A multidimensional rational design of nickel–iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors

[Display omitted] Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nicke...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 603; pp. 799 - 809
Main Authors Li, Kailin, Hu, Zhufeng, Zhao, Renjun, Zhou, Jinfei, Jing, Chuan, Sun, Qing, Rao, Jinsong, Yao, Kexin, Dong, Biqin, Liu, Xiaoying, Li, Haiyan, Zhang, Yuxin, Ji, Junyi
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel–iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g−1 at a current density of 1 A g−1, a good rate capability of 68.4% retention at 10 A g−1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g−1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg−1 and a maximum power density of 9375 W kg−1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.
AbstractList Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel-iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g-1 at a current density of 1 A g-1, a good rate capability of 68.4% retention at 10 A g-1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g-1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg-1 and a maximum power density of 9375 W kg-1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel-iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g-1 at a current density of 1 A g-1, a good rate capability of 68.4% retention at 10 A g-1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g-1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg-1 and a maximum power density of 9375 W kg-1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.
Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel–iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g⁻¹ at a current density of 1 A g⁻¹, a good rate capability of 68.4% retention at 10 A g⁻¹, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g⁻¹. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg⁻¹ and a maximum power density of 9375 W kg⁻¹ at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.
[Display omitted] Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel–iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g−1 at a current density of 1 A g−1, a good rate capability of 68.4% retention at 10 A g−1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g−1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg−1 and a maximum power density of 9375 W kg−1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.
Author Hu, Zhufeng
Dong, Biqin
Zhao, Renjun
Li, Kailin
Liu, Xiaoying
Sun, Qing
Li, Haiyan
Zhang, Yuxin
Ji, Junyi
Zhou, Jinfei
Jing, Chuan
Rao, Jinsong
Yao, Kexin
Author_xml – sequence: 1
  givenname: Kailin
  surname: Li
  fullname: Li, Kailin
  organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Zhufeng
  surname: Hu
  fullname: Hu, Zhufeng
  organization: School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
– sequence: 3
  givenname: Renjun
  surname: Zhao
  fullname: Zhao, Renjun
  organization: School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
– sequence: 4
  givenname: Jinfei
  surname: Zhou
  fullname: Zhou, Jinfei
  organization: Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
– sequence: 5
  givenname: Chuan
  surname: Jing
  fullname: Jing, Chuan
  organization: College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
– sequence: 6
  givenname: Qing
  surname: Sun
  fullname: Sun, Qing
  organization: Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
– sequence: 7
  givenname: Jinsong
  surname: Rao
  fullname: Rao, Jinsong
  organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
– sequence: 8
  givenname: Kexin
  orcidid: 0000-0002-5686-6909
  surname: Yao
  fullname: Yao, Kexin
  organization: Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
– sequence: 9
  givenname: Biqin
  surname: Dong
  fullname: Dong, Biqin
  organization: School of Civil Engineering, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, The Key Laboratory on Durability of Civil Engineering in Shenzhen, Shenzhen University, Shenzhen 518060, PR China
– sequence: 10
  givenname: Xiaoying
  surname: Liu
  fullname: Liu, Xiaoying
  organization: Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 11
  givenname: Haiyan
  surname: Li
  fullname: Li, Haiyan
  organization: School of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China
– sequence: 12
  givenname: Yuxin
  surname: Zhang
  fullname: Zhang, Yuxin
  email: zhangyuxin@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
– sequence: 13
  givenname: Junyi
  surname: Ji
  fullname: Ji, Junyi
  email: junyiji@scu.edu.cn
  organization: School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
BookMark eNqFkcFu1DAURSNUJKaFH2DlJZuE5yS2JxKbqoKCVKkbWFuO_TJ6Q2IPtlNpdvwD6g_yJXg6rFiUlZ_97rmW7r2sLnzwWFVvOTQcuHy_b_aWUtNCyxuQDe_4i2rDYRC14tBdVBsom3pQg3pVXaa0B-BciGFTPV6zZZ0zOVrQJwrezCyafB4cJtp5FibmyX7H-ffPXxSDZ2mdJ3LIjHfMmjiWJ298yOuIiZWLI5PDQhnZAxmWjh7jjlImy5bg1vnJnqVc_sHdkU0hFscDRmsOxlIOMb2uXk5mTvjm73lVffv08evN5_ru_vbLzfVdbTspc93DpNwopFNcGAudGEYUEx-5lM4CKNhao8S27ZVS1jjgI9h-e1JMPYy9666qd2ffQww_VkxZL5QszrPxGNakWyl58emF-L9UCGil4q0q0vYstTGkFHHSh0iLiUfNQZ_q0nt9qkuf6tIgdamrQNt_oBLFU1IlJ5qfRz-cUSxRPRBGnSyht-goos3aBXoO_wOaA7fO
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_156950
crossref_primary_10_1016_j_est_2022_103961
crossref_primary_10_1016_j_jallcom_2022_164323
crossref_primary_10_1016_j_jallcom_2024_174491
crossref_primary_10_1016_j_jallcom_2021_163359
crossref_primary_10_1016_j_jallcom_2022_167955
crossref_primary_10_1016_j_cej_2023_146638
crossref_primary_10_1016_j_jallcom_2022_165257
crossref_primary_10_1016_j_est_2025_116129
crossref_primary_10_1021_acsanm_1c02068
crossref_primary_10_1021_acs_energyfuels_4c03681
crossref_primary_10_1039_D2QM01346K
crossref_primary_10_1080_09593330_2022_2044920
crossref_primary_10_1016_j_est_2022_104939
crossref_primary_10_1016_j_est_2023_106672
crossref_primary_10_1016_j_jcis_2022_09_062
crossref_primary_10_1039_D4NA00680A
crossref_primary_10_1007_s10008_023_05413_0
crossref_primary_10_1039_D4NJ00500G
crossref_primary_10_1016_j_cej_2023_146351
crossref_primary_10_1016_j_est_2022_105623
crossref_primary_10_1016_j_est_2022_106559
crossref_primary_10_1016_j_est_2022_104940
crossref_primary_10_1016_j_est_2022_105994
crossref_primary_10_1016_j_est_2022_106202
crossref_primary_10_1016_j_est_2022_105991
crossref_primary_10_1016_j_est_2022_106322
crossref_primary_10_1016_j_jallcom_2022_166996
crossref_primary_10_1039_D3PY00708A
crossref_primary_10_1016_j_est_2022_105592
crossref_primary_10_1002_smll_202311504
crossref_primary_10_1007_s10854_024_13084_4
crossref_primary_10_1016_j_jcis_2022_08_143
crossref_primary_10_1007_s11581_024_05825_6
crossref_primary_10_3390_ijms24010504
crossref_primary_10_3389_fchem_2022_870541
crossref_primary_10_3390_ijms23169362
crossref_primary_10_1016_j_mtcomm_2022_104665
crossref_primary_10_1016_j_apsusc_2022_155568
crossref_primary_10_2139_ssrn_4174968
crossref_primary_10_1002_adfm_202111565
crossref_primary_10_1002_er_7744
crossref_primary_10_1016_j_cej_2023_145124
crossref_primary_10_1016_j_est_2023_107948
crossref_primary_10_1080_00222348_2023_2223849
crossref_primary_10_1016_j_compositesb_2022_110409
crossref_primary_10_1039_D2NJ04980E
crossref_primary_10_1007_s11581_023_05012_z
crossref_primary_10_1039_D1DT04145B
crossref_primary_10_1016_j_jallcom_2022_166682
crossref_primary_10_1007_s10854_023_09892_9
crossref_primary_10_1016_j_est_2022_105728
crossref_primary_10_1016_j_ijhydene_2024_04_097
crossref_primary_10_1016_j_matchemphys_2023_128195
crossref_primary_10_1007_s11431_021_1998_y
crossref_primary_10_1016_j_est_2022_104637
crossref_primary_10_1016_j_jcis_2022_07_154
crossref_primary_10_1016_j_est_2022_105722
crossref_primary_10_1038_s41427_022_00450_z
crossref_primary_10_1021_acs_energyfuels_2c03467
crossref_primary_10_1016_j_est_2022_105730
crossref_primary_10_1021_acsanm_3c05360
crossref_primary_10_1016_j_jallcom_2021_161821
crossref_primary_10_1016_j_compositesb_2022_110497
crossref_primary_10_1016_j_nxmate_2024_100430
crossref_primary_10_1002_aoc_6699
crossref_primary_10_1016_j_colsurfa_2022_130294
crossref_primary_10_1016_j_jallcom_2022_164271
crossref_primary_10_1039_D1CE01736E
crossref_primary_10_1016_j_microc_2022_107891
crossref_primary_10_1016_j_mtphys_2022_100730
crossref_primary_10_1016_j_rechem_2023_100877
crossref_primary_10_1039_D2CE00928E
crossref_primary_10_2139_ssrn_4140204
crossref_primary_10_1016_j_jssc_2024_125060
crossref_primary_10_1007_s11581_021_04335_z
crossref_primary_10_1016_j_jallcom_2022_164270
crossref_primary_10_1039_D2TA00102K
crossref_primary_10_1016_j_jallcom_2023_170842
crossref_primary_10_1016_j_jcis_2023_02_045
crossref_primary_10_1039_D4NJ01886A
crossref_primary_10_1039_D4TA02690J
crossref_primary_10_1016_j_fuel_2022_123933
crossref_primary_10_1016_j_jpowsour_2023_232705
crossref_primary_10_2139_ssrn_4184106
crossref_primary_10_1002_slct_202200016
crossref_primary_10_1016_j_jallcom_2023_170284
crossref_primary_10_1016_j_seppur_2024_127549
crossref_primary_10_1016_j_est_2022_105269
crossref_primary_10_1016_j_est_2022_106117
crossref_primary_10_1016_j_est_2022_105666
crossref_primary_10_1016_j_est_2022_105300
crossref_primary_10_1016_j_est_2022_104176
crossref_primary_10_1016_j_ijhydene_2022_11_061
crossref_primary_10_1007_s11581_023_05202_9
crossref_primary_10_1016_j_rineng_2023_101738
crossref_primary_10_2139_ssrn_4003184
crossref_primary_10_1016_j_inoche_2022_109753
crossref_primary_10_1016_j_est_2022_105949
crossref_primary_10_1039_D2TA08817G
crossref_primary_10_1016_j_est_2022_105943
crossref_primary_10_1016_j_mseb_2024_117419
crossref_primary_10_1038_s41598_023_33200_4
crossref_primary_10_1021_acsomega_3c04750
crossref_primary_10_1016_j_est_2021_103870
crossref_primary_10_1016_j_est_2022_105435
crossref_primary_10_1021_acs_energyfuels_1c04183
crossref_primary_10_1016_j_ijhydene_2024_07_111
crossref_primary_10_1088_1361_6528_ad06d3
crossref_primary_10_1016_j_est_2022_105271
crossref_primary_10_1016_j_jcis_2023_06_175
crossref_primary_10_1007_s11051_022_05507_2
crossref_primary_10_1016_j_cej_2021_134163
crossref_primary_10_1007_s11581_023_04987_z
crossref_primary_10_2139_ssrn_4134147
crossref_primary_10_1021_acsnano_2c01451
crossref_primary_10_1016_j_cej_2022_140223
crossref_primary_10_1016_j_est_2023_106982
crossref_primary_10_1021_acs_energyfuels_3c04598
crossref_primary_10_1016_j_est_2022_105837
crossref_primary_10_1021_acs_inorgchem_4c04944
crossref_primary_10_1038_s41598_022_05167_1
crossref_primary_10_1007_s11581_021_04403_4
crossref_primary_10_1016_j_est_2022_105489
crossref_primary_10_1016_j_inoche_2024_113086
crossref_primary_10_1016_j_est_2022_105763
crossref_primary_10_1016_j_jiec_2024_11_012
crossref_primary_10_1016_j_est_2022_106056
crossref_primary_10_1007_s12209_024_00419_9
crossref_primary_10_1016_j_est_2022_106171
crossref_primary_10_1016_j_jallcom_2024_175605
crossref_primary_10_1016_j_mtcomm_2022_104033
crossref_primary_10_1002_er_8585
crossref_primary_10_1016_j_cej_2021_132575
crossref_primary_10_1021_acs_inorgchem_3c03041
crossref_primary_10_1016_j_est_2022_105008
crossref_primary_10_1016_j_cej_2023_144068
crossref_primary_10_1016_j_est_2022_105896
crossref_primary_10_1016_j_est_2022_106106
crossref_primary_10_1016_j_jcis_2022_03_023
crossref_primary_10_1039_D4RA01320D
crossref_primary_10_1016_j_est_2022_106105
crossref_primary_10_1016_j_est_2022_105377
crossref_primary_10_1016_j_est_2022_105378
crossref_primary_10_1016_j_jpcs_2023_111473
crossref_primary_10_1016_j_carbon_2022_03_054
crossref_primary_10_1016_j_nxmate_2024_100199
crossref_primary_10_1016_j_jallcom_2022_168279
crossref_primary_10_1016_j_ceramint_2022_10_179
crossref_primary_10_1016_j_est_2022_105094
crossref_primary_10_2139_ssrn_4194502
crossref_primary_10_1016_j_carbon_2022_07_032
crossref_primary_10_5004_dwt_2023_29906
crossref_primary_10_1016_j_cej_2022_135337
crossref_primary_10_1016_j_est_2022_104727
crossref_primary_10_1016_j_est_2022_104849
crossref_primary_10_1016_j_est_2022_104847
crossref_primary_10_1016_j_est_2022_104968
crossref_primary_10_1016_j_est_2022_104845
crossref_primary_10_1016_j_colsurfa_2023_131803
Cites_doi 10.1038/s41467-019-10473-w
10.1021/acs.jced.8b00874
10.1016/j.jechem.2020.09.041
10.1039/C7NR08284C
10.1039/C5CS00580A
10.1039/C8TA10998B
10.1039/C5TA02432C
10.1016/j.jcis.2021.05.090
10.1016/j.jcis.2021.03.169
10.1038/nmat4810
10.1016/j.jhazmat.2017.07.004
10.1002/aenm.201702630
10.1002/advs.202001561
10.1002/smtd.201900823
10.1039/C6CE00319B
10.1016/j.cej.2020.124569
10.1039/C4RA16038J
10.1002/adsu.201700047
10.1002/cey2.69
10.1039/C9CC03406D
10.1002/adma.201706825
10.1016/j.apsusc.2019.143704
10.1016/j.jcis.2021.05.039
10.1038/natrevmats.2016.33
10.1016/j.cej.2019.03.190
10.1039/C6CC07705F
10.1016/j.nanoen.2020.105616
10.1039/C3TA15373H
10.1021/acsomega.8b03130
10.1016/j.jpowsour.2017.12.046
10.1016/j.jpowsour.2014.07.031
10.1186/s11671-017-2180-z
10.1002/cnma.201700109
10.1016/j.jcis.2021.03.075
10.1039/C5TA00634A
10.1016/j.nanoen.2020.105410
10.1016/j.nanoen.2020.105026
10.1002/adfm.201703390
10.1016/j.materresbull.2020.111134
10.1039/C9CC06791D
10.1021/acsami.6b02944
10.1016/j.nanoen.2015.06.018
10.1038/nenergy.2016.70
10.1088/2053-1591/ab3970
10.1016/j.cej.2019.123150
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.06.131
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 809
ExternalDocumentID 10_1016_j_jcis_2021_06_131
S0021979721010043
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c366t-40f7db56d715ac0359be5f1b166dc00708ca75824777cad01b0c485f1bf40b4d3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Thu Jul 10 23:29:02 EDT 2025
Fri Jul 11 14:25:01 EDT 2025
Tue Jul 01 01:19:07 EDT 2025
Thu Apr 24 22:59:13 EDT 2025
Fri Feb 23 02:40:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon nanotubes
Supercapacitor
Diatomite
Nickel iron sulfide
Sulfurization process
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-40f7db56d715ac0359be5f1b166dc00708ca75824777cad01b0c485f1bf40b4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5686-6909
PQID 2550267127
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2661007455
proquest_miscellaneous_2550267127
crossref_primary_10_1016_j_jcis_2021_06_131
crossref_citationtrail_10_1016_j_jcis_2021_06_131
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_06_131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xiong, Tan, Lu, Lee, Xue (b0015) 2018; 8
Li, Feng, Jing, Chen, Liu, Zhang, Zhou (b0070) 2019; 55
Zeng, Wang, Zhu, Xiao, Li, Zhu (b0225) 2016; 18
Kim, Cook, Lin, Ko, Tolbert, Ozolins, Dunn (b0205) 2017; 16
Chen, Deng, Du, Mao, Zhu, Xiao, Wang (b0185) 2017; 1
Lu, Wang, Zhang, Xu, Wang, Lv, Zheng, Wu (b0175) 2018; 341
Wang, Song, Xia (b0005) 2016; 45
Lu, Yuan, Xu, Ning, Zhong, Zhang, Hu (b0200) 2019; 7
Chen, Miao, Quan, Cai, Zhan (b0215) 2018; 10
Salanne, Rotenberg, Naoi, Kaneko, Taberna, Grey, Dunn, Simon (b0030) 2016; 1
Wang, Li, Yang, Yang, Hu, Wei, Yu (b0165) 2018; 64
Kim, Young, Lee, Park, Shahabuddin, Yamauchi, Kim (b0040) 2016; 52
Hu, Peng, Tian, Wang, Kang, Zhang, Yue, Zhang, Ji, Wang (b0045) 2019; 496
Zhao, Ge, Zhao, Wu, Liu, Yan, Yang, Wang, Hu (b0105) 2020; 76
Kong, Lu, Zhang, Pu, Wang (b0220) 2015; 3
Zeng, Shi, Zheng, Yao, Wang, Xu, Lu (b0060) 2021; 135
Liu, Wang, Deng, Yang, Yu, Xu, Xu (b0160) 2016; 8
Naseri, Moradi, Hajati, Espinos, Kiani (b0195) 2019; 30
Huang, Mi, Liu, Li, Zhao, Zhang, He, Zhang (b0140) 2014; 269
Hu, Chai, Zhou, Ding, Lin, Jiang, Huo, Zheng, Zhao, Qu (b0095) 2021; 600
Hao, Li, Liu, Maleki Kheimeh Sari, Qin, Li (b0170) 2019; 55
Teng, Zhou, Wang, Che, Hu, Li, Wang (b0075) 2020; 390
Xiong, Waller, Ding, Chen, Rainwater, Zhao, Wang, Liu (b0230) 2015; 16
Liu, Zhang, Xie, Liu, Lu (b0055) 2020; 2
Li, Qu, Li, Wang, Zhu, Liu, Ge, Duan, Li, Bandari, Huang, Zhu, Schmidt (b0065) 2020; 7
Li, Liu, Zheng, Jiang, Zhou, Liu, Zhang, Zhang, Losic (b0035) 2019; 370
Liang, Lin, Jia, Chen, Qi, Cao, Lin, Fei, Feng (b0115) 2018; 378
El-Kady, Shao, Kaner (b0025) 2016; 1
Zhu, Liu, Liu, Shi (b0110) 2020; 383
Qi, Selvaraj, Jeong, Al-Kindy, Sillanpää, Kim, Tai (b0180) 2015; 5
Zhou, Li, Lu, Shen, Guan, Wang, Yin, Zhu, Lu, Ni, Cui, Yao, Yu (b0125) 2019; 10
Liu, Gu, Bian, Cheng, Peng, He (b0120) 2019; 4
Hou, Peng, Yu, Luo, Liu, Zhang, Wang, Guo, Kim, Luo (b0190) 2017; 3
Nai, Lou (b0010) 2019; 31
Kim, Lee, Maleski, Chae, Lee, Gogotsi, Ahn (b0135) 2021; 81
Wang, Li, Le, Zhu, Guo, Jiang, Zhang (b0090) 2021; 594
Sang, Bai, Zuo, Dong, Wang, Li, Zhao (b0080) 2021; 597
Zhang, Liu, Zeng, Tong, Lu (b0100) 2020; 4
Li, Cao, Qiao, Zhou, Yang, Xiao, Zhang (b0150) 2014; 2
Kim, Prasad Tiwari, Mukhiya, Kim (b0050) 2021; 600
Wang, Zhang, Guo, Liu, Wang, Guo (b0145) 2017; 27
Zhang, Xu, Zheng, Zhang, Hu, Xu (b0210) 2017; 12
Li, Luo, Zhang, Lu, Liu, Zeng, Wan, Han, Hu (b0085) 2021; 79
Liu, Yu, Guo, Ni, Yu, Xie, Wang, Ren, Qiu (b0020) 2021; 58
Tabassam, Nazir, Manzoor, Mehmood, Hassan, Bhatti (b0155) 2019; 6
Li, Xing, Huang, Li, Yu, Zhang, Losic (b0130) 2015; 3
Wang (10.1016/j.jcis.2021.06.131_b0145) 2017; 27
Hou (10.1016/j.jcis.2021.06.131_b0190) 2017; 3
Huang (10.1016/j.jcis.2021.06.131_b0140) 2014; 269
Zhou (10.1016/j.jcis.2021.06.131_b0125) 2019; 10
Li (10.1016/j.jcis.2021.06.131_b0070) 2019; 55
Liu (10.1016/j.jcis.2021.06.131_b0055) 2020; 2
Li (10.1016/j.jcis.2021.06.131_b0130) 2015; 3
Li (10.1016/j.jcis.2021.06.131_b0085) 2021; 79
Wang (10.1016/j.jcis.2021.06.131_b0165) 2018; 64
Zhu (10.1016/j.jcis.2021.06.131_b0110) 2020; 383
Teng (10.1016/j.jcis.2021.06.131_b0075) 2020; 390
Hu (10.1016/j.jcis.2021.06.131_b0095) 2021; 600
Liu (10.1016/j.jcis.2021.06.131_b0160) 2016; 8
Xiong (10.1016/j.jcis.2021.06.131_b0015) 2018; 8
Kim (10.1016/j.jcis.2021.06.131_b0040) 2016; 52
Kim (10.1016/j.jcis.2021.06.131_b0050) 2021; 600
Zeng (10.1016/j.jcis.2021.06.131_b0060) 2021; 135
Liu (10.1016/j.jcis.2021.06.131_b0020) 2021; 58
El-Kady (10.1016/j.jcis.2021.06.131_b0025) 2016; 1
Li (10.1016/j.jcis.2021.06.131_b0065) 2020; 7
Hu (10.1016/j.jcis.2021.06.131_b0045) 2019; 496
Lu (10.1016/j.jcis.2021.06.131_b0175) 2018; 341
Zhang (10.1016/j.jcis.2021.06.131_b0100) 2020; 4
Tabassam (10.1016/j.jcis.2021.06.131_b0155) 2019; 6
Zeng (10.1016/j.jcis.2021.06.131_b0225) 2016; 18
Salanne (10.1016/j.jcis.2021.06.131_b0030) 2016; 1
Wang (10.1016/j.jcis.2021.06.131_b0090) 2021; 594
Nai (10.1016/j.jcis.2021.06.131_b0010) 2019; 31
Kim (10.1016/j.jcis.2021.06.131_b0205) 2017; 16
Chen (10.1016/j.jcis.2021.06.131_b0185) 2017; 1
Zhang (10.1016/j.jcis.2021.06.131_b0210) 2017; 12
Xiong (10.1016/j.jcis.2021.06.131_b0230) 2015; 16
Zhao (10.1016/j.jcis.2021.06.131_b0105) 2020; 76
Wang (10.1016/j.jcis.2021.06.131_b0005) 2016; 45
Hao (10.1016/j.jcis.2021.06.131_b0170) 2019; 55
Sang (10.1016/j.jcis.2021.06.131_b0080) 2021; 597
Liu (10.1016/j.jcis.2021.06.131_b0120) 2019; 4
Qi (10.1016/j.jcis.2021.06.131_b0180) 2015; 5
Naseri (10.1016/j.jcis.2021.06.131_b0195) 2019; 30
Lu (10.1016/j.jcis.2021.06.131_b0200) 2019; 7
Liang (10.1016/j.jcis.2021.06.131_b0115) 2018; 378
Li (10.1016/j.jcis.2021.06.131_b0150) 2014; 2
Kong (10.1016/j.jcis.2021.06.131_b0220) 2015; 3
Kim (10.1016/j.jcis.2021.06.131_b0135) 2021; 81
Li (10.1016/j.jcis.2021.06.131_b0035) 2019; 370
Chen (10.1016/j.jcis.2021.06.131_b0215) 2018; 10
References_xml – volume: 55
  start-page: 13773
  year: 2019
  end-page: 13776
  ident: b0070
  article-title: Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors
  publication-title: Chem. Commun.
– volume: 378
  start-page: 248
  year: 2018
  end-page: 254
  ident: b0115
  article-title: Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor
  publication-title: J. Power Sources
– volume: 10
  start-page: 2482
  year: 2019
  ident: b0125
  article-title: Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries
  publication-title: Nat. Commun.
– volume: 135
  year: 2021
  ident: b0060
  article-title: Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors
  publication-title: Mater. Res. Bull.
– volume: 1
  year: 2016
  ident: b0025
  article-title: Graphene for batteries, supercapacitors and beyond
  publication-title: Nat. Rev. Mater.
– volume: 269
  start-page: 760
  year: 2014
  end-page: 767
  ident: b0140
  article-title: Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes
  publication-title: J. Power Sources
– volume: 31
  year: 2019
  ident: b0010
  article-title: Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1702630
  year: 2018
  ident: b0015
  article-title: Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  ident: b0030
  article-title: Efficient storage mechanisms for building better supercapacitors
  publication-title: Nat. Energy
– volume: 7
  start-page: 2001561
  year: 2020
  ident: b0065
  article-title: Stamping Fabrication of Flexible Planar Micro-Supercapacitors Using Porous Graphene Inks
  publication-title: Adv. Sci.
– volume: 8
  start-page: 14160
  year: 2016
  end-page: 14168
  ident: b0160
  article-title: Fe
  publication-title: ACS Appl. Mater. Inter.
– volume: 45
  start-page: 5925
  year: 2016
  end-page: 5950
  ident: b0005
  article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications
  publication-title: Chem. Soc. Rev.
– volume: 594
  start-page: 812
  year: 2021
  end-page: 823
  ident: b0090
  article-title: Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors
  publication-title: J. Colloid Interf. Sci.
– volume: 496
  year: 2019
  ident: b0045
  article-title: A general strategy for in-situ fabrication of uniform carbon nanotubes on three-dimensional carbon architectures for electrochemical application
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 9618
  year: 2015
  end-page: 9620
  ident: b0180
  article-title: Hierarchical-like multipod γ-MnS microcrystals: solvothermal synthesis, characterization and growth mechanism
  publication-title: RSC Adv.
– volume: 4
  start-page: 1900823
  year: 2020
  ident: b0100
  article-title: Oxygen Defects in Promoting the Electrochemical Performance of Metal Oxides for Supercapacitors: Recent Advances and Challenges
  publication-title: Small Methods
– volume: 4
  start-page: 2964
  year: 2019
  end-page: 2972
  ident: b0120
  article-title: Thermal Properties and Enhanced Thermal Conductivity of Capric Acid/Diatomite/Carbon Nanotube Composites as Form-Stable Phase Change Materials for Thermal Energy Storage
  publication-title: ACS Omega
– volume: 383
  year: 2020
  ident: b0110
  article-title: Construction of porous interface on CNTs@NiCo-LDH core-shell nanotubearrays for supercapacitor applications
  publication-title: Chem. Eng. J.
– volume: 79
  year: 2021
  ident: b0085
  article-title: High-performance asymmetric Mn(OH)
  publication-title: Nano Energy
– volume: 6
  year: 2019
  ident: b0155
  article-title: Raman spectroscopy of nominally Ni-doped LiMn
  publication-title: Mater. Res. Express
– volume: 1
  start-page: 1700047
  year: 2017
  ident: b0185
  article-title: Flue-Gas-Derived Sulfur-Doped Carbon with Enhanced Capacitance
  publication-title: Adv. Sustain. Syst.
– volume: 3
  start-page: 7855
  year: 2015
  end-page: 7861
  ident: b0130
  article-title: MnO
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 521
  year: 2020
  end-page: 539
  ident: b0055
  article-title: Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors
  publication-title: Carbon Energy
– volume: 370
  start-page: 136
  year: 2019
  end-page: 147
  ident: b0035
  article-title: Tuning MnO
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 4051
  year: 2018
  end-page: 4060
  ident: b0215
  article-title: Bimetallic CoNiS
  publication-title: Nanoscale
– volume: 18
  start-page: 2363
  year: 2016
  end-page: 2374
  ident: b0225
  article-title: NiCo
  publication-title: CrystEngComm
– volume: 597
  start-page: 289
  year: 2021
  end-page: 296
  ident: b0080
  article-title: Transfunctionalization of graphite fluoride engineered polyaniline grafting to graphene for High-Performance flexible supercapacitors
  publication-title: J Colloid Interf. Sci.
– volume: 2
  start-page: 6540
  year: 2014
  end-page: 6548
  ident: b0150
  article-title: Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 76
  year: 2020
  ident: b0105
  article-title: Sub-nanometer-scale fine regulation of interlayer distance in Ni–Co layered double hydroxides leading to high-rate supercapacitors
  publication-title: Nano Energy
– volume: 12
  start-page: 412
  year: 2017
  ident: b0210
  article-title: NiCo
  publication-title: Nanoscale Res. Lett.
– volume: 390
  year: 2020
  ident: b0075
  article-title: Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor
  publication-title: Chem. Eng. J.
– volume: 81
  year: 2021
  ident: b0135
  article-title: Microsupercapacitor with a 500 nm gap between MXene/CNT electrodes
  publication-title: Nano Energy
– volume: 27
  start-page: 1703390
  year: 2017
  ident: b0145
  article-title: In Situ Construction of 3D Interconnected FeS@Fe
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 5333
  year: 2019
  end-page: 5343
  ident: b0200
  article-title: Construction of mesoporous Cu-doped Co9S8 rectangular nanotube arrays for high energy density all-solid-state asymmetric supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 71
  year: 2015
  end-page: 80
  ident: b0230
  article-title: Controlled synthesis of NiCo
  publication-title: Nano Energy
– volume: 600
  start-page: 256
  year: 2021
  end-page: 263
  ident: b0095
  article-title: Electrochemical Anion-Exchanged synthesis of porous Ni/Co hydroxide nanosheets for Ultrahigh-Capacitance supercapacitors
  publication-title: J. Colloid Interf. Sci.
– volume: 58
  start-page: 94
  year: 2021
  end-page: 109
  ident: b0020
  article-title: Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies
  publication-title: J. Energy Chem.
– volume: 3
  start-page: 12452
  year: 2015
  end-page: 12460
  ident: b0220
  article-title: Homogeneous core–shell NiCo
  publication-title: J. Mater. Chem. A
– volume: 600
  start-page: 740
  year: 2021
  end-page: 751
  ident: b0050
  article-title: Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors
  publication-title: J. Colloid Interf. Sci.
– volume: 64
  start-page: 360
  year: 2018
  end-page: 371
  ident: b0165
  article-title: In Situ Synthesis of Diatomite-Carbon Nanotube Composite Adsorbent and Its Adsorption Characteristics for Phenolic Compounds
  publication-title: J. Chem. Eng. Data
– volume: 55
  start-page: 9076
  year: 2019
  end-page: 9079
  ident: b0170
  article-title: Asynchronous reactions of “self-matrix” dual-crystals effectively accommodating volume expansion/shrinkage of electrode materials with enhanced sodium storage
  publication-title: Chem. Commun.
– volume: 16
  start-page: 454
  year: 2017
  end-page: 460
  ident: b0205
  article-title: Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO
  publication-title: Nat. Mater.
– volume: 341
  start-page: 10
  year: 2018
  end-page: 19
  ident: b0175
  article-title: NiS and MoS
  publication-title: J. Hazard. Mater.
– volume: 3
  start-page: 551
  year: 2017
  end-page: 559
  ident: b0190
  article-title: Facile Synthesis of Holothurian-Like γ-MnS/Carbon Nanotube Nanocomposites for Flexible All-Solid-State Supercapacitors
  publication-title: ChemNanoMat
– volume: 52
  start-page: 13016
  year: 2016
  end-page: 13019
  ident: b0040
  article-title: CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors
  publication-title: Chem. Commun.
– volume: 30
  start-page: 4499
  year: 2019
  end-page: 4510
  ident: b0195
  article-title: Comparative studies on electrochemical energy storage of NiFe-S nanoflake and NiFe-OH towards aqueous supercapacitor
  publication-title: Journal of Materials Science: Materials in Electronics
– volume: 10
  start-page: 2482
  issue: 1
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0125
  article-title: Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10473-w
– volume: 64
  start-page: 360
  issue: 1
  year: 2018
  ident: 10.1016/j.jcis.2021.06.131_b0165
  article-title: In Situ Synthesis of Diatomite-Carbon Nanotube Composite Adsorbent and Its Adsorption Characteristics for Phenolic Compounds
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.8b00874
– volume: 58
  start-page: 94
  year: 2021
  ident: 10.1016/j.jcis.2021.06.131_b0020
  article-title: Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.09.041
– volume: 10
  start-page: 4051
  issue: 8
  year: 2018
  ident: 10.1016/j.jcis.2021.06.131_b0215
  article-title: Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors
  publication-title: Nanoscale
  doi: 10.1039/C7NR08284C
– volume: 45
  start-page: 5925
  issue: 21
  year: 2016
  ident: 10.1016/j.jcis.2021.06.131_b0005
  article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00580A
– volume: 30
  start-page: 4499
  issue: 5
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0195
  article-title: Comparative studies on electrochemical energy storage of NiFe-S nanoflake and NiFe-OH towards aqueous supercapacitor
  publication-title: Journal of Materials Science: Materials in Electronics
– volume: 7
  start-page: 5333
  issue: 10
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0200
  article-title: Construction of mesoporous Cu-doped Co9S8 rectangular nanotube arrays for high energy density all-solid-state asymmetric supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10998B
– volume: 3
  start-page: 12452
  issue: 23
  year: 2015
  ident: 10.1016/j.jcis.2021.06.131_b0220
  article-title: Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02432C
– volume: 600
  start-page: 740
  year: 2021
  ident: 10.1016/j.jcis.2021.06.131_b0050
  article-title: Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.05.090
– volume: 597
  start-page: 289
  year: 2021
  ident: 10.1016/j.jcis.2021.06.131_b0080
  article-title: Transfunctionalization of graphite fluoride engineered polyaniline grafting to graphene for High-Performance flexible supercapacitors
  publication-title: J Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.03.169
– volume: 16
  start-page: 454
  issue: 4
  year: 2017
  ident: 10.1016/j.jcis.2021.06.131_b0205
  article-title: Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4810
– volume: 341
  start-page: 10
  year: 2018
  ident: 10.1016/j.jcis.2021.06.131_b0175
  article-title: NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.07.004
– volume: 8
  start-page: 1702630
  issue: 14
  year: 2018
  ident: 10.1016/j.jcis.2021.06.131_b0015
  article-title: Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702630
– volume: 7
  start-page: 2001561
  issue: 19
  year: 2020
  ident: 10.1016/j.jcis.2021.06.131_b0065
  article-title: Stamping Fabrication of Flexible Planar Micro-Supercapacitors Using Porous Graphene Inks
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001561
– volume: 4
  start-page: 1900823
  issue: 6
  year: 2020
  ident: 10.1016/j.jcis.2021.06.131_b0100
  article-title: Oxygen Defects in Promoting the Electrochemical Performance of Metal Oxides for Supercapacitors: Recent Advances and Challenges
  publication-title: Small Methods
  doi: 10.1002/smtd.201900823
– volume: 18
  start-page: 2363
  issue: 13
  year: 2016
  ident: 10.1016/j.jcis.2021.06.131_b0225
  article-title: NiCo2S4 nanoparticles//activated balsam pear pulp for asymmetric hybrid capacitors
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00319B
– volume: 390
  year: 2020
  ident: 10.1016/j.jcis.2021.06.131_b0075
  article-title: Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124569
– volume: 5
  start-page: 9618
  issue: 13
  year: 2015
  ident: 10.1016/j.jcis.2021.06.131_b0180
  article-title: Hierarchical-like multipod γ-MnS microcrystals: solvothermal synthesis, characterization and growth mechanism
  publication-title: RSC Adv.
  doi: 10.1039/C4RA16038J
– volume: 1
  start-page: 1700047
  issue: 6
  year: 2017
  ident: 10.1016/j.jcis.2021.06.131_b0185
  article-title: Flue-Gas-Derived Sulfur-Doped Carbon with Enhanced Capacitance
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201700047
– volume: 2
  start-page: 521
  issue: 4
  year: 2020
  ident: 10.1016/j.jcis.2021.06.131_b0055
  article-title: Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors
  publication-title: Carbon Energy
  doi: 10.1002/cey2.69
– volume: 55
  start-page: 9076
  issue: 62
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0170
  article-title: Asynchronous reactions of “self-matrix” dual-crystals effectively accommodating volume expansion/shrinkage of electrode materials with enhanced sodium storage
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03406D
– volume: 31
  issue: 38
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0010
  article-title: Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706825
– volume: 496
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0045
  article-title: A general strategy for in-situ fabrication of uniform carbon nanotubes on three-dimensional carbon architectures for electrochemical application
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143704
– volume: 600
  start-page: 256
  year: 2021
  ident: 10.1016/j.jcis.2021.06.131_b0095
  article-title: Electrochemical Anion-Exchanged synthesis of porous Ni/Co hydroxide nanosheets for Ultrahigh-Capacitance supercapacitors
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.05.039
– volume: 1
  issue: 7
  year: 2016
  ident: 10.1016/j.jcis.2021.06.131_b0025
  article-title: Graphene for batteries, supercapacitors and beyond
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.33
– volume: 370
  start-page: 136
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0035
  article-title: Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.190
– volume: 52
  start-page: 13016
  issue: 88
  year: 2016
  ident: 10.1016/j.jcis.2021.06.131_b0040
  article-title: CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC07705F
– volume: 81
  year: 2021
  ident: 10.1016/j.jcis.2021.06.131_b0135
  article-title: Microsupercapacitor with a 500 nm gap between MXene/CNT electrodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105616
– volume: 2
  start-page: 6540
  issue: 18
  year: 2014
  ident: 10.1016/j.jcis.2021.06.131_b0150
  article-title: Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA15373H
– volume: 4
  start-page: 2964
  issue: 2
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0120
  article-title: Thermal Properties and Enhanced Thermal Conductivity of Capric Acid/Diatomite/Carbon Nanotube Composites as Form-Stable Phase Change Materials for Thermal Energy Storage
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03130
– volume: 378
  start-page: 248
  year: 2018
  ident: 10.1016/j.jcis.2021.06.131_b0115
  article-title: Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.12.046
– volume: 269
  start-page: 760
  year: 2014
  ident: 10.1016/j.jcis.2021.06.131_b0140
  article-title: Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.031
– volume: 12
  start-page: 412
  issue: 1
  year: 2017
  ident: 10.1016/j.jcis.2021.06.131_b0210
  article-title: NiCo2S4@NiMoO4 Core-Shell Heterostructure Nanotube Arrays Grown on Ni Foam as a Binder-Free Electrode Displayed High Electrochemical Performance with High Capacity
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2180-z
– volume: 3
  start-page: 551
  issue: 8
  year: 2017
  ident: 10.1016/j.jcis.2021.06.131_b0190
  article-title: Facile Synthesis of Holothurian-Like γ-MnS/Carbon Nanotube Nanocomposites for Flexible All-Solid-State Supercapacitors
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201700109
– volume: 594
  start-page: 812
  year: 2021
  ident: 10.1016/j.jcis.2021.06.131_b0090
  article-title: Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.03.075
– volume: 3
  start-page: 7855
  issue: 15
  year: 2015
  ident: 10.1016/j.jcis.2021.06.131_b0130
  article-title: MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00634A
– volume: 79
  year: 2021
  ident: 10.1016/j.jcis.2021.06.131_b0085
  article-title: High-performance asymmetric Mn(OH)2//Fe2O3 supercapacitor achieved by enhancing and matching respective properties of cathode and anode materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105410
– volume: 76
  year: 2020
  ident: 10.1016/j.jcis.2021.06.131_b0105
  article-title: Sub-nanometer-scale fine regulation of interlayer distance in Ni–Co layered double hydroxides leading to high-rate supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105026
– volume: 27
  start-page: 1703390
  issue: 41
  year: 2017
  ident: 10.1016/j.jcis.2021.06.131_b0145
  article-title: In Situ Construction of 3D Interconnected FeS@Fe3C@Graphitic Carbon Networks for High-Performance Sodium-Ion Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703390
– volume: 135
  year: 2021
  ident: 10.1016/j.jcis.2021.06.131_b0060
  article-title: Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2020.111134
– volume: 55
  start-page: 13773
  issue: 91
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0070
  article-title: Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06791D
– volume: 8
  start-page: 14160
  issue: 22
  year: 2016
  ident: 10.1016/j.jcis.2021.06.131_b0160
  article-title: Fe3O4@Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.6b02944
– volume: 16
  start-page: 71
  year: 2015
  ident: 10.1016/j.jcis.2021.06.131_b0230
  article-title: Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.06.018
– volume: 1
  issue: 6
  year: 2016
  ident: 10.1016/j.jcis.2021.06.131_b0030
  article-title: Efficient storage mechanisms for building better supercapacitors
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.70
– volume: 6
  issue: 11
  year: 2019
  ident: 10.1016/j.jcis.2021.06.131_b0155
  article-title: Raman spectroscopy of nominally Ni-doped LiMn2−xNixO4 (0 ≤ x ≤0.20)
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab3970
– volume: 383
  year: 2020
  ident: 10.1016/j.jcis.2021.06.131_b0110
  article-title: Construction of porous interface on CNTs@NiCo-LDH core-shell nanotubearrays for supercapacitor applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123150
SSID ssj0011559
Score 2.6619637
Snippet [Display omitted] Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in...
Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 799
SubjectTerms capacitance
Carbon nanotubes
diatomaceous earth
Diatomite
electrochemical capacitors
electrochemistry
electrodes
energy density
graphene
hot water treatment
nanosheets
Nickel iron sulfide
sulfides
Sulfurization process
Supercapacitor
synergism
vapors
Title A multidimensional rational design of nickel–iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors
URI https://dx.doi.org/10.1016/j.jcis.2021.06.131
https://www.proquest.com/docview/2550267127
https://www.proquest.com/docview/2661007455
Volume 603
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHAoHRBcQCxS5Um9VII5fe12tQNtW3VORuFl-SkFLstpHJS4V_wHxB_kleBIHtUjdA0db4yTy2DPj-JtvEPoSJLU5DYPMGM4yVjCRae9lJoN2nPlCcg_ZyD8nYnzNvt_wmw006nJhAFaZbH9r0xtrnXou0mxezMoScnzjbpPAPpMD7RkwfjImYZWf_3mFeRC4dmthHiQD6ZQ402K8bm0JlN0FAQ5PQsn_nNMbM934nqs9tJuCRjxsv-sj2vBVD30YdbXaemjnL1rBffQ0xA1O0AFzf8u6gefppx92DWQD1wFXZdzB0-eHR8h0w4vVNJTOY105bPXcxK5KV_VyZfwCxwZU9KghGQr_LjVe3EPOYEPyjO9ql2qA4UXLdXuPYygcnzjzcxudsS2hpM8Bur66_DUaZ6n8QmapEMt4sgzSGS6cJFxboPozngdiiBDOAk3QwOp42iiYlNJqlxOTWzYAicBywxw9RJtVXfkjhJm3A861cbTwjOXWFF57GnKuJTWB8j4i3bwrm7jJoUTGVHUgtFsFulKgK5ULFXXVR19fx8xaZo610rxTp_pnfanoOtaO-9zpXkWdwm2Krny9ikLxbFcISQq5RiZGPxCkcX78zvefoG1otQCaU7S5nK_8pxgGLc1Zs87P0Nbw24_x5AWNfQzM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFwQFBALU8jcUNR4_i119WKakvbPbVSb5afUqolWe0DqTf-A-IP8kvwJE4FSOyBY5xxEnnsmXH8zTcAH6JirmRxXFgreMErLgsTgipUNF7wUCkRMBv5ci5n1_zzjbjZg-mQC4Owymz7e5veWevccpJH82RZ15jjm1abQvaZEmnP2APYR3YqMYL9ydn5bH5_mIAnbz3SgxbYIefO9DCvW1cja3dFkcaTMvov__SXpe7cz-kTeJzjRjLpP-0p7IXmEA6mQ7m2Q3j0G7PgM_gxIR1U0CN5f0-8QVb5vx_xHWqDtJE0dVrEi5_fvmOyG1lvF7H2gZjGE2dWNjU1pmk3WxvWJF1gUY8W86HI19qQ9R2mDXY8z-RL63MZMLLu6W7vSIqG0xOXYeWSP3Y1VvV5Dtenn66msyJXYCgck3KTNpdReSukV1QYh2x_NohILZXSO2QKGjuTNhwVV0o540tqS8fHKBF5ablnL2DUtE04AsKDGwthrGdV4Lx0tgomsFgKo5iNTBwDHcZdu0xPjlUyFnrAod1q1JVGXelS6qSrY_h432fZk3PslBaDOvUfU0wn77Gz3_tB9zrpFA9UTBPabRJK27tKKlqpHTIpAMI4TYiX__n-d3Awu7q80Bdn8_NX8BDv9Hia1zDarLbhTYqKNvZtnvW_AKxjD30
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multidimensional+rational+design+of+nickel%E2%80%93iron+sulfide+and+carbon+nanotubes+on+diatomite+via+synergistic+modulation+strategy+for+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Kailin&rft.au=Hu%2C+Zhufeng&rft.au=Zhao%2C+Renjun&rft.au=Zhou%2C+Jinfei&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=603&rft.spage=799&rft.epage=809&rft_id=info:doi/10.1016%2Fj.jcis.2021.06.131&rft.externalDocID=S0021979721010043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon