In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA

Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miR...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular structure & dynamics Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 23
Main Authors Baig, Mirza Sarwar, Deepanshu, Prakash, Prem, Alam, Pravej, Krishnan, Anuja
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 29.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of −1.9, −1.7, and −1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection. Communicated by Ramaswamy H. Sarma
AbstractList Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of −1.9, −1.7, and −1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection. Communicated by Ramaswamy H. Sarma
Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Author Baig, Mirza Sarwar
Prakash, Prem
Deepanshu
Krishnan, Anuja
Alam, Pravej
Author_xml – sequence: 1
  givenname: Mirza Sarwar
  surname: Baig
  fullname: Baig, Mirza Sarwar
  organization: Department of Molecular Medicine, Jamia Hamdard
– sequence: 2
  orcidid: 0000-0002-4684-4239
  surname: Deepanshu
  fullname: Deepanshu
  organization: Department of Molecular Medicine, Jamia Hamdard
– sequence: 3
  givenname: Prem
  surname: Prakash
  fullname: Prakash, Prem
  organization: Department of Molecular Medicine, Jamia Hamdard
– sequence: 4
  givenname: Pravej
  surname: Alam
  fullname: Alam, Pravej
  organization: Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University
– sequence: 5
  givenname: Anuja
  surname: Krishnan
  fullname: Krishnan, Anuja
  organization: Department of Molecular Medicine, Jamia Hamdard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36752331$$D View this record in MEDLINE/PubMed
BookMark eNp90E1PGzEQgGGrCioB-hNa-diLg793fSOKgCIhkAJU6slyvHbryrve2hvK_vtulIRjT3N5ZkZ6z8CsS50D4DPBC4JrfIkrpgjBdEExZQtKKkGF-ADmRLAaYSr4DMx3Bu3QKTgr5TfGlJCKfASnTE6cMTIHP-46WEIMNkHTmTiWUGB2r87EAn-NfXoLBoWu2VrXwDasESUYsR6W3tnggzUxjnAw-acbCnxarp_QKn1HFK4flhfgxE9X3KfDPAcvN9fPq2_o_vH2brW8R5ZJOSBON97WRNZVzbnkmHlmlbCY13jjN0r6Rvi6aaSSZHLWM-WUx4pXsnZGCM7Owdf93T6nP1tXBt2GYl2MpnNpWzStKs6VVKqaqNhTm1Mp2Xnd59CaPGqC9a6qPlbVu6r6UHXa-3J4sd20rnnfOmacwNUehM6n3Jq_KcdGD2aMKftsOhuKZv__8Q949oXi
CitedBy_id crossref_primary_10_3389_fgene_2023_1329339
Cites_doi 10.1172/JCI66353
10.21873/anticanres.12107
10.1016/j.bbadis.2017.02.023
10.1371/journal.pgen.1002363
10.1016/S0140-6736(20)30251-8
10.6026/97320630017337
10.1126/science.1059796
10.1261/rna.5248604
10.1038/s41577-020-0331-4
10.1016/j.jacc.2016.09.945
10.1038/onc.2010.193
10.18632/oncotarget.785
10.1016/j.molcel.2009.09.006
10.1002/jcb.29300
10.1152/ajpheart.01080.2010
10.1096/fj.13-239129
10.1016/j.molonc.2013.01.002
10.1002/rmv.1894
10.1093/abbs/gmu007
10.1158/0008-5472.CAN-07-5194
10.3390/cells10061550
10.3389/fgene.2014.00023
10.1086/382681
10.1091/mbc.e12-12-0891
10.1007/s00280-011-1752-3
10.1099/vir.0.055533-0
10.1128/mBio.00884-14
10.1016/S1473-3099(13)70204-4
10.1016/j.molcel.2014.09.005
10.1016/j.virusres.2020.197885
10.1007/s00439-010-0915-3
10.1093/nar/gkz757
10.1007/s00018-009-0147-7
10.1007/s00401-013-1165-y
10.7554/eLife.05005
10.1093/nar/gkr1278
10.1038/s41586-021-03553-9
10.1155/2019/4727283
10.1002/path.2826
10.1186/1476-4598-12-92
10.1128/MCB.01276-10
10.1016/j.cell.2006.07.031
10.1080/15476286.2021.1872170
10.1007/s11655-016-2508-z
10.3892/or.2016.5129
10.1128/mBio.01174-14
10.1093/nar/gkaa664
10.1002/JLB.3COVR0520-272R
10.1126/science.1102514
10.1016/j.cell.2015.02.025
10.1038/s41598-022-13622-2
10.1002/stem.1464
10.1016/S0140-6736(20)30154-9
10.1146/annurev-pathol-012513-104720
10.1007/s00125-014-3282-0
10.1093/nar/gku1104
10.1111/j.1440-1843.2007.01136.x
10.1038/ng1536
10.4161/cc.8.17.9387
10.1371/journal.pone.0080625
10.1007/s10059-011-1042-2
10.1186/1479-5876-12-196
10.1172/jci.insight.158277
10.1128/MCB.01395-06
10.4161/cc.10.24.18552
10.1371/journal.pone.0059057
10.1016/S0140-6736(20)30183-5
10.1073/pnas.0905063106
10.1042/BJ20150821
10.1056/NEJMoa030634
10.1016/j.cell.2020.02.052
10.3390/ijms21165677
10.1038/sj.onc.1210436
10.1016/j.cell.2004.12.035
10.1016/j.carpath.2013.04.001
10.1371/journal.pone.0044919
10.1073/pnas.1210906109
10.1007/s10620-013-2612-2
10.1093/carcin/bgs288
10.1158/0008-5472.CAN-08-2516
10.1172/JCI61271
10.1038/bjc.2013.607
10.1126/stke.4072007cm8
10.1016/j.ejca.2012.12.017
10.1038/cddis.2013.117
10.3390/ijms140714647
10.1001/jama.2010.1919
10.1371/journal.pone.0091812
10.1016/S0140-6736(03)13412-5
10.1016/j.febslet.2010.08.040
10.1016/j.cytogfr.2020.06.001
10.1159/000354527
10.1016/j.tim.2016.03.003
10.3892/mmr.2018.8620
10.1038/nm.3040
10.1371/journal.pcbi.1006185
10.1371/journal.pone.0067591
10.1016/j.molmed.2016.11.003
10.1093/femspd/ftab050
10.3389/fcell.2020.00143
10.3389/fimmu.2018.01545
10.1038/20459
10.3390/molecules26195957
10.1016/j.molcel.2014.02.013
10.1016/j.jaci.2011.04.005
10.1016/j.stem.2010.02.015
10.1074/jbc.M111.303156
10.1038/s41564-020-0695-z
10.1016/j.bbrc.2009.11.093
10.1155/2017/3565613
10.1038/s41586-020-2196-x
10.1038/nrmicro775
10.1038/cdd.2008.12
10.1371/journal.pone.0039197
10.1111/odi.12133
10.1038/nsmb1226
10.1371/journal.pgen.1003291
10.1093/bioinformatics/bty424
10.1677/ERC-07-0129
10.1093/nar/gkz194
10.1016/j.coph.2010.08.011
10.1016/j.bbrc.2014.02.032
10.1093/carcin/bgp335
10.1111/resp.13196
10.1007/s00018-016-2377-9
10.1111/j.1582-4934.2011.01291.x
10.3390/ijms20163938
10.3389/fgene.2018.00439
10.1161/CIRCRESAHA.116.309318
10.1038/cddis.2010.64
10.1016/j.febslet.2013.09.023
10.1111/j.1365-2141.2008.07029.x
10.1042/BJ20111006
10.1097/JTO.0b013e31824fe976
10.1038/ng1910
10.3109/10715762.2015.1050588
10.1093/cid/civ951
10.1007/s10495-013-0841-7
10.1074/jbc.M112.421255
10.3389/fcimb.2022.802149
10.1161/CIRCRESAHA.109.197491
10.1128/JVI.00481-14
10.1371/journal.pone.0030772
10.1155/2014/970607
10.1093/carcin/bgs374
10.1371/journal.pbio.0020363
10.1038/s41591-022-01689-3
10.1111/jcmm.15274
10.1038/ni.2846
10.1074/jbc.W118.004967
10.1158/1535-7163.MCT-13-0448
10.3389/fimmu.2021.681516
10.1074/jbc.M804280200
10.1371/journal.pone.0046551
10.1126/science.1215704
10.1016/j.molcel.2014.09.004
10.1016/j.ebiom.2018.10.034
10.1016/j.ejca.2013.03.001
10.1007/s13402-013-0144-6
10.1093/nar/gkt852
10.1126/science.1102513
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1080/07391102.2023.2175255
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1538-0254
EndPage 23
ExternalDocumentID 10_1080_07391102_2023_2175255
36752331
2175255
Genre Research Article
Journal Article
GroupedDBID ---
-~X
.QJ
0BK
0R~
30N
4.4
5GY
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ACGFS
ACTIO
ADCVX
ADGTB
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
DGEBU
DKSSO
EBS
E~A
E~B
F5P
FUNRP
FVPDL
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NX0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TEI
TFL
TFT
TFW
TQWBC
TTHFI
UT5
V1K
ZGOLN
~KM
~S~
AAHBH
ABJNI
ABPAQ
ABXYU
AHDZW
AWYRJ
EMOBN
NPM
TBQAZ
TDBHL
TUROJ
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c366t-42bfc816878446403f3c95c0480bfb96fd5f8dd6961fc8cf39e9f094768ea5543
ISSN 0739-1102
IngestDate Fri Oct 25 03:30:13 EDT 2024
Fri Aug 23 01:17:19 EDT 2024
Wed Oct 16 00:39:54 EDT 2024
Tue Jun 13 19:50:11 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Keywords Z-score
hypoxia
SARS-CoV-2
human AGO2 protein
hybridization energy
HADDOCK
hsa-miR-210-3p
Human coronavirus
STRING analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-42bfc816878446403f3c95c0480bfb96fd5f8dd6961fc8cf39e9f094768ea5543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4684-4239
PMID 36752331
PQID 2774496997
PQPubID 23479
PageCount 23
ParticipantIDs crossref_primary_10_1080_07391102_2023_2175255
pubmed_primary_36752331
informaworld_taylorfrancis_310_1080_07391102_2023_2175255
proquest_miscellaneous_2774496997
PublicationCentury 2000
PublicationDate 2023-12-29
PublicationDateYYYYMMDD 2023-12-29
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of biomolecular structure & dynamics
PublicationTitleAlternate J Biomol Struct Dyn
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_28_1
e_1_3_2_20_1
e_1_3_2_66_1
e_1_3_2_130_1
e_1_3_2_43_1
e_1_3_2_85_1
e_1_3_2_24_1
e_1_3_2_47_1
e_1_3_2_89_1
e_1_3_2_100_1
e_1_3_2_146_1
e_1_3_2_127_1
e_1_3_2_62_1
e_1_3_2_104_1
e_1_3_2_142_1
e_1_3_2_81_1
e_1_3_2_123_1
e_1_3_2_165_1
e_1_3_2_108_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
e_1_3_2_161_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_96_1
e_1_3_2_3_1
e_1_3_2_92_1
e_1_3_2_135_1
e_1_3_2_116_1
e_1_3_2_158_1
e_1_3_2_50_1
e_1_3_2_73_1
e_1_3_2_131_1
e_1_3_2_112_1
e_1_3_2_154_1
e_1_3_2_139_1
e_1_3_2_29_1
e_1_3_2_152_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_63_1
e_1_3_2_86_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_67_1
e_1_3_2_126_1
e_1_3_2_149_1
e_1_3_2_40_1
e_1_3_2_82_1
e_1_3_2_103_1
e_1_3_2_122_1
e_1_3_2_145_1
e_1_3_2_164_1
e_1_3_2_107_1
e_1_3_2_17_1
e_1_3_2_2_1
e_1_3_2_55_1
e_1_3_2_141_1
e_1_3_2_160_1
e_1_3_2_32_1
e_1_3_2_74_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_59_1
e_1_3_2_97_1
e_1_3_2_36_1
e_1_3_2_78_1
e_1_3_2_93_1
e_1_3_2_115_1
e_1_3_2_138_1
e_1_3_2_157_1
e_1_3_2_51_1
e_1_3_2_111_1
e_1_3_2_134_1
e_1_3_2_153_1
e_1_3_2_70_1
e_1_3_2_119_1
e_1_3_2_49_1
e_1_3_2_151_1
e_1_3_2_41_1
e_1_3_2_87_1
e_1_3_2_22_1
e_1_3_2_64_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_68_1
e_1_3_2_125_1
e_1_3_2_148_1
e_1_3_2_83_1
e_1_3_2_121_1
e_1_3_2_60_1
e_1_3_2_102_1
e_1_3_2_144_1
e_1_3_2_106_1
e_1_3_2_129_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_163_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_75_1
e_1_3_2_140_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_79_1
e_1_3_2_98_1
e_1_3_2_114_1
e_1_3_2_94_1
e_1_3_2_137_1
e_1_3_2_110_1
e_1_3_2_156_1
e_1_3_2_71_1
e_1_3_2_90_1
e_1_3_2_133_1
e_1_3_2_118_1
e_1_3_2_27_1
e_1_3_2_42_1
e_1_3_2_65_1
e_1_3_2_88_1
e_1_3_2_150_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_69_1
e_1_3_2_80_1
e_1_3_2_101_1
e_1_3_2_124_1
e_1_3_2_147_1
e_1_3_2_61_1
e_1_3_2_84_1
e_1_3_2_105_1
e_1_3_2_120_1
e_1_3_2_143_1
e_1_3_2_128_1
e_1_3_2_109_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_162_1
e_1_3_2_30_1
e_1_3_2_76_1
e_1_3_2_11_1
e_1_3_2_53_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_57_1
e_1_3_2_99_1
e_1_3_2_113_1
e_1_3_2_136_1
e_1_3_2_159_1
e_1_3_2_95_1
e_1_3_2_132_1
e_1_3_2_155_1
e_1_3_2_72_1
e_1_3_2_91_1
Ardekani A. M. (e_1_3_2_7_1) 2010; 2
e_1_3_2_117_1
References_xml – ident: e_1_3_2_122_1
  doi: 10.1172/JCI66353
– ident: e_1_3_2_17_1
  doi: 10.21873/anticanres.12107
– ident: e_1_3_2_133_1
  doi: 10.1016/j.bbadis.2017.02.023
– ident: e_1_3_2_75_1
  doi: 10.1371/journal.pgen.1002363
– ident: e_1_3_2_90_1
  doi: 10.1016/S0140-6736(20)30251-8
– volume: 2
  start-page: 161
  issue: 4
  year: 2010
  ident: e_1_3_2_7_1
  article-title: The role of MicroRNAs in human diseases
  publication-title: Avicenna Journal of Medical Biotechnology
  contributor:
    fullname: Ardekani A. M.
– ident: e_1_3_2_11_1
  doi: 10.6026/97320630017337
– ident: e_1_3_2_58_1
  doi: 10.1126/science.1059796
– ident: e_1_3_2_115_1
  doi: 10.1261/rna.5248604
– ident: e_1_3_2_99_1
  doi: 10.1038/s41577-020-0331-4
– ident: e_1_3_2_16_1
  doi: 10.1016/j.jacc.2016.09.945
– ident: e_1_3_2_29_1
  doi: 10.1038/onc.2010.193
– ident: e_1_3_2_5_1
  doi: 10.18632/oncotarget.785
– ident: e_1_3_2_54_1
  doi: 10.1016/j.molcel.2009.09.006
– ident: e_1_3_2_94_1
  doi: 10.1002/jcb.29300
– ident: e_1_3_2_105_1
  doi: 10.1152/ajpheart.01080.2010
– ident: e_1_3_2_35_1
  doi: 10.1096/fj.13-239129
– ident: e_1_3_2_104_1
  doi: 10.1016/j.molonc.2013.01.002
– ident: e_1_3_2_128_1
  doi: 10.1002/rmv.1894
– ident: e_1_3_2_159_1
  doi: 10.1093/abbs/gmu007
– ident: e_1_3_2_68_1
  doi: 10.1158/0008-5472.CAN-07-5194
– ident: e_1_3_2_95_1
  doi: 10.3390/cells10061550
– ident: e_1_3_2_110_1
  doi: 10.3389/fgene.2014.00023
– ident: e_1_3_2_28_1
  doi: 10.1086/382681
– ident: e_1_3_2_61_1
  doi: 10.1091/mbc.e12-12-0891
– ident: e_1_3_2_165_1
  doi: 10.1007/s00280-011-1752-3
– ident: e_1_3_2_76_1
  doi: 10.1099/vir.0.055533-0
– ident: e_1_3_2_3_1
  doi: 10.1128/mBio.00884-14
– ident: e_1_3_2_9_1
  doi: 10.1016/S1473-3099(13)70204-4
– ident: e_1_3_2_43_1
  doi: 10.1016/j.molcel.2014.09.005
– ident: e_1_3_2_161_1
  doi: 10.1016/j.virusres.2020.197885
– ident: e_1_3_2_59_1
  doi: 10.1007/s00439-010-0915-3
– ident: e_1_3_2_31_1
  doi: 10.1093/nar/gkz757
– ident: e_1_3_2_141_1
  doi: 10.1007/s00018-009-0147-7
– ident: e_1_3_2_22_1
  doi: 10.1007/s00401-013-1165-y
– ident: e_1_3_2_2_1
  doi: 10.7554/eLife.05005
– ident: e_1_3_2_164_1
  doi: 10.1093/nar/gkr1278
– ident: e_1_3_2_6_1
  doi: 10.1038/s41586-021-03553-9
– ident: e_1_3_2_49_1
  doi: 10.1155/2019/4727283
– ident: e_1_3_2_88_1
  doi: 10.1002/path.2826
– ident: e_1_3_2_151_1
  doi: 10.1186/1476-4598-12-92
– ident: e_1_3_2_21_1
  doi: 10.1128/MCB.01276-10
– ident: e_1_3_2_100_1
  doi: 10.1016/j.cell.2006.07.031
– ident: e_1_3_2_12_1
  doi: 10.1080/15476286.2021.1872170
– ident: e_1_3_2_140_1
  doi: 10.1007/s11655-016-2508-z
– ident: e_1_3_2_153_1
  doi: 10.3892/or.2016.5129
– ident: e_1_3_2_98_1
  doi: 10.1128/mBio.01174-14
– ident: e_1_3_2_71_1
  doi: 10.1093/nar/gkaa664
– ident: e_1_3_2_137_1
  doi: 10.1002/JLB.3COVR0520-272R
– ident: e_1_3_2_124_1
  doi: 10.1126/science.1102514
– ident: e_1_3_2_91_1
  doi: 10.1016/j.cell.2015.02.025
– ident: e_1_3_2_51_1
  doi: 10.1038/s41598-022-13622-2
– ident: e_1_3_2_86_1
– ident: e_1_3_2_160_1
  doi: 10.1002/stem.1464
– ident: e_1_3_2_25_1
  doi: 10.1016/S0140-6736(20)30154-9
– ident: e_1_3_2_119_1
  doi: 10.1146/annurev-pathol-012513-104720
– ident: e_1_3_2_52_1
  doi: 10.1007/s00125-014-3282-0
– ident: e_1_3_2_146_1
  doi: 10.1093/nar/gku1104
– ident: e_1_3_2_93_1
  doi: 10.1111/j.1440-1843.2007.01136.x
– ident: e_1_3_2_69_1
  doi: 10.1038/ng1536
– ident: e_1_3_2_157_1
  doi: 10.4161/cc.8.17.9387
– ident: e_1_3_2_26_1
  doi: 10.1371/journal.pone.0080625
– ident: e_1_3_2_32_1
  doi: 10.1007/s10059-011-1042-2
– ident: e_1_3_2_87_1
  doi: 10.1186/1479-5876-12-196
– ident: e_1_3_2_23_1
  doi: 10.1172/jci.insight.158277
– ident: e_1_3_2_70_1
  doi: 10.1128/MCB.01395-06
– ident: e_1_3_2_121_1
  doi: 10.4161/cc.10.24.18552
– ident: e_1_3_2_129_1
  doi: 10.1371/journal.pone.0059057
– ident: e_1_3_2_56_1
  doi: 10.1016/S0140-6736(20)30183-5
– ident: e_1_3_2_96_1
  doi: 10.1073/pnas.0905063106
– ident: e_1_3_2_126_1
  doi: 10.1042/BJ20150821
– ident: e_1_3_2_112_1
  doi: 10.1056/NEJMoa030634
– ident: e_1_3_2_53_1
  doi: 10.1016/j.cell.2020.02.052
– ident: e_1_3_2_72_1
  doi: 10.3390/ijms21165677
– ident: e_1_3_2_102_1
  doi: 10.1038/sj.onc.1210436
– ident: e_1_3_2_78_1
  doi: 10.1016/j.cell.2004.12.035
– ident: e_1_3_2_158_1
  doi: 10.1016/j.carpath.2013.04.001
– ident: e_1_3_2_19_1
  doi: 10.1371/journal.pone.0044919
– ident: e_1_3_2_113_1
  doi: 10.1073/pnas.1210906109
– ident: e_1_3_2_139_1
  doi: 10.1007/s10620-013-2612-2
– ident: e_1_3_2_57_1
  doi: 10.1093/carcin/bgs288
– ident: e_1_3_2_38_1
  doi: 10.1158/0008-5472.CAN-08-2516
– ident: e_1_3_2_147_1
  doi: 10.1172/JCI61271
– ident: e_1_3_2_66_1
  doi: 10.1038/bjc.2013.607
– ident: e_1_3_2_118_1
  doi: 10.1126/stke.4072007cm8
– ident: e_1_3_2_135_1
  doi: 10.1016/j.ejca.2012.12.017
– ident: e_1_3_2_65_1
  doi: 10.1038/cddis.2013.117
– ident: e_1_3_2_101_1
  doi: 10.3390/ijms140714647
– ident: e_1_3_2_41_1
  doi: 10.1001/jama.2010.1919
– ident: e_1_3_2_116_1
  doi: 10.1371/journal.pone.0091812
– ident: e_1_3_2_109_1
  doi: 10.1016/S0140-6736(03)13412-5
– ident: e_1_3_2_85_1
  doi: 10.1016/j.febslet.2010.08.040
– ident: e_1_3_2_37_1
  doi: 10.1016/j.cytogfr.2020.06.001
– ident: e_1_3_2_152_1
  doi: 10.1159/000354527
– ident: e_1_3_2_127_1
  doi: 10.1016/j.tim.2016.03.003
– ident: e_1_3_2_42_1
  doi: 10.3892/mmr.2018.8620
– ident: e_1_3_2_64_1
  doi: 10.1038/nm.3040
– ident: e_1_3_2_111_1
  doi: 10.1371/journal.pcbi.1006185
– ident: e_1_3_2_92_1
  doi: 10.1371/journal.pone.0067591
– ident: e_1_3_2_130_1
  doi: 10.1016/j.molmed.2016.11.003
– ident: e_1_3_2_10_1
  doi: 10.1093/femspd/ftab050
– ident: e_1_3_2_14_1
  doi: 10.3389/fcell.2020.00143
– ident: e_1_3_2_81_1
  doi: 10.3389/fimmu.2018.01545
– ident: e_1_3_2_97_1
  doi: 10.1038/20459
– ident: e_1_3_2_8_1
  doi: 10.3390/molecules26195957
– ident: e_1_3_2_106_1
  doi: 10.1016/j.molcel.2014.02.013
– ident: e_1_3_2_34_1
  doi: 10.1016/j.jaci.2011.04.005
– ident: e_1_3_2_39_1
  doi: 10.1016/j.stem.2010.02.015
– ident: e_1_3_2_63_1
  doi: 10.1074/jbc.M111.303156
– ident: e_1_3_2_48_1
  doi: 10.1038/s41564-020-0695-z
– ident: e_1_3_2_148_1
  doi: 10.1016/j.bbrc.2009.11.093
– ident: e_1_3_2_80_1
  doi: 10.1155/2017/3565613
– ident: e_1_3_2_145_1
  doi: 10.1038/s41586-020-2196-x
– ident: e_1_3_2_125_1
  doi: 10.1038/nrmicro775
– ident: e_1_3_2_55_1
  doi: 10.1016/S0140-6736(20)30183-5
– ident: e_1_3_2_143_1
  doi: 10.1038/cdd.2008.12
– ident: e_1_3_2_27_1
  doi: 10.1371/journal.pone.0039197
– ident: e_1_3_2_73_1
  doi: 10.1111/odi.12133
– ident: e_1_3_2_89_1
  doi: 10.1038/nsmb1226
– ident: e_1_3_2_82_1
  doi: 10.1371/journal.pgen.1003291
– ident: e_1_3_2_144_1
  doi: 10.1093/bioinformatics/bty424
– ident: e_1_3_2_132_1
  doi: 10.1677/ERC-07-0129
– ident: e_1_3_2_24_1
  doi: 10.1093/nar/gkz194
– ident: e_1_3_2_15_1
  doi: 10.1016/j.coph.2010.08.011
– ident: e_1_3_2_62_1
  doi: 10.1016/j.bbrc.2014.02.032
– ident: e_1_3_2_155_1
  doi: 10.1093/carcin/bgp335
– ident: e_1_3_2_154_1
  doi: 10.1111/resp.13196
– ident: e_1_3_2_46_1
  doi: 10.1007/s00018-016-2377-9
– ident: e_1_3_2_156_1
  doi: 10.1111/j.1582-4934.2011.01291.x
– ident: e_1_3_2_103_1
  doi: 10.3390/ijms20163938
– ident: e_1_3_2_47_1
  doi: 10.3389/fgene.2018.00439
– ident: e_1_3_2_40_1
  doi: 10.1161/CIRCRESAHA.116.309318
– ident: e_1_3_2_4_1
  doi: 10.1038/cddis.2010.64
– ident: e_1_3_2_114_1
  doi: 10.1016/j.febslet.2013.09.023
– ident: e_1_3_2_123_1
  doi: 10.1111/j.1365-2141.2008.07029.x
– ident: e_1_3_2_84_1
  doi: 10.1042/BJ20111006
– ident: e_1_3_2_117_1
  doi: 10.1097/JTO.0b013e31824fe976
– ident: e_1_3_2_30_1
  doi: 10.1038/ng1910
– ident: e_1_3_2_120_1
  doi: 10.3109/10715762.2015.1050588
– ident: e_1_3_2_36_1
  doi: 10.1093/cid/civ951
– ident: e_1_3_2_74_1
  doi: 10.1007/s10495-013-0841-7
– ident: e_1_3_2_33_1
  doi: 10.1074/jbc.M112.421255
– ident: e_1_3_2_77_1
  doi: 10.3389/fcimb.2022.802149
– ident: e_1_3_2_20_1
  doi: 10.1161/CIRCRESAHA.109.197491
– ident: e_1_3_2_108_1
  doi: 10.1128/JVI.00481-14
– ident: e_1_3_2_162_1
  doi: 10.1371/journal.pone.0030772
– ident: e_1_3_2_131_1
  doi: 10.1155/2014/970607
– ident: e_1_3_2_150_1
  doi: 10.1093/carcin/bgs374
– ident: e_1_3_2_60_1
  doi: 10.1371/journal.pbio.0020363
– ident: e_1_3_2_149_1
  doi: 10.1038/s41591-022-01689-3
– ident: e_1_3_2_136_1
  doi: 10.1111/jcmm.15274
– ident: e_1_3_2_134_1
  doi: 10.1038/ni.2846
– ident: e_1_3_2_107_1
  doi: 10.1074/jbc.W118.004967
– ident: e_1_3_2_67_1
  doi: 10.1158/1535-7163.MCT-13-0448
– ident: e_1_3_2_50_1
  doi: 10.3389/fimmu.2021.681516
– ident: e_1_3_2_142_1
  doi: 10.1074/jbc.M804280200
– ident: e_1_3_2_163_1
  doi: 10.1371/journal.pone.0046551
– ident: e_1_3_2_18_1
  doi: 10.1126/science.1215704
– ident: e_1_3_2_44_1
  doi: 10.1016/j.molcel.2014.09.004
– ident: e_1_3_2_13_1
  doi: 10.1016/j.ebiom.2018.10.034
– ident: e_1_3_2_79_1
  doi: 10.1016/j.ejca.2013.03.001
– ident: e_1_3_2_138_1
  doi: 10.1007/s13402-013-0144-6
– ident: e_1_3_2_45_1
  doi: 10.1093/nar/gkt852
– ident: e_1_3_2_83_1
  doi: 10.1126/science.1102513
SSID ssj0021171
Score 2.4136283
Snippet Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic...
SourceID proquest
crossref
pubmed
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms HADDOCK
hsa-miR-210-3p
human AGO2 protein
Human coronavirus
hybridization energy
hypoxia
SARS-CoV-2
STRING analysis
Z-score
Title In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA
URI https://www.tandfonline.com/doi/abs/10.1080/07391102.2023.2175255
https://www.ncbi.nlm.nih.gov/pubmed/36752331
https://search.proquest.com/docview/2774496997
Volume ahead-of-print
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbKEBIviDvlJiPxFrlqbCepH6sB2pCo0Nah8RQ5trMVSlr1Ith-ET-Tc-rctnXi9hJVSds4Pl8-n3N8LoS8Ngk3WZIIZrTFlBzuWJZFlnGjbNzPVN853NH9MIr3juT74-i40_nZilpar7KeOd-aV_IvUoVzIFfMkv0LydZ_CifgM8gXjiBhOP6RjPeLYDmZgiwDXdUWwYpMWBH59Gw--zHRDEzuNW7xf5scMI5kOA8wuRIDhPR0CqrnJhJ8GRwODw7Z7uwT48HBaHiNyoq5-lU73cBXnsX9B0SP9Z3tG6e7npz4sPzFuUa_83ddhwG_cbAGFsvTdc3LC_1VL72DZ1H6khGEJVo_YoukL23_BBcY68EbFhxfaRXSYrhEKAb6h6dj1zAwpui3KVrDwmTZLGfo7Fy1YLnlgifisLWi-4TmK2tFGVwJY8Ah9HDsPTDQIu7rBl8qw11euUFucqA05FLRH9WmfRhuTPv6gapcMazivu0GF7SgCzVyr7d0NhrP-C65U8qdDj3u7pGOK-6TW7556dkD8nm_oB59tEIfLdFHL6GPNuijbfTREn20QR8F9D0kR-_ejnf3WNmogxkRxysmeZYbbOCSDKSMZV_kwqjIYLmCLM9UnNsoH1gbqziE75lcKKfyvpJg6joN-qx4RHaKWeGeEKq0s2DxSi1NLqUW2mY55k4PYhXB-mO7pFdNXDr39VjSsCpzW850ijOdljPdJao9velqg8fcQzEVv_ntq0oWKbAubqXpws3Wy5SD1SRVrFTSJY-9kOrhCLDBuRDh0_-48zNyu3mXnpMdeKPdC9B-V9nLDfB-AbU3qE8
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYoqCoXWvqA0JeRenWatXe98TFCRaGFHAJU9GT5KaKGTUQ2EuHXM7MPBJVQD5x37V3bY3s-e75vCPnmcu5sngvmjEdKDg_M2swz7pSXPat6IeCN7slIDs_TnxfZxQMuDIZVIoaOtVBEtVbj5MbD6DYk7jveLsG2hTwqLrrgVGfgGL8gGxIFwJDG0Rvdg64kqUAXFmFYpmXxPFXNo_3pkXrp0z5otRcdviaubUUdgvK3uyxt193-I_D4vGa-IVuNq0oHtW1tk7VQvCUv6-SVq3fkz1FBF5MpWBI1jbIJRT0osGd6uZrPbiaGAeAH0_H0ajJmHJfiOUVqJ4Ynmel0Res49AU9HYxP2cHsN-N0PBq8J-eHP84OhqxJ1MCckLJkKbfRYQKPvA_oMu2JKJzKHNLVbbRKRp_FvvdSyQTec1GooCLgSoA6wYA_Iz6Q9WJWhF1ClQkeEE9qUhfT1AjjbUTubF-qDNYf3yHddnj0vNbj0Ekrc9r0l8b-0k1_dYh6OIi6rA5CYp21RIv_lN1vR1zDrMOrFFOE2XKhOXjNqZJK5R2yU5vC_e8IwGBciGTvGV_-Sl4Nz06O9fHR6NdHsomPMIaGq09kvbxehs_gCZX2S2Xqd5qu97k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbGJtBeBuMyytVIvLokduLUj9Wg2garUMcQPFm-impdWtFUWvn1nJPLtE2a9rDnxEl8fGx_X3zOdwj56ArubFEI5ozHlBwemLW5Z9wpLxOrkhDwRPd4LA9Os6NfeRdNuGzDKpFDx0Yool6rcXIvfOwi4j7h4RLsWphGxUUfMHUOuPgB2QIkkKCri2R8ybnStOZc2IRhmy6J57bHXNueromX3g5B661o9JjYrhNNBMpZf1XZvvt3Q9_xXr18QnZaoEqHjWftko1QPiUPm9KV62fk92FJl9MZ-BE1ra4JRTUo8Gb6Z72YX0wNA7oPjuPp-XTCOC7EC4qJnRicZGazNW2i0Jf0ZDg5Yfvzn4zTyXj4nJyOvvzYP2BtmQbmhJQVy7iNDst3FAPgllkionAqd5isbqNVMvo8DryXSqZwn4tCBRWBVQLRCQbQjHhBNst5GV4SqkzwwHcyk7mYZUYYbyNmzg6kymH18T3S70ZHLxo1Dp12IqetvTTaS7f26hF1dQx1Vf8GiU3NEi3uaPuhG3ANcw4PUkwZ5qul5oCZMyWVKnpkr_GEy88RwMC4EOmre7z5PXn0_fNIfzscf31NtvEKBtBw9YZsVn9X4S3AoMq-qx39P5-S9mY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+analysis+reveals+hypoxia-induced+miR-210-3p+specifically+targets+SARS-CoV-2+RNA&rft.jtitle=Journal+of+biomolecular+structure+%26+dynamics&rft.au=Baig%2C+Mirza+Sarwar&rft.au=Deepanshu&rft.au=Prakash%2C+Prem&rft.au=Alam%2C+Pravej&rft.date=2023-12-29&rft.pub=Taylor+%26+Francis&rft.issn=0739-1102&rft.eissn=1538-0254&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1080%2F07391102.2023.2175255&rft.externalDocID=2175255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-1102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-1102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-1102&client=summon