A dicer-related helicase opposes the age-related pathology from SKN-1 activation in ASI neurons
Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus reveali...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 120; no. 52; p. e2308565120 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
26.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in
results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase,
, in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system. |
---|---|
AbstractList | Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in
results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase,
, in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system. Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in Caenorhabditis elegans results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, drh-1 , in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system. Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in Caenorhabditis elegans results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, drh-1, in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system. |
Author | Van Camp, Bennett T Stuhr, Nicole L Ramos, Carmen M Curran, Sean P Turner, Chris D |
Author_xml | – sequence: 1 givenname: Chris D surname: Turner fullname: Turner, Chris D organization: Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 – sequence: 2 givenname: Nicole L surname: Stuhr fullname: Stuhr, Nicole L organization: Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 – sequence: 3 givenname: Carmen M orcidid: 0000-0001-8508-3308 surname: Ramos fullname: Ramos, Carmen M organization: Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 – sequence: 4 givenname: Bennett T surname: Van Camp fullname: Van Camp, Bennett T organization: Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 – sequence: 5 givenname: Sean P orcidid: 0000-0001-7791-6453 surname: Curran fullname: Curran, Sean P organization: Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38113255$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0M9PwjAUwPHGYOSHnr2ZJl68DNq-raxHQvxBJHpAz0spbzAy2tluJvz3joCYeHqXz3t5-fZJxzqLhNxyNuRsDKPK6jAUwNJEJlywC9LjTPFIxop1SI8xMY7SWMRd0g9hyxhTScquSBdSzkEkSY9kE7oqDPrIY6lrXNENloXRAamrKhcw0HqDVK_xDCpdb1zp1nuae7eji9e3iFNt6uJb14WztLB0sphRi413NlyTy1yXAW9Oc0A-nx4_pi_R_P15Np3MIwNS1hEsmVzCkotVEiupxkZKMKBB6zSWUog0l4IrIZCnqU4MVxrHECdS5UYDYA4D8nC8W3n31WCos10RDJaltuiakAnFYt56CS29_0e3rvG2_e6gFFcg2UGNjsp4F4LHPKt8sdN-n3GWHdpnh_bZX_t24-50t1nucHX2v7HhB9E9f4I |
CitedBy_id | crossref_primary_10_1073_pnas_2402126121 crossref_primary_10_3389_fragi_2024_1369740 |
Cites_doi | 10.1038/srep43601 10.1371/journal.pgen.1007520 10.1126/scisignal.3112re3 10.1038/s41598-019-48286-y 10.1371/journal.pone.0202233 10.1371/journal.pbio.3000996 10.1038/s42003-020-01379-1 10.1016/j.ydbio.2006.08.029 10.1016/j.mad.2015.06.001 10.1016/j.cell.2011.09.039 10.1371/journal.pgen.1003701 10.1371/journal.pone.0011194 10.1038/nature16483 10.1016/j.molcel.2022.09.029 10.21769/BioProtoc.4340 10.1002/jez.a.324 10.1371/journal.pgen.1003354 10.1101/gad.1107803 10.1016/j.cell.2021.06.023 10.1371/journal.pgen.1002119 10.1016/j.freeradbiomed.2015.06.008 10.1016/j.pneurobio.2012.09.003 10.1016/j.bbrc.2008.06.004 10.1073/pnas.1909666116 10.1128/MCB.01811-08 10.1038/nature05904 10.1038/s41598-021-90190-x 10.1038/s41467-021-25920-w 10.1016/j.taap.2011.05.013 10.1016/j.molmed.2004.09.003 10.1074/jbc.M503346200 10.1371/journal.pone.0048282 10.1016/j.cub.2017.02.004 10.1371/journal.pgen.1006762 10.1038/s41467-017-02394-3 10.1371/journal.pgen.1004100 10.1016/j.cmet.2013.12.005 10.1371/journal.ppat.1007528 10.1016/j.cell.2008.01.030 10.1016/0012-1606(86)90358-1 10.1093/gerona/glz063 10.1093/carcin/bgn095 10.1007/978-1-0716-0592-9_9 10.1093/genetics/iyab006 10.1371/journal.pgen.1001048 10.1016/S0076-6879(04)92003-4 10.7554/eLife.52899 10.1016/j.redox.2019.101194 10.1038/s41580-019-0101-y 10.1016/j.taap.2008.03.003 10.1038/s41467-018-06365-0 10.1038/embor.2012.113 10.1371/journal.pgen.1006361 10.1534/genetics.119.302919 10.18632/aging.101610 10.1016/j.jmb.2019.04.009 10.7554/eLife.74308 10.1016/j.cmet.2008.01.005 10.1073/pnas.1514012112 10.1016/j.ydbio.2020.12.002 10.1007/978-3-319-46503-6_12 10.2174/157488912803252023 10.1534/g3.118.200586 10.1016/0092-8674(92)90078-Q 10.1371/journal.pgen.0030056 10.1016/0092-8674(93)80046-H 10.1016/j.freeradbiomed.2013.07.022 10.1111/acel.13308 10.1016/j.tcb.2021.09.009 10.1038/nrm3919 10.1111/j.1474-9726.2009.00501.x 10.1038/s41580-022-00500-y 10.1089/ars.2017.7342 10.7554/eLife.44425 10.1016/j.cmet.2012.09.007 10.1101/2023.10.01.560409 10.7554/eLife.07836 10.1016/S1097-2765(01)00195-2 10.1038/ncomms6048 10.1080/21624054.2015.1078959 10.1128/JVI.01173-19 10.7554/eLife.82210 10.1073/pnas.1307453110 10.1101/gad.1324805 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Dec 26, 2023 |
Copyright_xml | – notice: Copyright National Academy of Sciences Dec 26, 2023 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1073/pnas.2308565120 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | e2308565120 |
ExternalDocumentID | 10_1073_pnas_2308565120 38113255 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG068345 – fundername: NIA NIH HHS grantid: R01 AG058610 – fundername: NIA NIH HHS grantid: F31 AG077873 – fundername: NIGMS NIH HHS grantid: F31 GM137587 – fundername: NIH HHS grantid: P40 OD010440 – fundername: NIA NIH HHS grantid: T32 AG052374 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CGR CS3 CUY CVF D0L DIK DU5 E3Z EBS ECM EIF F5P FRP GX1 HH5 HYE JLS JSG KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c366t-3b06b3b12d549697c663c3a3aa8466228f621922e188a5c19ae734569fca33ef3 |
ISSN | 0027-8424 |
IngestDate | Fri Aug 16 09:42:34 EDT 2024 Thu Oct 10 18:15:35 EDT 2024 Fri Aug 23 03:32:48 EDT 2024 Sat Nov 02 12:30:06 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | ASI neurons C. elegans aging cell nonautonomous signaling transcriptional capacity |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-3b06b3b12d549697c663c3a3aa8466228f621922e188a5c19ae734569fca33ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7791-6453 0000-0001-8508-3308 |
OpenAccessLink | https://www.pnas.org/doi/pdf/10.1073/pnas.2308565120 |
PMID | 38113255 |
PQID | 2909193603 |
PQPubID | 42026 |
ParticipantIDs | proquest_miscellaneous_2904156963 proquest_journals_2909193603 crossref_primary_10_1073_pnas_2308565120 pubmed_primary_38113255 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-26 |
PublicationDateYYYYMMDD | 2023-12-26 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2023 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | 37873147 - bioRxiv. 2023 Oct 02 e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 Zhang L. (e_1_3_4_52_2) 2015; 142 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 Escorcia W. (e_1_3_4_27_2) 2018; 133 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_45_2 doi: 10.1038/srep43601 – ident: e_1_3_4_78_2 doi: 10.1371/journal.pgen.1007520 – ident: e_1_3_4_2_2 doi: 10.1126/scisignal.3112re3 – ident: e_1_3_4_20_2 doi: 10.1038/s41598-019-48286-y – ident: e_1_3_4_43_2 doi: 10.1371/journal.pone.0202233 – ident: e_1_3_4_67_2 doi: 10.1371/journal.pbio.3000996 – ident: e_1_3_4_82_2 doi: 10.1038/s42003-020-01379-1 – ident: e_1_3_4_22_2 doi: 10.1016/j.ydbio.2006.08.029 – ident: e_1_3_4_30_2 doi: 10.1016/j.mad.2015.06.001 – ident: e_1_3_4_59_2 doi: 10.1016/j.cell.2011.09.039 – ident: e_1_3_4_79_2 – ident: e_1_3_4_46_2 doi: 10.1371/journal.pgen.1003701 – ident: e_1_3_4_33_2 doi: 10.1371/journal.pone.0011194 – ident: e_1_3_4_85_2 doi: 10.1038/nature16483 – ident: e_1_3_4_58_2 doi: 10.1016/j.molcel.2022.09.029 – ident: e_1_3_4_81_2 doi: 10.21769/BioProtoc.4340 – ident: e_1_3_4_60_2 doi: 10.1002/jez.a.324 – ident: e_1_3_4_32_2 doi: 10.1371/journal.pgen.1003354 – ident: e_1_3_4_54_2 doi: 10.1101/gad.1107803 – ident: e_1_3_4_84_2 doi: 10.1016/j.cell.2021.06.023 – volume: 133 start-page: e57352 year: 2018 ident: e_1_3_4_27_2 article-title: Quantification of lipid abundance and evaluation of lipid distribution in Caenorhabditis elegans by nile red and Oil red O staining publication-title: J. Vis. Exp. contributor: fullname: Escorcia W. – ident: e_1_3_4_47_2 doi: 10.1371/journal.pgen.1002119 – ident: e_1_3_4_11_2 doi: 10.1016/j.freeradbiomed.2015.06.008 – ident: e_1_3_4_5_2 doi: 10.1016/j.pneurobio.2012.09.003 – ident: e_1_3_4_69_2 doi: 10.1016/j.bbrc.2008.06.004 – ident: e_1_3_4_13_2 doi: 10.1073/pnas.1909666116 – ident: e_1_3_4_34_2 doi: 10.1128/MCB.01811-08 – ident: e_1_3_4_25_2 doi: 10.1038/nature05904 – ident: e_1_3_4_57_2 doi: 10.1038/s41598-021-90190-x – ident: e_1_3_4_21_2 doi: 10.1038/s41467-021-25920-w – ident: e_1_3_4_36_2 doi: 10.1016/j.taap.2011.05.013 – ident: e_1_3_4_1_2 doi: 10.1016/j.molmed.2004.09.003 – ident: e_1_3_4_37_2 doi: 10.1074/jbc.M503346200 – ident: e_1_3_4_28_2 doi: 10.1371/journal.pone.0048282 – ident: e_1_3_4_65_2 doi: 10.1016/j.cub.2017.02.004 – ident: e_1_3_4_42_2 doi: 10.1371/journal.pgen.1006762 – ident: e_1_3_4_44_2 doi: 10.1038/s41467-017-02394-3 – ident: e_1_3_4_31_2 doi: 10.1371/journal.pgen.1004100 – ident: e_1_3_4_19_2 doi: 10.1016/j.cmet.2013.12.005 – ident: e_1_3_4_68_2 doi: 10.1371/journal.ppat.1007528 – ident: e_1_3_4_55_2 doi: 10.1016/j.cell.2008.01.030 – ident: e_1_3_4_9_2 doi: 10.1016/0012-1606(86)90358-1 – ident: e_1_3_4_41_2 doi: 10.1093/gerona/glz063 – ident: e_1_3_4_71_2 doi: 10.1093/carcin/bgn095 – ident: e_1_3_4_26_2 doi: 10.1007/978-1-0716-0592-9_9 – ident: e_1_3_4_56_2 doi: 10.1093/genetics/iyab006 – ident: e_1_3_4_61_2 doi: 10.1371/journal.pgen.1001048 – ident: e_1_3_4_63_2 doi: 10.1016/S0076-6879(04)92003-4 – ident: e_1_3_4_40_2 doi: 10.7554/eLife.52899 – ident: e_1_3_4_3_2 doi: 10.1016/j.redox.2019.101194 – ident: e_1_3_4_49_2 doi: 10.1038/s41580-019-0101-y – ident: e_1_3_4_70_2 doi: 10.1016/j.taap.2008.03.003 – ident: e_1_3_4_72_2 doi: 10.1038/s41467-018-06365-0 – ident: e_1_3_4_73_2 doi: 10.1038/embor.2012.113 – ident: e_1_3_4_48_2 doi: 10.1371/journal.pgen.1006361 – ident: e_1_3_4_83_2 doi: 10.1534/genetics.119.302919 – ident: e_1_3_4_14_2 doi: 10.18632/aging.101610 – ident: e_1_3_4_86_2 doi: 10.1016/j.jmb.2019.04.009 – ident: e_1_3_4_77_2 doi: 10.7554/eLife.74308 – ident: e_1_3_4_38_2 doi: 10.1016/j.cmet.2008.01.005 – ident: e_1_3_4_15_2 doi: 10.1073/pnas.1514012112 – volume: 142 start-page: 4374 year: 2015 ident: e_1_3_4_52_2 article-title: The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans publication-title: Development contributor: fullname: Zhang L. – ident: e_1_3_4_53_2 doi: 10.1016/j.ydbio.2020.12.002 – ident: e_1_3_4_74_2 doi: 10.1007/978-3-319-46503-6_12 – ident: e_1_3_4_6_2 doi: 10.2174/157488912803252023 – ident: e_1_3_4_29_2 doi: 10.1534/g3.118.200586 – ident: e_1_3_4_8_2 doi: 10.1016/0092-8674(92)90078-Q – ident: e_1_3_4_23_2 doi: 10.1371/journal.pgen.0030056 – ident: e_1_3_4_7_2 doi: 10.1016/0092-8674(93)80046-H – ident: e_1_3_4_35_2 doi: 10.1016/j.freeradbiomed.2013.07.022 – ident: e_1_3_4_39_2 doi: 10.1111/acel.13308 – ident: e_1_3_4_75_2 doi: 10.1016/j.tcb.2021.09.009 – ident: e_1_3_4_50_2 doi: 10.1038/nrm3919 – ident: e_1_3_4_62_2 doi: 10.1111/j.1474-9726.2009.00501.x – ident: e_1_3_4_51_2 doi: 10.1038/s41580-022-00500-y – ident: e_1_3_4_4_2 doi: 10.1089/ars.2017.7342 – ident: e_1_3_4_12_2 doi: 10.7554/eLife.44425 – ident: e_1_3_4_18_2 doi: 10.1016/j.cmet.2012.09.007 – ident: e_1_3_4_87_2 doi: 10.1101/2023.10.01.560409 – ident: e_1_3_4_16_2 doi: 10.7554/eLife.07836 – ident: e_1_3_4_10_2 doi: 10.1016/S1097-2765(01)00195-2 – ident: e_1_3_4_17_2 doi: 10.1038/ncomms6048 – ident: e_1_3_4_24_2 doi: 10.1080/21624054.2015.1078959 – ident: e_1_3_4_66_2 doi: 10.1128/JVI.01173-19 – ident: e_1_3_4_80_2 doi: 10.7554/eLife.82210 – ident: e_1_3_4_64_2 doi: 10.1073/pnas.1307453110 – ident: e_1_3_4_76_2 doi: 10.1101/gad.1324805 |
SSID | ssj0009580 |
Score | 2.5031788 |
Snippet | Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | e2308565120 |
SubjectTerms | Aging Animals Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - metabolism Cellular stress response Circuits DNA helicase DNA-Binding Proteins - metabolism Gene expression Homeostasis Intestine Life span Lipid metabolism Lipids Longevity - genetics Nervous system Neurons Neurons - metabolism Oxidative Stress - physiology Ribonucleic acid RNA RNA-mediated interference Transcription activation Transcription Factors - metabolism |
Title | A dicer-related helicase opposes the age-related pathology from SKN-1 activation in ASI neurons |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38113255 https://www.proquest.com/docview/2909193603 https://search.proquest.com/docview/2904156963 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWcuGCKJ8LBRmJQ1GUksSJEx9XVauWllDRLNpb5HhtlUOzq2z2wq_gJzN2HCctRSpcolXiZCXP83j8PPOM0AeZJFJkMJAIiZkfSxiKnCrlZ3HGgoQvVWrkmr7k9GQef14ki8nk1yhradtWB-LnnXUl_2NVuAd21VWy_2BZ91G4Ab_BvnAFC8P1XjaeeUsY541vClIgcrySmoLT7Px6vdpo8QYAATgM10CfP9yJLpmyksuz3A-NnEZHzBry4_LUMyKXlsazgeuFm-g2fVpB3vOIs6EqxbqKjed7F_lwxnGhmdPGiRmM0ozb7VXjECk9R0V_49ddAuAhb65lPZC238Eh6Q0TA0xTVNTaRG_LXURE54FEVvm687cQrvg07k4MdQ45CkbI6wRurX-VsGLKIAbtm8i77v4xK4Ab00cZ13xzcPv9sf52_rU8np-fl8XRoniAHkbguszG_-nZSMY5C3qBqJR8uvXJm7HNXxYsJnApnqDHdsWBZx18dtFE1k_Rbm8ovG-Fxz8-Q-UM38AT7vGELZ4wmB2P8IQdnrDGEzZ4wgOe8I8aA56wxdNzND8-Kg5PfHsAhy8Ipa1PqoBWpAqjZRIzylIB4akgnHAOUSuNokxRmPCiSIZZxhMRMi5TAhE5U4ITIhV5gXbqVS1fIcxgXgi0dmJMWSzSuApYVfFMJEwpJRSbov2-68p1p7NSmvyIlJS6l8uhl6dor-_a0g5GeMwASWCvgEzRe_cYXKXe_-K1XG1NG01XwJQzRS87k7j_gsA1JLC8fn2Pt9-gRwOY99BO22zlWwhN2-qdQctvLYmN1A |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dicer-related+helicase+opposes+the+age-related+pathology+from+SKN-1+activation+in+ASI+neurons&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Turner%2C+Chris+D&rft.au=Stuhr%2C+Nicole+L&rft.au=Ramos%2C+Carmen+M&rft.au=Van+Camp%2C+Bennett+T&rft.date=2023-12-26&rft.eissn=1091-6490&rft.volume=120&rft.issue=52&rft.spage=e2308565120&rft.epage=e2308565120&rft_id=info:doi/10.1073%2Fpnas.2308565120&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |