Space-time contours to treat intense field-dressed molecular states

In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [ A. K. Paul , S. Adhikari , D. Mukhopadhyay , J. Phys. Chem. A 113 , 7331 ( 2009 ) ] in which a theory is presented that treats quantum effects due to non...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 132; no. 3; pp. 034303 - 034303-10
Main Authors Paul, Amit K., Adhikari, Satrajit, Baer, Michael
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 21.01.2010
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/1.3282333

Cover

Abstract In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [ A. K. Paul , S. Adhikari , D. Mukhopadhyay , J. Phys. Chem. A 113 , 7331 ( 2009 ) ] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H 2 + as caused by a laser field.
AbstractList In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H(2) (+) as caused by a laser field.
In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H(2) (+) as caused by a laser field.In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H(2) (+) as caused by a laser field.
In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H{sub 2}{sup +} as caused by a laser field.
In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [ A. K. Paul , S. Adhikari , D. Mukhopadhyay , J. Phys. Chem. A 113 , 7331 ( 2009 ) ] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H 2 + as caused by a laser field.
In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born–Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H2+ as caused by a laser field.
Author Baer, Michael
Adhikari, Satrajit
Paul, Amit K.
Author_xml – sequence: 1
  givenname: Amit
  surname: Paul
  middlename: K.
  fullname: Paul, Amit K.
  organization: Department of Physical Chemistry, Indian Association for Cultivation of Science, Jadavpur,Kolkata 700 032, India
– sequence: 2
  givenname: Satrajit
  surname: Adhikari
  fullname: Adhikari, Satrajit
  organization: Department of Physical Chemistry, Indian Association for Cultivation of Science, Jadavpur,Kolkata 700 032, India
– sequence: 3
  givenname: Michael
  surname: Baer
  fullname: Baer, Michael
  email: michaelb@fh.huji.ac.il.
  organization: Department of Physical Chemistry, Indian Association for Cultivation of Science, Jadavpur,Kolkata 700 032, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20095735$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/21559828$$D View this record in Osti.gov
BookMark eNp1kTGP1DAQhS10iNs7KPgDKBIFuiJ3Yzu244ICreBAOokCqC3HmQijJF48TsG_x8fuNgiK0TTfezN674pdrGlFxl5yuOWg5R2_laIXUsonbMeht63RFi7YDkDw1mrQl-yK6AcAcCO6Z-xSAFhlpNqx_ZeDD9iWuGAT0lrSlqkpqSkZfWniWnAlbKaI89iOGYlwbJY0Y9hmnxsqviA9Z08nPxO-OO1r9u3D-6_7j-3D5_tP-3cPbZBal1Z6FYTRQx3daROGyeAEyqK2Wo_cS9krr5U0dpgwKME1YFV2_TB1ptMgr9nro2-iEh2FWDB8r0-vGIoTXCnbi75Sb47UIaefG1JxS6SA8-xXTBs5U--AUVZV8tWJ3IYFR3fIcfH5lzunU4G7IxByIso4uXrTl1hzyj7OjoN7zN9xd8q_Km7-UpxN_8W-PbJ0dv0__Kcl99iSO7ckfwNaiJdV
CODEN JCPSA6
CitedBy_id crossref_primary_10_1002_qua_24734
crossref_primary_10_1080_00268976_2015_1093183
crossref_primary_10_1140_epjd_e2014_50268_2
crossref_primary_10_1080_00268976_2017_1303205
crossref_primary_10_1140_epjd_e2017_80327_y
Cites_doi 10.1103/PhysRevA.46.R5342 10.1103/PhysRevA.54.3290 10.1103/PhysRevA.59.539 10.1103/PhysRevA.62.053406
10.1002/andp.19273892002
10.1063/1.478002
10.1016/j.chemphys.2008.01.053 10.1021/jp8011427
10.1063/1.434264 10.1063/1.438035 10.1063/1.442334 10.1021/j100232a004 10.1016/0009-2614(83)87363-1 10.1063/1.448669
10.1063/1.457570 10.1080/00268979000101381 10.1080/00268979000101381
10.1063/1.476552 10.1063/1.2978389 10.1063/1.3042233
10.1103/PhysRevA.74.043411
10.1063/1.3236577 10.1063/1.2904867 10.1063/1.1854632 10.1063/1.458438
10.1016/0301-0104(89)90012-8 10.1038/35000695
10.1063/1.2903420 10.1063/1.2894308
10.1103/PhysRevA.23.1100
10.1021/jp0617266
10.1063/1.1808695
10.1063/1.472748 10.1063/1.1906218
10.1063/1.2338912
10.1063/1.480835 10.1063/1.1312284 10.1063/1.1310600 10.1063/1.1555118
10.1039/b313883f 10.1088/1751-8113/40/15/F01 10.1063/1.2943143 10.1002/qua.21940 10.1021/jp901072u
10.1103/RevModPhys.70.707
10.1063/1.449767 10.1063/1.451542 10.1063/1.463948 10.1103/PhysRevA.61.013402
10.1063/1.1814936 10.1021/jp040099m
10.1063/1.479360 10.1063/1.1758700 10.1063/1.2170089 10.1063/1.3236839
10.1063/1.444780 10.1002/9780470141403.ch2
10.1103/PhysRevLett.95.093001 10.1103/PhysRevLett.94.163002
10.1039/a903428e
10.1103/PhysRevLett.44.687
10.1098/rsta.1953.0014
10.1103/PhysRevA.62.032506 10.1103/PhysRevA.62.032507
10.1016/0009-2614(75)85599-0 10.1080/00268978000102091
10.1021/jp811269g
10.1063/1.2732751
10.1021/ja00444a015 10.1063/1.438512
10.1016/0009-2614(96)00786-5 10.1103/PhysRevLett.98.073003
10.1021/jp022655n 10.1063/1.1606433 10.1063/1.2423009 10.1063/1.2743437
10.1063/1.478526 10.1080/00268979909483084
10.1016/0009-2614(83)85083-0 10.1063/1.444862
10.1016/S0065-3276(03)44008-2
10.1021/jp952740d 10.1063/1.1319347 10.1103/PhysRevA.75.012510
10.1103/PhysRevLett.75.2815 10.1063/1.470308 10.1103/PhysRevA.53.2562
10.1063/1.2363988
10.1103/PhysRevLett.98.073003
10.1063/1.2903420
10.1063/1.1814936
10.1063/1.1906218
10.1063/1.438035
10.1063/1.463948
10.1080/00268979000101381
10.1103/PhysRevA.54.3290
10.1063/1.1854632
10.1063/1.458438
10.1103/PhysRevLett.94.163002
10.1063/1.2904867
10.1002/9780470141403.ch2
10.1063/1.3236577
10.1103/PhysRevLett.75.2815
10.1063/1.470308
10.1063/1.480835
10.1063/1.3042233
10.1063/1.451542
10.1080/00268978000102091
10.1063/1.457570
10.1103/PhysRevA.53.2562
10.1063/1.444862
10.1063/1.2978389
10.1063/1.1312284
10.1016/0009-2614(83)85083-0
10.1016/0009-2614(83)87363-1
10.1063/1.472748
10.1002/0471433462.ch1
10.1063/1.1606433
10.1063/1.2943143
10.1016/0009-2614(96)00786-5
10.1063/1.479360
10.1063/1.434264
10.1103/PhysRevA.59.539
10.1038/35000695
10.1063/1.444780
10.1016/0301-0104(89)90012-8
10.1021/jp901072u
10.1021/cr0004411
10.1063/1.1310600
10.1021/ja00444a015
10.1021/jp8011427
10.1021/jp952740d
10.1039/b313883f
10.1021/jp040099m
10.1103/PhysRevLett.95.093001
10.1103/PhysRevA.46.R5342
10.1063/1.1319347
10.1016/j.chemphys.2008.01.053
10.1063/1.442334
10.1063/1.478526
10.1088/1751-8113/40/15/F01
10.1063/1.1555118
10.1142/5406
10.1063/1.1758700
10.1063/1.2170089
10.1063/1.2423009
10.1103/PhysRevA.62.053406
10.1021/j100232a004
10.1080/00268979909483084
10.1063/1.449767
10.1063/1.2743437
10.1103/PhysRevA.62.032507
10.1063/1.3236839
10.1063/1.476552
10.1063/1.448669
10.1063/1.438512
10.1103/PhysRevA.62.032506
10.1016/0009-2614(75)85599-0
10.1063/1.2894308
10.1103/PhysRevA.61.013402
10.1021/jp022655n
10.1103/PhysRevA.75.012510
10.1002/qua.21940
ContentType Journal Article
Copyright 2010 American Institute of Physics
Copyright_xml – notice: 2010 American Institute of Physics
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1063/1.3282333
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
EndPage 034303-10
ExternalDocumentID 21559828
20095735
10_1063_1_3282333
Genre Journal Article
GrantInformation_xml – fundername: UNSPECIFIED
  grantid: SR/S1/PC/13/2008
– fundername: UNSPECIFIED
  grantid: 2002-327-1
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
6TJ
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
ADXHL
BDMKI
CITATION
NPM
7X8
0ZJ
ABPTK
AGIHO
OTOTI
UE8
ZHY
ID FETCH-LOGICAL-c366t-3a5c276b2766467cbf7ef059e6966d1a3385a65379bfec52160ec3648bf474603
ISSN 0021-9606
1089-7690
IngestDate Thu May 18 22:31:22 EDT 2023
Fri Jul 11 03:35:23 EDT 2025
Mon Jul 21 05:59:13 EDT 2025
Tue Jul 01 00:44:02 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Fri Jun 21 00:17:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-3a5c276b2766467cbf7ef059e6966d1a3385a65379bfec52160ec3648bf474603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20095735
PQID 733807595
PQPubID 23479
ParticipantIDs osti_scitechconnect_21559828
proquest_miscellaneous_733807595
pubmed_primary_20095735
crossref_citationtrail_10_1063_1_3282333
crossref_primary_10_1063_1_3282333
scitation_primary_10_1063_1_3282333Space_time_contours
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-21
PublicationDateYYYYMMDD 2010-01-21
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2010
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Born, M.; Oppenheimer, J. 1927; 84
Kawata, I.; Kono, H.; Fujiyama, Y. 1999; 110
Heil, T.; Butler, S.; Dalgarno, A. 1981; 23
Baer, M.; Baer, M. 1975 1980; 35 40
Wang, P.; Sayler, A.; Carnes, K.; Xia, J.; Smith, M.; Esry, B.; Ben-Itzchak, I. 2006; 74
Godsi, P.; Evenhuis, C.; Collins, M. 2006; 125
Chelkowski, S.; Zuo, T.; Bandrauk, A.; Yu, H.; Zuo, T.; Bandrauk, A.; Bandrauk, A.; Yu, H.; Bandrauk, A.; Lu, H. 1992 1996 1999 2000; 46 54 59 62
Corkum, P.; Ellert, C.; Mehendale, M.; Dietrich, P.; Hankin, S.; Aseyev, S.; Rayner, D.; Villeneuve, D. 1999; 113
Zimmerman, I.; Yuan, J.; George, T.; George, T.; Zimmerman, I.; Devries, P.; Yuan, J.; Lam, K.; Bellum, J.; Lee, H.; Slutsky, M.; Lin, J.; Light, J.; Altenbergersiczek, A.; Chu, S.; Zimmerman, I.; Baer, M.; George, T.; Last, I.; Baer, M.; Zimmerman, I.; George, T.; Last, I.; Baer, M. 1977 1979 1979 1981 1983 1983 1985; 66 4 70 75 87 101 82
Baer, M.; Vertsi, T.; Halász, G.; Vibok, Á.; Suhai, S.; Halász, G.; Vibók, Á.; Baer, R.; Baer, M.; Levi, C.; Halász, G.; Vibok, Á.; Bar, I.; Zeiri, Y.; Kosloff, R.; Baer, M.; Levy, C.; Halász, G.; Vibok, Á.; Bar, I.; Zeiri, Y.; Kosloff, R.; Baer, M.; Levy, C.; Halász, G.; Vibok, Á.; Bar, I.; Zeiri, Y.; Kosloff, R.; Baer, M. 2004 2007 2008 2009 2009; 127 40 128 109 113
Chapuisat, X.; Nauts, A.; Dehareug-Dao, D.; Dehareng, D.; Chapuisat, X.; Lorquet, J.; Galloy, C.; Raseev, G. 1983 1983; 95 78
Zuo, T.; Bandrauk, A.; Corkum, P.; Staudte, A.; Pavicie, D.; Chelkowski, S.; Zeidler, D.; Meckel, M.; Niikura, H.; Scoffler, M.; Schossler, S.; Ulrich, B.; Rajeev, P.; Weber, T.; Jahnke, T.; Villeneuve, D.; Bandrauk, A.; Cocke, C.; Corkum, P.; Dorner, R. 1996 2007; 259 98
deVivie-Riedel, R.; Kobe, K.; Manz, J.; Meyer, W.; Reisch, B.; Rutz, S.; Schriber, E.; Wöste, L.; Manz, J.; Naundorf, H.; Yamasita, K.; Zhao, Y.; Barth, I.; Manz, J. 1996 2000 2007; 100 113 75
Takayanagi, T.; Kurasaki, Y.; Ichihara, A.; Takayanagi, T.; Kurasaki, Y.; Shin, C.; Shin, S.; Troisi, G.; Orlandi, G. 2000 2000 2000 2003; 112 113 113 118
Ryb, I.; Baer, R. 2004; 121
Baer, R.; Charutz, D.; Kosloff, R.; Baer, M.; Lan, Z.; Domcke, W.; Vallet, V.; Sobolevwki, A.; Mahapatra, S. 1996 2005; 105 122
Paul, A.; Adhikari, S.; Mukhopadhyay, D.; Halász, G.; Vibok, Á.; Baer, R.; Baer, M.; Paul, A.; Adhikari, S.; Baer, M.; Baer, R. 2009; 113
Davidson, E.; McGuire, P.; Bellum, J. 1977 1979; 99 71
Bersuker, I. 2001; 101
Barbatti, M.; Belz, S.; Leibscher, M.; Lischka, H.; Manz, J.; Rozgonyi, T.; Gonzalez, L.; Al-Jabour, S.; Baer, M.; Deeb, O.; Leibscher, M.; Manz, J.; Xue, X.; Zilberg, S. 2008 2008; 350 112
Charron, E.; Giusti-Suzor, A.; Mies, F.; Charron, E.; Giusti-Suzor, A.; Mies, F.; Kulander, K.; Mies, F.; Schafer, K. 1995 1995 1996; 75 103 53
Kosloff, R.; Rice, S.; Gaspard, P.; Rice, S. 1989 2000; 139 403
Barragán, P.; Errea, L.; Macias, A.; Mendez, L.; Riera, A.; Lucas, J.; Aguilar, A.; Sevryuk, M.; Rusin, L.; Cavalli, S.; Aquilanti, V. 2004 2004; 121 108
Cohen-Tannoudji, C. 1998; 70
Mead, C.; Sidis, V. 1983 1992; 78 82
Amaran, S.; Kumar, S.; Amaran, S.; Kumar, S.; Koeppel, H. 2008 2008; 128 128
Baer, M.; Baer, R.; Kouri, D.; Baer, M.; Hoffman, D.; Sarkar, B.; Adhikari, S.; Baer, M.; Sarkar, B.; Adhikari, S.; Baer, M. 2003 2003 2007 2007; 107 119 126 127
Romero, T.; Aguilar, A.; Gadea, F.; Alijah, A.; Nikitin, E. 1999 1999; 110 96
Kryachko, E. 2003; 44
Gelin, M.; Egorova, D.; Domcke, W.; Yonehara, T.; Takatsuka, K.; Balint-Kurti, G.; Manby, F.; Ren, Q.; Artamonov, M.; Ho, T.; Rabitz, H.; Shi, S.; Rabitz, H. 2009 2008 2005 1990; 131 128 122 92
Bates, D.; Ledsham, K.; Stewart, A. 1953; 246
Hering, P.; Brooks, P.; Carl, R.; Judson, R.; Lowe, R. 1980; 44
Baer, M. 2006; 110
Sadygov, R.; Yarkony, D.; Papas, B.; Schuurman, M.; Yarkony, D.; Subotnik, J.; Yeganeh, S.; Cave, R.; Ratner, M. 1998 2008 2008; 109 129 129
Baer, M.; Lin, S.; Alijah, A.; Adhikari, S.; Billing, G.; Adhikari, S.; Billing, G.; Alijah, A.; Lin, S.; Baer, M. 2000 2000; 62 62
Werner, H.; Follmeg, B.; Alexander, M.; Petrongolo, C.; Hirsch, G.; Buenker, R.; Petrongolo, C.; Hirsch, G.; Buenker, R. 1989 1990 1990; 91 70 70
Gomez-Carrasco, S.; Aquado, A.; Paniaqua, M.; Roncero, O. 2006; 125
Born, M. 1951; K1
Tannor, D.; Rice, S.; Tannor, D.; Kosloff, R.; Rice, S.; Hammerich, D.; Kosloff, R.; Ratner, M.; Baer, R.; Kosloff, R.; Barash, D.; Orel, A.; Baer, R. 1985 1986 1992 1995 2000; 83 85 97 99 61
Ergler, T.; Rudenko, A.; Feuerstein, B.; Zrost, K.; Schroter, C.; Moshammer, R.; Ullrich, J.; Pavičic, D.; Kiess, A.; Hansch, T.; Figger, H. 2005 2005; 95 94
Abrahamsson, E.; Groenenboom, G.; Krems, R. 2007; 126
Adhikari, S.; Billing, G.; Puzari, P.; Sarkar, B.; Adhikari, S.; Sarkar, B.; Adhikari, S.; Paul, A.; Sardar, S.; Sarkar, B.; Adhikari, S. 1999 2004 2006 2009; 111 121 124 131
2023080305040378200_c8
(2023080305040378200_c46) 1992
(2023080305040378200_c35d) 1995; 99
(2023080305040378200_c6a) 1951; K1
(2023080305040378200_c20c) 2000; 113
(2023080305040378200_c16a) 1989; 91
(2023080305040378200_c27b) 2004; 121
(2023080305040378200_c26a) 2008; 128
2023080305040378200_c29b
(2023080305040378200_c24) 2006; 125
(2023080305040378200_c39b) 1996; 54
(2023080305040378200_c14a) 1983; 95
2023080305040378200_c32a
2023080305040378200_c32b
(2023080305040378200_c47) 1999; 113
(2023080305040378200_c19a) 2000; 62
(2023080305040378200_c31a) 1998; 109
(2023080305040378200_c37b) 2000; 113
(2023080305040378200_c12b) 1979; 71
(2023080305040378200_c18b) 1999; 96
(2023080305040378200_c6b) 1954
(2023080305040378200_c22b) 2004; 108
(2023080305040378200_c49b) 2000; 403
(2023080305040378200_c34c) 1979; 70
(2023080305040378200_c38c) 1996; 53
(2023080305040378200_c36a) 2009; 131
(2023080305040378200_c50) 2006; 110
(2023080305040378200_c19b) 2000; 62
(2023080305040378200_c37a) 1996; 100
(2023080305040378200_c35c) 1992; 97
(2023080305040378200_c34e) 1983; 87
(2023080305040378200_c9a) 1975; 35
(2023080305040378200_c15b) 1992; 82
(2023080305040378200_c35b) 1986; 85
(2023080305040378200_c38a) 1995; 75
(2023080305040378200_c37c) 2007; 75
(2023080305040378200_c17b) 2005; 122
Baer (2023080305040378200_c34h) 1985
(2023080305040378200_c39a) 1992; 46
(2023080305040378200_c31c) 2008; 129
(2023080305040378200_c28b) 2007; 40
(2023080305040378200_c1b) 2003; 119
(2023080305040378200_c28a) 2004; 127
(2023080305040378200_c41b) 2005; 94
(2023080305040378200_c23) 2006; 125
(2023080305040378200_c34f) 1983; 101
(2023080305040378200_c22a) 2004; 121
(2023080305040378200_c3a) 2009; 113
(2023080305040378200_c36c) 2005; 122
(2023080305040378200_c27d) 2009; 131
(2023080305040378200_c35e) 2000; 61
(2023080305040378200_c48) 1998; 70
(2023080305040378200_c29a) 2004; 121
(2023080305040378200_c5) 1927; 84
(2023080305040378200_c40b) 2007; 98
(2023080305040378200_c14b) 1983; 78
(2023080305040378200_c2) 1989
(2023080305040378200_c1d) 2007; 127
Baer (2023080305040378200_c11) 2002
(2023080305040378200_c31b) 2008; 129
(2023080305040378200_c28e) 2009; 113
2023080305040378200_c9c
2023080305040378200_c9d
(2023080305040378200_c34b) 1979; 4
2023080305040378200_c9e
(2023080305040378200_c1a) 2003; 107
(2023080305040378200_c20d) 2003; 118
(2023080305040378200_c34a) 1977; 66
(2023080305040378200_c18a) 1999; 110
(2023080305040378200_c12a) 1977; 99
(2023080305040378200_c36b) 2008; 128
(2023080305040378200_c9b) 1980; 40
(2023080305040378200_c30b) 2008; 112
(2023080305040378200_c35a) 1985; 83
(2023080305040378200_c43) 1999; 110
(2023080305040378200_c7b) 2001; 101
(2023080305040378200_c36d) 1990; 92
(2023080305040378200_c17a) 1996; 105
(2023080305040378200_c34d) 1981; 75
Domcke (2023080305040378200_c10) 2004
(2023080305040378200_c27c) 2006; 124
2023080305040378200_c44
(2023080305040378200_c16b) 1990; 70
(2023080305040378200_c28d) 2009; 109
(2023080305040378200_c42) 2006; 74
(2023080305040378200_c40a) 1996; 259
2023080305040378200_c3b
(2023080305040378200_c13) 1981; 23
(2023080305040378200_c41a) 2005; 95
(2023080305040378200_c21) 2003; 44
(2023080305040378200_c16c) 1990; 70
(2023080305040378200_c27a) 1999; 111
2023080305040378200_c30c
(2023080305040378200_c26b) 2008; 128
(2023080305040378200_c4) 2006
(2023080305040378200_c33) 1980; 44
(2023080305040378200_c15a) 1983; 78
(2023080305040378200_c28c) 2008; 128
Henderson (2023080305040378200_c12c) 1981
(2023080305040378200_c20a) 2000; 112
(2023080305040378200_c25) 2007; 126
(2023080305040378200_c39c) 1999; 59
(2023080305040378200_c39d) 2000; 62
(2023080305040378200_c45) 1953; 246
(2023080305040378200_c1c) 2007; 126
(2023080305040378200_c30a) 2008; 350
(2023080305040378200_c38b) 1995; 103
(2023080305040378200_c20b) 2000; 113
(2023080305040378200_c49a) 1989; 139
(2023080305040378200_c7a) 1972
(2023080305040378200_c34g) 1985; 82
References_xml – volume: 46 54 59 62
  start-page: R5342 3290 589 053406
  year: 1992 1996 1999 2000
  publication-title: Phys. Rev. A Phys. Rev. A Phys. Rev. A Phys. Rev. A
  doi: 10.1103/PhysRevA.46.R5342 10.1103/PhysRevA.54.3290 10.1103/PhysRevA.59.539 10.1103/PhysRevA.62.053406
– volume: 84
  start-page: 457
  year: 1927
  publication-title: Ann Phys
  doi: 10.1002/andp.19273892002
– volume: 110
  start-page: 11152
  year: 1999
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478002
– volume: 350 112
  start-page: 145 5573
  year: 2008 2008
  publication-title: Chem. Phys. J. Phys. Chem. A J. Phys. Chem. A
  doi: 10.1016/j.chemphys.2008.01.053 10.1021/jp8011427
– volume: 66 4 70 75 87 101 82
  start-page: 2638 4108 2215 1478 163 4954
  year: 1977 1979 1979 1981 1983 1983 1985
  publication-title: J. Chem. Phys. Chemical and Bio.-chemical Applications of Lasers J. Chem. Phys. J. Chem. Phys. J. Phys. Chem. Chem. Phys. Lett. J. Chem. Phys.
  doi: 10.1063/1.434264 10.1063/1.438035 10.1063/1.442334 10.1021/j100232a004 10.1016/0009-2614(83)87363-1 10.1063/1.448669
– volume: 91 70 70
  start-page: 5425 825 835
  year: 1989 1990 1990
  publication-title: J. Chem. Phys. Mol. Phys. Mol. Phys.
  doi: 10.1063/1.457570 10.1080/00268979000101381 10.1080/00268979000101381
– volume: 109 129 129
  start-page: 20 124104 244101
  year: 1998 2008 2008
  publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys.
  doi: 10.1063/1.476552 10.1063/1.2978389 10.1063/1.3042233
– volume: 74
  start-page: 043411
  year: 2006
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.043411
– volume: 131 128 122 92
  start-page: 124505 154104 084110 364
  year: 2009 2008 2005 1990
  publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. J. Chem. Phys.
  doi: 10.1063/1.3236577 10.1063/1.2904867 10.1063/1.1854632 10.1063/1.458438
– volume: 139 403
  start-page: 201 496
  year: 1989 2000
  publication-title: J. Chem. Phys. Nature (London)
  doi: 10.1016/0301-0104(89)90012-8 10.1038/35000695
– volume: 128 128
  start-page: 154325 124305
  year: 2008 2008
  publication-title: J. Chem. Phys. J. Chem. Phys.
  doi: 10.1063/1.2903420 10.1063/1.2894308
– volume: 23
  start-page: 1100
  year: 1981
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.23.1100
– volume: 110
  start-page: 6571
  year: 2006
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0617266
– volume: 121
  start-page: 10370
  year: 2004
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1808695
– volume: 105 122
  start-page: 9141 224315
  year: 1996 2005
  publication-title: J. Chem. Phys. J. Chem. Phys.
  doi: 10.1063/1.472748 10.1063/1.1906218
– volume: 125
  start-page: 104105
  year: 2006
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2338912
– volume: 112 113 113 118
  start-page: 2615 7158 6528 5356
  year: 2000 2000 2000 2003
  publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. J. Chem. Phys.
  doi: 10.1063/1.480835 10.1063/1.1312284 10.1063/1.1310600 10.1063/1.1555118
– volume: 127 40 128 109 113
  start-page: 337 F267 244302 2482 6756
  year: 2004 2007 2008 2009 2009
  publication-title: Faraday Discuss. J. Phys A: Math. Theor. J. Chem. Phys. Int. J. Quantum Chem. J. Phys. Chem. A
  doi: 10.1039/b313883f 10.1088/1751-8113/40/15/F01 10.1063/1.2943143 10.1002/qua.21940 10.1021/jp901072u
– volume: 70
  start-page: 707
  year: 1998
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.70.707
– volume: 83 85 97 99 61
  start-page: 5013 5805 6410 2534 013402
  year: 1985 1986 1992 1995 2000
  publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. J. Phys. Chem. A Phys. Rev. A
  doi: 10.1063/1.449767 10.1063/1.451542 10.1063/1.463948 10.1103/PhysRevA.61.013402
– volume: 121 108
  start-page: 11629 8731
  year: 2004 2004
  publication-title: J. Chem. Phys. J. Phys. Chem. A
  doi: 10.1063/1.1814936 10.1021/jp040099m
– volume: 111 121 124 131
  start-page: 40 707 074101 124312
  year: 1999 2004 2006 2009
  publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. J. Chem. Phys.
  doi: 10.1063/1.479360 10.1063/1.1758700 10.1063/1.2170089 10.1063/1.3236839
– volume: 78 82
  start-page: 807 73
  year: 1983 1992
  publication-title: J. Chem. Phys. Adv. Chem. Phys.
  doi: 10.1063/1.444780 10.1002/9780470141403.ch2
– volume: 101
  start-page: 1067
  year: 2001
  publication-title: Chem. Rev. (Washington, D.C.)
– volume: 95 94
  start-page: 093001 163002
  year: 2005 2005
  publication-title: Phys. Rev. Lett. Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.093001 10.1103/PhysRevLett.94.163002
– volume: 113
  start-page: 47
  year: 1999
  publication-title: Faraday Discuss.
  doi: 10.1039/a903428e
– volume: 44
  start-page: 687
  year: 1980
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.44.687
– volume: 246
  start-page: 215
  year: 1953
  publication-title: Philos. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.1953.0014
– volume: 62 62
  start-page: 032506 032507
  year: 2000 2000
  publication-title: Phys. Rev. A Phys. Rev. A
  doi: 10.1103/PhysRevA.62.032506 10.1103/PhysRevA.62.032507
– volume: 35 40
  start-page: 112 1011
  year: 1975 1980
  publication-title: Chem. Phys. Lett. Mol. Phys.
  doi: 10.1016/0009-2614(75)85599-0 10.1080/00268978000102091
– volume: 113
  start-page: 7331
  year: 2009
  publication-title: J. Phys. Chem. A Phys. Rev. A
  doi: 10.1021/jp811269g
– volume: 126
  start-page: 184303
  year: 2007
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2732751
– volume: 99 71
  start-page: 397 1975
  year: 1977 1979
  publication-title: J. Am. Chem. Soc. J. Chem. Phys.
  doi: 10.1021/ja00444a015 10.1063/1.438512
– volume: 259 98
  start-page: 313 073003
  year: 1996 2007
  publication-title: Chem. Phys. Lett. Phys. Rev. Lett.
  doi: 10.1016/0009-2614(96)00786-5 10.1103/PhysRevLett.98.073003
– volume: 107 119 126 127
  start-page: 4724 6998 014106 014301
  year: 2003 2003 2007 2007
  publication-title: J. Phys. Chem. A J. Chem. Phys. J. Chem. Phys. J. Chem. Phys.
  doi: 10.1021/jp022655n 10.1063/1.1606433 10.1063/1.2423009 10.1063/1.2743437
– volume: 110 96
  start-page: 6219 1399
  year: 1999 1999
  publication-title: J. Chem. Phys. Mol. Phys.
  doi: 10.1063/1.478526 10.1080/00268979909483084
– volume: 95 78
  start-page: 139 1246
  year: 1983 1983
  publication-title: Chem. Phys. Lett. J. Chem. Phys.
  doi: 10.1016/0009-2614(83)85083-0 10.1063/1.444862
– volume: 44
  start-page: 119
  year: 2003
  publication-title: Adv. Quantum Chem.
  doi: 10.1016/S0065-3276(03)44008-2
– volume: 100 113 75
  start-page: 7789 8969 012510
  year: 1996 2000 2007
  publication-title: J. Phys. Chem. J. Chem. Phys. Phys. Rev. A
  doi: 10.1021/jp952740d 10.1063/1.1319347 10.1103/PhysRevA.75.012510
– volume: 75 103 53
  start-page: 2815 7359 2562
  year: 1995 1995 1996
  publication-title: Phys. Rev. Lett. J. Chem. Phys. Phys. Rev. A
  doi: 10.1103/PhysRevLett.75.2815 10.1063/1.470308 10.1103/PhysRevA.53.2562
– volume: 125
  start-page: 164321
  year: 2006
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2363988
– volume: K1
  start-page: 1
  year: 1951
  publication-title: Festschrift Goett., Nach. Math. Phys.
– volume: 98
  start-page: 073003
  year: 2007
  ident: 2023080305040378200_c40b
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.073003
– volume: 128
  start-page: 154325
  year: 2008
  ident: 2023080305040378200_c26a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2903420
– volume: 121
  start-page: 11629
  year: 2004
  ident: 2023080305040378200_c22a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1814936
– volume: 122
  start-page: 224315
  year: 2005
  ident: 2023080305040378200_c17b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1906218
– volume: 70
  start-page: 4108
  year: 1979
  ident: 2023080305040378200_c34c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438035
– ident: 2023080305040378200_c44
– volume: 97
  start-page: 6410
  year: 1992
  ident: 2023080305040378200_c35c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463948
– volume: 74
  start-page: 043411
  year: 2006
  ident: 2023080305040378200_c42
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.043411
– volume-title: Photons and Atoms: Introduction to Quantum Electrodynamics
  year: 1989
  ident: 2023080305040378200_c2
– volume: 70
  start-page: 825
  year: 1990
  ident: 2023080305040378200_c16b
  publication-title: Mol. Phys.
  doi: 10.1080/00268979000101381
– volume: 54
  start-page: 3290
  year: 1996
  ident: 2023080305040378200_c39b
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.54.3290
– volume: 122
  start-page: 084110
  year: 2005
  ident: 2023080305040378200_c36c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1854632
– volume: 92
  start-page: 364
  year: 1990
  ident: 2023080305040378200_c36d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458438
– volume: 94
  start-page: 163002
  year: 2005
  ident: 2023080305040378200_c41b
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.163002
– ident: 2023080305040378200_c9d
– volume: 128
  start-page: 154104
  year: 2008
  ident: 2023080305040378200_c36b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2904867
– volume: 70
  start-page: 707
  year: 1998
  ident: 2023080305040378200_c48
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.70.707
– volume: 82
  start-page: 73
  year: 1992
  ident: 2023080305040378200_c15b
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470141403.ch2
– volume: 131
  start-page: 124505
  year: 2009
  ident: 2023080305040378200_c36a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3236577
– ident: 2023080305040378200_c32a
– volume: 75
  start-page: 2815
  year: 1995
  ident: 2023080305040378200_c38a
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.2815
– volume-title: Beyond Born Oppenheimer: Electronic Non-Adiabatic Coupling Terms and Conical Intersections
  year: 2006
  ident: 2023080305040378200_c4
– volume: 103
  start-page: 7359
  year: 1995
  ident: 2023080305040378200_c38b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470308
– volume: 112
  start-page: 2615
  year: 2000
  ident: 2023080305040378200_c20a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480835
– volume: 129
  start-page: 244101
  year: 2008
  ident: 2023080305040378200_c31c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3042233
– volume-title: The Jahn-Teller Effect in Molecules and Crystals
  year: 1972
  ident: 2023080305040378200_c7a
– volume: 85
  start-page: 5805
  year: 1986
  ident: 2023080305040378200_c35b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451542
– volume: 23
  start-page: 1100
  year: 1981
  ident: 2023080305040378200_c13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.23.1100
– ident: 2023080305040378200_c3b
  article-title: H2+ photo-dissociation by an intense pulsed photonic Fock state
  publication-title: Phys. Rev. A
– volume: 40
  start-page: 1011
  year: 1980
  ident: 2023080305040378200_c9b
  publication-title: Mol. Phys.
  doi: 10.1080/00268978000102091
– volume: 91
  start-page: 5425
  year: 1989
  ident: 2023080305040378200_c16a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.457570
– volume: 53
  start-page: 2562
  year: 1996
  ident: 2023080305040378200_c38c
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.53.2562
– volume: 84
  start-page: 457
  year: 1927
  ident: 2023080305040378200_c5
  publication-title: Ann Phys
  doi: 10.1002/andp.19273892002
– volume: 78
  start-page: 1246
  year: 1983
  ident: 2023080305040378200_c14b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444862
– volume: 129
  start-page: 124104
  year: 2008
  ident: 2023080305040378200_c31b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2978389
– volume: 113
  start-page: 7158
  year: 2000
  ident: 2023080305040378200_c20b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1312284
– volume: 110
  start-page: 11152
  year: 1999
  ident: 2023080305040378200_c43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478002
– volume: K1
  start-page: 1
  year: 1951
  ident: 2023080305040378200_c6a
  publication-title: Festschrift Goett., Nach. Math. Phys.
– volume: 95
  start-page: 139
  year: 1983
  ident: 2023080305040378200_c14a
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(83)85083-0
– volume: 101
  start-page: 163
  year: 1983
  ident: 2023080305040378200_c34f
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(83)87363-1
– volume: 113
  start-page: 47
  year: 1999
  ident: 2023080305040378200_c47
  publication-title: Faraday Discuss.
  doi: 10.1039/a903428e
– volume: 105
  start-page: 9141
  year: 1996
  ident: 2023080305040378200_c17a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472748
– start-page: 1
  volume-title: The Role of Degenerate States in Chemistry
  year: 2002
  ident: 2023080305040378200_c11
  doi: 10.1002/0471433462.ch1
– volume: 119
  start-page: 6998
  year: 2003
  ident: 2023080305040378200_c1b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1606433
– volume: 128
  start-page: 244302
  year: 2008
  ident: 2023080305040378200_c28c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2943143
– volume: 259
  start-page: 313
  year: 1996
  ident: 2023080305040378200_c40a
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00786-5
– ident: 2023080305040378200_c30c
  article-title: Molecular symmetry properties of conical intersections and non-adiabatic coupling terms
  publication-title: J. Phys. Chem. A
– volume: 111
  start-page: 40
  year: 1999
  ident: 2023080305040378200_c27a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479360
– volume: 66
  start-page: 2638
  year: 1977
  ident: 2023080305040378200_c34a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434264
– volume: 59
  start-page: 589
  year: 1999
  ident: 2023080305040378200_c39c
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.539
– volume: 403
  start-page: 496
  year: 2000
  ident: 2023080305040378200_c49b
  publication-title: Nature (London)
  doi: 10.1038/35000695
– volume: 78
  start-page: 807
  year: 1983
  ident: 2023080305040378200_c15a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444780
– volume: 139
  start-page: 201
  year: 1989
  ident: 2023080305040378200_c49a
  publication-title: J. Chem. Phys.
  doi: 10.1016/0301-0104(89)90012-8
– volume: 113
  start-page: 6756
  year: 2009
  ident: 2023080305040378200_c28e
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp901072u
– volume: 101
  start-page: 1067
  year: 2001
  ident: 2023080305040378200_c7b
  publication-title: Chem. Rev. (Washington, D.C.)
  doi: 10.1021/cr0004411
– volume: 70
  start-page: 835
  year: 1990
  ident: 2023080305040378200_c16c
  publication-title: Mol. Phys.
  doi: 10.1080/00268979000101381
– volume: 113
  start-page: 6528
  year: 2000
  ident: 2023080305040378200_c20c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1310600
– volume: 99
  start-page: 397
  year: 1977
  ident: 2023080305040378200_c12a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00444a015
– volume: 112
  start-page: 5573
  year: 2008
  ident: 2023080305040378200_c30b
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8011427
– start-page: 265
  volume-title: Theory of Chemical Reactions Dynamics
  year: 1985
  ident: 2023080305040378200_c34h
– volume: 100
  start-page: 7789
  year: 1996
  ident: 2023080305040378200_c37a
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952740d
– volume-title: Atoms in Intense Laser Fields
  year: 1992
  ident: 2023080305040378200_c46
– volume: 44
  start-page: 119
  year: 2003
  ident: 2023080305040378200_c21
  publication-title: Adv. Quantum Chem.
  doi: 10.1016/S0065-3276(03)44008-2
– volume: 127
  start-page: 337
  year: 2004
  ident: 2023080305040378200_c28a
  publication-title: Faraday Discuss.
  doi: 10.1039/b313883f
– volume: 108
  start-page: 8731
  year: 2004
  ident: 2023080305040378200_c22b
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp040099m
– ident: 2023080305040378200_c29b
– volume: 125
  start-page: 164321
  year: 2006
  ident: 2023080305040378200_c24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2363988
– volume: 99
  start-page: 2534
  year: 1995
  ident: 2023080305040378200_c35d
  publication-title: J. Phys. Chem. A
– volume: 95
  start-page: 093001
  year: 2005
  ident: 2023080305040378200_c41a
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.093001
– volume: 46
  start-page: R5342
  year: 1992
  ident: 2023080305040378200_c39a
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.46.R5342
– volume: 44
  start-page: 687
  year: 1980
  ident: 2023080305040378200_c33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.44.687
– ident: 2023080305040378200_c8
– volume: 113
  start-page: 8969
  year: 2000
  ident: 2023080305040378200_c37b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1319347
– volume: 246
  start-page: 215
  year: 1953
  ident: 2023080305040378200_c45
  publication-title: Philos. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.1953.0014
– volume: 121
  start-page: 10370
  year: 2004
  ident: 2023080305040378200_c29a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1808695
– volume: 350
  start-page: 145
  year: 2008
  ident: 2023080305040378200_c30a
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2008.01.053
– volume: 75
  start-page: 2215
  year: 1981
  ident: 2023080305040378200_c34d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.442334
– volume: 113
  start-page: 7331
  year: 2009
  ident: 2023080305040378200_c3a
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp811269g
– ident: 2023080305040378200_c9e
– volume: 110
  start-page: 6219
  year: 1999
  ident: 2023080305040378200_c18a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478526
– volume: 40
  start-page: F267
  year: 2007
  ident: 2023080305040378200_c28b
  publication-title: J. Phys A: Math. Theor.
  doi: 10.1088/1751-8113/40/15/F01
– volume: 126
  start-page: 184303
  year: 2007
  ident: 2023080305040378200_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2732751
– volume: 125
  start-page: 104105
  year: 2006
  ident: 2023080305040378200_c23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2338912
– start-page: 32
  volume-title: Theoretical Chemistry: Advances and Perspectives
  year: 1981
  ident: 2023080305040378200_c12c
– ident: 2023080305040378200_c32b
– volume: 118
  start-page: 5356
  year: 2003
  ident: 2023080305040378200_c20d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1555118
– volume-title: Dynamical Theory of Crystal Lattices
  year: 1954
  ident: 2023080305040378200_c6b
– start-page: 175
  volume-title: Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
  year: 2004
  ident: 2023080305040378200_c10
  doi: 10.1142/5406
– volume: 121
  start-page: 707
  year: 2004
  ident: 2023080305040378200_c27b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1758700
– volume: 124
  start-page: 074101
  year: 2006
  ident: 2023080305040378200_c27c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2170089
– volume: 126
  start-page: 014106
  year: 2007
  ident: 2023080305040378200_c1c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2423009
– volume: 62
  start-page: 053406
  year: 2000
  ident: 2023080305040378200_c39d
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.053406
– volume: 87
  start-page: 1478
  year: 1983
  ident: 2023080305040378200_c34e
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100232a004
– volume: 110
  start-page: 6571
  year: 2006
  ident: 2023080305040378200_c50
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0617266
– volume: 96
  start-page: 1399
  year: 1999
  ident: 2023080305040378200_c18b
  publication-title: Mol. Phys.
  doi: 10.1080/00268979909483084
– volume: 83
  start-page: 5013
  year: 1985
  ident: 2023080305040378200_c35a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449767
– volume: 127
  start-page: 014301
  year: 2007
  ident: 2023080305040378200_c1d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2743437
– volume: 62
  start-page: 032507
  year: 2000
  ident: 2023080305040378200_c19b
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.032507
– volume: 131
  start-page: 124312
  year: 2009
  ident: 2023080305040378200_c27d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3236839
– volume: 109
  start-page: 20
  year: 1998
  ident: 2023080305040378200_c31a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476552
– volume: 82
  start-page: 4954
  year: 1985
  ident: 2023080305040378200_c34g
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448669
– volume: 71
  start-page: 1975
  year: 1979
  ident: 2023080305040378200_c12b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438512
– volume: 4
  year: 1979
  ident: 2023080305040378200_c34b
  publication-title: Chemical and Bio.-chemical Applications of Lasers
– volume: 62
  start-page: 032506
  year: 2000
  ident: 2023080305040378200_c19a
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.032506
– volume: 35
  start-page: 112
  year: 1975
  ident: 2023080305040378200_c9a
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(75)85599-0
– volume: 128
  start-page: 124305
  year: 2008
  ident: 2023080305040378200_c26b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2894308
– volume: 61
  start-page: 013402
  year: 2000
  ident: 2023080305040378200_c35e
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.61.013402
– volume: 107
  start-page: 4724
  year: 2003
  ident: 2023080305040378200_c1a
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp022655n
– ident: 2023080305040378200_c9c
– volume: 75
  start-page: 012510
  year: 2007
  ident: 2023080305040378200_c37c
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.012510
– volume: 109
  start-page: 2482
  year: 2009
  ident: 2023080305040378200_c28d
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.21940
SSID ssj0001724
Score 1.998988
Snippet In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [ A. K. Paul ,...
In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul,...
SourceID osti
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 034303
SubjectTerms ACCURACY
APPROXIMATIONS
BORN-OPPENHEIMER APPROXIMATION
BOSONS
CALCULATION METHODS
CATIONS
CHARGED PARTICLES
CHEMICAL REACTIONS
COLLISIONS
DECOMPOSITION
DISSOCIATION
ELEMENTARY PARTICLES
HYDROGEN IONS
HYDROGEN IONS 2 PLUS
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
IONS
KINETICS
MASSLESS PARTICLES
MOLECULAR IONS
MOLECULE COLLISIONS
PHOTOCHEMICAL REACTIONS
PHOTOLYSIS
PHOTON COLLISIONS
PHOTON-MOLECULE COLLISIONS
PHOTONS
REACTION KINETICS
SPACE-TIME
TIME DEPENDENCE
Title Space-time contours to treat intense field-dressed molecular states
URI http://dx.doi.org/10.1063/1.3282333
https://www.ncbi.nlm.nih.gov/pubmed/20095735
https://www.proquest.com/docview/733807595
https://www.osti.gov/biblio/21559828
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJzR4QDB-FQayEA9IlUsax3byOApogg0hdZP2ZtmJoxVYi9b0hb-esx07qSgS7KFRldptene2v7O_u0PotdYwmrMKPFUABwTwbUZyrQxhumBZKgqjhQ0UPv3Cj8-zTxfsYjA46bGWNo2elL92xpXcRKtwD_Rqo2T_Q7PxS-EGvAf9whU0DNd_0vEcHF5DbHl4RzmHLi5fgyOPu0QQy7UZO44aqVyS8Gp8Fcrhjl0o0boPTrswMQdQy5BLwO9-RPBtyYRuSrlaNOPPk-7E_3LxXfnA9blqrtW3RaTUvFPeMvok_XarwTHWSNqjbYQzpC0ew9feM4QAgSmxjpFfYvy8muQFEdxXBo0Tb7ez2TnmbhpNaEYT2luU_Q3iGbB_zPoAs-wGxISC_0gpvYX2UiHsof3e0fvTk3lcmQGstVm5_QOGTFOcvo2dt_DJcAV_dJfvcRftA0LxZIkeHjm7j-61esJH3ioeoIFZHqD9Wajfd4ButyJ7iGadneBgJ7hZYWcnuLUTvGUnONoJ9nbyCJ1__HA2OyZt8QxSUs4bQhUrU8E1vDgshqWuhakBSxsODm41VZTmTHFGRaFrUwKI44mBnlmu60xkPKGP0XC5WpqnCLOqqoVQiagLnUEbBaCwqqpCwPC3-R1H6E0QmQxCsQVOfkjHcOBUTmUr3RF6FZv-9OlUdjU6tHKXVsKmvCwt46tsZGpP0PM0HyEc9CFBpPaASy3NarOWgtryCaxgI_TE6yn-iD0EZILCJzwq7u9P4NQirVpkUMuzm3Z8ju50Y-kQDZvrjXkBQLbRL1v7_A2Rfp5I
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-time+contours+to+treat+intense+field-dressed+molecular+states&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Paul%2C+Amit+K.&rft.au=Adhikari%2C+Satrajit&rft.au=Baer%2C+Michael&rft.date=2010-01-21&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=132&rft.issue=3&rft.spage=034303&rft.epage=034303-10&rft_id=info:doi/10.1063%2F1.3282333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon