A multidimensional rational design of nickel–iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors
[Display omitted] Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nicke...
Saved in:
Published in | Journal of colloid and interface science Vol. 603; pp. 799 - 809 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel–iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g−1 at a current density of 1 A g−1, a good rate capability of 68.4% retention at 10 A g−1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g−1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg−1 and a maximum power density of 9375 W kg−1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors. |
---|---|
AbstractList | Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel-iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g-1 at a current density of 1 A g-1, a good rate capability of 68.4% retention at 10 A g-1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g-1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg-1 and a maximum power density of 9375 W kg-1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel-iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g-1 at a current density of 1 A g-1, a good rate capability of 68.4% retention at 10 A g-1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g-1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg-1 and a maximum power density of 9375 W kg-1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors. Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel–iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g⁻¹ at a current density of 1 A g⁻¹, a good rate capability of 68.4% retention at 10 A g⁻¹, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g⁻¹. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg⁻¹ and a maximum power density of 9375 W kg⁻¹ at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors. [Display omitted] Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel–iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g−1 at a current density of 1 A g−1, a good rate capability of 68.4% retention at 10 A g−1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g−1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg−1 and a maximum power density of 9375 W kg−1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors. |
Author | Hu, Zhufeng Dong, Biqin Zhao, Renjun Li, Kailin Liu, Xiaoying Sun, Qing Li, Haiyan Zhang, Yuxin Ji, Junyi Zhou, Jinfei Jing, Chuan Rao, Jinsong Yao, Kexin |
Author_xml | – sequence: 1 givenname: Kailin surname: Li fullname: Li, Kailin organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China – sequence: 2 givenname: Zhufeng surname: Hu fullname: Hu, Zhufeng organization: School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China – sequence: 3 givenname: Renjun surname: Zhao fullname: Zhao, Renjun organization: School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China – sequence: 4 givenname: Jinfei surname: Zhou fullname: Zhou, Jinfei organization: Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China – sequence: 5 givenname: Chuan surname: Jing fullname: Jing, Chuan organization: College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China – sequence: 6 givenname: Qing surname: Sun fullname: Sun, Qing organization: Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China – sequence: 7 givenname: Jinsong surname: Rao fullname: Rao, Jinsong organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China – sequence: 8 givenname: Kexin orcidid: 0000-0002-5686-6909 surname: Yao fullname: Yao, Kexin organization: Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China – sequence: 9 givenname: Biqin surname: Dong fullname: Dong, Biqin organization: School of Civil Engineering, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, The Key Laboratory on Durability of Civil Engineering in Shenzhen, Shenzhen University, Shenzhen 518060, PR China – sequence: 10 givenname: Xiaoying surname: Liu fullname: Liu, Xiaoying organization: Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 11 givenname: Haiyan surname: Li fullname: Li, Haiyan organization: School of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China – sequence: 12 givenname: Yuxin surname: Zhang fullname: Zhang, Yuxin email: zhangyuxin@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China – sequence: 13 givenname: Junyi surname: Ji fullname: Ji, Junyi email: junyiji@scu.edu.cn organization: School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China |
BookMark | eNqFkcFu1DAURSNUJKaFH2DlJZuE5yS2JxKbqoKCVKkbWFuO_TJ6Q2IPtlNpdvwD6g_yJXg6rFiUlZ_97rmW7r2sLnzwWFVvOTQcuHy_b_aWUtNCyxuQDe_4i2rDYRC14tBdVBsom3pQg3pVXaa0B-BciGFTPV6zZZ0zOVrQJwrezCyafB4cJtp5FibmyX7H-ffPXxSDZ2mdJ3LIjHfMmjiWJ298yOuIiZWLI5PDQhnZAxmWjh7jjlImy5bg1vnJnqVc_sHdkU0hFscDRmsOxlIOMb2uXk5mTvjm73lVffv08evN5_ru_vbLzfVdbTspc93DpNwopFNcGAudGEYUEx-5lM4CKNhao8S27ZVS1jjgI9h-e1JMPYy9666qd2ffQww_VkxZL5QszrPxGNakWyl58emF-L9UCGil4q0q0vYstTGkFHHSh0iLiUfNQZ_q0nt9qkuf6tIgdamrQNt_oBLFU1IlJ5qfRz-cUSxRPRBGnSyht-goos3aBXoO_wOaA7fO |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_156950 crossref_primary_10_1016_j_est_2022_103961 crossref_primary_10_1016_j_jallcom_2022_164323 crossref_primary_10_1016_j_jallcom_2024_174491 crossref_primary_10_1016_j_jallcom_2021_163359 crossref_primary_10_1016_j_jallcom_2022_167955 crossref_primary_10_1016_j_cej_2023_146638 crossref_primary_10_1016_j_jallcom_2022_165257 crossref_primary_10_1016_j_est_2025_116129 crossref_primary_10_1021_acsanm_1c02068 crossref_primary_10_1021_acs_energyfuels_4c03681 crossref_primary_10_1039_D2QM01346K crossref_primary_10_1080_09593330_2022_2044920 crossref_primary_10_1016_j_est_2022_104939 crossref_primary_10_1016_j_est_2023_106672 crossref_primary_10_1016_j_jcis_2022_09_062 crossref_primary_10_1039_D4NA00680A crossref_primary_10_1007_s10008_023_05413_0 crossref_primary_10_1039_D4NJ00500G crossref_primary_10_1016_j_cej_2023_146351 crossref_primary_10_1016_j_est_2022_105623 crossref_primary_10_1016_j_est_2022_106559 crossref_primary_10_1016_j_est_2022_104940 crossref_primary_10_1016_j_est_2022_105994 crossref_primary_10_1016_j_est_2022_106202 crossref_primary_10_1016_j_est_2022_105991 crossref_primary_10_1016_j_est_2022_106322 crossref_primary_10_1016_j_jallcom_2022_166996 crossref_primary_10_1039_D3PY00708A crossref_primary_10_1016_j_est_2022_105592 crossref_primary_10_1002_smll_202311504 crossref_primary_10_1007_s10854_024_13084_4 crossref_primary_10_1016_j_jcis_2022_08_143 crossref_primary_10_1007_s11581_024_05825_6 crossref_primary_10_3390_ijms24010504 crossref_primary_10_3389_fchem_2022_870541 crossref_primary_10_3390_ijms23169362 crossref_primary_10_1016_j_mtcomm_2022_104665 crossref_primary_10_1016_j_apsusc_2022_155568 crossref_primary_10_2139_ssrn_4174968 crossref_primary_10_1002_adfm_202111565 crossref_primary_10_1002_er_7744 crossref_primary_10_1016_j_cej_2023_145124 crossref_primary_10_1016_j_est_2023_107948 crossref_primary_10_1080_00222348_2023_2223849 crossref_primary_10_1016_j_compositesb_2022_110409 crossref_primary_10_1039_D2NJ04980E crossref_primary_10_1007_s11581_023_05012_z crossref_primary_10_1039_D1DT04145B crossref_primary_10_1016_j_jallcom_2022_166682 crossref_primary_10_1007_s10854_023_09892_9 crossref_primary_10_1016_j_est_2022_105728 crossref_primary_10_1016_j_ijhydene_2024_04_097 crossref_primary_10_1016_j_matchemphys_2023_128195 crossref_primary_10_1007_s11431_021_1998_y crossref_primary_10_1016_j_est_2022_104637 crossref_primary_10_1016_j_jcis_2022_07_154 crossref_primary_10_1016_j_est_2022_105722 crossref_primary_10_1038_s41427_022_00450_z crossref_primary_10_1021_acs_energyfuels_2c03467 crossref_primary_10_1016_j_est_2022_105730 crossref_primary_10_1021_acsanm_3c05360 crossref_primary_10_1016_j_jallcom_2021_161821 crossref_primary_10_1016_j_compositesb_2022_110497 crossref_primary_10_1016_j_nxmate_2024_100430 crossref_primary_10_1002_aoc_6699 crossref_primary_10_1016_j_colsurfa_2022_130294 crossref_primary_10_1016_j_jallcom_2022_164271 crossref_primary_10_1039_D1CE01736E crossref_primary_10_1016_j_microc_2022_107891 crossref_primary_10_1016_j_mtphys_2022_100730 crossref_primary_10_1016_j_rechem_2023_100877 crossref_primary_10_1039_D2CE00928E crossref_primary_10_2139_ssrn_4140204 crossref_primary_10_1016_j_jssc_2024_125060 crossref_primary_10_1007_s11581_021_04335_z crossref_primary_10_1016_j_jallcom_2022_164270 crossref_primary_10_1039_D2TA00102K crossref_primary_10_1016_j_jallcom_2023_170842 crossref_primary_10_1016_j_jcis_2023_02_045 crossref_primary_10_1039_D4NJ01886A crossref_primary_10_1039_D4TA02690J crossref_primary_10_1016_j_fuel_2022_123933 crossref_primary_10_1016_j_jpowsour_2023_232705 crossref_primary_10_2139_ssrn_4184106 crossref_primary_10_1002_slct_202200016 crossref_primary_10_1016_j_jallcom_2023_170284 crossref_primary_10_1016_j_seppur_2024_127549 crossref_primary_10_1016_j_est_2022_105269 crossref_primary_10_1016_j_est_2022_106117 crossref_primary_10_1016_j_est_2022_105666 crossref_primary_10_1016_j_est_2022_105300 crossref_primary_10_1016_j_est_2022_104176 crossref_primary_10_1016_j_ijhydene_2022_11_061 crossref_primary_10_1007_s11581_023_05202_9 crossref_primary_10_1016_j_rineng_2023_101738 crossref_primary_10_2139_ssrn_4003184 crossref_primary_10_1016_j_inoche_2022_109753 crossref_primary_10_1016_j_est_2022_105949 crossref_primary_10_1039_D2TA08817G crossref_primary_10_1016_j_est_2022_105943 crossref_primary_10_1016_j_mseb_2024_117419 crossref_primary_10_1038_s41598_023_33200_4 crossref_primary_10_1021_acsomega_3c04750 crossref_primary_10_1016_j_est_2021_103870 crossref_primary_10_1016_j_est_2022_105435 crossref_primary_10_1021_acs_energyfuels_1c04183 crossref_primary_10_1016_j_ijhydene_2024_07_111 crossref_primary_10_1088_1361_6528_ad06d3 crossref_primary_10_1016_j_est_2022_105271 crossref_primary_10_1016_j_jcis_2023_06_175 crossref_primary_10_1007_s11051_022_05507_2 crossref_primary_10_1016_j_cej_2021_134163 crossref_primary_10_1007_s11581_023_04987_z crossref_primary_10_2139_ssrn_4134147 crossref_primary_10_1021_acsnano_2c01451 crossref_primary_10_1016_j_cej_2022_140223 crossref_primary_10_1016_j_est_2023_106982 crossref_primary_10_1021_acs_energyfuels_3c04598 crossref_primary_10_1016_j_est_2022_105837 crossref_primary_10_1021_acs_inorgchem_4c04944 crossref_primary_10_1038_s41598_022_05167_1 crossref_primary_10_1007_s11581_021_04403_4 crossref_primary_10_1016_j_est_2022_105489 crossref_primary_10_1016_j_inoche_2024_113086 crossref_primary_10_1016_j_est_2022_105763 crossref_primary_10_1016_j_jiec_2024_11_012 crossref_primary_10_1016_j_est_2022_106056 crossref_primary_10_1007_s12209_024_00419_9 crossref_primary_10_1016_j_est_2022_106171 crossref_primary_10_1016_j_jallcom_2024_175605 crossref_primary_10_1016_j_mtcomm_2022_104033 crossref_primary_10_1002_er_8585 crossref_primary_10_1016_j_cej_2021_132575 crossref_primary_10_1021_acs_inorgchem_3c03041 crossref_primary_10_1016_j_est_2022_105008 crossref_primary_10_1016_j_cej_2023_144068 crossref_primary_10_1016_j_est_2022_105896 crossref_primary_10_1016_j_est_2022_106106 crossref_primary_10_1016_j_jcis_2022_03_023 crossref_primary_10_1039_D4RA01320D crossref_primary_10_1016_j_est_2022_106105 crossref_primary_10_1016_j_est_2022_105377 crossref_primary_10_1016_j_est_2022_105378 crossref_primary_10_1016_j_jpcs_2023_111473 crossref_primary_10_1016_j_carbon_2022_03_054 crossref_primary_10_1016_j_nxmate_2024_100199 crossref_primary_10_1016_j_jallcom_2022_168279 crossref_primary_10_1016_j_ceramint_2022_10_179 crossref_primary_10_1016_j_est_2022_105094 crossref_primary_10_2139_ssrn_4194502 crossref_primary_10_1016_j_carbon_2022_07_032 crossref_primary_10_5004_dwt_2023_29906 crossref_primary_10_1016_j_cej_2022_135337 crossref_primary_10_1016_j_est_2022_104727 crossref_primary_10_1016_j_est_2022_104849 crossref_primary_10_1016_j_est_2022_104847 crossref_primary_10_1016_j_est_2022_104968 crossref_primary_10_1016_j_est_2022_104845 crossref_primary_10_1016_j_colsurfa_2023_131803 |
Cites_doi | 10.1038/s41467-019-10473-w 10.1021/acs.jced.8b00874 10.1016/j.jechem.2020.09.041 10.1039/C7NR08284C 10.1039/C5CS00580A 10.1039/C8TA10998B 10.1039/C5TA02432C 10.1016/j.jcis.2021.05.090 10.1016/j.jcis.2021.03.169 10.1038/nmat4810 10.1016/j.jhazmat.2017.07.004 10.1002/aenm.201702630 10.1002/advs.202001561 10.1002/smtd.201900823 10.1039/C6CE00319B 10.1016/j.cej.2020.124569 10.1039/C4RA16038J 10.1002/adsu.201700047 10.1002/cey2.69 10.1039/C9CC03406D 10.1002/adma.201706825 10.1016/j.apsusc.2019.143704 10.1016/j.jcis.2021.05.039 10.1038/natrevmats.2016.33 10.1016/j.cej.2019.03.190 10.1039/C6CC07705F 10.1016/j.nanoen.2020.105616 10.1039/C3TA15373H 10.1021/acsomega.8b03130 10.1016/j.jpowsour.2017.12.046 10.1016/j.jpowsour.2014.07.031 10.1186/s11671-017-2180-z 10.1002/cnma.201700109 10.1016/j.jcis.2021.03.075 10.1039/C5TA00634A 10.1016/j.nanoen.2020.105410 10.1016/j.nanoen.2020.105026 10.1002/adfm.201703390 10.1016/j.materresbull.2020.111134 10.1039/C9CC06791D 10.1021/acsami.6b02944 10.1016/j.nanoen.2015.06.018 10.1038/nenergy.2016.70 10.1088/2053-1591/ab3970 10.1016/j.cej.2019.123150 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.06.131 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 809 |
ExternalDocumentID | 10_1016_j_jcis_2021_06_131 S0021979721010043 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-40f7db56d715ac0359be5f1b166dc00708ca75824777cad01b0c485f1bf40b4d3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Thu Jul 10 23:29:02 EDT 2025 Fri Jul 11 14:25:01 EDT 2025 Tue Jul 01 01:19:07 EDT 2025 Thu Apr 24 22:59:13 EDT 2025 Fri Feb 23 02:40:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon nanotubes Supercapacitor Diatomite Nickel iron sulfide Sulfurization process |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-40f7db56d715ac0359be5f1b166dc00708ca75824777cad01b0c485f1bf40b4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5686-6909 |
PQID | 2550267127 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2661007455 proquest_miscellaneous_2550267127 crossref_primary_10_1016_j_jcis_2021_06_131 crossref_citationtrail_10_1016_j_jcis_2021_06_131 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_06_131 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Xiong, Tan, Lu, Lee, Xue (b0015) 2018; 8 Li, Feng, Jing, Chen, Liu, Zhang, Zhou (b0070) 2019; 55 Zeng, Wang, Zhu, Xiao, Li, Zhu (b0225) 2016; 18 Kim, Cook, Lin, Ko, Tolbert, Ozolins, Dunn (b0205) 2017; 16 Chen, Deng, Du, Mao, Zhu, Xiao, Wang (b0185) 2017; 1 Lu, Wang, Zhang, Xu, Wang, Lv, Zheng, Wu (b0175) 2018; 341 Wang, Song, Xia (b0005) 2016; 45 Lu, Yuan, Xu, Ning, Zhong, Zhang, Hu (b0200) 2019; 7 Chen, Miao, Quan, Cai, Zhan (b0215) 2018; 10 Salanne, Rotenberg, Naoi, Kaneko, Taberna, Grey, Dunn, Simon (b0030) 2016; 1 Wang, Li, Yang, Yang, Hu, Wei, Yu (b0165) 2018; 64 Kim, Young, Lee, Park, Shahabuddin, Yamauchi, Kim (b0040) 2016; 52 Hu, Peng, Tian, Wang, Kang, Zhang, Yue, Zhang, Ji, Wang (b0045) 2019; 496 Zhao, Ge, Zhao, Wu, Liu, Yan, Yang, Wang, Hu (b0105) 2020; 76 Kong, Lu, Zhang, Pu, Wang (b0220) 2015; 3 Zeng, Shi, Zheng, Yao, Wang, Xu, Lu (b0060) 2021; 135 Liu, Wang, Deng, Yang, Yu, Xu, Xu (b0160) 2016; 8 Naseri, Moradi, Hajati, Espinos, Kiani (b0195) 2019; 30 Huang, Mi, Liu, Li, Zhao, Zhang, He, Zhang (b0140) 2014; 269 Hu, Chai, Zhou, Ding, Lin, Jiang, Huo, Zheng, Zhao, Qu (b0095) 2021; 600 Hao, Li, Liu, Maleki Kheimeh Sari, Qin, Li (b0170) 2019; 55 Teng, Zhou, Wang, Che, Hu, Li, Wang (b0075) 2020; 390 Xiong, Waller, Ding, Chen, Rainwater, Zhao, Wang, Liu (b0230) 2015; 16 Liu, Zhang, Xie, Liu, Lu (b0055) 2020; 2 Li, Qu, Li, Wang, Zhu, Liu, Ge, Duan, Li, Bandari, Huang, Zhu, Schmidt (b0065) 2020; 7 Li, Liu, Zheng, Jiang, Zhou, Liu, Zhang, Zhang, Losic (b0035) 2019; 370 Liang, Lin, Jia, Chen, Qi, Cao, Lin, Fei, Feng (b0115) 2018; 378 El-Kady, Shao, Kaner (b0025) 2016; 1 Zhu, Liu, Liu, Shi (b0110) 2020; 383 Qi, Selvaraj, Jeong, Al-Kindy, Sillanpää, Kim, Tai (b0180) 2015; 5 Zhou, Li, Lu, Shen, Guan, Wang, Yin, Zhu, Lu, Ni, Cui, Yao, Yu (b0125) 2019; 10 Liu, Gu, Bian, Cheng, Peng, He (b0120) 2019; 4 Hou, Peng, Yu, Luo, Liu, Zhang, Wang, Guo, Kim, Luo (b0190) 2017; 3 Nai, Lou (b0010) 2019; 31 Kim, Lee, Maleski, Chae, Lee, Gogotsi, Ahn (b0135) 2021; 81 Wang, Li, Le, Zhu, Guo, Jiang, Zhang (b0090) 2021; 594 Sang, Bai, Zuo, Dong, Wang, Li, Zhao (b0080) 2021; 597 Zhang, Liu, Zeng, Tong, Lu (b0100) 2020; 4 Li, Cao, Qiao, Zhou, Yang, Xiao, Zhang (b0150) 2014; 2 Kim, Prasad Tiwari, Mukhiya, Kim (b0050) 2021; 600 Wang, Zhang, Guo, Liu, Wang, Guo (b0145) 2017; 27 Zhang, Xu, Zheng, Zhang, Hu, Xu (b0210) 2017; 12 Li, Luo, Zhang, Lu, Liu, Zeng, Wan, Han, Hu (b0085) 2021; 79 Liu, Yu, Guo, Ni, Yu, Xie, Wang, Ren, Qiu (b0020) 2021; 58 Tabassam, Nazir, Manzoor, Mehmood, Hassan, Bhatti (b0155) 2019; 6 Li, Xing, Huang, Li, Yu, Zhang, Losic (b0130) 2015; 3 Wang (10.1016/j.jcis.2021.06.131_b0145) 2017; 27 Hou (10.1016/j.jcis.2021.06.131_b0190) 2017; 3 Huang (10.1016/j.jcis.2021.06.131_b0140) 2014; 269 Zhou (10.1016/j.jcis.2021.06.131_b0125) 2019; 10 Li (10.1016/j.jcis.2021.06.131_b0070) 2019; 55 Liu (10.1016/j.jcis.2021.06.131_b0055) 2020; 2 Li (10.1016/j.jcis.2021.06.131_b0130) 2015; 3 Li (10.1016/j.jcis.2021.06.131_b0085) 2021; 79 Wang (10.1016/j.jcis.2021.06.131_b0165) 2018; 64 Zhu (10.1016/j.jcis.2021.06.131_b0110) 2020; 383 Teng (10.1016/j.jcis.2021.06.131_b0075) 2020; 390 Hu (10.1016/j.jcis.2021.06.131_b0095) 2021; 600 Liu (10.1016/j.jcis.2021.06.131_b0160) 2016; 8 Xiong (10.1016/j.jcis.2021.06.131_b0015) 2018; 8 Kim (10.1016/j.jcis.2021.06.131_b0040) 2016; 52 Kim (10.1016/j.jcis.2021.06.131_b0050) 2021; 600 Zeng (10.1016/j.jcis.2021.06.131_b0060) 2021; 135 Liu (10.1016/j.jcis.2021.06.131_b0020) 2021; 58 El-Kady (10.1016/j.jcis.2021.06.131_b0025) 2016; 1 Li (10.1016/j.jcis.2021.06.131_b0065) 2020; 7 Hu (10.1016/j.jcis.2021.06.131_b0045) 2019; 496 Lu (10.1016/j.jcis.2021.06.131_b0175) 2018; 341 Zhang (10.1016/j.jcis.2021.06.131_b0100) 2020; 4 Tabassam (10.1016/j.jcis.2021.06.131_b0155) 2019; 6 Zeng (10.1016/j.jcis.2021.06.131_b0225) 2016; 18 Salanne (10.1016/j.jcis.2021.06.131_b0030) 2016; 1 Wang (10.1016/j.jcis.2021.06.131_b0090) 2021; 594 Nai (10.1016/j.jcis.2021.06.131_b0010) 2019; 31 Kim (10.1016/j.jcis.2021.06.131_b0205) 2017; 16 Chen (10.1016/j.jcis.2021.06.131_b0185) 2017; 1 Zhang (10.1016/j.jcis.2021.06.131_b0210) 2017; 12 Xiong (10.1016/j.jcis.2021.06.131_b0230) 2015; 16 Zhao (10.1016/j.jcis.2021.06.131_b0105) 2020; 76 Wang (10.1016/j.jcis.2021.06.131_b0005) 2016; 45 Hao (10.1016/j.jcis.2021.06.131_b0170) 2019; 55 Sang (10.1016/j.jcis.2021.06.131_b0080) 2021; 597 Liu (10.1016/j.jcis.2021.06.131_b0120) 2019; 4 Qi (10.1016/j.jcis.2021.06.131_b0180) 2015; 5 Naseri (10.1016/j.jcis.2021.06.131_b0195) 2019; 30 Lu (10.1016/j.jcis.2021.06.131_b0200) 2019; 7 Liang (10.1016/j.jcis.2021.06.131_b0115) 2018; 378 Li (10.1016/j.jcis.2021.06.131_b0150) 2014; 2 Kong (10.1016/j.jcis.2021.06.131_b0220) 2015; 3 Kim (10.1016/j.jcis.2021.06.131_b0135) 2021; 81 Li (10.1016/j.jcis.2021.06.131_b0035) 2019; 370 Chen (10.1016/j.jcis.2021.06.131_b0215) 2018; 10 |
References_xml | – volume: 55 start-page: 13773 year: 2019 end-page: 13776 ident: b0070 article-title: Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors publication-title: Chem. Commun. – volume: 378 start-page: 248 year: 2018 end-page: 254 ident: b0115 article-title: Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor publication-title: J. Power Sources – volume: 10 start-page: 2482 year: 2019 ident: b0125 article-title: Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries publication-title: Nat. Commun. – volume: 135 year: 2021 ident: b0060 article-title: Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors publication-title: Mater. Res. Bull. – volume: 1 year: 2016 ident: b0025 article-title: Graphene for batteries, supercapacitors and beyond publication-title: Nat. Rev. Mater. – volume: 269 start-page: 760 year: 2014 end-page: 767 ident: b0140 article-title: Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes publication-title: J. Power Sources – volume: 31 year: 2019 ident: b0010 article-title: Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion publication-title: Adv. Mater. – volume: 8 start-page: 1702630 year: 2018 ident: b0015 article-title: Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor publication-title: Adv. Energy Mater. – volume: 1 year: 2016 ident: b0030 article-title: Efficient storage mechanisms for building better supercapacitors publication-title: Nat. Energy – volume: 7 start-page: 2001561 year: 2020 ident: b0065 article-title: Stamping Fabrication of Flexible Planar Micro-Supercapacitors Using Porous Graphene Inks publication-title: Adv. Sci. – volume: 8 start-page: 14160 year: 2016 end-page: 14168 ident: b0160 article-title: Fe publication-title: ACS Appl. Mater. Inter. – volume: 45 start-page: 5925 year: 2016 end-page: 5950 ident: b0005 article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications publication-title: Chem. Soc. Rev. – volume: 594 start-page: 812 year: 2021 end-page: 823 ident: b0090 article-title: Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors publication-title: J. Colloid Interf. Sci. – volume: 496 year: 2019 ident: b0045 article-title: A general strategy for in-situ fabrication of uniform carbon nanotubes on three-dimensional carbon architectures for electrochemical application publication-title: Appl. Surf. Sci. – volume: 5 start-page: 9618 year: 2015 end-page: 9620 ident: b0180 article-title: Hierarchical-like multipod γ-MnS microcrystals: solvothermal synthesis, characterization and growth mechanism publication-title: RSC Adv. – volume: 4 start-page: 1900823 year: 2020 ident: b0100 article-title: Oxygen Defects in Promoting the Electrochemical Performance of Metal Oxides for Supercapacitors: Recent Advances and Challenges publication-title: Small Methods – volume: 4 start-page: 2964 year: 2019 end-page: 2972 ident: b0120 article-title: Thermal Properties and Enhanced Thermal Conductivity of Capric Acid/Diatomite/Carbon Nanotube Composites as Form-Stable Phase Change Materials for Thermal Energy Storage publication-title: ACS Omega – volume: 383 year: 2020 ident: b0110 article-title: Construction of porous interface on CNTs@NiCo-LDH core-shell nanotubearrays for supercapacitor applications publication-title: Chem. Eng. J. – volume: 79 year: 2021 ident: b0085 article-title: High-performance asymmetric Mn(OH) publication-title: Nano Energy – volume: 6 year: 2019 ident: b0155 article-title: Raman spectroscopy of nominally Ni-doped LiMn publication-title: Mater. Res. Express – volume: 1 start-page: 1700047 year: 2017 ident: b0185 article-title: Flue-Gas-Derived Sulfur-Doped Carbon with Enhanced Capacitance publication-title: Adv. Sustain. Syst. – volume: 3 start-page: 7855 year: 2015 end-page: 7861 ident: b0130 article-title: MnO publication-title: J. Mater. Chem. A – volume: 2 start-page: 521 year: 2020 end-page: 539 ident: b0055 article-title: Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors publication-title: Carbon Energy – volume: 370 start-page: 136 year: 2019 end-page: 147 ident: b0035 article-title: Tuning MnO publication-title: Chem. Eng. J. – volume: 10 start-page: 4051 year: 2018 end-page: 4060 ident: b0215 article-title: Bimetallic CoNiS publication-title: Nanoscale – volume: 18 start-page: 2363 year: 2016 end-page: 2374 ident: b0225 article-title: NiCo publication-title: CrystEngComm – volume: 597 start-page: 289 year: 2021 end-page: 296 ident: b0080 article-title: Transfunctionalization of graphite fluoride engineered polyaniline grafting to graphene for High-Performance flexible supercapacitors publication-title: J Colloid Interf. Sci. – volume: 2 start-page: 6540 year: 2014 end-page: 6548 ident: b0150 article-title: Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors publication-title: J. Mater. Chem. A – volume: 76 year: 2020 ident: b0105 article-title: Sub-nanometer-scale fine regulation of interlayer distance in Ni–Co layered double hydroxides leading to high-rate supercapacitors publication-title: Nano Energy – volume: 12 start-page: 412 year: 2017 ident: b0210 article-title: NiCo publication-title: Nanoscale Res. Lett. – volume: 390 year: 2020 ident: b0075 article-title: Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor publication-title: Chem. Eng. J. – volume: 81 year: 2021 ident: b0135 article-title: Microsupercapacitor with a 500 nm gap between MXene/CNT electrodes publication-title: Nano Energy – volume: 27 start-page: 1703390 year: 2017 ident: b0145 article-title: In Situ Construction of 3D Interconnected FeS@Fe publication-title: Adv. Funct. Mater. – volume: 7 start-page: 5333 year: 2019 end-page: 5343 ident: b0200 article-title: Construction of mesoporous Cu-doped Co9S8 rectangular nanotube arrays for high energy density all-solid-state asymmetric supercapacitors publication-title: J. Mater. Chem. A – volume: 16 start-page: 71 year: 2015 end-page: 80 ident: b0230 article-title: Controlled synthesis of NiCo publication-title: Nano Energy – volume: 600 start-page: 256 year: 2021 end-page: 263 ident: b0095 article-title: Electrochemical Anion-Exchanged synthesis of porous Ni/Co hydroxide nanosheets for Ultrahigh-Capacitance supercapacitors publication-title: J. Colloid Interf. Sci. – volume: 58 start-page: 94 year: 2021 end-page: 109 ident: b0020 article-title: Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies publication-title: J. Energy Chem. – volume: 3 start-page: 12452 year: 2015 end-page: 12460 ident: b0220 article-title: Homogeneous core–shell NiCo publication-title: J. Mater. Chem. A – volume: 600 start-page: 740 year: 2021 end-page: 751 ident: b0050 article-title: Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors publication-title: J. Colloid Interf. Sci. – volume: 64 start-page: 360 year: 2018 end-page: 371 ident: b0165 article-title: In Situ Synthesis of Diatomite-Carbon Nanotube Composite Adsorbent and Its Adsorption Characteristics for Phenolic Compounds publication-title: J. Chem. Eng. Data – volume: 55 start-page: 9076 year: 2019 end-page: 9079 ident: b0170 article-title: Asynchronous reactions of “self-matrix” dual-crystals effectively accommodating volume expansion/shrinkage of electrode materials with enhanced sodium storage publication-title: Chem. Commun. – volume: 16 start-page: 454 year: 2017 end-page: 460 ident: b0205 article-title: Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO publication-title: Nat. Mater. – volume: 341 start-page: 10 year: 2018 end-page: 19 ident: b0175 article-title: NiS and MoS publication-title: J. Hazard. Mater. – volume: 3 start-page: 551 year: 2017 end-page: 559 ident: b0190 article-title: Facile Synthesis of Holothurian-Like γ-MnS/Carbon Nanotube Nanocomposites for Flexible All-Solid-State Supercapacitors publication-title: ChemNanoMat – volume: 52 start-page: 13016 year: 2016 end-page: 13019 ident: b0040 article-title: CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors publication-title: Chem. Commun. – volume: 30 start-page: 4499 year: 2019 end-page: 4510 ident: b0195 article-title: Comparative studies on electrochemical energy storage of NiFe-S nanoflake and NiFe-OH towards aqueous supercapacitor publication-title: Journal of Materials Science: Materials in Electronics – volume: 10 start-page: 2482 issue: 1 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0125 article-title: Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries publication-title: Nat. Commun. doi: 10.1038/s41467-019-10473-w – volume: 64 start-page: 360 issue: 1 year: 2018 ident: 10.1016/j.jcis.2021.06.131_b0165 article-title: In Situ Synthesis of Diatomite-Carbon Nanotube Composite Adsorbent and Its Adsorption Characteristics for Phenolic Compounds publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.8b00874 – volume: 58 start-page: 94 year: 2021 ident: 10.1016/j.jcis.2021.06.131_b0020 article-title: Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.09.041 – volume: 10 start-page: 4051 issue: 8 year: 2018 ident: 10.1016/j.jcis.2021.06.131_b0215 article-title: Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors publication-title: Nanoscale doi: 10.1039/C7NR08284C – volume: 45 start-page: 5925 issue: 21 year: 2016 ident: 10.1016/j.jcis.2021.06.131_b0005 article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00580A – volume: 30 start-page: 4499 issue: 5 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0195 article-title: Comparative studies on electrochemical energy storage of NiFe-S nanoflake and NiFe-OH towards aqueous supercapacitor publication-title: Journal of Materials Science: Materials in Electronics – volume: 7 start-page: 5333 issue: 10 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0200 article-title: Construction of mesoporous Cu-doped Co9S8 rectangular nanotube arrays for high energy density all-solid-state asymmetric supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10998B – volume: 3 start-page: 12452 issue: 23 year: 2015 ident: 10.1016/j.jcis.2021.06.131_b0220 article-title: Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02432C – volume: 600 start-page: 740 year: 2021 ident: 10.1016/j.jcis.2021.06.131_b0050 article-title: Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.05.090 – volume: 597 start-page: 289 year: 2021 ident: 10.1016/j.jcis.2021.06.131_b0080 article-title: Transfunctionalization of graphite fluoride engineered polyaniline grafting to graphene for High-Performance flexible supercapacitors publication-title: J Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.03.169 – volume: 16 start-page: 454 issue: 4 year: 2017 ident: 10.1016/j.jcis.2021.06.131_b0205 article-title: Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x publication-title: Nat. Mater. doi: 10.1038/nmat4810 – volume: 341 start-page: 10 year: 2018 ident: 10.1016/j.jcis.2021.06.131_b0175 article-title: NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.07.004 – volume: 8 start-page: 1702630 issue: 14 year: 2018 ident: 10.1016/j.jcis.2021.06.131_b0015 article-title: Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702630 – volume: 7 start-page: 2001561 issue: 19 year: 2020 ident: 10.1016/j.jcis.2021.06.131_b0065 article-title: Stamping Fabrication of Flexible Planar Micro-Supercapacitors Using Porous Graphene Inks publication-title: Adv. Sci. doi: 10.1002/advs.202001561 – volume: 4 start-page: 1900823 issue: 6 year: 2020 ident: 10.1016/j.jcis.2021.06.131_b0100 article-title: Oxygen Defects in Promoting the Electrochemical Performance of Metal Oxides for Supercapacitors: Recent Advances and Challenges publication-title: Small Methods doi: 10.1002/smtd.201900823 – volume: 18 start-page: 2363 issue: 13 year: 2016 ident: 10.1016/j.jcis.2021.06.131_b0225 article-title: NiCo2S4 nanoparticles//activated balsam pear pulp for asymmetric hybrid capacitors publication-title: CrystEngComm doi: 10.1039/C6CE00319B – volume: 390 year: 2020 ident: 10.1016/j.jcis.2021.06.131_b0075 article-title: Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124569 – volume: 5 start-page: 9618 issue: 13 year: 2015 ident: 10.1016/j.jcis.2021.06.131_b0180 article-title: Hierarchical-like multipod γ-MnS microcrystals: solvothermal synthesis, characterization and growth mechanism publication-title: RSC Adv. doi: 10.1039/C4RA16038J – volume: 1 start-page: 1700047 issue: 6 year: 2017 ident: 10.1016/j.jcis.2021.06.131_b0185 article-title: Flue-Gas-Derived Sulfur-Doped Carbon with Enhanced Capacitance publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201700047 – volume: 2 start-page: 521 issue: 4 year: 2020 ident: 10.1016/j.jcis.2021.06.131_b0055 article-title: Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors publication-title: Carbon Energy doi: 10.1002/cey2.69 – volume: 55 start-page: 9076 issue: 62 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0170 article-title: Asynchronous reactions of “self-matrix” dual-crystals effectively accommodating volume expansion/shrinkage of electrode materials with enhanced sodium storage publication-title: Chem. Commun. doi: 10.1039/C9CC03406D – volume: 31 issue: 38 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0010 article-title: Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion publication-title: Adv. Mater. doi: 10.1002/adma.201706825 – volume: 496 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0045 article-title: A general strategy for in-situ fabrication of uniform carbon nanotubes on three-dimensional carbon architectures for electrochemical application publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143704 – volume: 600 start-page: 256 year: 2021 ident: 10.1016/j.jcis.2021.06.131_b0095 article-title: Electrochemical Anion-Exchanged synthesis of porous Ni/Co hydroxide nanosheets for Ultrahigh-Capacitance supercapacitors publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.05.039 – volume: 1 issue: 7 year: 2016 ident: 10.1016/j.jcis.2021.06.131_b0025 article-title: Graphene for batteries, supercapacitors and beyond publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.33 – volume: 370 start-page: 136 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0035 article-title: Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.190 – volume: 52 start-page: 13016 issue: 88 year: 2016 ident: 10.1016/j.jcis.2021.06.131_b0040 article-title: CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors publication-title: Chem. Commun. doi: 10.1039/C6CC07705F – volume: 81 year: 2021 ident: 10.1016/j.jcis.2021.06.131_b0135 article-title: Microsupercapacitor with a 500 nm gap between MXene/CNT electrodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105616 – volume: 2 start-page: 6540 issue: 18 year: 2014 ident: 10.1016/j.jcis.2021.06.131_b0150 article-title: Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C3TA15373H – volume: 4 start-page: 2964 issue: 2 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0120 article-title: Thermal Properties and Enhanced Thermal Conductivity of Capric Acid/Diatomite/Carbon Nanotube Composites as Form-Stable Phase Change Materials for Thermal Energy Storage publication-title: ACS Omega doi: 10.1021/acsomega.8b03130 – volume: 378 start-page: 248 year: 2018 ident: 10.1016/j.jcis.2021.06.131_b0115 article-title: Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.046 – volume: 269 start-page: 760 year: 2014 ident: 10.1016/j.jcis.2021.06.131_b0140 article-title: Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.031 – volume: 12 start-page: 412 issue: 1 year: 2017 ident: 10.1016/j.jcis.2021.06.131_b0210 article-title: NiCo2S4@NiMoO4 Core-Shell Heterostructure Nanotube Arrays Grown on Ni Foam as a Binder-Free Electrode Displayed High Electrochemical Performance with High Capacity publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2180-z – volume: 3 start-page: 551 issue: 8 year: 2017 ident: 10.1016/j.jcis.2021.06.131_b0190 article-title: Facile Synthesis of Holothurian-Like γ-MnS/Carbon Nanotube Nanocomposites for Flexible All-Solid-State Supercapacitors publication-title: ChemNanoMat doi: 10.1002/cnma.201700109 – volume: 594 start-page: 812 year: 2021 ident: 10.1016/j.jcis.2021.06.131_b0090 article-title: Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.03.075 – volume: 3 start-page: 7855 issue: 15 year: 2015 ident: 10.1016/j.jcis.2021.06.131_b0130 article-title: MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00634A – volume: 79 year: 2021 ident: 10.1016/j.jcis.2021.06.131_b0085 article-title: High-performance asymmetric Mn(OH)2//Fe2O3 supercapacitor achieved by enhancing and matching respective properties of cathode and anode materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105410 – volume: 76 year: 2020 ident: 10.1016/j.jcis.2021.06.131_b0105 article-title: Sub-nanometer-scale fine regulation of interlayer distance in Ni–Co layered double hydroxides leading to high-rate supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105026 – volume: 27 start-page: 1703390 issue: 41 year: 2017 ident: 10.1016/j.jcis.2021.06.131_b0145 article-title: In Situ Construction of 3D Interconnected FeS@Fe3C@Graphitic Carbon Networks for High-Performance Sodium-Ion Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703390 – volume: 135 year: 2021 ident: 10.1016/j.jcis.2021.06.131_b0060 article-title: Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2020.111134 – volume: 55 start-page: 13773 issue: 91 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0070 article-title: Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors publication-title: Chem. Commun. doi: 10.1039/C9CC06791D – volume: 8 start-page: 14160 issue: 22 year: 2016 ident: 10.1016/j.jcis.2021.06.131_b0160 article-title: Fe3O4@Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.6b02944 – volume: 16 start-page: 71 year: 2015 ident: 10.1016/j.jcis.2021.06.131_b0230 article-title: Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.06.018 – volume: 1 issue: 6 year: 2016 ident: 10.1016/j.jcis.2021.06.131_b0030 article-title: Efficient storage mechanisms for building better supercapacitors publication-title: Nat. Energy doi: 10.1038/nenergy.2016.70 – volume: 6 issue: 11 year: 2019 ident: 10.1016/j.jcis.2021.06.131_b0155 article-title: Raman spectroscopy of nominally Ni-doped LiMn2−xNixO4 (0 ≤ x ≤0.20) publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab3970 – volume: 383 year: 2020 ident: 10.1016/j.jcis.2021.06.131_b0110 article-title: Construction of porous interface on CNTs@NiCo-LDH core-shell nanotubearrays for supercapacitor applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123150 |
SSID | ssj0011559 |
Score | 2.6619637 |
Snippet | [Display omitted]
Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in... Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 799 |
SubjectTerms | capacitance Carbon nanotubes diatomaceous earth Diatomite electrochemical capacitors electrochemistry electrodes energy density graphene hot water treatment nanosheets Nickel iron sulfide sulfides Sulfurization process Supercapacitor synergism vapors |
Title | A multidimensional rational design of nickel–iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors |
URI | https://dx.doi.org/10.1016/j.jcis.2021.06.131 https://www.proquest.com/docview/2550267127 https://www.proquest.com/docview/2661007455 |
Volume | 603 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHAoHRBcQCxS5Um9VII5fe12tQNtW3VORuFl-SkFLstpHJS4V_wHxB_kleBIHtUjdA0db4yTy2DPj-JtvEPoSJLU5DYPMGM4yVjCRae9lJoN2nPlCcg_ZyD8nYnzNvt_wmw006nJhAFaZbH9r0xtrnXou0mxezMoScnzjbpPAPpMD7RkwfjImYZWf_3mFeRC4dmthHiQD6ZQ402K8bm0JlN0FAQ5PQsn_nNMbM934nqs9tJuCRjxsv-sj2vBVD30YdbXaemjnL1rBffQ0xA1O0AFzf8u6gefppx92DWQD1wFXZdzB0-eHR8h0w4vVNJTOY105bPXcxK5KV_VyZfwCxwZU9KghGQr_LjVe3EPOYEPyjO9ql2qA4UXLdXuPYygcnzjzcxudsS2hpM8Bur66_DUaZ6n8QmapEMt4sgzSGS6cJFxboPozngdiiBDOAk3QwOp42iiYlNJqlxOTWzYAicBywxw9RJtVXfkjhJm3A861cbTwjOXWFF57GnKuJTWB8j4i3bwrm7jJoUTGVHUgtFsFulKgK5ULFXXVR19fx8xaZo610rxTp_pnfanoOtaO-9zpXkWdwm2Krny9ikLxbFcISQq5RiZGPxCkcX78zvefoG1otQCaU7S5nK_8pxgGLc1Zs87P0Nbw24_x5AWNfQzM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFwQFBALU8jcUNR4_i119WKakvbPbVSb5afUqolWe0DqTf-A-IP8kvwJE4FSOyBY5xxEnnsmXH8zTcAH6JirmRxXFgreMErLgsTgipUNF7wUCkRMBv5ci5n1_zzjbjZg-mQC4Owymz7e5veWevccpJH82RZ15jjm1abQvaZEmnP2APYR3YqMYL9ydn5bH5_mIAnbz3SgxbYIefO9DCvW1cja3dFkcaTMvov__SXpe7cz-kTeJzjRjLpP-0p7IXmEA6mQ7m2Q3j0G7PgM_gxIR1U0CN5f0-8QVb5vx_xHWqDtJE0dVrEi5_fvmOyG1lvF7H2gZjGE2dWNjU1pmk3WxvWJF1gUY8W86HI19qQ9R2mDXY8z-RL63MZMLLu6W7vSIqG0xOXYeWSP3Y1VvV5Dtenn66msyJXYCgck3KTNpdReSukV1QYh2x_NohILZXSO2QKGjuTNhwVV0o540tqS8fHKBF5ablnL2DUtE04AsKDGwthrGdV4Lx0tgomsFgKo5iNTBwDHcZdu0xPjlUyFnrAod1q1JVGXelS6qSrY_h432fZk3PslBaDOvUfU0wn77Gz3_tB9zrpFA9UTBPabRJK27tKKlqpHTIpAMI4TYiX__n-d3Awu7q80Bdn8_NX8BDv9Hia1zDarLbhTYqKNvZtnvW_AKxjD30 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multidimensional+rational+design+of+nickel%E2%80%93iron+sulfide+and+carbon+nanotubes+on+diatomite+via+synergistic+modulation+strategy+for+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Kailin&rft.au=Hu%2C+Zhufeng&rft.au=Zhao%2C+Renjun&rft.au=Zhou%2C+Jinfei&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=603&rft.spage=799&rft.epage=809&rft_id=info:doi/10.1016%2Fj.jcis.2021.06.131&rft.externalDocID=S0021979721010043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |