Space-time contours to treat intense field-dressed molecular states
In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [ A. K. Paul , S. Adhikari , D. Mukhopadhyay , J. Phys. Chem. A 113 , 7331 ( 2009 ) ] in which a theory is presented that treats quantum effects due to non...
Saved in:
Published in | The Journal of chemical physics Vol. 132; no. 3; pp. 034303 - 034303-10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
21.01.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/1.3282333 |
Cover
Abstract | In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [
A. K. Paul
,
S. Adhikari
,
D. Mukhopadhyay
,
J. Phys. Chem. A
113
,
7331
(
2009
)
] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of
H
2
+
as caused by a laser field. |
---|---|
AbstractList | In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H(2) (+) as caused by a laser field. In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H(2) (+) as caused by a laser field.In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H(2) (+) as caused by a laser field. In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H{sub 2}{sup +} as caused by a laser field. In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [ A. K. Paul , S. Adhikari , D. Mukhopadhyay , J. Phys. Chem. A 113 , 7331 ( 2009 ) ] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H 2 + as caused by a laser field. In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born–Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H2+ as caused by a laser field. |
Author | Baer, Michael Adhikari, Satrajit Paul, Amit K. |
Author_xml | – sequence: 1 givenname: Amit surname: Paul middlename: K. fullname: Paul, Amit K. organization: Department of Physical Chemistry, Indian Association for Cultivation of Science, Jadavpur,Kolkata 700 032, India – sequence: 2 givenname: Satrajit surname: Adhikari fullname: Adhikari, Satrajit organization: Department of Physical Chemistry, Indian Association for Cultivation of Science, Jadavpur,Kolkata 700 032, India – sequence: 3 givenname: Michael surname: Baer fullname: Baer, Michael email: michaelb@fh.huji.ac.il. organization: Department of Physical Chemistry, Indian Association for Cultivation of Science, Jadavpur,Kolkata 700 032, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20095735$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/21559828$$D View this record in Osti.gov |
BookMark | eNp1kTGP1DAQhS10iNs7KPgDKBIFuiJ3Yzu244ICreBAOokCqC3HmQijJF48TsG_x8fuNgiK0TTfezN674pdrGlFxl5yuOWg5R2_laIXUsonbMeht63RFi7YDkDw1mrQl-yK6AcAcCO6Z-xSAFhlpNqx_ZeDD9iWuGAT0lrSlqkpqSkZfWniWnAlbKaI89iOGYlwbJY0Y9hmnxsqviA9Z08nPxO-OO1r9u3D-6_7j-3D5_tP-3cPbZBal1Z6FYTRQx3daROGyeAEyqK2Wo_cS9krr5U0dpgwKME1YFV2_TB1ptMgr9nro2-iEh2FWDB8r0-vGIoTXCnbi75Sb47UIaefG1JxS6SA8-xXTBs5U--AUVZV8tWJ3IYFR3fIcfH5lzunU4G7IxByIso4uXrTl1hzyj7OjoN7zN9xd8q_Km7-UpxN_8W-PbJ0dv0__Kcl99iSO7ckfwNaiJdV |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1002_qua_24734 crossref_primary_10_1080_00268976_2015_1093183 crossref_primary_10_1140_epjd_e2014_50268_2 crossref_primary_10_1080_00268976_2017_1303205 crossref_primary_10_1140_epjd_e2017_80327_y |
Cites_doi | 10.1103/PhysRevA.46.R5342 10.1103/PhysRevA.54.3290 10.1103/PhysRevA.59.539 10.1103/PhysRevA.62.053406 10.1002/andp.19273892002 10.1063/1.478002 10.1016/j.chemphys.2008.01.053 10.1021/jp8011427 10.1063/1.434264 10.1063/1.438035 10.1063/1.442334 10.1021/j100232a004 10.1016/0009-2614(83)87363-1 10.1063/1.448669 10.1063/1.457570 10.1080/00268979000101381 10.1080/00268979000101381 10.1063/1.476552 10.1063/1.2978389 10.1063/1.3042233 10.1103/PhysRevA.74.043411 10.1063/1.3236577 10.1063/1.2904867 10.1063/1.1854632 10.1063/1.458438 10.1016/0301-0104(89)90012-8 10.1038/35000695 10.1063/1.2903420 10.1063/1.2894308 10.1103/PhysRevA.23.1100 10.1021/jp0617266 10.1063/1.1808695 10.1063/1.472748 10.1063/1.1906218 10.1063/1.2338912 10.1063/1.480835 10.1063/1.1312284 10.1063/1.1310600 10.1063/1.1555118 10.1039/b313883f 10.1088/1751-8113/40/15/F01 10.1063/1.2943143 10.1002/qua.21940 10.1021/jp901072u 10.1103/RevModPhys.70.707 10.1063/1.449767 10.1063/1.451542 10.1063/1.463948 10.1103/PhysRevA.61.013402 10.1063/1.1814936 10.1021/jp040099m 10.1063/1.479360 10.1063/1.1758700 10.1063/1.2170089 10.1063/1.3236839 10.1063/1.444780 10.1002/9780470141403.ch2 10.1103/PhysRevLett.95.093001 10.1103/PhysRevLett.94.163002 10.1039/a903428e 10.1103/PhysRevLett.44.687 10.1098/rsta.1953.0014 10.1103/PhysRevA.62.032506 10.1103/PhysRevA.62.032507 10.1016/0009-2614(75)85599-0 10.1080/00268978000102091 10.1021/jp811269g 10.1063/1.2732751 10.1021/ja00444a015 10.1063/1.438512 10.1016/0009-2614(96)00786-5 10.1103/PhysRevLett.98.073003 10.1021/jp022655n 10.1063/1.1606433 10.1063/1.2423009 10.1063/1.2743437 10.1063/1.478526 10.1080/00268979909483084 10.1016/0009-2614(83)85083-0 10.1063/1.444862 10.1016/S0065-3276(03)44008-2 10.1021/jp952740d 10.1063/1.1319347 10.1103/PhysRevA.75.012510 10.1103/PhysRevLett.75.2815 10.1063/1.470308 10.1103/PhysRevA.53.2562 10.1063/1.2363988 10.1103/PhysRevLett.98.073003 10.1063/1.2903420 10.1063/1.1814936 10.1063/1.1906218 10.1063/1.438035 10.1063/1.463948 10.1080/00268979000101381 10.1103/PhysRevA.54.3290 10.1063/1.1854632 10.1063/1.458438 10.1103/PhysRevLett.94.163002 10.1063/1.2904867 10.1002/9780470141403.ch2 10.1063/1.3236577 10.1103/PhysRevLett.75.2815 10.1063/1.470308 10.1063/1.480835 10.1063/1.3042233 10.1063/1.451542 10.1080/00268978000102091 10.1063/1.457570 10.1103/PhysRevA.53.2562 10.1063/1.444862 10.1063/1.2978389 10.1063/1.1312284 10.1016/0009-2614(83)85083-0 10.1016/0009-2614(83)87363-1 10.1063/1.472748 10.1002/0471433462.ch1 10.1063/1.1606433 10.1063/1.2943143 10.1016/0009-2614(96)00786-5 10.1063/1.479360 10.1063/1.434264 10.1103/PhysRevA.59.539 10.1038/35000695 10.1063/1.444780 10.1016/0301-0104(89)90012-8 10.1021/jp901072u 10.1021/cr0004411 10.1063/1.1310600 10.1021/ja00444a015 10.1021/jp8011427 10.1021/jp952740d 10.1039/b313883f 10.1021/jp040099m 10.1103/PhysRevLett.95.093001 10.1103/PhysRevA.46.R5342 10.1063/1.1319347 10.1016/j.chemphys.2008.01.053 10.1063/1.442334 10.1063/1.478526 10.1088/1751-8113/40/15/F01 10.1063/1.1555118 10.1142/5406 10.1063/1.1758700 10.1063/1.2170089 10.1063/1.2423009 10.1103/PhysRevA.62.053406 10.1021/j100232a004 10.1080/00268979909483084 10.1063/1.449767 10.1063/1.2743437 10.1103/PhysRevA.62.032507 10.1063/1.3236839 10.1063/1.476552 10.1063/1.448669 10.1063/1.438512 10.1103/PhysRevA.62.032506 10.1016/0009-2614(75)85599-0 10.1063/1.2894308 10.1103/PhysRevA.61.013402 10.1021/jp022655n 10.1103/PhysRevA.75.012510 10.1002/qua.21940 |
ContentType | Journal Article |
Copyright | 2010 American Institute of Physics |
Copyright_xml | – notice: 2010 American Institute of Physics |
DBID | AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1063/1.3282333 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
EndPage | 034303-10 |
ExternalDocumentID | 21559828 20095735 10_1063_1_3282333 |
Genre | Journal Article |
GrantInformation_xml | – fundername: UNSPECIFIED grantid: SR/S1/PC/13/2008 – fundername: UNSPECIFIED grantid: 2002-327-1 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS ADXHL BDMKI CITATION NPM 7X8 0ZJ ABPTK AGIHO OTOTI UE8 ZHY |
ID | FETCH-LOGICAL-c366t-3a5c276b2766467cbf7ef059e6966d1a3385a65379bfec52160ec3648bf474603 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu May 18 22:31:22 EDT 2023 Fri Jul 11 03:35:23 EDT 2025 Mon Jul 21 05:59:13 EDT 2025 Tue Jul 01 00:44:02 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Fri Jun 21 00:17:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-3a5c276b2766467cbf7ef059e6966d1a3385a65379bfec52160ec3648bf474603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20095735 |
PQID | 733807595 |
PQPubID | 23479 |
ParticipantIDs | osti_scitechconnect_21559828 proquest_miscellaneous_733807595 pubmed_primary_20095735 crossref_citationtrail_10_1063_1_3282333 crossref_primary_10_1063_1_3282333 scitation_primary_10_1063_1_3282333Space_time_contours |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-21 |
PublicationDateYYYYMMDD | 2010-01-21 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2010 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Born, M.; Oppenheimer, J. 1927; 84 Kawata, I.; Kono, H.; Fujiyama, Y. 1999; 110 Heil, T.; Butler, S.; Dalgarno, A. 1981; 23 Baer, M.; Baer, M. 1975 1980; 35 40 Wang, P.; Sayler, A.; Carnes, K.; Xia, J.; Smith, M.; Esry, B.; Ben-Itzchak, I. 2006; 74 Godsi, P.; Evenhuis, C.; Collins, M. 2006; 125 Chelkowski, S.; Zuo, T.; Bandrauk, A.; Yu, H.; Zuo, T.; Bandrauk, A.; Bandrauk, A.; Yu, H.; Bandrauk, A.; Lu, H. 1992 1996 1999 2000; 46 54 59 62 Corkum, P.; Ellert, C.; Mehendale, M.; Dietrich, P.; Hankin, S.; Aseyev, S.; Rayner, D.; Villeneuve, D. 1999; 113 Zimmerman, I.; Yuan, J.; George, T.; George, T.; Zimmerman, I.; Devries, P.; Yuan, J.; Lam, K.; Bellum, J.; Lee, H.; Slutsky, M.; Lin, J.; Light, J.; Altenbergersiczek, A.; Chu, S.; Zimmerman, I.; Baer, M.; George, T.; Last, I.; Baer, M.; Zimmerman, I.; George, T.; Last, I.; Baer, M. 1977 1979 1979 1981 1983 1983 1985; 66 4 70 75 87 101 82 Baer, M.; Vertsi, T.; Halász, G.; Vibok, Á.; Suhai, S.; Halász, G.; Vibók, Á.; Baer, R.; Baer, M.; Levi, C.; Halász, G.; Vibok, Á.; Bar, I.; Zeiri, Y.; Kosloff, R.; Baer, M.; Levy, C.; Halász, G.; Vibok, Á.; Bar, I.; Zeiri, Y.; Kosloff, R.; Baer, M.; Levy, C.; Halász, G.; Vibok, Á.; Bar, I.; Zeiri, Y.; Kosloff, R.; Baer, M. 2004 2007 2008 2009 2009; 127 40 128 109 113 Chapuisat, X.; Nauts, A.; Dehareug-Dao, D.; Dehareng, D.; Chapuisat, X.; Lorquet, J.; Galloy, C.; Raseev, G. 1983 1983; 95 78 Zuo, T.; Bandrauk, A.; Corkum, P.; Staudte, A.; Pavicie, D.; Chelkowski, S.; Zeidler, D.; Meckel, M.; Niikura, H.; Scoffler, M.; Schossler, S.; Ulrich, B.; Rajeev, P.; Weber, T.; Jahnke, T.; Villeneuve, D.; Bandrauk, A.; Cocke, C.; Corkum, P.; Dorner, R. 1996 2007; 259 98 deVivie-Riedel, R.; Kobe, K.; Manz, J.; Meyer, W.; Reisch, B.; Rutz, S.; Schriber, E.; Wöste, L.; Manz, J.; Naundorf, H.; Yamasita, K.; Zhao, Y.; Barth, I.; Manz, J. 1996 2000 2007; 100 113 75 Takayanagi, T.; Kurasaki, Y.; Ichihara, A.; Takayanagi, T.; Kurasaki, Y.; Shin, C.; Shin, S.; Troisi, G.; Orlandi, G. 2000 2000 2000 2003; 112 113 113 118 Ryb, I.; Baer, R. 2004; 121 Baer, R.; Charutz, D.; Kosloff, R.; Baer, M.; Lan, Z.; Domcke, W.; Vallet, V.; Sobolevwki, A.; Mahapatra, S. 1996 2005; 105 122 Paul, A.; Adhikari, S.; Mukhopadhyay, D.; Halász, G.; Vibok, Á.; Baer, R.; Baer, M.; Paul, A.; Adhikari, S.; Baer, M.; Baer, R. 2009; 113 Davidson, E.; McGuire, P.; Bellum, J. 1977 1979; 99 71 Bersuker, I. 2001; 101 Barbatti, M.; Belz, S.; Leibscher, M.; Lischka, H.; Manz, J.; Rozgonyi, T.; Gonzalez, L.; Al-Jabour, S.; Baer, M.; Deeb, O.; Leibscher, M.; Manz, J.; Xue, X.; Zilberg, S. 2008 2008; 350 112 Charron, E.; Giusti-Suzor, A.; Mies, F.; Charron, E.; Giusti-Suzor, A.; Mies, F.; Kulander, K.; Mies, F.; Schafer, K. 1995 1995 1996; 75 103 53 Kosloff, R.; Rice, S.; Gaspard, P.; Rice, S. 1989 2000; 139 403 Barragán, P.; Errea, L.; Macias, A.; Mendez, L.; Riera, A.; Lucas, J.; Aguilar, A.; Sevryuk, M.; Rusin, L.; Cavalli, S.; Aquilanti, V. 2004 2004; 121 108 Cohen-Tannoudji, C. 1998; 70 Mead, C.; Sidis, V. 1983 1992; 78 82 Amaran, S.; Kumar, S.; Amaran, S.; Kumar, S.; Koeppel, H. 2008 2008; 128 128 Baer, M.; Baer, R.; Kouri, D.; Baer, M.; Hoffman, D.; Sarkar, B.; Adhikari, S.; Baer, M.; Sarkar, B.; Adhikari, S.; Baer, M. 2003 2003 2007 2007; 107 119 126 127 Romero, T.; Aguilar, A.; Gadea, F.; Alijah, A.; Nikitin, E. 1999 1999; 110 96 Kryachko, E. 2003; 44 Gelin, M.; Egorova, D.; Domcke, W.; Yonehara, T.; Takatsuka, K.; Balint-Kurti, G.; Manby, F.; Ren, Q.; Artamonov, M.; Ho, T.; Rabitz, H.; Shi, S.; Rabitz, H. 2009 2008 2005 1990; 131 128 122 92 Bates, D.; Ledsham, K.; Stewart, A. 1953; 246 Hering, P.; Brooks, P.; Carl, R.; Judson, R.; Lowe, R. 1980; 44 Baer, M. 2006; 110 Sadygov, R.; Yarkony, D.; Papas, B.; Schuurman, M.; Yarkony, D.; Subotnik, J.; Yeganeh, S.; Cave, R.; Ratner, M. 1998 2008 2008; 109 129 129 Baer, M.; Lin, S.; Alijah, A.; Adhikari, S.; Billing, G.; Adhikari, S.; Billing, G.; Alijah, A.; Lin, S.; Baer, M. 2000 2000; 62 62 Werner, H.; Follmeg, B.; Alexander, M.; Petrongolo, C.; Hirsch, G.; Buenker, R.; Petrongolo, C.; Hirsch, G.; Buenker, R. 1989 1990 1990; 91 70 70 Gomez-Carrasco, S.; Aquado, A.; Paniaqua, M.; Roncero, O. 2006; 125 Born, M. 1951; K1 Tannor, D.; Rice, S.; Tannor, D.; Kosloff, R.; Rice, S.; Hammerich, D.; Kosloff, R.; Ratner, M.; Baer, R.; Kosloff, R.; Barash, D.; Orel, A.; Baer, R. 1985 1986 1992 1995 2000; 83 85 97 99 61 Ergler, T.; Rudenko, A.; Feuerstein, B.; Zrost, K.; Schroter, C.; Moshammer, R.; Ullrich, J.; Pavičic, D.; Kiess, A.; Hansch, T.; Figger, H. 2005 2005; 95 94 Abrahamsson, E.; Groenenboom, G.; Krems, R. 2007; 126 Adhikari, S.; Billing, G.; Puzari, P.; Sarkar, B.; Adhikari, S.; Sarkar, B.; Adhikari, S.; Paul, A.; Sardar, S.; Sarkar, B.; Adhikari, S. 1999 2004 2006 2009; 111 121 124 131 2023080305040378200_c8 (2023080305040378200_c46) 1992 (2023080305040378200_c35d) 1995; 99 (2023080305040378200_c6a) 1951; K1 (2023080305040378200_c20c) 2000; 113 (2023080305040378200_c16a) 1989; 91 (2023080305040378200_c27b) 2004; 121 (2023080305040378200_c26a) 2008; 128 2023080305040378200_c29b (2023080305040378200_c24) 2006; 125 (2023080305040378200_c39b) 1996; 54 (2023080305040378200_c14a) 1983; 95 2023080305040378200_c32a 2023080305040378200_c32b (2023080305040378200_c47) 1999; 113 (2023080305040378200_c19a) 2000; 62 (2023080305040378200_c31a) 1998; 109 (2023080305040378200_c37b) 2000; 113 (2023080305040378200_c12b) 1979; 71 (2023080305040378200_c18b) 1999; 96 (2023080305040378200_c6b) 1954 (2023080305040378200_c22b) 2004; 108 (2023080305040378200_c49b) 2000; 403 (2023080305040378200_c34c) 1979; 70 (2023080305040378200_c38c) 1996; 53 (2023080305040378200_c36a) 2009; 131 (2023080305040378200_c50) 2006; 110 (2023080305040378200_c19b) 2000; 62 (2023080305040378200_c37a) 1996; 100 (2023080305040378200_c35c) 1992; 97 (2023080305040378200_c34e) 1983; 87 (2023080305040378200_c9a) 1975; 35 (2023080305040378200_c15b) 1992; 82 (2023080305040378200_c35b) 1986; 85 (2023080305040378200_c38a) 1995; 75 (2023080305040378200_c37c) 2007; 75 (2023080305040378200_c17b) 2005; 122 Baer (2023080305040378200_c34h) 1985 (2023080305040378200_c39a) 1992; 46 (2023080305040378200_c31c) 2008; 129 (2023080305040378200_c28b) 2007; 40 (2023080305040378200_c1b) 2003; 119 (2023080305040378200_c28a) 2004; 127 (2023080305040378200_c41b) 2005; 94 (2023080305040378200_c23) 2006; 125 (2023080305040378200_c34f) 1983; 101 (2023080305040378200_c22a) 2004; 121 (2023080305040378200_c3a) 2009; 113 (2023080305040378200_c36c) 2005; 122 (2023080305040378200_c27d) 2009; 131 (2023080305040378200_c35e) 2000; 61 (2023080305040378200_c48) 1998; 70 (2023080305040378200_c29a) 2004; 121 (2023080305040378200_c5) 1927; 84 (2023080305040378200_c40b) 2007; 98 (2023080305040378200_c14b) 1983; 78 (2023080305040378200_c2) 1989 (2023080305040378200_c1d) 2007; 127 Baer (2023080305040378200_c11) 2002 (2023080305040378200_c31b) 2008; 129 (2023080305040378200_c28e) 2009; 113 2023080305040378200_c9c 2023080305040378200_c9d (2023080305040378200_c34b) 1979; 4 2023080305040378200_c9e (2023080305040378200_c1a) 2003; 107 (2023080305040378200_c20d) 2003; 118 (2023080305040378200_c34a) 1977; 66 (2023080305040378200_c18a) 1999; 110 (2023080305040378200_c12a) 1977; 99 (2023080305040378200_c36b) 2008; 128 (2023080305040378200_c9b) 1980; 40 (2023080305040378200_c30b) 2008; 112 (2023080305040378200_c35a) 1985; 83 (2023080305040378200_c43) 1999; 110 (2023080305040378200_c7b) 2001; 101 (2023080305040378200_c36d) 1990; 92 (2023080305040378200_c17a) 1996; 105 (2023080305040378200_c34d) 1981; 75 Domcke (2023080305040378200_c10) 2004 (2023080305040378200_c27c) 2006; 124 2023080305040378200_c44 (2023080305040378200_c16b) 1990; 70 (2023080305040378200_c28d) 2009; 109 (2023080305040378200_c42) 2006; 74 (2023080305040378200_c40a) 1996; 259 2023080305040378200_c3b (2023080305040378200_c13) 1981; 23 (2023080305040378200_c41a) 2005; 95 (2023080305040378200_c21) 2003; 44 (2023080305040378200_c16c) 1990; 70 (2023080305040378200_c27a) 1999; 111 2023080305040378200_c30c (2023080305040378200_c26b) 2008; 128 (2023080305040378200_c4) 2006 (2023080305040378200_c33) 1980; 44 (2023080305040378200_c15a) 1983; 78 (2023080305040378200_c28c) 2008; 128 Henderson (2023080305040378200_c12c) 1981 (2023080305040378200_c20a) 2000; 112 (2023080305040378200_c25) 2007; 126 (2023080305040378200_c39c) 1999; 59 (2023080305040378200_c39d) 2000; 62 (2023080305040378200_c45) 1953; 246 (2023080305040378200_c1c) 2007; 126 (2023080305040378200_c30a) 2008; 350 (2023080305040378200_c38b) 1995; 103 (2023080305040378200_c20b) 2000; 113 (2023080305040378200_c49a) 1989; 139 (2023080305040378200_c7a) 1972 (2023080305040378200_c34g) 1985; 82 |
References_xml | – volume: 46 54 59 62 start-page: R5342 3290 589 053406 year: 1992 1996 1999 2000 publication-title: Phys. Rev. A Phys. Rev. A Phys. Rev. A Phys. Rev. A doi: 10.1103/PhysRevA.46.R5342 10.1103/PhysRevA.54.3290 10.1103/PhysRevA.59.539 10.1103/PhysRevA.62.053406 – volume: 84 start-page: 457 year: 1927 publication-title: Ann Phys doi: 10.1002/andp.19273892002 – volume: 110 start-page: 11152 year: 1999 publication-title: J. Chem. Phys. doi: 10.1063/1.478002 – volume: 350 112 start-page: 145 5573 year: 2008 2008 publication-title: Chem. Phys. J. Phys. Chem. A J. Phys. Chem. A doi: 10.1016/j.chemphys.2008.01.053 10.1021/jp8011427 – volume: 66 4 70 75 87 101 82 start-page: 2638 4108 2215 1478 163 4954 year: 1977 1979 1979 1981 1983 1983 1985 publication-title: J. Chem. Phys. Chemical and Bio.-chemical Applications of Lasers J. Chem. Phys. J. Chem. Phys. J. Phys. Chem. Chem. Phys. Lett. J. Chem. Phys. doi: 10.1063/1.434264 10.1063/1.438035 10.1063/1.442334 10.1021/j100232a004 10.1016/0009-2614(83)87363-1 10.1063/1.448669 – volume: 91 70 70 start-page: 5425 825 835 year: 1989 1990 1990 publication-title: J. Chem. Phys. Mol. Phys. Mol. Phys. doi: 10.1063/1.457570 10.1080/00268979000101381 10.1080/00268979000101381 – volume: 109 129 129 start-page: 20 124104 244101 year: 1998 2008 2008 publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. doi: 10.1063/1.476552 10.1063/1.2978389 10.1063/1.3042233 – volume: 74 start-page: 043411 year: 2006 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.043411 – volume: 131 128 122 92 start-page: 124505 154104 084110 364 year: 2009 2008 2005 1990 publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. doi: 10.1063/1.3236577 10.1063/1.2904867 10.1063/1.1854632 10.1063/1.458438 – volume: 139 403 start-page: 201 496 year: 1989 2000 publication-title: J. Chem. Phys. Nature (London) doi: 10.1016/0301-0104(89)90012-8 10.1038/35000695 – volume: 128 128 start-page: 154325 124305 year: 2008 2008 publication-title: J. Chem. Phys. J. Chem. Phys. doi: 10.1063/1.2903420 10.1063/1.2894308 – volume: 23 start-page: 1100 year: 1981 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.23.1100 – volume: 110 start-page: 6571 year: 2006 publication-title: J. Phys. Chem. A doi: 10.1021/jp0617266 – volume: 121 start-page: 10370 year: 2004 publication-title: J. Chem. Phys. doi: 10.1063/1.1808695 – volume: 105 122 start-page: 9141 224315 year: 1996 2005 publication-title: J. Chem. Phys. J. Chem. Phys. doi: 10.1063/1.472748 10.1063/1.1906218 – volume: 125 start-page: 104105 year: 2006 publication-title: J. Chem. Phys. doi: 10.1063/1.2338912 – volume: 112 113 113 118 start-page: 2615 7158 6528 5356 year: 2000 2000 2000 2003 publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. doi: 10.1063/1.480835 10.1063/1.1312284 10.1063/1.1310600 10.1063/1.1555118 – volume: 127 40 128 109 113 start-page: 337 F267 244302 2482 6756 year: 2004 2007 2008 2009 2009 publication-title: Faraday Discuss. J. Phys A: Math. Theor. J. Chem. Phys. Int. J. Quantum Chem. J. Phys. Chem. A doi: 10.1039/b313883f 10.1088/1751-8113/40/15/F01 10.1063/1.2943143 10.1002/qua.21940 10.1021/jp901072u – volume: 70 start-page: 707 year: 1998 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.70.707 – volume: 83 85 97 99 61 start-page: 5013 5805 6410 2534 013402 year: 1985 1986 1992 1995 2000 publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. J. Phys. Chem. A Phys. Rev. A doi: 10.1063/1.449767 10.1063/1.451542 10.1063/1.463948 10.1103/PhysRevA.61.013402 – volume: 121 108 start-page: 11629 8731 year: 2004 2004 publication-title: J. Chem. Phys. J. Phys. Chem. A doi: 10.1063/1.1814936 10.1021/jp040099m – volume: 111 121 124 131 start-page: 40 707 074101 124312 year: 1999 2004 2006 2009 publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. doi: 10.1063/1.479360 10.1063/1.1758700 10.1063/1.2170089 10.1063/1.3236839 – volume: 78 82 start-page: 807 73 year: 1983 1992 publication-title: J. Chem. Phys. Adv. Chem. Phys. doi: 10.1063/1.444780 10.1002/9780470141403.ch2 – volume: 101 start-page: 1067 year: 2001 publication-title: Chem. Rev. (Washington, D.C.) – volume: 95 94 start-page: 093001 163002 year: 2005 2005 publication-title: Phys. Rev. Lett. Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.093001 10.1103/PhysRevLett.94.163002 – volume: 113 start-page: 47 year: 1999 publication-title: Faraday Discuss. doi: 10.1039/a903428e – volume: 44 start-page: 687 year: 1980 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.44.687 – volume: 246 start-page: 215 year: 1953 publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.1953.0014 – volume: 62 62 start-page: 032506 032507 year: 2000 2000 publication-title: Phys. Rev. A Phys. Rev. A doi: 10.1103/PhysRevA.62.032506 10.1103/PhysRevA.62.032507 – volume: 35 40 start-page: 112 1011 year: 1975 1980 publication-title: Chem. Phys. Lett. Mol. Phys. doi: 10.1016/0009-2614(75)85599-0 10.1080/00268978000102091 – volume: 113 start-page: 7331 year: 2009 publication-title: J. Phys. Chem. A Phys. Rev. A doi: 10.1021/jp811269g – volume: 126 start-page: 184303 year: 2007 publication-title: J. Chem. Phys. doi: 10.1063/1.2732751 – volume: 99 71 start-page: 397 1975 year: 1977 1979 publication-title: J. Am. Chem. Soc. J. Chem. Phys. doi: 10.1021/ja00444a015 10.1063/1.438512 – volume: 259 98 start-page: 313 073003 year: 1996 2007 publication-title: Chem. Phys. Lett. Phys. Rev. Lett. doi: 10.1016/0009-2614(96)00786-5 10.1103/PhysRevLett.98.073003 – volume: 107 119 126 127 start-page: 4724 6998 014106 014301 year: 2003 2003 2007 2007 publication-title: J. Phys. Chem. A J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. doi: 10.1021/jp022655n 10.1063/1.1606433 10.1063/1.2423009 10.1063/1.2743437 – volume: 110 96 start-page: 6219 1399 year: 1999 1999 publication-title: J. Chem. Phys. Mol. Phys. doi: 10.1063/1.478526 10.1080/00268979909483084 – volume: 95 78 start-page: 139 1246 year: 1983 1983 publication-title: Chem. Phys. Lett. J. Chem. Phys. doi: 10.1016/0009-2614(83)85083-0 10.1063/1.444862 – volume: 44 start-page: 119 year: 2003 publication-title: Adv. Quantum Chem. doi: 10.1016/S0065-3276(03)44008-2 – volume: 100 113 75 start-page: 7789 8969 012510 year: 1996 2000 2007 publication-title: J. Phys. Chem. J. Chem. Phys. Phys. Rev. A doi: 10.1021/jp952740d 10.1063/1.1319347 10.1103/PhysRevA.75.012510 – volume: 75 103 53 start-page: 2815 7359 2562 year: 1995 1995 1996 publication-title: Phys. Rev. Lett. J. Chem. Phys. Phys. Rev. A doi: 10.1103/PhysRevLett.75.2815 10.1063/1.470308 10.1103/PhysRevA.53.2562 – volume: 125 start-page: 164321 year: 2006 publication-title: J. Chem. Phys. doi: 10.1063/1.2363988 – volume: K1 start-page: 1 year: 1951 publication-title: Festschrift Goett., Nach. Math. Phys. – volume: 98 start-page: 073003 year: 2007 ident: 2023080305040378200_c40b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.073003 – volume: 128 start-page: 154325 year: 2008 ident: 2023080305040378200_c26a publication-title: J. Chem. Phys. doi: 10.1063/1.2903420 – volume: 121 start-page: 11629 year: 2004 ident: 2023080305040378200_c22a publication-title: J. Chem. Phys. doi: 10.1063/1.1814936 – volume: 122 start-page: 224315 year: 2005 ident: 2023080305040378200_c17b publication-title: J. Chem. Phys. doi: 10.1063/1.1906218 – volume: 70 start-page: 4108 year: 1979 ident: 2023080305040378200_c34c publication-title: J. Chem. Phys. doi: 10.1063/1.438035 – ident: 2023080305040378200_c44 – volume: 97 start-page: 6410 year: 1992 ident: 2023080305040378200_c35c publication-title: J. Chem. Phys. doi: 10.1063/1.463948 – volume: 74 start-page: 043411 year: 2006 ident: 2023080305040378200_c42 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.043411 – volume-title: Photons and Atoms: Introduction to Quantum Electrodynamics year: 1989 ident: 2023080305040378200_c2 – volume: 70 start-page: 825 year: 1990 ident: 2023080305040378200_c16b publication-title: Mol. Phys. doi: 10.1080/00268979000101381 – volume: 54 start-page: 3290 year: 1996 ident: 2023080305040378200_c39b publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.54.3290 – volume: 122 start-page: 084110 year: 2005 ident: 2023080305040378200_c36c publication-title: J. Chem. Phys. doi: 10.1063/1.1854632 – volume: 92 start-page: 364 year: 1990 ident: 2023080305040378200_c36d publication-title: J. Chem. Phys. doi: 10.1063/1.458438 – volume: 94 start-page: 163002 year: 2005 ident: 2023080305040378200_c41b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.163002 – ident: 2023080305040378200_c9d – volume: 128 start-page: 154104 year: 2008 ident: 2023080305040378200_c36b publication-title: J. Chem. Phys. doi: 10.1063/1.2904867 – volume: 70 start-page: 707 year: 1998 ident: 2023080305040378200_c48 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.70.707 – volume: 82 start-page: 73 year: 1992 ident: 2023080305040378200_c15b publication-title: Adv. Chem. Phys. doi: 10.1002/9780470141403.ch2 – volume: 131 start-page: 124505 year: 2009 ident: 2023080305040378200_c36a publication-title: J. Chem. Phys. doi: 10.1063/1.3236577 – ident: 2023080305040378200_c32a – volume: 75 start-page: 2815 year: 1995 ident: 2023080305040378200_c38a publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.2815 – volume-title: Beyond Born Oppenheimer: Electronic Non-Adiabatic Coupling Terms and Conical Intersections year: 2006 ident: 2023080305040378200_c4 – volume: 103 start-page: 7359 year: 1995 ident: 2023080305040378200_c38b publication-title: J. Chem. Phys. doi: 10.1063/1.470308 – volume: 112 start-page: 2615 year: 2000 ident: 2023080305040378200_c20a publication-title: J. Chem. Phys. doi: 10.1063/1.480835 – volume: 129 start-page: 244101 year: 2008 ident: 2023080305040378200_c31c publication-title: J. Chem. Phys. doi: 10.1063/1.3042233 – volume-title: The Jahn-Teller Effect in Molecules and Crystals year: 1972 ident: 2023080305040378200_c7a – volume: 85 start-page: 5805 year: 1986 ident: 2023080305040378200_c35b publication-title: J. Chem. Phys. doi: 10.1063/1.451542 – volume: 23 start-page: 1100 year: 1981 ident: 2023080305040378200_c13 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.23.1100 – ident: 2023080305040378200_c3b article-title: H2+ photo-dissociation by an intense pulsed photonic Fock state publication-title: Phys. Rev. A – volume: 40 start-page: 1011 year: 1980 ident: 2023080305040378200_c9b publication-title: Mol. Phys. doi: 10.1080/00268978000102091 – volume: 91 start-page: 5425 year: 1989 ident: 2023080305040378200_c16a publication-title: J. Chem. Phys. doi: 10.1063/1.457570 – volume: 53 start-page: 2562 year: 1996 ident: 2023080305040378200_c38c publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.53.2562 – volume: 84 start-page: 457 year: 1927 ident: 2023080305040378200_c5 publication-title: Ann Phys doi: 10.1002/andp.19273892002 – volume: 78 start-page: 1246 year: 1983 ident: 2023080305040378200_c14b publication-title: J. Chem. Phys. doi: 10.1063/1.444862 – volume: 129 start-page: 124104 year: 2008 ident: 2023080305040378200_c31b publication-title: J. Chem. Phys. doi: 10.1063/1.2978389 – volume: 113 start-page: 7158 year: 2000 ident: 2023080305040378200_c20b publication-title: J. Chem. Phys. doi: 10.1063/1.1312284 – volume: 110 start-page: 11152 year: 1999 ident: 2023080305040378200_c43 publication-title: J. Chem. Phys. doi: 10.1063/1.478002 – volume: K1 start-page: 1 year: 1951 ident: 2023080305040378200_c6a publication-title: Festschrift Goett., Nach. Math. Phys. – volume: 95 start-page: 139 year: 1983 ident: 2023080305040378200_c14a publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(83)85083-0 – volume: 101 start-page: 163 year: 1983 ident: 2023080305040378200_c34f publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(83)87363-1 – volume: 113 start-page: 47 year: 1999 ident: 2023080305040378200_c47 publication-title: Faraday Discuss. doi: 10.1039/a903428e – volume: 105 start-page: 9141 year: 1996 ident: 2023080305040378200_c17a publication-title: J. Chem. Phys. doi: 10.1063/1.472748 – start-page: 1 volume-title: The Role of Degenerate States in Chemistry year: 2002 ident: 2023080305040378200_c11 doi: 10.1002/0471433462.ch1 – volume: 119 start-page: 6998 year: 2003 ident: 2023080305040378200_c1b publication-title: J. Chem. Phys. doi: 10.1063/1.1606433 – volume: 128 start-page: 244302 year: 2008 ident: 2023080305040378200_c28c publication-title: J. Chem. Phys. doi: 10.1063/1.2943143 – volume: 259 start-page: 313 year: 1996 ident: 2023080305040378200_c40a publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(96)00786-5 – ident: 2023080305040378200_c30c article-title: Molecular symmetry properties of conical intersections and non-adiabatic coupling terms publication-title: J. Phys. Chem. A – volume: 111 start-page: 40 year: 1999 ident: 2023080305040378200_c27a publication-title: J. Chem. Phys. doi: 10.1063/1.479360 – volume: 66 start-page: 2638 year: 1977 ident: 2023080305040378200_c34a publication-title: J. Chem. Phys. doi: 10.1063/1.434264 – volume: 59 start-page: 589 year: 1999 ident: 2023080305040378200_c39c publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.59.539 – volume: 403 start-page: 496 year: 2000 ident: 2023080305040378200_c49b publication-title: Nature (London) doi: 10.1038/35000695 – volume: 78 start-page: 807 year: 1983 ident: 2023080305040378200_c15a publication-title: J. Chem. Phys. doi: 10.1063/1.444780 – volume: 139 start-page: 201 year: 1989 ident: 2023080305040378200_c49a publication-title: J. Chem. Phys. doi: 10.1016/0301-0104(89)90012-8 – volume: 113 start-page: 6756 year: 2009 ident: 2023080305040378200_c28e publication-title: J. Phys. Chem. A doi: 10.1021/jp901072u – volume: 101 start-page: 1067 year: 2001 ident: 2023080305040378200_c7b publication-title: Chem. Rev. (Washington, D.C.) doi: 10.1021/cr0004411 – volume: 70 start-page: 835 year: 1990 ident: 2023080305040378200_c16c publication-title: Mol. Phys. doi: 10.1080/00268979000101381 – volume: 113 start-page: 6528 year: 2000 ident: 2023080305040378200_c20c publication-title: J. Chem. Phys. doi: 10.1063/1.1310600 – volume: 99 start-page: 397 year: 1977 ident: 2023080305040378200_c12a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00444a015 – volume: 112 start-page: 5573 year: 2008 ident: 2023080305040378200_c30b publication-title: J. Phys. Chem. A doi: 10.1021/jp8011427 – start-page: 265 volume-title: Theory of Chemical Reactions Dynamics year: 1985 ident: 2023080305040378200_c34h – volume: 100 start-page: 7789 year: 1996 ident: 2023080305040378200_c37a publication-title: J. Phys. Chem. doi: 10.1021/jp952740d – volume-title: Atoms in Intense Laser Fields year: 1992 ident: 2023080305040378200_c46 – volume: 44 start-page: 119 year: 2003 ident: 2023080305040378200_c21 publication-title: Adv. Quantum Chem. doi: 10.1016/S0065-3276(03)44008-2 – volume: 127 start-page: 337 year: 2004 ident: 2023080305040378200_c28a publication-title: Faraday Discuss. doi: 10.1039/b313883f – volume: 108 start-page: 8731 year: 2004 ident: 2023080305040378200_c22b publication-title: J. Phys. Chem. A doi: 10.1021/jp040099m – ident: 2023080305040378200_c29b – volume: 125 start-page: 164321 year: 2006 ident: 2023080305040378200_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.2363988 – volume: 99 start-page: 2534 year: 1995 ident: 2023080305040378200_c35d publication-title: J. Phys. Chem. A – volume: 95 start-page: 093001 year: 2005 ident: 2023080305040378200_c41a publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.093001 – volume: 46 start-page: R5342 year: 1992 ident: 2023080305040378200_c39a publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.46.R5342 – volume: 44 start-page: 687 year: 1980 ident: 2023080305040378200_c33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.44.687 – ident: 2023080305040378200_c8 – volume: 113 start-page: 8969 year: 2000 ident: 2023080305040378200_c37b publication-title: J. Chem. Phys. doi: 10.1063/1.1319347 – volume: 246 start-page: 215 year: 1953 ident: 2023080305040378200_c45 publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.1953.0014 – volume: 121 start-page: 10370 year: 2004 ident: 2023080305040378200_c29a publication-title: J. Chem. Phys. doi: 10.1063/1.1808695 – volume: 350 start-page: 145 year: 2008 ident: 2023080305040378200_c30a publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2008.01.053 – volume: 75 start-page: 2215 year: 1981 ident: 2023080305040378200_c34d publication-title: J. Chem. Phys. doi: 10.1063/1.442334 – volume: 113 start-page: 7331 year: 2009 ident: 2023080305040378200_c3a publication-title: J. Phys. Chem. A doi: 10.1021/jp811269g – ident: 2023080305040378200_c9e – volume: 110 start-page: 6219 year: 1999 ident: 2023080305040378200_c18a publication-title: J. Chem. Phys. doi: 10.1063/1.478526 – volume: 40 start-page: F267 year: 2007 ident: 2023080305040378200_c28b publication-title: J. Phys A: Math. Theor. doi: 10.1088/1751-8113/40/15/F01 – volume: 126 start-page: 184303 year: 2007 ident: 2023080305040378200_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.2732751 – volume: 125 start-page: 104105 year: 2006 ident: 2023080305040378200_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.2338912 – start-page: 32 volume-title: Theoretical Chemistry: Advances and Perspectives year: 1981 ident: 2023080305040378200_c12c – ident: 2023080305040378200_c32b – volume: 118 start-page: 5356 year: 2003 ident: 2023080305040378200_c20d publication-title: J. Chem. Phys. doi: 10.1063/1.1555118 – volume-title: Dynamical Theory of Crystal Lattices year: 1954 ident: 2023080305040378200_c6b – start-page: 175 volume-title: Conical Intersections: Electronic Structure, Dynamics and Spectroscopy year: 2004 ident: 2023080305040378200_c10 doi: 10.1142/5406 – volume: 121 start-page: 707 year: 2004 ident: 2023080305040378200_c27b publication-title: J. Chem. Phys. doi: 10.1063/1.1758700 – volume: 124 start-page: 074101 year: 2006 ident: 2023080305040378200_c27c publication-title: J. Chem. Phys. doi: 10.1063/1.2170089 – volume: 126 start-page: 014106 year: 2007 ident: 2023080305040378200_c1c publication-title: J. Chem. Phys. doi: 10.1063/1.2423009 – volume: 62 start-page: 053406 year: 2000 ident: 2023080305040378200_c39d publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.62.053406 – volume: 87 start-page: 1478 year: 1983 ident: 2023080305040378200_c34e publication-title: J. Phys. Chem. doi: 10.1021/j100232a004 – volume: 110 start-page: 6571 year: 2006 ident: 2023080305040378200_c50 publication-title: J. Phys. Chem. A doi: 10.1021/jp0617266 – volume: 96 start-page: 1399 year: 1999 ident: 2023080305040378200_c18b publication-title: Mol. Phys. doi: 10.1080/00268979909483084 – volume: 83 start-page: 5013 year: 1985 ident: 2023080305040378200_c35a publication-title: J. Chem. Phys. doi: 10.1063/1.449767 – volume: 127 start-page: 014301 year: 2007 ident: 2023080305040378200_c1d publication-title: J. Chem. Phys. doi: 10.1063/1.2743437 – volume: 62 start-page: 032507 year: 2000 ident: 2023080305040378200_c19b publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.62.032507 – volume: 131 start-page: 124312 year: 2009 ident: 2023080305040378200_c27d publication-title: J. Chem. Phys. doi: 10.1063/1.3236839 – volume: 109 start-page: 20 year: 1998 ident: 2023080305040378200_c31a publication-title: J. Chem. Phys. doi: 10.1063/1.476552 – volume: 82 start-page: 4954 year: 1985 ident: 2023080305040378200_c34g publication-title: J. Chem. Phys. doi: 10.1063/1.448669 – volume: 71 start-page: 1975 year: 1979 ident: 2023080305040378200_c12b publication-title: J. Chem. Phys. doi: 10.1063/1.438512 – volume: 4 year: 1979 ident: 2023080305040378200_c34b publication-title: Chemical and Bio.-chemical Applications of Lasers – volume: 62 start-page: 032506 year: 2000 ident: 2023080305040378200_c19a publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.62.032506 – volume: 35 start-page: 112 year: 1975 ident: 2023080305040378200_c9a publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(75)85599-0 – volume: 128 start-page: 124305 year: 2008 ident: 2023080305040378200_c26b publication-title: J. Chem. Phys. doi: 10.1063/1.2894308 – volume: 61 start-page: 013402 year: 2000 ident: 2023080305040378200_c35e publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.61.013402 – volume: 107 start-page: 4724 year: 2003 ident: 2023080305040378200_c1a publication-title: J. Phys. Chem. A doi: 10.1021/jp022655n – ident: 2023080305040378200_c9c – volume: 75 start-page: 012510 year: 2007 ident: 2023080305040378200_c37c publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.012510 – volume: 109 start-page: 2482 year: 2009 ident: 2023080305040378200_c28d publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.21940 |
SSID | ssj0001724 |
Score | 1.998988 |
Snippet | In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [
A. K. Paul
,... In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul,... |
SourceID | osti proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 034303 |
SubjectTerms | ACCURACY APPROXIMATIONS BORN-OPPENHEIMER APPROXIMATION BOSONS CALCULATION METHODS CATIONS CHARGED PARTICLES CHEMICAL REACTIONS COLLISIONS DECOMPOSITION DISSOCIATION ELEMENTARY PARTICLES HYDROGEN IONS HYDROGEN IONS 2 PLUS INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY IONS KINETICS MASSLESS PARTICLES MOLECULAR IONS MOLECULE COLLISIONS PHOTOCHEMICAL REACTIONS PHOTOLYSIS PHOTON COLLISIONS PHOTON-MOLECULE COLLISIONS PHOTONS REACTION KINETICS SPACE-TIME TIME DEPENDENCE |
Title | Space-time contours to treat intense field-dressed molecular states |
URI | http://dx.doi.org/10.1063/1.3282333 https://www.ncbi.nlm.nih.gov/pubmed/20095735 https://www.proquest.com/docview/733807595 https://www.osti.gov/biblio/21559828 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJzR4QDB-FQayEA9IlUsax3byOApogg0hdZP2ZtmJoxVYi9b0hb-esx07qSgS7KFRldptene2v7O_u0PotdYwmrMKPFUABwTwbUZyrQxhumBZKgqjhQ0UPv3Cj8-zTxfsYjA46bGWNo2elL92xpXcRKtwD_Rqo2T_Q7PxS-EGvAf9whU0DNd_0vEcHF5DbHl4RzmHLi5fgyOPu0QQy7UZO44aqVyS8Gp8Fcrhjl0o0boPTrswMQdQy5BLwO9-RPBtyYRuSrlaNOPPk-7E_3LxXfnA9blqrtW3RaTUvFPeMvok_XarwTHWSNqjbYQzpC0ew9feM4QAgSmxjpFfYvy8muQFEdxXBo0Tb7ez2TnmbhpNaEYT2luU_Q3iGbB_zPoAs-wGxISC_0gpvYX2UiHsof3e0fvTk3lcmQGstVm5_QOGTFOcvo2dt_DJcAV_dJfvcRftA0LxZIkeHjm7j-61esJH3ioeoIFZHqD9Wajfd4ButyJ7iGadneBgJ7hZYWcnuLUTvGUnONoJ9nbyCJ1__HA2OyZt8QxSUs4bQhUrU8E1vDgshqWuhakBSxsODm41VZTmTHFGRaFrUwKI44mBnlmu60xkPKGP0XC5WpqnCLOqqoVQiagLnUEbBaCwqqpCwPC3-R1H6E0QmQxCsQVOfkjHcOBUTmUr3RF6FZv-9OlUdjU6tHKXVsKmvCwt46tsZGpP0PM0HyEc9CFBpPaASy3NarOWgtryCaxgI_TE6yn-iD0EZILCJzwq7u9P4NQirVpkUMuzm3Z8ju50Y-kQDZvrjXkBQLbRL1v7_A2Rfp5I |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-time+contours+to+treat+intense+field-dressed+molecular+states&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Paul%2C+Amit+K.&rft.au=Adhikari%2C+Satrajit&rft.au=Baer%2C+Michael&rft.date=2010-01-21&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=132&rft.issue=3&rft.spage=034303&rft.epage=034303-10&rft_id=info:doi/10.1063%2F1.3282333 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |