Pattern Mixture Models for Quantifying Missing Data Uncertainty in Longitudinal Invariance Testing

Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time points (e.g., 3), but high rates of dropout. Although such applications routinely assume that the dropout mechanism is ignorable, this assump...

Full description

Saved in:
Bibliographic Details
Published inStructural equation modeling Vol. 24; no. 2; pp. 283 - 300
Main Author Sterba, Sonya K.
Format Journal Article
LanguageEnglish
Published Hove Routledge 04.03.2017
Psychology Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time points (e.g., 3), but high rates of dropout. Although such applications routinely assume that the dropout mechanism is ignorable, this assumption may not always be reasonable. In the presence of nonignorable dropout, fitting a conventional longitudinal factor model (LFM) to assess longitudinal measurement invariance can yield misleading inferences about the level of invariance, along with biased parameter estimates. In this article we develop pattern mixture longitudinal factor models (PM-LFMs) for quantifying uncertainty in longitudinal invariance testing due to an unknown, but potentially nonignorable, dropout mechanism. PM-LFMs are a kind of multiple group model wherein observed missingness patterns define groups, LFM parameters can differ across these pattern-groups subject to identification constraints, and marginal inference about longitudinal invariance is obtained by pooling across pattern-groups. When dropout is nonignorable, we demonstrate via simulation that conventional LFMs can indicate longitudinal noninvariance, even when invariance holds in the overall population; certain PM-LFMs are shown to ameliorate this problem. On the other hand, when dropout is ignorable, PM-LFMs are shown to provide results comparable to conventional LFMs. Additionally, we contrast PM-LFMs to a latent mixture approach for accommodating nonignorable dropout-wherein missingness patterns can differ across latent groups. In an empirical example assessing longitudinal invariance of a harsh parenting construct, we employ PM-LFMs to assess sensitivity of results to assumptions about nonignorable missingness. Software implementation and recommendations for practice are discussed.
AbstractList Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time points (e.g., 3), but high rates of dropout. Although such applications routinely assume that the dropout mechanism is ignorable, this assumption may not always be reasonable. In the presence of nonignorable dropout, fitting a conventional longitudinal factor model (LFM) to assess longitudinal measurement invariance can yield misleading inferences about the level of invariance, along with biased parameter estimates. In this article we develop pattern mixture longitudinal factor models (PM-LFMs) for quantifying uncertainty in longitudinal invariance testing due to an unknown, but potentially nonignorable, dropout mechanism. PM-LFMs are a kind of multiple group model wherein observed missingness patterns define groups, LFM parameters can differ across these pattern-groups subject to identification constraints, and marginal inference about longitudinal invariance is obtained by pooling across pattern-groups. When dropout is nonignorable, we demonstrate via simulation that conventional LFMs can indicate longitudinal noninvariance, even when invariance holds in the overall population; certain PM-LFMs are shown to ameliorate this problem. On the other hand, when dropout is ignorable, PM-LFMs are shown to provide results comparable to conventional LFMs. Additionally, we contrast PM-LFMs to a latent mixture approach for accommodating nonignorable dropout-wherein missingness patterns can differ across latent groups. In an empirical example assessing longitudinal invariance of a harsh parenting construct, we employ PM-LFMs to assess sensitivity of results to assumptions about nonignorable missingness. Software implementation and recommendations for practice are discussed.
Author Sterba, Sonya K.
Author_xml – sequence: 1
  givenname: Sonya K.
  surname: Sterba
  fullname: Sterba, Sonya K.
  email: sonya.sterba@vanderbilt.edu
  organization: Vanderbilt University
BookMark eNqFkEtrWzEQRkVIIM-fEBB0fR09rIfppiVt2oBDEojXYnwlGZkbKZV00_jfR8bupotkNcPM-UbinKLDmKJD6JKSCSWaXFGiiBCUThihckKZIJKLA3RCBWedJkQdtr4x3RY6RqelrAmhmjJ9gpYPUKvLEd-Ftzpmh--SdUPBPmX8OEKswW9CXLV1Kdv6AyrgRexdrhBi3eAQ8TzFVaijDREGfBtfIQdoBH5ypbbMOTryMBR3sa9naHHz8-n6dze__3V7_X3e9VzK2vG-F6SHGbNcOr5UHDz1S0UZWzLrBQNtmVR02qZs6vsZsVp5Kzmxog2nnp-hL7u7Lzn9GdvbZp3G3P5UDJ1xJbWaavUhpaXQQihFGyV2VJ9TKdl585LDM-SNocRspZt_0s1WutlLb7mv_-X6UKGGFGuGMHya_rZLh9j8P8PflAdrKmyGlH1uTkMx_OMT73IQnH0
CitedBy_id crossref_primary_10_1002_mpr_1749
crossref_primary_10_1111_hiv_12682
crossref_primary_10_1111_ldrp_12319
crossref_primary_10_1080_10705511_2024_2410240
crossref_primary_10_1080_13645579_2022_2049509
crossref_primary_10_1007_s11136_018_1861_0
crossref_primary_10_1111_sltb_12870
Cites_doi 10.1093/geronb/58.3.P166
10.3945/ajcn.115.121848
10.1111/j.1750-8606.2009.00110.x
10.1177/1073191115608941
10.1080/10705510701575438
10.1136/bmjopen-2015-008431
10.1177/0962280206075310
10.1037/a0033804
10.1111/j.0006-341X.2004.00173.x
10.1177/0962280206075311
10.1016/j.janxdis.2011.12.009
10.1080/03610739208253916
10.1214/07-STS253
10.1177/0734282914538802
10.3102/1076998612458701
10.1207/s15328007sem1104_7
10.1080/01621459.1995.10476615
10.1191/147108201128195
10.1037/a0022634
10.1002/0471721182
10.1037/met0000080
10.1037/1082-989X.2.1.64
10.1146/annurev.psych.51.1.201
10.1002/9780470510445
10.1080/10705511.2014.936082
10.1016/j.archger.2011.10.007
10.1201/9781420011579.ch18
10.1080/15427600902911163
10.1016/j.jclinepi.2015.03.011
10.1002/9781119013563
10.1207/s15327906mbr4104_4
10.2307/271029
10.1177/109442810031002
10.2307/2531905
10.1002/pst.1547
10.1007/BF02294825
10.1056/NEJMsr1203730
10.1080/10705511.2014.936086
10.1037/0033-2909.105.3.456
10.1080/01621459.1977.10480610
10.1080/00273171.2013.827564
10.2307/2986113
10.1093/biomet/63.3.581
10.1111/j.1541-0420.2008.01021.x
10.1002/sim.6890
10.1891/1061-3749.23.2.302
10.1007/s11136-008-9389-3
10.1037/a0028002
10.1037/a0022640
10.3102/1076998610375836
10.1037/10099-013
10.1007/s11336-015-9442-4
10.1080/00273170701710338
10.1016/j.intell.2014.08.010
10.1037/10409-007
10.1007/BF02291366
10.1037/met0000075
10.1002/9781118762516
10.1080/10409280701681870
10.1016/S0149-7189(96)00027-4
10.1080/10705511.2015.1065414
10.1037/1082-989X.7.2.147
10.1177/0049124111400041
10.1177/0734282913481651
10.1002/bimj.201400034
10.1080/10705511.2014.882666
10.1007/s11136-015-1206-1
10.1002/sim.1702
10.1080/01621459.1993.10594302
10.1093/biostatistics/3.2.245
10.1002/(ISSN)1097-0258
ContentType Journal Article
Copyright Copyright © Taylor & Francis Group, LLC
Copyright_xml – notice: Copyright © Taylor & Francis Group, LLC
DBID AAYXX
CITATION
AHOVV
DOI 10.1080/10705511.2016.1250635
DatabaseName CrossRef
Education Research Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 1532-8007
EndPage 300
ExternalDocumentID 4312741671
10_1080_10705511_2016_1250635
1250635
Genre Article
GroupedDBID .7I
.QK
0BK
0R~
123
4.4
5VS
AAGZJ
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEISY
AEKEX
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AGDLA
AGMYJ
AGRBW
AIJEM
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CJ0
CQ1
DGFLZ
DKSSO
EBS
EJD
E~B
E~C
F5P
FXNIP
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
M4Z
NA5
NW-
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
XSW
~01
~S~
AAGDL
AAHIA
AAYXX
AEFOU
AFRVT
AIYEW
CITATION
TASJS
AHOVV
ID FETCH-LOGICAL-c366t-3cc50ca92d36e3b73af1fb7122b2df52a8d26714f1f24fc90d87fd630d514f4f3
ISSN 1070-5511
IngestDate Thu Aug 14 00:03:58 EDT 2025
Sun Jul 27 14:52:27 EDT 2025
Wed Jul 30 11:47:47 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Wed Dec 25 09:07:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-3cc50ca92d36e3b73af1fb7122b2df52a8d26714f1f24fc90d87fd630d514f4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1865855771
PQPubID 46559
PageCount 18
ParticipantIDs informaworld_taylorfrancis_310_1080_10705511_2016_1250635
proquest_journals_1865855771
crossref_citationtrail_10_1080_10705511_2016_1250635
crossref_primary_10_1080_10705511_2016_1250635
proquest_journals_1937687487
PublicationCentury 2000
PublicationDate 2017-03-04
PublicationDateYYYYMMDD 2017-03-04
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-04
  day: 04
PublicationDecade 2010
PublicationPlace Hove
PublicationPlace_xml – name: Hove
PublicationTitle Structural equation modeling
PublicationYear 2017
Publisher Routledge
Psychology Press
Publisher_xml – name: Routledge
– name: Psychology Press
References CIT0072
CIT0071
CIT0030
CIT0073
CIT0032
CIT0076
CIT0031
CIT0075
CIT0034
CIT0078
CIT0033
CIT0077
CIT0070
Wirth R. J. (CIT0074) 2008
CIT0036
CIT0035
CIT0079
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0080
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0050
CIT0052
Enders C. K. (CIT0012) 2010
CIT0051
CIT0010
CIT0054
CIT0056
CIT0011
CIT0055
Administration for Children and Families (CIT0001) 2002
King B. (CIT0023) 2011
Muthén L. K. (CIT0044) 1998
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0020
CIT0064
Rose N. (CIT0053) 2010
CIT0067
CIT0022
CIT0066
Tisak J. (CIT0065) 1991
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0058
  doi: 10.1093/geronb/58.3.P166
– ident: CIT0059
  doi: 10.3945/ajcn.115.121848
– ident: CIT0073
  doi: 10.1111/j.1750-8606.2009.00110.x
– volume-title: Modeling non-ignorable missing data with item response theory
  year: 2010
  ident: CIT0053
– ident: CIT0076
  doi: 10.1177/1073191115608941
– ident: CIT0024
  doi: 10.1080/10705510701575438
– ident: CIT0002
  doi: 10.1136/bmjopen-2015-008431
– ident: CIT0005
  doi: 10.1177/0962280206075310
– ident: CIT0078
  doi: 10.1037/a0033804
– ident: CIT0025
  doi: 10.1111/j.0006-341X.2004.00173.x
– ident: CIT0054
  doi: 10.1177/0962280206075311
– ident: CIT0070
  doi: 10.1016/j.janxdis.2011.12.009
– ident: CIT0020
  doi: 10.1080/03610739208253916
– volume-title: Unbiased measurement of health-related quality-of-life
  year: 2011
  ident: CIT0023
– ident: CIT0069
  doi: 10.1214/07-STS253
– ident: CIT0050
  doi: 10.1177/0734282914538802
– ident: CIT0015
  doi: 10.3102/1076998612458701
– ident: CIT0049
  doi: 10.1207/s15328007sem1104_7
– ident: CIT0027
  doi: 10.1080/01621459.1995.10476615
– ident: CIT0042
  doi: 10.1191/147108201128195
– ident: CIT0043
  doi: 10.1037/a0022634
– volume-title: Applied missing data analysis
  year: 2010
  ident: CIT0012
– volume-title: Making a difference in the lives of infants and toddlers and their families: The impacts of early head start (Vol. I–III)
  year: 2002
  ident: CIT0001
– ident: CIT0036
  doi: 10.1002/0471721182
– ident: CIT0079
  doi: 10.1037/met0000080
– ident: CIT0019
  doi: 10.1037/1082-989X.2.1.64
– ident: CIT0033
  doi: 10.1146/annurev.psych.51.1.201
– ident: CIT0041
  doi: 10.1002/9780470510445
– ident: CIT0062
  doi: 10.1080/10705511.2014.936082
– ident: CIT0014
  doi: 10.1016/j.archger.2011.10.007
– ident: CIT0028
  doi: 10.1201/9781420011579.ch18
– ident: CIT0011
  doi: 10.1080/15427600902911163
– ident: CIT0021
  doi: 10.1016/j.jclinepi.2015.03.011
– ident: CIT0030
  doi: 10.1002/9781119013563
– ident: CIT0032
  doi: 10.1207/s15327906mbr4104_4
– ident: CIT0003
  doi: 10.2307/271029
– ident: CIT0067
  doi: 10.1177/109442810031002
– ident: CIT0075
  doi: 10.2307/2531905
– ident: CIT0034
  doi: 10.1002/pst.1547
– ident: CIT0037
  doi: 10.1007/BF02294825
– ident: CIT0029
  doi: 10.1056/NEJMsr1203730
– ident: CIT0017
  doi: 10.1080/10705511.2014.936086
– ident: CIT0007
  doi: 10.1037/0033-2909.105.3.456
– ident: CIT0056
  doi: 10.1080/01621459.1977.10480610
– ident: CIT0060
  doi: 10.1080/00273171.2013.827564
– ident: CIT0010
  doi: 10.2307/2986113
– ident: CIT0055
  doi: 10.1093/biomet/63.3.581
– ident: CIT0066
  doi: 10.1111/j.1541-0420.2008.01021.x
– ident: CIT0064
  doi: 10.1002/sim.6890
– ident: CIT0040
  doi: 10.1891/1061-3749.23.2.302
– ident: CIT0068
  doi: 10.1007/s11136-008-9389-3
– volume-title: Mplus (Version 7.4)
  year: 1998
  ident: CIT0044
– volume-title: Statistical methods in longitudinal research: Vol. 1. Principles and structuring change
  year: 1991
  ident: CIT0065
– ident: CIT0035
  doi: 10.1037/a0028002
– ident: CIT0013
  doi: 10.1037/a0022640
– ident: CIT0077
  doi: 10.3102/1076998610375836
– ident: CIT0072
  doi: 10.1037/10099-013
– volume-title: The effects of measurement non-invariance on parameter estimation in latent growth models
  year: 2008
  ident: CIT0074
– ident: CIT0061
  doi: 10.1007/s11336-015-9442-4
– ident: CIT0004
  doi: 10.1080/00273170701710338
– ident: CIT0006
  doi: 10.1016/j.intell.2014.08.010
– ident: CIT0038
  doi: 10.1037/10409-007
– ident: CIT0022
  doi: 10.1007/BF02291366
– ident: CIT0031
  doi: 10.1037/met0000075
– ident: CIT0047
  doi: 10.1002/9781118762516
– ident: CIT0051
  doi: 10.1080/10409280701681870
– ident: CIT0048
  doi: 10.1016/S0149-7189(96)00027-4
– ident: CIT0080
  doi: 10.1080/10705511.2015.1065414
– ident: CIT0057
  doi: 10.1037/1082-989X.7.2.147
– ident: CIT0018
  doi: 10.1177/0049124111400041
– ident: CIT0071
  doi: 10.1177/0734282913481651
– ident: CIT0046
  doi: 10.1002/bimj.201400034
– ident: CIT0016
  doi: 10.1080/10705511.2014.882666
– ident: CIT0052
  doi: 10.1007/s11136-015-1206-1
– ident: CIT0039
  doi: 10.1002/sim.1702
– ident: CIT0026
  doi: 10.1080/01621459.1993.10594302
– ident: CIT0063
  doi: 10.1093/biostatistics/3.2.245
– ident: CIT0009
  doi: 10.1002/(ISSN)1097-0258
SSID ssj0018128
Score 2.2105246
Snippet Many psychology applications assess measurement invariance of a construct (e.g., depression) over time. These applications are often characterized by few time...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 283
SubjectTerms Dropouts
Inferences
longitudinal factor model
longitudinal invariance
Missing data
nonignorable missing data
pattern mixture model
Psychology
Social sciences
Statistical analysis
Title Pattern Mixture Models for Quantifying Missing Data Uncertainty in Longitudinal Invariance Testing
URI https://www.tandfonline.com/doi/abs/10.1080/10705511.2016.1250635
https://www.proquest.com/docview/1865855771
https://www.proquest.com/docview/1937687487
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZQ9zIeEAwQgw35gTeUkthxnDyiXVSmdiCWSn2zHMeWJk3pYAExfv2OL7lUqxjwklZJnbY-n48_O-d8B6F3JFaaM15FVowrSoGiRxJmmcgkirNCG02cHMPiPJst07MVWw1B7C67pK2m6vfWvJL_sSqcA7vaLNl_sGx_UzgB78G-cAQLw_GvbPzFiWM27xeXv9yDAFvY7MoJLNhgTRsG5JKYFtC59vVYthJIpvJRAK3L-JuvbcGiH7UrjvWp-QlLZ5dEUFr1jTCrBe564aRmnUyH_uYVwn0hne5zPjz4e-X46MW6uZVhEzXsKsBMZcOqhl3F3vveboSCWA8JPiICmuUBoTuvCW419uVrO7fqU6MDfMjYR_rKNfd8tw92tPe3t7dRd9kU6BdwKDZMVt0D-vPP4nQ5n4vyZFVuXnVzM9Aiq8uTWXWBHQIrCDJBO-XXs9msf8QEzMbnSYb_06V35fGHrb9hg7hsyNrem8YdNymfoidhUYE_eoQ8Q490s4ceL3pF3ps9tDv09XNUBeDgABzsgYPhy_AIODgAB1vg4BFw8GWDx8DBA3BwAM4LtDw9KY9mUSi2ESmaZW1ElWKxkgWpaaZpxak0ial4QkhFasOIzGsC3ZnCWZIaVcR1zk2d0bgGym1SQ1-iSbNu9CuE67RIteQahjsFtl3JxKZXJ5JRWOyyRO2jtOtJoYISvS2IciWSIFjbGUBYA4hggH007ZtdeymWhxoUYzOJ1u2BGV-wRtAH2h50NhVhxN-IJAe-zhjnyfbLQPWznKc5f_3n1m_Q7jDmDtAEhq8-BG7bVm8DSu8AeYKftQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4HIBDobQIyssHrlnFr3hzrFpQgF3Uol2Jm-U4NkKgUHWzCPj1ncljBRTEgVOkRJPE9tjzjT3zDSEHPHZeK51HSMYVSYDokQUrEwXmtEp98LymYxieJdlYnlyoiye5MBhWiT50aIgi6rUaJzduRnchcXBFDhiG7h1LemCiwc6qebKoUinAAVscnZ9k2ewsAUxYkxCn4wilujyet170zEI94y_9b72ujdDRKnHd7zexJ9e9aZX33OMLZsePtW-NfGoxKv3eKNVnMufLdbIynBG8Tr6Q_FfNy1nS4dU9nkFQrKl2M6HQCvp7ajECCfOn4PEENyPoT1tZOgYFqwMQqgd6VdLBLdZKmhZYl4sel3fgtaMK0hESf5SXX8n46HD0I4vacg2RE0lSRcI5FTub8kIkXuRa2MBCrhnnOS-C4rZf8EQzCXe5DC6Ni74ORSLiAkBbkEFskIXytvSbhBYyld5qDwojAK_llmGCLrNKgLukmNsishsi41oucyypcWNYS3nadaHBLjRtF26R3kzsT0Pm8Z5A-nT8TVXvooSm5IkR78judMpi2nVhYlgfEJ9SWrPXHwNYTPoanMhvH_jyPlnKRsOBGRyfnW6TZY5ABKPm5A5ZqP5O_S7AqCrfa-fJP8wFDUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRAceCMKBXzgmlX83hwRZbUt3aqgXYmb5SeqqNKKZKvCr2cmjxXloR56ipRoktgee76xZ74h5C0vQzLK-ALJuAoJEL1wYGWKzIJRVcqJd3QMiyM9X8mDL2qMJmyGsEr0oXNPFNGt1Ti5z2MeI-LgihQwDL07pidgocHMqttkW4M9AiXfXn4-mM83Rwlgwfp8OFMWKDWm8fzvRVcM1BX60r-W684GzR4QP_59H3rybbJu_ST8_IPY8UbNe0juDwiVvutV6hG5lerH5N5iQ-_aPCH-uGPlrOni5BJPIChWVDttKDSCflo7jD_C7Cl43OBWBN1zraMrUK8u_KD9QU9qeniGlZLWEaty0f36Anx2VEC6RNqP-utTspp9WL6fF0OxhiIIrdtChKDK4CoehU7CG-Eyy94wzj2PWXE3jVwbJuEulzlUZZyaHLUoI0C2LLN4Rrbqszo9JzTKSiZnEqiLALTmHcP0XOaUAGdJsbBD5DhCNgxM5lhQ49SygfB07EKLXWiHLtwhk43YeU_lcZ1A9fvw27bbQ8l9wRMrrpHdHXXFDqtCY9kU8J5SxrB_PwaoqKcGXMgXN_jyG3LneG9mD_ePPr4kdzmiEAyZk7tkq_2-Tq8AQ7X-9TBLfgFihQvk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+Mixture+Models+for+Quantifying+Missing+Data+Uncertainty+in+Longitudinal+Invariance+Testing&rft.jtitle=Structural+equation+modeling&rft.au=Sterba%2C+Sonya+K&rft.date=2017-03-04&rft.pub=Psychology+Press&rft.issn=1070-5511&rft.eissn=1532-8007&rft.volume=24&rft.issue=2&rft.spage=283&rft_id=info:doi/10.1080%2F10705511.2016.1250635&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4312741671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5511&client=summon