A dicer-related helicase opposes the age-related pathology from SKN-1 activation in ASI neurons

Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus reveali...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 120; no. 52; p. e2308565120
Main Authors Turner, Chris D, Stuhr, Nicole L, Ramos, Carmen M, Van Camp, Bennett T, Curran, Sean P
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, , in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system.
AbstractList Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, , in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system.
Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in Caenorhabditis elegans results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, drh-1 , in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system.
Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in Caenorhabditis elegans results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, drh-1, in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system.
Author Van Camp, Bennett T
Stuhr, Nicole L
Ramos, Carmen M
Curran, Sean P
Turner, Chris D
Author_xml – sequence: 1
  givenname: Chris D
  surname: Turner
  fullname: Turner, Chris D
  organization: Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
– sequence: 2
  givenname: Nicole L
  surname: Stuhr
  fullname: Stuhr, Nicole L
  organization: Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
– sequence: 3
  givenname: Carmen M
  orcidid: 0000-0001-8508-3308
  surname: Ramos
  fullname: Ramos, Carmen M
  organization: Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
– sequence: 4
  givenname: Bennett T
  surname: Van Camp
  fullname: Van Camp, Bennett T
  organization: Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
– sequence: 5
  givenname: Sean P
  orcidid: 0000-0001-7791-6453
  surname: Curran
  fullname: Curran, Sean P
  organization: Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38113255$$D View this record in MEDLINE/PubMed
BookMark eNpd0M9PwjAUwPHGYOSHnr2ZJl68DNq-raxHQvxBJHpAz0spbzAy2tluJvz3joCYeHqXz3t5-fZJxzqLhNxyNuRsDKPK6jAUwNJEJlywC9LjTPFIxop1SI8xMY7SWMRd0g9hyxhTScquSBdSzkEkSY9kE7oqDPrIY6lrXNENloXRAamrKhcw0HqDVK_xDCpdb1zp1nuae7eji9e3iFNt6uJb14WztLB0sphRi413NlyTy1yXAW9Oc0A-nx4_pi_R_P15Np3MIwNS1hEsmVzCkotVEiupxkZKMKBB6zSWUog0l4IrIZCnqU4MVxrHECdS5UYDYA4D8nC8W3n31WCos10RDJaltuiakAnFYt56CS29_0e3rvG2_e6gFFcg2UGNjsp4F4LHPKt8sdN-n3GWHdpnh_bZX_t24-50t1nucHX2v7HhB9E9f4I
CitedBy_id crossref_primary_10_1073_pnas_2402126121
crossref_primary_10_3389_fragi_2024_1369740
Cites_doi 10.1038/srep43601
10.1371/journal.pgen.1007520
10.1126/scisignal.3112re3
10.1038/s41598-019-48286-y
10.1371/journal.pone.0202233
10.1371/journal.pbio.3000996
10.1038/s42003-020-01379-1
10.1016/j.ydbio.2006.08.029
10.1016/j.mad.2015.06.001
10.1016/j.cell.2011.09.039
10.1371/journal.pgen.1003701
10.1371/journal.pone.0011194
10.1038/nature16483
10.1016/j.molcel.2022.09.029
10.21769/BioProtoc.4340
10.1002/jez.a.324
10.1371/journal.pgen.1003354
10.1101/gad.1107803
10.1016/j.cell.2021.06.023
10.1371/journal.pgen.1002119
10.1016/j.freeradbiomed.2015.06.008
10.1016/j.pneurobio.2012.09.003
10.1016/j.bbrc.2008.06.004
10.1073/pnas.1909666116
10.1128/MCB.01811-08
10.1038/nature05904
10.1038/s41598-021-90190-x
10.1038/s41467-021-25920-w
10.1016/j.taap.2011.05.013
10.1016/j.molmed.2004.09.003
10.1074/jbc.M503346200
10.1371/journal.pone.0048282
10.1016/j.cub.2017.02.004
10.1371/journal.pgen.1006762
10.1038/s41467-017-02394-3
10.1371/journal.pgen.1004100
10.1016/j.cmet.2013.12.005
10.1371/journal.ppat.1007528
10.1016/j.cell.2008.01.030
10.1016/0012-1606(86)90358-1
10.1093/gerona/glz063
10.1093/carcin/bgn095
10.1007/978-1-0716-0592-9_9
10.1093/genetics/iyab006
10.1371/journal.pgen.1001048
10.1016/S0076-6879(04)92003-4
10.7554/eLife.52899
10.1016/j.redox.2019.101194
10.1038/s41580-019-0101-y
10.1016/j.taap.2008.03.003
10.1038/s41467-018-06365-0
10.1038/embor.2012.113
10.1371/journal.pgen.1006361
10.1534/genetics.119.302919
10.18632/aging.101610
10.1016/j.jmb.2019.04.009
10.7554/eLife.74308
10.1016/j.cmet.2008.01.005
10.1073/pnas.1514012112
10.1016/j.ydbio.2020.12.002
10.1007/978-3-319-46503-6_12
10.2174/157488912803252023
10.1534/g3.118.200586
10.1016/0092-8674(92)90078-Q
10.1371/journal.pgen.0030056
10.1016/0092-8674(93)80046-H
10.1016/j.freeradbiomed.2013.07.022
10.1111/acel.13308
10.1016/j.tcb.2021.09.009
10.1038/nrm3919
10.1111/j.1474-9726.2009.00501.x
10.1038/s41580-022-00500-y
10.1089/ars.2017.7342
10.7554/eLife.44425
10.1016/j.cmet.2012.09.007
10.1101/2023.10.01.560409
10.7554/eLife.07836
10.1016/S1097-2765(01)00195-2
10.1038/ncomms6048
10.1080/21624054.2015.1078959
10.1128/JVI.01173-19
10.7554/eLife.82210
10.1073/pnas.1307453110
10.1101/gad.1324805
ContentType Journal Article
Copyright Copyright National Academy of Sciences Dec 26, 2023
Copyright_xml – notice: Copyright National Academy of Sciences Dec 26, 2023
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1073/pnas.2308565120
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage e2308565120
ExternalDocumentID 10_1073_pnas_2308565120
38113255
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG068345
– fundername: NIA NIH HHS
  grantid: R01 AG058610
– fundername: NIA NIH HHS
  grantid: F31 AG077873
– fundername: NIGMS NIH HHS
  grantid: F31 GM137587
– fundername: NIH HHS
  grantid: P40 OD010440
– fundername: NIA NIH HHS
  grantid: T32 AG052374
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c366t-3b06b3b12d549697c663c3a3aa8466228f621922e188a5c19ae734569fca33ef3
ISSN 0027-8424
IngestDate Fri Aug 16 09:42:34 EDT 2024
Thu Oct 10 18:15:35 EDT 2024
Fri Aug 23 03:32:48 EDT 2024
Sat Nov 02 12:30:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords ASI neurons
C. elegans
aging
cell nonautonomous signaling
transcriptional capacity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-3b06b3b12d549697c663c3a3aa8466228f621922e188a5c19ae734569fca33ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7791-6453
0000-0001-8508-3308
OpenAccessLink https://www.pnas.org/doi/pdf/10.1073/pnas.2308565120
PMID 38113255
PQID 2909193603
PQPubID 42026
ParticipantIDs proquest_miscellaneous_2904156963
proquest_journals_2909193603
crossref_primary_10_1073_pnas_2308565120
pubmed_primary_38113255
PublicationCentury 2000
PublicationDate 2023-12-26
PublicationDateYYYYMMDD 2023-12-26
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2023
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References 37873147 - bioRxiv. 2023 Oct 02
e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
Zhang L. (e_1_3_4_52_2) 2015; 142
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
Escorcia W. (e_1_3_4_27_2) 2018; 133
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_45_2
  doi: 10.1038/srep43601
– ident: e_1_3_4_78_2
  doi: 10.1371/journal.pgen.1007520
– ident: e_1_3_4_2_2
  doi: 10.1126/scisignal.3112re3
– ident: e_1_3_4_20_2
  doi: 10.1038/s41598-019-48286-y
– ident: e_1_3_4_43_2
  doi: 10.1371/journal.pone.0202233
– ident: e_1_3_4_67_2
  doi: 10.1371/journal.pbio.3000996
– ident: e_1_3_4_82_2
  doi: 10.1038/s42003-020-01379-1
– ident: e_1_3_4_22_2
  doi: 10.1016/j.ydbio.2006.08.029
– ident: e_1_3_4_30_2
  doi: 10.1016/j.mad.2015.06.001
– ident: e_1_3_4_59_2
  doi: 10.1016/j.cell.2011.09.039
– ident: e_1_3_4_79_2
– ident: e_1_3_4_46_2
  doi: 10.1371/journal.pgen.1003701
– ident: e_1_3_4_33_2
  doi: 10.1371/journal.pone.0011194
– ident: e_1_3_4_85_2
  doi: 10.1038/nature16483
– ident: e_1_3_4_58_2
  doi: 10.1016/j.molcel.2022.09.029
– ident: e_1_3_4_81_2
  doi: 10.21769/BioProtoc.4340
– ident: e_1_3_4_60_2
  doi: 10.1002/jez.a.324
– ident: e_1_3_4_32_2
  doi: 10.1371/journal.pgen.1003354
– ident: e_1_3_4_54_2
  doi: 10.1101/gad.1107803
– ident: e_1_3_4_84_2
  doi: 10.1016/j.cell.2021.06.023
– volume: 133
  start-page: e57352
  year: 2018
  ident: e_1_3_4_27_2
  article-title: Quantification of lipid abundance and evaluation of lipid distribution in Caenorhabditis elegans by nile red and Oil red O staining
  publication-title: J. Vis. Exp.
  contributor:
    fullname: Escorcia W.
– ident: e_1_3_4_47_2
  doi: 10.1371/journal.pgen.1002119
– ident: e_1_3_4_11_2
  doi: 10.1016/j.freeradbiomed.2015.06.008
– ident: e_1_3_4_5_2
  doi: 10.1016/j.pneurobio.2012.09.003
– ident: e_1_3_4_69_2
  doi: 10.1016/j.bbrc.2008.06.004
– ident: e_1_3_4_13_2
  doi: 10.1073/pnas.1909666116
– ident: e_1_3_4_34_2
  doi: 10.1128/MCB.01811-08
– ident: e_1_3_4_25_2
  doi: 10.1038/nature05904
– ident: e_1_3_4_57_2
  doi: 10.1038/s41598-021-90190-x
– ident: e_1_3_4_21_2
  doi: 10.1038/s41467-021-25920-w
– ident: e_1_3_4_36_2
  doi: 10.1016/j.taap.2011.05.013
– ident: e_1_3_4_1_2
  doi: 10.1016/j.molmed.2004.09.003
– ident: e_1_3_4_37_2
  doi: 10.1074/jbc.M503346200
– ident: e_1_3_4_28_2
  doi: 10.1371/journal.pone.0048282
– ident: e_1_3_4_65_2
  doi: 10.1016/j.cub.2017.02.004
– ident: e_1_3_4_42_2
  doi: 10.1371/journal.pgen.1006762
– ident: e_1_3_4_44_2
  doi: 10.1038/s41467-017-02394-3
– ident: e_1_3_4_31_2
  doi: 10.1371/journal.pgen.1004100
– ident: e_1_3_4_19_2
  doi: 10.1016/j.cmet.2013.12.005
– ident: e_1_3_4_68_2
  doi: 10.1371/journal.ppat.1007528
– ident: e_1_3_4_55_2
  doi: 10.1016/j.cell.2008.01.030
– ident: e_1_3_4_9_2
  doi: 10.1016/0012-1606(86)90358-1
– ident: e_1_3_4_41_2
  doi: 10.1093/gerona/glz063
– ident: e_1_3_4_71_2
  doi: 10.1093/carcin/bgn095
– ident: e_1_3_4_26_2
  doi: 10.1007/978-1-0716-0592-9_9
– ident: e_1_3_4_56_2
  doi: 10.1093/genetics/iyab006
– ident: e_1_3_4_61_2
  doi: 10.1371/journal.pgen.1001048
– ident: e_1_3_4_63_2
  doi: 10.1016/S0076-6879(04)92003-4
– ident: e_1_3_4_40_2
  doi: 10.7554/eLife.52899
– ident: e_1_3_4_3_2
  doi: 10.1016/j.redox.2019.101194
– ident: e_1_3_4_49_2
  doi: 10.1038/s41580-019-0101-y
– ident: e_1_3_4_70_2
  doi: 10.1016/j.taap.2008.03.003
– ident: e_1_3_4_72_2
  doi: 10.1038/s41467-018-06365-0
– ident: e_1_3_4_73_2
  doi: 10.1038/embor.2012.113
– ident: e_1_3_4_48_2
  doi: 10.1371/journal.pgen.1006361
– ident: e_1_3_4_83_2
  doi: 10.1534/genetics.119.302919
– ident: e_1_3_4_14_2
  doi: 10.18632/aging.101610
– ident: e_1_3_4_86_2
  doi: 10.1016/j.jmb.2019.04.009
– ident: e_1_3_4_77_2
  doi: 10.7554/eLife.74308
– ident: e_1_3_4_38_2
  doi: 10.1016/j.cmet.2008.01.005
– ident: e_1_3_4_15_2
  doi: 10.1073/pnas.1514012112
– volume: 142
  start-page: 4374
  year: 2015
  ident: e_1_3_4_52_2
  article-title: The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans
  publication-title: Development
  contributor:
    fullname: Zhang L.
– ident: e_1_3_4_53_2
  doi: 10.1016/j.ydbio.2020.12.002
– ident: e_1_3_4_74_2
  doi: 10.1007/978-3-319-46503-6_12
– ident: e_1_3_4_6_2
  doi: 10.2174/157488912803252023
– ident: e_1_3_4_29_2
  doi: 10.1534/g3.118.200586
– ident: e_1_3_4_8_2
  doi: 10.1016/0092-8674(92)90078-Q
– ident: e_1_3_4_23_2
  doi: 10.1371/journal.pgen.0030056
– ident: e_1_3_4_7_2
  doi: 10.1016/0092-8674(93)80046-H
– ident: e_1_3_4_35_2
  doi: 10.1016/j.freeradbiomed.2013.07.022
– ident: e_1_3_4_39_2
  doi: 10.1111/acel.13308
– ident: e_1_3_4_75_2
  doi: 10.1016/j.tcb.2021.09.009
– ident: e_1_3_4_50_2
  doi: 10.1038/nrm3919
– ident: e_1_3_4_62_2
  doi: 10.1111/j.1474-9726.2009.00501.x
– ident: e_1_3_4_51_2
  doi: 10.1038/s41580-022-00500-y
– ident: e_1_3_4_4_2
  doi: 10.1089/ars.2017.7342
– ident: e_1_3_4_12_2
  doi: 10.7554/eLife.44425
– ident: e_1_3_4_18_2
  doi: 10.1016/j.cmet.2012.09.007
– ident: e_1_3_4_87_2
  doi: 10.1101/2023.10.01.560409
– ident: e_1_3_4_16_2
  doi: 10.7554/eLife.07836
– ident: e_1_3_4_10_2
  doi: 10.1016/S1097-2765(01)00195-2
– ident: e_1_3_4_17_2
  doi: 10.1038/ncomms6048
– ident: e_1_3_4_24_2
  doi: 10.1080/21624054.2015.1078959
– ident: e_1_3_4_66_2
  doi: 10.1128/JVI.01173-19
– ident: e_1_3_4_80_2
  doi: 10.7554/eLife.82210
– ident: e_1_3_4_64_2
  doi: 10.1073/pnas.1307453110
– ident: e_1_3_4_76_2
  doi: 10.1101/gad.1324805
SSID ssj0009580
Score 2.5031788
Snippet Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage e2308565120
SubjectTerms Aging
Animals
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - metabolism
Cellular stress response
Circuits
DNA helicase
DNA-Binding Proteins - metabolism
Gene expression
Homeostasis
Intestine
Life span
Lipid metabolism
Lipids
Longevity - genetics
Nervous system
Neurons
Neurons - metabolism
Oxidative Stress - physiology
Ribonucleic acid
RNA
RNA-mediated interference
Transcription activation
Transcription Factors - metabolism
Title A dicer-related helicase opposes the age-related pathology from SKN-1 activation in ASI neurons
URI https://www.ncbi.nlm.nih.gov/pubmed/38113255
https://www.proquest.com/docview/2909193603
https://search.proquest.com/docview/2904156963
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWcuGCKJ8LBRmJQ1GUksSJEx9XVauWllDRLNpb5HhtlUOzq2z2wq_gJzN2HCctRSpcolXiZCXP83j8PPOM0AeZJFJkMJAIiZkfSxiKnCrlZ3HGgoQvVWrkmr7k9GQef14ki8nk1yhradtWB-LnnXUl_2NVuAd21VWy_2BZ91G4Ab_BvnAFC8P1XjaeeUsY541vClIgcrySmoLT7Px6vdpo8QYAATgM10CfP9yJLpmyksuz3A-NnEZHzBry4_LUMyKXlsazgeuFm-g2fVpB3vOIs6EqxbqKjed7F_lwxnGhmdPGiRmM0ozb7VXjECk9R0V_49ddAuAhb65lPZC238Eh6Q0TA0xTVNTaRG_LXURE54FEVvm687cQrvg07k4MdQ45CkbI6wRurX-VsGLKIAbtm8i77v4xK4Ab00cZ13xzcPv9sf52_rU8np-fl8XRoniAHkbguszG_-nZSMY5C3qBqJR8uvXJm7HNXxYsJnApnqDHdsWBZx18dtFE1k_Rbm8ovG-Fxz8-Q-UM38AT7vGELZ4wmB2P8IQdnrDGEzZ4wgOe8I8aA56wxdNzND8-Kg5PfHsAhy8Ipa1PqoBWpAqjZRIzylIB4akgnHAOUSuNokxRmPCiSIZZxhMRMi5TAhE5U4ITIhV5gXbqVS1fIcxgXgi0dmJMWSzSuApYVfFMJEwpJRSbov2-68p1p7NSmvyIlJS6l8uhl6dor-_a0g5GeMwASWCvgEzRe_cYXKXe_-K1XG1NG01XwJQzRS87k7j_gsA1JLC8fn2Pt9-gRwOY99BO22zlWwhN2-qdQctvLYmN1A
link.rule.ids 315,783,787,27936,27937
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dicer-related+helicase+opposes+the+age-related+pathology+from+SKN-1+activation+in+ASI+neurons&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Turner%2C+Chris+D&rft.au=Stuhr%2C+Nicole+L&rft.au=Ramos%2C+Carmen+M&rft.au=Van+Camp%2C+Bennett+T&rft.date=2023-12-26&rft.eissn=1091-6490&rft.volume=120&rft.issue=52&rft.spage=e2308565120&rft.epage=e2308565120&rft_id=info:doi/10.1073%2Fpnas.2308565120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon