Scaling of the disorder operator at deconfined quantum criticality

We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)d in the J-Q_3 J − Q 3 model via large-scale quantum Monte Carlo simulations. We show that the disorder para...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 13; no. 6; p. 123
Main Authors Wang, Yan-Cheng, Ma, Nvsen, Cheng, Meng, Meng, Zi Yang
Format Journal Article
LanguageEnglish
Published SciPost 01.12.2022
Online AccessGet full text

Cover

Loading…
Abstract We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)d in the J-Q_3 J − Q 3 model via large-scale quantum Monte Carlo simulations. We show that the disorder parameter for U(1) spin rotation symmetry exhibits perimeter scaling with a logarithmic correction associated with sharp corners of the region, as generally expected for a conformally-invariant critical point. However, for large rotation angle the universal coefficient of the logarithmic corner correction becomes negative, which is not allowed in any unitary conformal field theory. We also extract the current central charge from the small rotation angle scaling, whose value is much smaller than that of the free theory.
AbstractList We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)d in the J-Q_3 J − Q 3 model via large-scale quantum Monte Carlo simulations. We show that the disorder parameter for U(1) spin rotation symmetry exhibits perimeter scaling with a logarithmic correction associated with sharp corners of the region, as generally expected for a conformally-invariant critical point. However, for large rotation angle the universal coefficient of the logarithmic corner correction becomes negative, which is not allowed in any unitary conformal field theory. We also extract the current central charge from the small rotation angle scaling, whose value is much smaller than that of the free theory.
We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)$d$ in the $J$-$Q_3$ model via large-scale quantum Monte Carlo simulations. We show that the disorder parameter for U(1) spin rotation symmetry exhibits perimeter scaling with a logarithmic correction associated with sharp corners of the region, as generally expected for a conformally-invariant critical point. However, for large rotation angle the universal coefficient of the logarithmic corner correction becomes negative, which is not allowed in any unitary conformal field theory. We also extract the current central charge from the small rotation angle scaling, whose value is much smaller than that of the free theory.
ArticleNumber 123
Author Wang, Yan-Cheng
Ma, Nvsen
Cheng, Meng
Meng, Zi Yang
Author_xml – sequence: 1
  givenname: Yan-Cheng
  surname: Wang
  fullname: Wang, Yan-Cheng
  organization: Beihang Hangzhou Innovation Institute Yuhang
– sequence: 2
  givenname: Nvsen
  surname: Ma
  fullname: Ma, Nvsen
  organization: Beihang University
– sequence: 3
  givenname: Meng
  surname: Cheng
  fullname: Cheng, Meng
  organization: Yale University
– sequence: 4
  givenname: Zi Yang
  surname: Meng
  fullname: Meng, Zi Yang
  organization: University of Hong Kong
BookMark eNpNkNtqAjEURUNpodb6CYX8wNhkcpnJYyu9CEIF2-dwJheN6MQm8cG_r9VSfDqbA3uxWXfouo-9Q-iBknFNuWwfFybMYy7z1SGPKRvLMa3ZFRrUgtcVl4JdX-RbNMp5TQipKVVUigF6XhjYhH6Jo8dl5bANOSbrEo47l6DEhKFg60zsfeidxd976Mt-i00KJfxWy-Ee3XjYZDf6u0P09fryOXmvZh9v08nTrDJMylIx1XEwQlnGfGuYglYBdZQrS4g1rVJgiXVNI5ikingAILwmRlnRUNe4jg3R9My1EdZ6l8IW0kFHCPr0iGmpIR1HbZym0DJPFPfWe96JrjWdUcB87QgAE-LIEmeWSTHn5Pw_jxJ98qovvGrKtNRHr-wHDVZxuA
CitedBy_id crossref_primary_10_1103_PhysRevB_109_094416
crossref_primary_10_1103_PhysRevB_107_125134
crossref_primary_10_1103_PhysRevB_109_L140404
crossref_primary_10_1103_PhysRevB_109_195169
crossref_primary_10_1103_PhysRevB_108_094308
crossref_primary_10_1103_PhysRevLett_132_246503
crossref_primary_10_1103_PhysRevB_109_L081114
crossref_primary_10_1038_s41467_023_37756_7
crossref_primary_10_1038_s41535_022_00476_0
crossref_primary_10_1103_PhysRevB_107_205137
crossref_primary_10_21468_SciPostPhys_14_2_013
crossref_primary_10_1103_PhysRevB_109_245108
crossref_primary_10_1103_PhysRevB_108_L081123
crossref_primary_10_1103_PhysRevLett_130_266501
crossref_primary_10_1103_PhysRevLett_132_156503
crossref_primary_10_1103_PRXQuantum_4_030317
crossref_primary_10_1103_PhysRevLett_130_131601
crossref_primary_10_1103_PhysRevResearch_5_033046
crossref_primary_10_1103_PhysRevB_108_245152
crossref_primary_10_1103_PhysRevLett_132_206502
crossref_primary_10_1103_PhysRevB_107_155121
crossref_primary_10_21468_SciPostPhys_15_3_082
Cites_doi 10.1038/s41586-021-03411-8
10.1007/JHEP11(2012)087
10.1103/PhysRevLett.126.045701
10.1103/PhysRevX.11.041008
10.1103/PhysRevLett.125.257204
10.1103/PhysRevE.66.046701
10.1103/PhysRevLett.128.010601
10.1103/PhysRevLett.122.175701
10.1088/1674-1056/abf3b8
10.1103/PhysRevLett.117.131601
10.1103/PhysRevResearch.2.043086
10.1103/PhysRevLett.121.117202
10.1007/JHEP09(2015)091
10.1103/PhysRevLett.97.050404
10.1007/JHEP10(2018)108
10.1103/PhysRevX.11.031043
10.1007/jhep02(2015)172
10.1007/jhep06(2020)142
10.1103/PhysRevB.104.L081109
10.1103/PhysRevB.73.014431
10.1103/PhysRevLett.112.030402
10.1088/1742-5468/ac08fe
10.1103/PhysRevLett.115.267203
10.1103/PhysRevB.80.180414
10.1103/PhysRevLett.124.206602
10.1103/PhysRevB.90.245109
10.1073/pnas.0803726105
10.1103/PhysRevB.104.205142
10.1103/PhysRevB.102.020407
10.1103/PhysRevB.106.075111
10.1126/science.aal3099
10.1103/PhysRevB.92.245137
10.1103/RevModPhys.91.015002
10.1126/science.aad5007
10.1038/s41567-019-0484-x
10.1103/PhysRevB.102.201116
10.1103/PhysRevB.98.174421
10.1103/PhysRevX.7.031051
10.1103/PhysRevResearch.2.033417
10.1103/PhysRevResearch.3.033024
10.1088/1742-5468/2014/06/P06009
10.1103/PhysRevX.5.041048
10.1038/nphys2913
10.1103/PhysRevLett.64.587
10.1103/PhysRevB.70.144407
10.1038/s41467-021-27727-1
10.1103/PhysRevLett.104.177201
10.1038/s41467-019-10372-0
10.21468/SciPostPhys.5.5.050
10.1103/PhysRevB.105.L060409
10.1103/PhysRevLett.98.227202
10.21468/SciPostPhys.11.2.033
10.1016/j.aop.2008.11.002
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21468/SciPostPhys.13.6.123
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_1a83f094fdff4b5b8cbc9a3f2e0aa355
10_21468_SciPostPhys_13_6_123
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c366t-39b4ac59d33f8c39a89a1e149d00dc899ad0de77536190faaa0420c9d571e7eb3
IEDL.DBID DOA
ISSN 2542-4653
IngestDate Tue Oct 22 15:03:49 EDT 2024
Fri Aug 23 00:33:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-39b4ac59d33f8c39a89a1e149d00dc899ad0de77536190faaa0420c9d571e7eb3
OpenAccessLink https://doaj.org/article/1a83f094fdff4b5b8cbc9a3f2e0aa355
ParticipantIDs doaj_primary_oai_doaj_org_article_1a83f094fdff4b5b8cbc9a3f2e0aa355
crossref_primary_10_21468_SciPostPhys_13_6_123
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle SciPost physics
PublicationYear 2022
Publisher SciPost
Publisher_xml – name: SciPost
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref10
  doi: 10.1038/s41586-021-03411-8
– ident: ref47
  doi: 10.1007/JHEP11(2012)087
– ident: ref19
  doi: 10.1103/PhysRevLett.126.045701
– ident: ref21
  doi: 10.1103/PhysRevX.11.041008
– ident: ref18
  doi: 10.1103/PhysRevLett.125.257204
– ident: ref36
  doi: 10.1103/PhysRevE.66.046701
– ident: ref23
  doi: 10.1103/PhysRevLett.128.010601
– ident: ref8
  doi: 10.1103/PhysRevLett.122.175701
– ident: ref12
  doi: 10.1088/1674-1056/abf3b8
– ident: ref15
  doi: 10.1103/PhysRevLett.117.131601
– ident: ref29
  doi: 10.1103/PhysRevResearch.2.043086
– ident: ref39
  doi: 10.1103/PhysRevLett.121.117202
– ident: ref48
  doi: 10.1007/JHEP09(2015)091
– ident: ref40
  doi: 10.1103/PhysRevLett.97.050404
– ident: ref50
  doi: 10.1007/JHEP10(2018)108
– ident: ref20
  doi: 10.1103/PhysRevX.11.031043
– ident: ref27
  doi: 10.1007/jhep02(2015)172
– ident: ref46
  doi: 10.1007/jhep06(2020)142
– ident: ref32
  doi: 10.1103/PhysRevB.104.L081109
– ident: ref37
  doi: 10.1103/PhysRevB.73.014431
– ident: ref45
  doi: 10.1103/PhysRevLett.112.030402
– ident: ref33
  doi: 10.1088/1742-5468/ac08fe
– ident: ref5
  doi: 10.1103/PhysRevLett.115.267203
– ident: ref4
  doi: 10.1103/PhysRevB.80.180414
– ident: ref9
  doi: 10.1103/PhysRevLett.124.206602
– ident: ref44
  doi: 10.1103/PhysRevB.90.245109
– ident: ref25
  doi: 10.1073/pnas.0803726105
– ident: ref22
  doi: 10.1103/PhysRevB.104.205142
– ident: ref17
  doi: 10.1103/PhysRevB.102.020407
– ident: ref24
  doi: 10.1103/PhysRevB.106.075111
– ident: ref30
  doi: 10.1126/science.aal3099
– ident: ref38
  doi: 10.1103/PhysRevB.92.245137
– ident: ref49
  doi: 10.1103/RevModPhys.91.015002
– ident: ref7
  doi: 10.1126/science.aad5007
– ident: ref11
  doi: 10.1038/s41567-019-0484-x
– ident: ref16
  doi: 10.1103/PhysRevB.102.201116
– ident: ref3
  doi: 10.1103/PhysRevB.98.174421
– ident: ref6
  doi: 10.1103/PhysRevX.7.031051
– ident: ref28
  doi: 10.1103/PhysRevResearch.2.033417
– ident: ref31
  doi: 10.1103/PhysRevResearch.3.033024
– ident: ref41
  doi: 10.1088/1742-5468/2014/06/P06009
– ident: ref14
  doi: 10.1103/PhysRevX.5.041048
– ident: ref43
  doi: 10.1038/nphys2913
– ident: ref42
  doi: 10.1103/PhysRevLett.64.587
– ident: ref2
  doi: 10.1103/PhysRevB.70.144407
– ident: ref34
  doi: 10.1038/s41467-021-27727-1
– ident: ref53
  doi: 10.1103/PhysRevLett.104.177201
– ident: ref52
  doi: 10.1038/s41467-019-10372-0
– ident: ref51
  doi: 10.21468/SciPostPhys.5.5.050
– ident: ref13
  doi: 10.1103/PhysRevB.105.L060409
– ident: ref1
  doi: 10.1103/PhysRevLett.98.227202
– ident: ref35
  doi: 10.21468/SciPostPhys.11.2.033
– ident: ref26
  doi: 10.1016/j.aop.2008.11.002
SSID ssj0002119165
Score 2.418599
Snippet We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the...
We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 123
Title Scaling of the disorder operator at deconfined quantum criticality
URI https://doaj.org/article/1a83f094fdff4b5b8cbc9a3f2e0aa355
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxKcoX_LAmjSOE8cZKaKqGFigUjfLH3cbbYH2_3N2AgoTC2tkWda72PeefH7H2J1AjyB0yKx3SAJFQqYllBl4V6HD6HeS3D6f1XxRPS3r5aDVV6wJ6-yBO-AmwmqJpEEwIFaudto731qJJRTWUrJMp2_RDsRUPIOTb5mquyc7sXe1ntBeif1vY2FlLmSuclHKX8lo4NmfksvsiB32rJDfd6s5ZnuwOmH7qTrTf56y6QshSTmGr5ETYeOht8zk6w2ka3JutzxEaYtEGgN_3xFeuzfu-z4GxLTP2GL2-Powz_rmB5mXSm0z2brK-roNUqL2srW6tQJIz4SiCJ5Ukg1FgIbUBkmgAq21tP0K34a6EdCQRD5no9V6BReMa1QNzVMLoHwNOrjKq0ZaqIIqXYnlmOXfKJhN53FhSBsk2MwANiOkUYZgG7NpxOpncLSoTh8ocKYPnPkrcJf_MckVOyjje4RUX3LNRtuPHdwQS9i62_RDfAH6g78i
link.rule.ids 315,783,787,867,2109,27938,27939
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+of+the+disorder+operator+at+deconfined+quantum+criticality&rft.jtitle=SciPost+physics&rft.au=Wang%2C+Yan-Cheng&rft.au=Ma%2C+Nvsen&rft.au=Cheng%2C+Meng&rft.au=Meng%2C+Zi+Yang&rft.date=2022-12-01&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=13&rft.issue=6&rft_id=info:doi/10.21468%2FSciPostPhys.13.6.123&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_13_6_123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon