Pattern Mixture Models for Quantifying Missing Data Uncertainty in Longitudinal Invariance Testing
Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time points (e.g., 3), but high rates of dropout. Although such applications routinely assume that the dropout mechanism is ignorable, this assump...
Saved in:
Published in | Structural equation modeling Vol. 24; no. 2; pp. 283 - 300 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hove
Routledge
04.03.2017
Psychology Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time points (e.g., 3), but high rates of dropout. Although such applications routinely assume that the dropout mechanism is ignorable, this assumption may not always be reasonable. In the presence of nonignorable dropout, fitting a conventional longitudinal factor model (LFM) to assess longitudinal measurement invariance can yield misleading inferences about the level of invariance, along with biased parameter estimates. In this article we develop pattern mixture longitudinal factor models (PM-LFMs) for quantifying uncertainty in longitudinal invariance testing due to an unknown, but potentially nonignorable, dropout mechanism. PM-LFMs are a kind of multiple group model wherein observed missingness patterns define groups, LFM parameters can differ across these pattern-groups subject to identification constraints, and marginal inference about longitudinal invariance is obtained by pooling across pattern-groups. When dropout is nonignorable, we demonstrate via simulation that conventional LFMs can indicate longitudinal noninvariance, even when invariance holds in the overall population; certain PM-LFMs are shown to ameliorate this problem. On the other hand, when dropout is ignorable, PM-LFMs are shown to provide results comparable to conventional LFMs. Additionally, we contrast PM-LFMs to a latent mixture approach for accommodating nonignorable dropout-wherein missingness patterns can differ across latent groups. In an empirical example assessing longitudinal invariance of a harsh parenting construct, we employ PM-LFMs to assess sensitivity of results to assumptions about nonignorable missingness. Software implementation and recommendations for practice are discussed. |
---|---|
AbstractList | Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time points (e.g., 3), but high rates of dropout. Although such applications routinely assume that the dropout mechanism is ignorable, this assumption may not always be reasonable. In the presence of nonignorable dropout, fitting a conventional longitudinal factor model (LFM) to assess longitudinal measurement invariance can yield misleading inferences about the level of invariance, along with biased parameter estimates. In this article we develop pattern mixture longitudinal factor models (PM-LFMs) for quantifying uncertainty in longitudinal invariance testing due to an unknown, but potentially nonignorable, dropout mechanism. PM-LFMs are a kind of multiple group model wherein observed missingness patterns define groups, LFM parameters can differ across these pattern-groups subject to identification constraints, and marginal inference about longitudinal invariance is obtained by pooling across pattern-groups. When dropout is nonignorable, we demonstrate via simulation that conventional LFMs can indicate longitudinal noninvariance, even when invariance holds in the overall population; certain PM-LFMs are shown to ameliorate this problem. On the other hand, when dropout is ignorable, PM-LFMs are shown to provide results comparable to conventional LFMs. Additionally, we contrast PM-LFMs to a latent mixture approach for accommodating nonignorable dropout-wherein missingness patterns can differ across latent groups. In an empirical example assessing longitudinal invariance of a harsh parenting construct, we employ PM-LFMs to assess sensitivity of results to assumptions about nonignorable missingness. Software implementation and recommendations for practice are discussed. |
Author | Sterba, Sonya K. |
Author_xml | – sequence: 1 givenname: Sonya K. surname: Sterba fullname: Sterba, Sonya K. email: sonya.sterba@vanderbilt.edu organization: Vanderbilt University |
BookMark | eNqFkEtrWzEQRkVIIM-fEBB0fR09rIfppiVt2oBDEojXYnwlGZkbKZV00_jfR8bupotkNcPM-UbinKLDmKJD6JKSCSWaXFGiiBCUThihckKZIJKLA3RCBWedJkQdtr4x3RY6RqelrAmhmjJ9gpYPUKvLEd-Ftzpmh--SdUPBPmX8OEKswW9CXLV1Kdv6AyrgRexdrhBi3eAQ8TzFVaijDREGfBtfIQdoBH5ypbbMOTryMBR3sa9naHHz8-n6dze__3V7_X3e9VzK2vG-F6SHGbNcOr5UHDz1S0UZWzLrBQNtmVR02qZs6vsZsVp5Kzmxog2nnp-hL7u7Lzn9GdvbZp3G3P5UDJ1xJbWaavUhpaXQQihFGyV2VJ9TKdl585LDM-SNocRspZt_0s1WutlLb7mv_-X6UKGGFGuGMHya_rZLh9j8P8PflAdrKmyGlH1uTkMx_OMT73IQnH0 |
CitedBy_id | crossref_primary_10_1002_mpr_1749 crossref_primary_10_1111_hiv_12682 crossref_primary_10_1111_ldrp_12319 crossref_primary_10_1080_10705511_2024_2410240 crossref_primary_10_1080_13645579_2022_2049509 crossref_primary_10_1007_s11136_018_1861_0 crossref_primary_10_1111_sltb_12870 |
Cites_doi | 10.1093/geronb/58.3.P166 10.3945/ajcn.115.121848 10.1111/j.1750-8606.2009.00110.x 10.1177/1073191115608941 10.1080/10705510701575438 10.1136/bmjopen-2015-008431 10.1177/0962280206075310 10.1037/a0033804 10.1111/j.0006-341X.2004.00173.x 10.1177/0962280206075311 10.1016/j.janxdis.2011.12.009 10.1080/03610739208253916 10.1214/07-STS253 10.1177/0734282914538802 10.3102/1076998612458701 10.1207/s15328007sem1104_7 10.1080/01621459.1995.10476615 10.1191/147108201128195 10.1037/a0022634 10.1002/0471721182 10.1037/met0000080 10.1037/1082-989X.2.1.64 10.1146/annurev.psych.51.1.201 10.1002/9780470510445 10.1080/10705511.2014.936082 10.1016/j.archger.2011.10.007 10.1201/9781420011579.ch18 10.1080/15427600902911163 10.1016/j.jclinepi.2015.03.011 10.1002/9781119013563 10.1207/s15327906mbr4104_4 10.2307/271029 10.1177/109442810031002 10.2307/2531905 10.1002/pst.1547 10.1007/BF02294825 10.1056/NEJMsr1203730 10.1080/10705511.2014.936086 10.1037/0033-2909.105.3.456 10.1080/01621459.1977.10480610 10.1080/00273171.2013.827564 10.2307/2986113 10.1093/biomet/63.3.581 10.1111/j.1541-0420.2008.01021.x 10.1002/sim.6890 10.1891/1061-3749.23.2.302 10.1007/s11136-008-9389-3 10.1037/a0028002 10.1037/a0022640 10.3102/1076998610375836 10.1037/10099-013 10.1007/s11336-015-9442-4 10.1080/00273170701710338 10.1016/j.intell.2014.08.010 10.1037/10409-007 10.1007/BF02291366 10.1037/met0000075 10.1002/9781118762516 10.1080/10409280701681870 10.1016/S0149-7189(96)00027-4 10.1080/10705511.2015.1065414 10.1037/1082-989X.7.2.147 10.1177/0049124111400041 10.1177/0734282913481651 10.1002/bimj.201400034 10.1080/10705511.2014.882666 10.1007/s11136-015-1206-1 10.1002/sim.1702 10.1080/01621459.1993.10594302 10.1093/biostatistics/3.2.245 10.1002/(ISSN)1097-0258 |
ContentType | Journal Article |
Copyright | Copyright © Taylor & Francis Group, LLC |
Copyright_xml | – notice: Copyright © Taylor & Francis Group, LLC |
DBID | AAYXX CITATION AHOVV |
DOI | 10.1080/10705511.2016.1250635 |
DatabaseName | CrossRef Education Research Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Psychology |
EISSN | 1532-8007 |
EndPage | 300 |
ExternalDocumentID | 4312741671 10_1080_10705511_2016_1250635 1250635 |
Genre | Article |
GroupedDBID | .7I .QK 0BK 0R~ 123 4.4 5VS AAGZJ AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABLJU ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEISY AEKEX AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AGDLA AGMYJ AGRBW AIJEM AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CJ0 CQ1 DGFLZ DKSSO EBS EJD E~B E~C F5P FXNIP G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM M4Z NA5 NW- O9- P2P PQQKQ RIG RNANH ROSJB RSYQP S-F STATR TBQAZ TDBHL TEH TFH TFL TFW TNTFI TRJHH TUROJ UT5 UT9 VAE XSW ~01 ~S~ AAGDL AAHIA AAYXX AEFOU AFRVT AIYEW CITATION TASJS AHOVV |
ID | FETCH-LOGICAL-c366t-3cc50ca92d36e3b73af1fb7122b2df52a8d26714f1f24fc90d87fd630d514f4f3 |
ISSN | 1070-5511 |
IngestDate | Thu Aug 14 00:03:58 EDT 2025 Sun Jul 27 14:52:27 EDT 2025 Wed Jul 30 11:47:47 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Wed Dec 25 09:07:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-3cc50ca92d36e3b73af1fb7122b2df52a8d26714f1f24fc90d87fd630d514f4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1865855771 |
PQPubID | 46559 |
PageCount | 18 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_10705511_2016_1250635 proquest_journals_1865855771 crossref_citationtrail_10_1080_10705511_2016_1250635 crossref_primary_10_1080_10705511_2016_1250635 proquest_journals_1937687487 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-04 |
PublicationDateYYYYMMDD | 2017-03-04 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Hove |
PublicationPlace_xml | – name: Hove |
PublicationTitle | Structural equation modeling |
PublicationYear | 2017 |
Publisher | Routledge Psychology Press |
Publisher_xml | – name: Routledge – name: Psychology Press |
References | CIT0072 CIT0071 CIT0030 CIT0073 CIT0032 CIT0076 CIT0031 CIT0075 CIT0034 CIT0078 CIT0033 CIT0077 CIT0070 Wirth R. J. (CIT0074) 2008 CIT0036 CIT0035 CIT0079 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0080 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0050 CIT0052 Enders C. K. (CIT0012) 2010 CIT0051 CIT0010 CIT0054 CIT0056 CIT0011 CIT0055 Administration for Children and Families (CIT0001) 2002 King B. (CIT0023) 2011 Muthén L. K. (CIT0044) 1998 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0020 CIT0064 Rose N. (CIT0053) 2010 CIT0067 CIT0022 CIT0066 Tisak J. (CIT0065) 1991 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0058 doi: 10.1093/geronb/58.3.P166 – ident: CIT0059 doi: 10.3945/ajcn.115.121848 – ident: CIT0073 doi: 10.1111/j.1750-8606.2009.00110.x – volume-title: Modeling non-ignorable missing data with item response theory year: 2010 ident: CIT0053 – ident: CIT0076 doi: 10.1177/1073191115608941 – ident: CIT0024 doi: 10.1080/10705510701575438 – ident: CIT0002 doi: 10.1136/bmjopen-2015-008431 – ident: CIT0005 doi: 10.1177/0962280206075310 – ident: CIT0078 doi: 10.1037/a0033804 – ident: CIT0025 doi: 10.1111/j.0006-341X.2004.00173.x – ident: CIT0054 doi: 10.1177/0962280206075311 – ident: CIT0070 doi: 10.1016/j.janxdis.2011.12.009 – ident: CIT0020 doi: 10.1080/03610739208253916 – volume-title: Unbiased measurement of health-related quality-of-life year: 2011 ident: CIT0023 – ident: CIT0069 doi: 10.1214/07-STS253 – ident: CIT0050 doi: 10.1177/0734282914538802 – ident: CIT0015 doi: 10.3102/1076998612458701 – ident: CIT0049 doi: 10.1207/s15328007sem1104_7 – ident: CIT0027 doi: 10.1080/01621459.1995.10476615 – ident: CIT0042 doi: 10.1191/147108201128195 – ident: CIT0043 doi: 10.1037/a0022634 – volume-title: Applied missing data analysis year: 2010 ident: CIT0012 – volume-title: Making a difference in the lives of infants and toddlers and their families: The impacts of early head start (Vol. I–III) year: 2002 ident: CIT0001 – ident: CIT0036 doi: 10.1002/0471721182 – ident: CIT0079 doi: 10.1037/met0000080 – ident: CIT0019 doi: 10.1037/1082-989X.2.1.64 – ident: CIT0033 doi: 10.1146/annurev.psych.51.1.201 – ident: CIT0041 doi: 10.1002/9780470510445 – ident: CIT0062 doi: 10.1080/10705511.2014.936082 – ident: CIT0014 doi: 10.1016/j.archger.2011.10.007 – ident: CIT0028 doi: 10.1201/9781420011579.ch18 – ident: CIT0011 doi: 10.1080/15427600902911163 – ident: CIT0021 doi: 10.1016/j.jclinepi.2015.03.011 – ident: CIT0030 doi: 10.1002/9781119013563 – ident: CIT0032 doi: 10.1207/s15327906mbr4104_4 – ident: CIT0003 doi: 10.2307/271029 – ident: CIT0067 doi: 10.1177/109442810031002 – ident: CIT0075 doi: 10.2307/2531905 – ident: CIT0034 doi: 10.1002/pst.1547 – ident: CIT0037 doi: 10.1007/BF02294825 – ident: CIT0029 doi: 10.1056/NEJMsr1203730 – ident: CIT0017 doi: 10.1080/10705511.2014.936086 – ident: CIT0007 doi: 10.1037/0033-2909.105.3.456 – ident: CIT0056 doi: 10.1080/01621459.1977.10480610 – ident: CIT0060 doi: 10.1080/00273171.2013.827564 – ident: CIT0010 doi: 10.2307/2986113 – ident: CIT0055 doi: 10.1093/biomet/63.3.581 – ident: CIT0066 doi: 10.1111/j.1541-0420.2008.01021.x – ident: CIT0064 doi: 10.1002/sim.6890 – ident: CIT0040 doi: 10.1891/1061-3749.23.2.302 – ident: CIT0068 doi: 10.1007/s11136-008-9389-3 – volume-title: Mplus (Version 7.4) year: 1998 ident: CIT0044 – volume-title: Statistical methods in longitudinal research: Vol. 1. Principles and structuring change year: 1991 ident: CIT0065 – ident: CIT0035 doi: 10.1037/a0028002 – ident: CIT0013 doi: 10.1037/a0022640 – ident: CIT0077 doi: 10.3102/1076998610375836 – ident: CIT0072 doi: 10.1037/10099-013 – volume-title: The effects of measurement non-invariance on parameter estimation in latent growth models year: 2008 ident: CIT0074 – ident: CIT0061 doi: 10.1007/s11336-015-9442-4 – ident: CIT0004 doi: 10.1080/00273170701710338 – ident: CIT0006 doi: 10.1016/j.intell.2014.08.010 – ident: CIT0038 doi: 10.1037/10409-007 – ident: CIT0022 doi: 10.1007/BF02291366 – ident: CIT0031 doi: 10.1037/met0000075 – ident: CIT0047 doi: 10.1002/9781118762516 – ident: CIT0051 doi: 10.1080/10409280701681870 – ident: CIT0048 doi: 10.1016/S0149-7189(96)00027-4 – ident: CIT0080 doi: 10.1080/10705511.2015.1065414 – ident: CIT0057 doi: 10.1037/1082-989X.7.2.147 – ident: CIT0018 doi: 10.1177/0049124111400041 – ident: CIT0071 doi: 10.1177/0734282913481651 – ident: CIT0046 doi: 10.1002/bimj.201400034 – ident: CIT0016 doi: 10.1080/10705511.2014.882666 – ident: CIT0052 doi: 10.1007/s11136-015-1206-1 – ident: CIT0039 doi: 10.1002/sim.1702 – ident: CIT0026 doi: 10.1080/01621459.1993.10594302 – ident: CIT0063 doi: 10.1093/biostatistics/3.2.245 – ident: CIT0009 doi: 10.1002/(ISSN)1097-0258 |
SSID | ssj0018128 |
Score | 2.2105246 |
Snippet | Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 283 |
SubjectTerms | Dropouts Inferences longitudinal factor model longitudinal invariance Missing data nonignorable missing data pattern mixture model Psychology Social sciences Statistical analysis |
Title | Pattern Mixture Models for Quantifying Missing Data Uncertainty in Longitudinal Invariance Testing |
URI | https://www.tandfonline.com/doi/abs/10.1080/10705511.2016.1250635 https://www.proquest.com/docview/1865855771 https://www.proquest.com/docview/1937687487 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZQ9zIeEAwQgw35gTeUkthxnDyiXVSmdiCWSn2zHMeWJk3pYAExfv2OL7lUqxjwklZJnbY-n48_O-d8B6F3JFaaM15FVowrSoGiRxJmmcgkirNCG02cHMPiPJst07MVWw1B7C67pK2m6vfWvJL_sSqcA7vaLNl_sGx_UzgB78G-cAQLw_GvbPzFiWM27xeXv9yDAFvY7MoJLNhgTRsG5JKYFtC59vVYthJIpvJRAK3L-JuvbcGiH7UrjvWp-QlLZ5dEUFr1jTCrBe564aRmnUyH_uYVwn0hne5zPjz4e-X46MW6uZVhEzXsKsBMZcOqhl3F3vveboSCWA8JPiICmuUBoTuvCW419uVrO7fqU6MDfMjYR_rKNfd8tw92tPe3t7dRd9kU6BdwKDZMVt0D-vPP4nQ5n4vyZFVuXnVzM9Aiq8uTWXWBHQIrCDJBO-XXs9msf8QEzMbnSYb_06V35fGHrb9hg7hsyNrem8YdNymfoidhUYE_eoQ8Q490s4ceL3pF3ps9tDv09XNUBeDgABzsgYPhy_AIODgAB1vg4BFw8GWDx8DBA3BwAM4LtDw9KY9mUSi2ESmaZW1ElWKxkgWpaaZpxak0ial4QkhFasOIzGsC3ZnCWZIaVcR1zk2d0bgGym1SQ1-iSbNu9CuE67RIteQahjsFtl3JxKZXJ5JRWOyyRO2jtOtJoYISvS2IciWSIFjbGUBYA4hggH007ZtdeymWhxoUYzOJ1u2BGV-wRtAH2h50NhVhxN-IJAe-zhjnyfbLQPWznKc5f_3n1m_Q7jDmDtAEhq8-BG7bVm8DSu8AeYKftQ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4HIBDobQIyssHrlnFr3hzrFpQgF3Uol2Jm-U4NkKgUHWzCPj1ncljBRTEgVOkRJPE9tjzjT3zDSEHPHZeK51HSMYVSYDokQUrEwXmtEp98LymYxieJdlYnlyoiye5MBhWiT50aIgi6rUaJzduRnchcXBFDhiG7h1LemCiwc6qebKoUinAAVscnZ9k2ewsAUxYkxCn4wilujyet170zEI94y_9b72ujdDRKnHd7zexJ9e9aZX33OMLZsePtW-NfGoxKv3eKNVnMufLdbIynBG8Tr6Q_FfNy1nS4dU9nkFQrKl2M6HQCvp7ajECCfOn4PEENyPoT1tZOgYFqwMQqgd6VdLBLdZKmhZYl4sel3fgtaMK0hESf5SXX8n46HD0I4vacg2RE0lSRcI5FTub8kIkXuRa2MBCrhnnOS-C4rZf8EQzCXe5DC6Ni74ORSLiAkBbkEFskIXytvSbhBYyld5qDwojAK_llmGCLrNKgLukmNsishsi41oucyypcWNYS3nadaHBLjRtF26R3kzsT0Pm8Z5A-nT8TVXvooSm5IkR78judMpi2nVhYlgfEJ9SWrPXHwNYTPoanMhvH_jyPlnKRsOBGRyfnW6TZY5ABKPm5A5ZqP5O_S7AqCrfa-fJP8wFDUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRAceCMKBXzgmlX83hwRZbUt3aqgXYmb5SeqqNKKZKvCr2cmjxXloR56ipRoktgee76xZ74h5C0vQzLK-ALJuAoJEL1wYGWKzIJRVcqJd3QMiyM9X8mDL2qMJmyGsEr0oXNPFNGt1Ti5z2MeI-LgihQwDL07pidgocHMqttkW4M9AiXfXn4-mM83Rwlgwfp8OFMWKDWm8fzvRVcM1BX60r-W684GzR4QP_59H3rybbJu_ST8_IPY8UbNe0juDwiVvutV6hG5lerH5N5iQ-_aPCH-uGPlrOni5BJPIChWVDttKDSCflo7jD_C7Cl43OBWBN1zraMrUK8u_KD9QU9qeniGlZLWEaty0f36Anx2VEC6RNqP-utTspp9WL6fF0OxhiIIrdtChKDK4CoehU7CG-Eyy94wzj2PWXE3jVwbJuEulzlUZZyaHLUoI0C2LLN4Rrbqszo9JzTKSiZnEqiLALTmHcP0XOaUAGdJsbBD5DhCNgxM5lhQ49SygfB07EKLXWiHLtwhk43YeU_lcZ1A9fvw27bbQ8l9wRMrrpHdHXXFDqtCY9kU8J5SxrB_PwaoqKcGXMgXN_jyG3LneG9mD_ePPr4kdzmiEAyZk7tkq_2-Tq8AQ7X-9TBLfgFihQvk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+Mixture+Models+for+Quantifying+Missing+Data+Uncertainty+in+Longitudinal+Invariance+Testing&rft.jtitle=Structural+equation+modeling&rft.au=Sterba%2C+Sonya+K&rft.date=2017-03-04&rft.pub=Psychology+Press&rft.issn=1070-5511&rft.eissn=1532-8007&rft.volume=24&rft.issue=2&rft.spage=283&rft_id=info:doi/10.1080%2F10705511.2016.1250635&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4312741671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5511&client=summon |