization: Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University – sequence: 5 givenname: Anuja surname: Krishnan fullname: Krishnan, Anuja organization: Department of Molecular Medicine, Jamia Hamdard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36752331$$D View this record in MEDLINE/PubMed |
BookMark | eNp90E1PGzEQgGGrCioB-hNa-diLg793fSOKgCIhkAJU6slyvHbryrve2hvK_vtulIRjT3N5ZkZ6z8CsS50D4DPBC4JrfIkrpgjBdEExZQtKKkGF-ADmRLAaYSr4DMx3Bu3QKTgr5TfGlJCKfASnTE6cMTIHP-46WEIMNkHTmTiWUGB2r87EAn-NfXoLBoWu2VrXwDasESUYsR6W3tnggzUxjnAw-acbCnxarp_QKn1HFK4flhfgxE9X3KfDPAcvN9fPq2_o_vH2brW8R5ZJOSBON97WRNZVzbnkmHlmlbCY13jjN0r6Rvi6aaSSZHLWM-WUx4pXsnZGCM7Owdf93T6nP1tXBt2GYl2MpnNpWzStKs6VVKqaqNhTm1Mp2Xnd59CaPGqC9a6qPlbVu6r6UHXa-3J4sd20rnnfOmacwNUehM6n3Jq_KcdGD2aMKftsOhuKZv__8Q949oXi |
CitedBy_id | crossref_primary_10_3389_fgene_2023_1329339 |
Cites_doi | 10.1172/JCI66353 10.21873/anticanres.12107 10.1016/j.bbadis.2017.02.023 10.1371/journal.pgen.1002363 10.1016/S0140-6736(20)30251-8 10.6026/97320630017337 10.1126/science.1059796 10.1261/rna.5248604 10.1038/s41577-020-0331-4 10.1016/j.jacc.2016.09.945 10.1038/onc.2010.193 10.18632/oncotarget.785 10.1016/j.molcel.2009.09.006 10.1002/jcb.29300 10.1152/ajpheart.01080.2010 10.1096/fj.13-239129 10.1016/j.molonc.2013.01.002 10.1002/rmv.1894 10.1093/abbs/gmu007 10.1158/0008-5472.CAN-07-5194 10.3390/cells10061550 10.3389/fgene.2014.00023 10.1086/382681 10.1091/mbc.e12-12-0891 10.1007/s00280-011-1752-3 10.1099/vir.0.055533-0 10.1128/mBio.00884-14 10.1016/S1473-3099(13)70204-4 10.1016/j.molcel.2014.09.005 10.1016/j.virusres.2020.197885 10.1007/s00439-010-0915-3 10.1093/nar/gkz757 10.1007/s00018-009-0147-7 10.1007/s00401-013-1165-y 10.7554/eLife.05005 10.1093/nar/gkr1278 10.1038/s41586-021-03553-9 10.1155/2019/4727283 10.1002/path.2826 10.1186/1476-4598-12-92 10.1128/MCB.01276-10 10.1016/j.cell.2006.07.031 10.1080/15476286.2021.1872170 10.1007/s11655-016-2508-z 10.3892/or.2016.5129 10.1128/mBio.01174-14 10.1093/nar/gkaa664 10.1002/JLB.3COVR0520-272R 10.1126/science.1102514 10.1016/j.cell.2015.02.025 10.1038/s41598-022-13622-2 10.1002/stem.1464 10.1016/S0140-6736(20)30154-9 10.1146/annurev-pathol-012513-104720 10.1007/s00125-014-3282-0 10.1093/nar/gku1104 10.1111/j.1440-1843.2007.01136.x 10.1038/ng1536 10.4161/cc.8.17.9387 10.1371/journal.pone.0080625 10.1007/s10059-011-1042-2 10.1186/1479-5876-12-196 10.1172/jci.insight.158277 10.1128/MCB.01395-06 10.4161/cc.10.24.18552 10.1371/journal.pone.0059057 10.1016/S0140-6736(20)30183-5 10.1073/pnas.0905063106 10.1042/BJ20150821 10.1056/NEJMoa030634 10.1016/j.cell.2020.02.052 10.3390/ijms21165677 10.1038/sj.onc.1210436 10.1016/j.cell.2004.12.035 10.1016/j.carpath.2013.04.001 10.1371/journal.pone.0044919 10.1073/pnas.1210906109 10.1007/s10620-013-2612-2 10.1093/carcin/bgs288 10.1158/0008-5472.CAN-08-2516 10.1172/JCI61271 10.1038/bjc.2013.607 10.1126/stke.4072007cm8 10.1016/j.ejca.2012.12.017 10.1038/cddis.2013.117 10.3390/ijms140714647 10.1001/jama.2010.1919 10.1371/journal.pone.0091812 10.1016/S0140-6736(03)13412-5 10.1016/j.febslet.2010.08.040 10.1016/j.cytogfr.2020.06.001 10.1159/000354527 10.1016/j.tim.2016.03.003 10.3892/mmr.2018.8620 10.1038/nm.3040 10.1371/journal.pcbi.1006185 10.1371/journal.pone.0067591 10.1016/j.molmed.2016.11.003 10.1093/femspd/ftab050 10.3389/fcell.2020.00143 10.3389/fimmu.2018.01545 10.1038/20459 10.3390/molecules26195957 10.1016/j.molcel.2014.02.013 10.1016/j.jaci.2011.04.005 10.1016/j.stem.2010.02.015 10.1074/jbc.M111.303156 10.1038/s41564-020-0695-z 10.1016/j.bbrc.2009.11.093 10.1155/2017/3565613 10.1038/s41586-020-2196-x 10.1038/nrmicro775 10.1038/cdd.2008.12 10.1371/journal.pone.0039197 10.1111/odi.12133 10.1038/nsmb1226 10.1371/journal.pgen.1003291 10.1093/bioinformatics/bty424 10.1677/ERC-07-0129 10.1093/nar/gkz194 10.1016/j.coph.2010.08.011 10.1016/j.bbrc.2014.02.032 10.1093/carcin/bgp335 10.1111/resp.13196 10.1007/s00018-016-2377-9 10.1111/j.1582-4934.2011.01291.x 10.3390/ijms20163938 10.3389/fgene.2018.00439 10.1161/CIRCRESAHA.116.309318 10.1038/cddis.2010.64 10.1016/j.febslet.2013.09.023 10.1111/j.1365-2141.2008.07029.x 10.1042/BJ20111006 10.1097/JTO.0b013e31824fe976 10.1038/ng1910 10.3109/10715762.2015.1050588 10.1093/cid/civ951 10.1007/s10495-013-0841-7 10.1074/jbc.M112.421255 10.3389/fcimb.2022.802149 10.1161/CIRCRESAHA.109.197491 10.1128/JVI.00481-14 10.1371/journal.pone.0030772 10.1155/2014/970607 10.1093/carcin/bgs374 10.1371/journal.pbio.0020363 10.1038/s41591-022-01689-3 10.1111/jcmm.15274 10.1038/ni.2846 10.1074/jbc.W118.004967 10.1158/1535-7163.MCT-13-0448 10.3389/fimmu.2021.681516 10.1074/jbc.M804280200 10.1371/journal.pone.0046551 10.1126/science.1215704 10.1016/j.molcel.2014.09.004 10.1016/j.ebiom.2018.10.034 10.1016/j.ejca.2013.03.001 10.1007/s13402-013-0144-6 10.1093/nar/gkt852 10.1126/science.1102513 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1080/07391102.2023.2175255 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1538-0254 |
EndPage | 23 |
ExternalDocumentID | 10_1080_07391102_2023_2175255 36752331 2175255 |
Genre | Research Article Journal Article |
GroupedDBID | --- -~X .QJ 0BK 0R~ 30N 4.4 5GY AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABFIM ABJVF ABLIJ ABPEM ABQHQ ABTAI ABXUL ACGFS ACTIO ADCVX ADGTB AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG DGEBU DKSSO EBS E~A E~B F5P FUNRP FVPDL GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NX0 O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TEI TFL TFT TFW TQWBC TTHFI UT5 V1K ZGOLN ~KM ~S~ AAHBH ABJNI ABPAQ ABXYU AHDZW AWYRJ EMOBN NPM TBQAZ TDBHL TUROJ AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c366t-42bfc816878446403f3c95c0480bfb96fd5f8dd6961fc8cf39e9f094768ea5543 |
ISSN | 0739-1102 |
IngestDate | Fri Oct 25 03:30:13 EDT 2024 Fri Aug 23 01:17:19 EDT 2024 Wed Oct 16 00:39:54 EDT 2024 Tue Jun 13 19:50:11 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | ahead-of-print |
Keywords | Z-score hypoxia SARS-CoV-2 human AGO2 protein hybridization energy HADDOCK hsa-miR-210-3p Human coronavirus STRING analysis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-42bfc816878446403f3c95c0480bfb96fd5f8dd6961fc8cf39e9f094768ea5543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4684-4239 |
PMID | 36752331 |
PQID | 2774496997 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1080_07391102_2023_2175255 pubmed_primary_36752331 informaworld_taylorfrancis_310_1080_07391102_2023_2175255 proquest_miscellaneous_2774496997 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-29 |
PublicationDateYYYYMMDD | 2023-12-29 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of biomolecular structure & dynamics |
PublicationTitleAlternate | J Biomol Struct Dyn |
PublicationYear | 2023 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_2_28_1 e_1_3_2_20_1 e_1_3_2_66_1 e_1_3_2_130_1 e_1_3_2_43_1 e_1_3_2_85_1 e_1_3_2_24_1 e_1_3_2_47_1 e_1_3_2_89_1 e_1_3_2_100_1 e_1_3_2_146_1 e_1_3_2_127_1 e_1_3_2_62_1 e_1_3_2_104_1 e_1_3_2_142_1 e_1_3_2_81_1 e_1_3_2_123_1 e_1_3_2_165_1 e_1_3_2_108_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_77_1 e_1_3_2_161_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_96_1 e_1_3_2_3_1 e_1_3_2_92_1 e_1_3_2_135_1 e_1_3_2_116_1 e_1_3_2_158_1 e_1_3_2_50_1 e_1_3_2_73_1 e_1_3_2_131_1 e_1_3_2_112_1 e_1_3_2_154_1 e_1_3_2_139_1 e_1_3_2_29_1 e_1_3_2_152_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_63_1 e_1_3_2_86_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_67_1 e_1_3_2_126_1 e_1_3_2_149_1 e_1_3_2_40_1 e_1_3_2_82_1 e_1_3_2_103_1 e_1_3_2_122_1 e_1_3_2_145_1 e_1_3_2_164_1 e_1_3_2_107_1 e_1_3_2_17_1 e_1_3_2_2_1 e_1_3_2_55_1 e_1_3_2_141_1 e_1_3_2_160_1 e_1_3_2_32_1 e_1_3_2_74_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_59_1 e_1_3_2_97_1 e_1_3_2_36_1 e_1_3_2_78_1 e_1_3_2_93_1 e_1_3_2_115_1 e_1_3_2_138_1 e_1_3_2_157_1 e_1_3_2_51_1 e_1_3_2_111_1 e_1_3_2_134_1 e_1_3_2_153_1 e_1_3_2_70_1 e_1_3_2_119_1 e_1_3_2_49_1 e_1_3_2_151_1 e_1_3_2_41_1 e_1_3_2_87_1 e_1_3_2_22_1 e_1_3_2_64_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_68_1 e_1_3_2_125_1 e_1_3_2_148_1 e_1_3_2_83_1 e_1_3_2_121_1 e_1_3_2_60_1 e_1_3_2_102_1 e_1_3_2_144_1 e_1_3_2_106_1 e_1_3_2_129_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_163_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_75_1 e_1_3_2_140_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_79_1 e_1_3_2_98_1 e_1_3_2_114_1 e_1_3_2_94_1 e_1_3_2_137_1 e_1_3_2_110_1 e_1_3_2_156_1 e_1_3_2_71_1 e_1_3_2_90_1 e_1_3_2_133_1 e_1_3_2_118_1 e_1_3_2_27_1 e_1_3_2_42_1 e_1_3_2_65_1 e_1_3_2_88_1 e_1_3_2_150_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_69_1 e_1_3_2_80_1 e_1_3_2_101_1 e_1_3_2_124_1 e_1_3_2_147_1 e_1_3_2_61_1 e_1_3_2_84_1 e_1_3_2_105_1 e_1_3_2_120_1 e_1_3_2_143_1 e_1_3_2_128_1 e_1_3_2_109_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_162_1 e_1_3_2_30_1 e_1_3_2_76_1 e_1_3_2_11_1 e_1_3_2_53_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_57_1 e_1_3_2_99_1 e_1_3_2_113_1 e_1_3_2_136_1 e_1_3_2_159_1 e_1_3_2_95_1 e_1_3_2_132_1 e_1_3_2_155_1 e_1_3_2_72_1 e_1_3_2_91_1 Ardekani A. M. (e_1_3_2_7_1) 2010; 2 e_1_3_2_117_1 |
References_xml | – ident: e_1_3_2_122_1 doi: 10.1172/JCI66353 – ident: e_1_3_2_17_1 doi: 10.21873/anticanres.12107 – ident: e_1_3_2_133_1 doi: 10.1016/j.bbadis.2017.02.023 – ident: e_1_3_2_75_1 doi: 10.1371/journal.pgen.1002363 – ident: e_1_3_2_90_1 doi: 10.1016/S0140-6736(20)30251-8 – volume: 2 start-page: 161 issue: 4 year: 2010 ident: e_1_3_2_7_1 article-title: The role of MicroRNAs in human diseases publication-title: Avicenna Journal of Medical Biotechnology contributor: fullname: Ardekani A. M. – ident: e_1_3_2_11_1 doi: 10.6026/97320630017337 – ident: e_1_3_2_58_1 doi: 10.1126/science.1059796 – ident: e_1_3_2_115_1 doi: 10.1261/rna.5248604 – ident: e_1_3_2_99_1 doi: 10.1038/s41577-020-0331-4 – ident: e_1_3_2_16_1 doi: 10.1016/j.jacc.2016.09.945 – ident: e_1_3_2_29_1 doi: 10.1038/onc.2010.193 – ident: e_1_3_2_5_1 doi: 10.18632/oncotarget.785 – ident: e_1_3_2_54_1 doi: 10.1016/j.molcel.2009.09.006 – ident: e_1_3_2_94_1 doi: 10.1002/jcb.29300 – ident: e_1_3_2_105_1 doi: 10.1152/ajpheart.01080.2010 – ident: e_1_3_2_35_1 doi: 10.1096/fj.13-239129 – ident: e_1_3_2_104_1 doi: 10.1016/j.molonc.2013.01.002 – ident: e_1_3_2_128_1 doi: 10.1002/rmv.1894 – ident: e_1_3_2_159_1 doi: 10.1093/abbs/gmu007 – ident: e_1_3_2_68_1 doi: 10.1158/0008-5472.CAN-07-5194 – ident: e_1_3_2_95_1 doi: 10.3390/cells10061550 – ident: e_1_3_2_110_1 doi: 10.3389/fgene.2014.00023 – ident: e_1_3_2_28_1 doi: 10.1086/382681 – ident: e_1_3_2_61_1 doi: 10.1091/mbc.e12-12-0891 – ident: e_1_3_2_165_1 doi: 10.1007/s00280-011-1752-3 – ident: e_1_3_2_76_1 doi: 10.1099/vir.0.055533-0 – ident: e_1_3_2_3_1 doi: 10.1128/mBio.00884-14 – ident: e_1_3_2_9_1 doi: 10.1016/S1473-3099(13)70204-4 – ident: e_1_3_2_43_1 doi: 10.1016/j.molcel.2014.09.005 – ident: e_1_3_2_161_1 doi: 10.1016/j.virusres.2020.197885 – ident: e_1_3_2_59_1 doi: 10.1007/s00439-010-0915-3 – ident: e_1_3_2_31_1 doi: 10.1093/nar/gkz757 – ident: e_1_3_2_141_1 doi: 10.1007/s00018-009-0147-7 – ident: e_1_3_2_22_1 doi: 10.1007/s00401-013-1165-y – ident: e_1_3_2_2_1 doi: 10.7554/eLife.05005 – ident: e_1_3_2_164_1 doi: 10.1093/nar/gkr1278 – ident: e_1_3_2_6_1 doi: 10.1038/s41586-021-03553-9 – ident: e_1_3_2_49_1 doi: 10.1155/2019/4727283 – ident: e_1_3_2_88_1 doi: 10.1002/path.2826 – ident: e_1_3_2_151_1 doi: 10.1186/1476-4598-12-92 – ident: e_1_3_2_21_1 doi: 10.1128/MCB.01276-10 – ident: e_1_3_2_100_1 doi: 10.1016/j.cell.2006.07.031 – ident: e_1_3_2_12_1 doi: 10.1080/15476286.2021.1872170 – ident: e_1_3_2_140_1 doi: 10.1007/s11655-016-2508-z – ident: e_1_3_2_153_1 doi: 10.3892/or.2016.5129 – ident: e_1_3_2_98_1 doi: 10.1128/mBio.01174-14 – ident: e_1_3_2_71_1 doi: 10.1093/nar/gkaa664 – ident: e_1_3_2_137_1 doi: 10.1002/JLB.3COVR0520-272R – ident: e_1_3_2_124_1 doi: 10.1126/science.1102514 – ident: e_1_3_2_91_1 doi: 10.1016/j.cell.2015.02.025 – ident: e_1_3_2_51_1 doi: 10.1038/s41598-022-13622-2 – ident: e_1_3_2_86_1 – ident: e_1_3_2_160_1 doi: 10.1002/stem.1464 – ident: e_1_3_2_25_1 doi: 10.1016/S0140-6736(20)30154-9 – ident: e_1_3_2_119_1 doi: 10.1146/annurev-pathol-012513-104720 – ident: e_1_3_2_52_1 doi: 10.1007/s00125-014-3282-0 – ident: e_1_3_2_146_1 doi: 10.1093/nar/gku1104 – ident: e_1_3_2_93_1 doi: 10.1111/j.1440-1843.2007.01136.x – ident: e_1_3_2_69_1 doi: 10.1038/ng1536 – ident: e_1_3_2_157_1 doi: 10.4161/cc.8.17.9387 – ident: e_1_3_2_26_1 doi: 10.1371/journal.pone.0080625 – ident: e_1_3_2_32_1 doi: 10.1007/s10059-011-1042-2 – ident: e_1_3_2_87_1 doi: 10.1186/1479-5876-12-196 – ident: e_1_3_2_23_1 doi: 10.1172/jci.insight.158277 – ident: e_1_3_2_70_1 doi: 10.1128/MCB.01395-06 – ident: e_1_3_2_121_1 doi: 10.4161/cc.10.24.18552 – ident: e_1_3_2_129_1 doi: 10.1371/journal.pone.0059057 – ident: e_1_3_2_56_1 doi: 10.1016/S0140-6736(20)30183-5 – ident: e_1_3_2_96_1 doi: 10.1073/pnas.0905063106 – ident: e_1_3_2_126_1 doi: 10.1042/BJ20150821 – ident: e_1_3_2_112_1 doi: 10.1056/NEJMoa030634 – ident: e_1_3_2_53_1 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_3_2_72_1 doi: 10.3390/ijms21165677 – ident: e_1_3_2_102_1 doi: 10.1038/sj.onc.1210436 – ident: e_1_3_2_78_1 doi: 10.1016/j.cell.2004.12.035 – ident: e_1_3_2_158_1 doi: 10.1016/j.carpath.2013.04.001 – ident: e_1_3_2_19_1 doi: 10.1371/journal.pone.0044919 – ident: e_1_3_2_113_1 doi: 10.1073/pnas.1210906109 – ident: e_1_3_2_139_1 doi: 10.1007/s10620-013-2612-2 – ident: e_1_3_2_57_1 doi: 10.1093/carcin/bgs288 – ident: e_1_3_2_38_1 doi: 10.1158/0008-5472.CAN-08-2516 – ident: e_1_3_2_147_1 doi: 10.1172/JCI61271 – ident: e_1_3_2_66_1 doi: 10.1038/bjc.2013.607 – ident: e_1_3_2_118_1 doi: 10.1126/stke.4072007cm8 – ident: e_1_3_2_135_1 doi: 10.1016/j.ejca.2012.12.017 – ident: e_1_3_2_65_1 doi: 10.1038/cddis.2013.117 – ident: e_1_3_2_101_1 doi: 10.3390/ijms140714647 – ident: e_1_3_2_41_1 doi: 10.1001/jama.2010.1919 – ident: e_1_3_2_116_1 doi: 10.1371/journal.pone.0091812 – ident: e_1_3_2_109_1 doi: 10.1016/S0140-6736(03)13412-5 – ident: e_1_3_2_85_1 doi: 10.1016/j.febslet.2010.08.040 – ident: e_1_3_2_37_1 doi: 10.1016/j.cytogfr.2020.06.001 – ident: e_1_3_2_152_1 doi: 10.1159/000354527 – ident: e_1_3_2_127_1 doi: 10.1016/j.tim.2016.03.003 – ident: e_1_3_2_42_1 doi: 10.3892/mmr.2018.8620 – ident: e_1_3_2_64_1 doi: 10.1038/nm.3040 – ident: e_1_3_2_111_1 doi: 10.1371/journal.pcbi.1006185 – ident: e_1_3_2_92_1 doi: 10.1371/journal.pone.0067591 – ident: e_1_3_2_130_1 doi: 10.1016/j.molmed.2016.11.003 – ident: e_1_3_2_10_1 doi: 10.1093/femspd/ftab050 – ident: e_1_3_2_14_1 doi: 10.3389/fcell.2020.00143 – ident: e_1_3_2_81_1 doi: 10.3389/fimmu.2018.01545 – ident: e_1_3_2_97_1 doi: 10.1038/20459 – ident: e_1_3_2_8_1 doi: 10.3390/molecules26195957 – ident: e_1_3_2_106_1 doi: 10.1016/j.molcel.2014.02.013 – ident: e_1_3_2_34_1 doi: 10.1016/j.jaci.2011.04.005 – ident: e_1_3_2_39_1 doi: 10.1016/j.stem.2010.02.015 – ident: e_1_3_2_63_1 doi: 10.1074/jbc.M111.303156 – ident: e_1_3_2_48_1 doi: 10.1038/s41564-020-0695-z – ident: e_1_3_2_148_1 doi: 10.1016/j.bbrc.2009.11.093 – ident: e_1_3_2_80_1 doi: 10.1155/2017/3565613 – ident: e_1_3_2_145_1 doi: 10.1038/s41586-020-2196-x – ident: e_1_3_2_125_1 doi: 10.1038/nrmicro775 – ident: e_1_3_2_55_1 doi: 10.1016/S0140-6736(20)30183-5 – ident: e_1_3_2_143_1 doi: 10.1038/cdd.2008.12 – ident: e_1_3_2_27_1 doi: 10.1371/journal.pone.0039197 – ident: e_1_3_2_73_1 doi: 10.1111/odi.12133 – ident: e_1_3_2_89_1 doi: 10.1038/nsmb1226 – ident: e_1_3_2_82_1 doi: 10.1371/journal.pgen.1003291 – ident: e_1_3_2_144_1 doi: 10.1093/bioinformatics/bty424 – ident: e_1_3_2_132_1 doi: 10.1677/ERC-07-0129 – ident: e_1_3_2_24_1 doi: 10.1093/nar/gkz194 – ident: e_1_3_2_15_1 doi: 10.1016/j.coph.2010.08.011 – ident: e_1_3_2_62_1 doi: 10.1016/j.bbrc.2014.02.032 – ident: e_1_3_2_155_1 doi: 10.1093/carcin/bgp335 – ident: e_1_3_2_154_1 doi: 10.1111/resp.13196 – ident: e_1_3_2_46_1 doi: 10.1007/s00018-016-2377-9 – ident: e_1_3_2_156_1 doi: 10.1111/j.1582-4934.2011.01291.x – ident: e_1_3_2_103_1 doi: 10.3390/ijms20163938 – ident: e_1_3_2_47_1 doi: 10.3389/fgene.2018.00439 – ident: e_1_3_2_40_1 doi: 10.1161/CIRCRESAHA.116.309318 – ident: e_1_3_2_4_1 doi: 10.1038/cddis.2010.64 – ident: e_1_3_2_114_1 doi: 10.1016/j.febslet.2013.09.023 – ident: e_1_3_2_123_1 doi: 10.1111/j.1365-2141.2008.07029.x – ident: e_1_3_2_84_1 doi: 10.1042/BJ20111006 – ident: e_1_3_2_117_1 doi: 10.1097/JTO.0b013e31824fe976 – ident: e_1_3_2_30_1 doi: 10.1038/ng1910 – ident: e_1_3_2_120_1 doi: 10.3109/10715762.2015.1050588 – ident: e_1_3_2_36_1 doi: 10.1093/cid/civ951 – ident: e_1_3_2_74_1 doi: 10.1007/s10495-013-0841-7 – ident: e_1_3_2_33_1 doi: 10.1074/jbc.M112.421255 – ident: e_1_3_2_77_1 doi: 10.3389/fcimb.2022.802149 – ident: e_1_3_2_20_1 doi: 10.1161/CIRCRESAHA.109.197491 – ident: e_1_3_2_108_1 doi: 10.1128/JVI.00481-14 – ident: e_1_3_2_162_1 doi: 10.1371/journal.pone.0030772 – ident: e_1_3_2_131_1 doi: 10.1155/2014/970607 – ident: e_1_3_2_150_1 doi: 10.1093/carcin/bgs374 – ident: e_1_3_2_60_1 doi: 10.1371/journal.pbio.0020363 – ident: e_1_3_2_149_1 doi: 10.1038/s41591-022-01689-3 – ident: e_1_3_2_136_1 doi: 10.1111/jcmm.15274 – ident: e_1_3_2_134_1 doi: 10.1038/ni.2846 – ident: e_1_3_2_107_1 doi: 10.1074/jbc.W118.004967 – ident: e_1_3_2_67_1 doi: 10.1158/1535-7163.MCT-13-0448 – ident: e_1_3_2_50_1 doi: 10.3389/fimmu.2021.681516 – ident: e_1_3_2_142_1 doi: 10.1074/jbc.M804280200 – ident: e_1_3_2_163_1 doi: 10.1371/journal.pone.0046551 – ident: e_1_3_2_18_1 doi: 10.1126/science.1215704 – ident: e_1_3_2_44_1 doi: 10.1016/j.molcel.2014.09.004 – ident: e_1_3_2_13_1 doi: 10.1016/j.ebiom.2018.10.034 – ident: e_1_3_2_79_1 doi: 10.1016/j.ejca.2013.03.001 – ident: e_1_3_2_138_1 doi: 10.1007/s13402-013-0144-6 – ident: e_1_3_2_45_1 doi: 10.1093/nar/gkt852 – ident: e_1_3_2_83_1 doi: 10.1126/science.1102513 |
SSID | ssj0021171 |
Score | 2.4136283 |
Snippet | Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic... |
SourceID | proquest crossref pubmed informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | HADDOCK hsa-miR-210-3p human AGO2 protein Human coronavirus hybridization energy hypoxia SARS-CoV-2 STRING analysis Z-score |
Title | In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA |
URI | https://www.tandfonline.com/doi/abs/10.1080/07391102.2023.2175255 https://www.ncbi.nlm.nih.gov/pubmed/36752331 https://search.proquest.com/docview/2774496997 |
Volume | ahead-of-print |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbKEBIviDvlJiPxFrlqbCepH6sB2pCo0Nah8RQ5trMVSlr1Ith-ET-Tc-rctnXi9hJVSds4Pl8-n3N8LoS8Ngk3WZIIZrTFlBzuWJZFlnGjbNzPVN853NH9MIr3juT74-i40_nZilpar7KeOd-aV_IvUoVzIFfMkv0LydZ_CifgM8gXjiBhOP6RjPeLYDmZgiwDXdUWwYpMWBH59Gw--zHRDEzuNW7xf5scMI5kOA8wuRIDhPR0CqrnJhJ8GRwODw7Z7uwT48HBaHiNyoq5-lU73cBXnsX9B0SP9Z3tG6e7npz4sPzFuUa_83ddhwG_cbAGFsvTdc3LC_1VL72DZ1H6khGEJVo_YoukL23_BBcY68EbFhxfaRXSYrhEKAb6h6dj1zAwpui3KVrDwmTZLGfo7Fy1YLnlgifisLWi-4TmK2tFGVwJY8Ah9HDsPTDQIu7rBl8qw11euUFucqA05FLRH9WmfRhuTPv6gapcMazivu0GF7SgCzVyr7d0NhrP-C65U8qdDj3u7pGOK-6TW7556dkD8nm_oB59tEIfLdFHL6GPNuijbfTREn20QR8F9D0kR-_ejnf3WNmogxkRxysmeZYbbOCSDKSMZV_kwqjIYLmCLM9UnNsoH1gbqziE75lcKKfyvpJg6joN-qx4RHaKWeGeEKq0s2DxSi1NLqUW2mY55k4PYhXB-mO7pFdNXDr39VjSsCpzW850ijOdljPdJao9velqg8fcQzEVv_ntq0oWKbAubqXpws3Wy5SD1SRVrFTSJY-9kOrhCLDBuRDh0_-48zNyu3mXnpMdeKPdC9B-V9nLDfB-AbU3qE8 |
link.rule.ids | 315,783,787,27936,27937,60214,61003 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYoqCoXWvqA0JeRenWatXe98TFCRaGFHAJU9GT5KaKGTUQ2EuHXM7MPBJVQD5x37V3bY3s-e75vCPnmcu5sngvmjEdKDg_M2swz7pSXPat6IeCN7slIDs_TnxfZxQMuDIZVIoaOtVBEtVbj5MbD6DYk7jveLsG2hTwqLrrgVGfgGL8gGxIFwJDG0Rvdg64kqUAXFmFYpmXxPFXNo_3pkXrp0z5otRcdviaubUUdgvK3uyxt193-I_D4vGa-IVuNq0oHtW1tk7VQvCUv6-SVq3fkz1FBF5MpWBI1jbIJRT0osGd6uZrPbiaGAeAH0_H0ajJmHJfiOUVqJ4Ynmel0Res49AU9HYxP2cHsN-N0PBq8J-eHP84OhqxJ1MCckLJkKbfRYQKPvA_oMu2JKJzKHNLVbbRKRp_FvvdSyQTec1GooCLgSoA6wYA_Iz6Q9WJWhF1ClQkeEE9qUhfT1AjjbUTubF-qDNYf3yHddnj0vNbj0Ekrc9r0l8b-0k1_dYh6OIi6rA5CYp21RIv_lN1vR1zDrMOrFFOE2XKhOXjNqZJK5R2yU5vC_e8IwGBciGTvGV_-Sl4Nz06O9fHR6NdHsomPMIaGq09kvbxehs_gCZX2S2Xqd5qu97k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbGJtBeBuMyytVIvLokduLUj9Wg2garUMcQPFm-impdWtFUWvn1nJPLtE2a9rDnxEl8fGx_X3zOdwj56ArubFEI5ozHlBwemLW5Z9wpLxOrkhDwRPd4LA9Os6NfeRdNuGzDKpFDx0Yool6rcXIvfOwi4j7h4RLsWphGxUUfMHUOuPgB2QIkkKCri2R8ybnStOZc2IRhmy6J57bHXNueromX3g5B661o9JjYrhNNBMpZf1XZvvt3Q9_xXr18QnZaoEqHjWftko1QPiUPm9KV62fk92FJl9MZ-BE1ra4JRTUo8Gb6Z72YX0wNA7oPjuPp-XTCOC7EC4qJnRicZGazNW2i0Jf0ZDg5Yfvzn4zTyXj4nJyOvvzYP2BtmQbmhJQVy7iNDst3FAPgllkionAqd5isbqNVMvo8DryXSqZwn4tCBRWBVQLRCQbQjHhBNst5GV4SqkzwwHcyk7mYZUYYbyNmzg6kymH18T3S70ZHLxo1Dp12IqetvTTaS7f26hF1dQx1Vf8GiU3NEi3uaPuhG3ANcw4PUkwZ5qul5oCZMyWVKnpkr_GEy88RwMC4EOmre7z5PXn0_fNIfzscf31NtvEKBtBw9YZsVn9X4S3AoMq-qx39P5-S9mY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+analysis+reveals+hypoxia-induced+miR-210-3p+specifically+targets+SARS-CoV-2+RNA&rft.jtitle=Journal+of+biomolecular+structure+%26+dynamics&rft.au=Baig%2C+Mirza+Sarwar&rft.au=Deepanshu&rft.au=Prakash%2C+Prem&rft.au=Alam%2C+Pravej&rft.date=2023-12-29&rft.pub=Taylor+%26+Francis&rft.issn=0739-1102&rft.eissn=1538-0254&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1080%2F07391102.2023.2175255&rft.externalDocID=2175255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-1102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-1102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-1102&client=summon |