Scaling of the disorder operator at deconfined quantum criticality
We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)d in the J-Q_3 J − Q 3 model via large-scale quantum Monte Carlo simulations. We show that the disorder para...
Saved in:
Published in | SciPost physics Vol. 13; no. 6; p. 123 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
SciPost
01.12.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | We study scaling behavior of the disorder parameter, defined as the
expectation value of a symmetry transformation applied to a finite
region, at the deconfined quantum critical point in (2+1)d in the
J-Q_3
J
−
Q
3
model via large-scale quantum Monte Carlo simulations. We show that the
disorder parameter for U(1) spin rotation symmetry exhibits perimeter
scaling with a logarithmic correction associated with sharp corners of
the region, as generally expected for a conformally-invariant critical
point. However, for large rotation angle the universal coefficient of
the logarithmic corner correction becomes negative, which is not allowed
in any unitary conformal field theory. We also extract the current
central charge from the small rotation angle scaling, whose value is
much smaller than that of the free theory. |
---|---|
AbstractList | We study scaling behavior of the disorder parameter, defined as the
expectation value of a symmetry transformation applied to a finite
region, at the deconfined quantum critical point in (2+1)d in the
J-Q_3
J
−
Q
3
model via large-scale quantum Monte Carlo simulations. We show that the
disorder parameter for U(1) spin rotation symmetry exhibits perimeter
scaling with a logarithmic correction associated with sharp corners of
the region, as generally expected for a conformally-invariant critical
point. However, for large rotation angle the universal coefficient of
the logarithmic corner correction becomes negative, which is not allowed
in any unitary conformal field theory. We also extract the current
central charge from the small rotation angle scaling, whose value is
much smaller than that of the free theory. We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)$d$ in the $J$-$Q_3$ model via large-scale quantum Monte Carlo simulations. We show that the disorder parameter for U(1) spin rotation symmetry exhibits perimeter scaling with a logarithmic correction associated with sharp corners of the region, as generally expected for a conformally-invariant critical point. However, for large rotation angle the universal coefficient of the logarithmic corner correction becomes negative, which is not allowed in any unitary conformal field theory. We also extract the current central charge from the small rotation angle scaling, whose value is much smaller than that of the free theory. |
ArticleNumber | 123 |
Author | Wang, Yan-Cheng Ma, Nvsen Cheng, Meng Meng, Zi Yang |
Author_xml | – sequence: 1 givenname: Yan-Cheng surname: Wang fullname: Wang, Yan-Cheng organization: Beihang Hangzhou Innovation Institute Yuhang – sequence: 2 givenname: Nvsen surname: Ma fullname: Ma, Nvsen organization: Beihang University – sequence: 3 givenname: Meng surname: Cheng fullname: Cheng, Meng organization: Yale University – sequence: 4 givenname: Zi Yang surname: Meng fullname: Meng, Zi Yang organization: University of Hong Kong |
BookMark | eNpNkNtqAjEURUNpodb6CYX8wNhkcpnJYyu9CEIF2-dwJheN6MQm8cG_r9VSfDqbA3uxWXfouo-9Q-iBknFNuWwfFybMYy7z1SGPKRvLMa3ZFRrUgtcVl4JdX-RbNMp5TQipKVVUigF6XhjYhH6Jo8dl5bANOSbrEo47l6DEhKFg60zsfeidxd976Mt-i00KJfxWy-Ee3XjYZDf6u0P09fryOXmvZh9v08nTrDJMylIx1XEwQlnGfGuYglYBdZQrS4g1rVJgiXVNI5ikingAILwmRlnRUNe4jg3R9My1EdZ6l8IW0kFHCPr0iGmpIR1HbZym0DJPFPfWe96JrjWdUcB87QgAE-LIEmeWSTHn5Pw_jxJ98qovvGrKtNRHr-wHDVZxuA |
CitedBy_id | crossref_primary_10_1103_PhysRevB_109_094416 crossref_primary_10_1103_PhysRevB_107_125134 crossref_primary_10_1103_PhysRevB_109_L140404 crossref_primary_10_1103_PhysRevB_109_195169 crossref_primary_10_1103_PhysRevB_108_094308 crossref_primary_10_1103_PhysRevLett_132_246503 crossref_primary_10_1103_PhysRevB_109_L081114 crossref_primary_10_1038_s41467_023_37756_7 crossref_primary_10_1038_s41535_022_00476_0 crossref_primary_10_1103_PhysRevB_107_205137 crossref_primary_10_21468_SciPostPhys_14_2_013 crossref_primary_10_1103_PhysRevB_109_245108 crossref_primary_10_1103_PhysRevB_108_L081123 crossref_primary_10_1103_PhysRevLett_130_266501 crossref_primary_10_1103_PhysRevLett_132_156503 crossref_primary_10_1103_PRXQuantum_4_030317 crossref_primary_10_1103_PhysRevLett_130_131601 crossref_primary_10_1103_PhysRevResearch_5_033046 crossref_primary_10_1103_PhysRevB_108_245152 crossref_primary_10_1103_PhysRevLett_132_206502 crossref_primary_10_1103_PhysRevB_107_155121 crossref_primary_10_21468_SciPostPhys_15_3_082 |
Cites_doi | 10.1038/s41586-021-03411-8 10.1007/JHEP11(2012)087 10.1103/PhysRevLett.126.045701 10.1103/PhysRevX.11.041008 10.1103/PhysRevLett.125.257204 10.1103/PhysRevE.66.046701 10.1103/PhysRevLett.128.010601 10.1103/PhysRevLett.122.175701 10.1088/1674-1056/abf3b8 10.1103/PhysRevLett.117.131601 10.1103/PhysRevResearch.2.043086 10.1103/PhysRevLett.121.117202 10.1007/JHEP09(2015)091 10.1103/PhysRevLett.97.050404 10.1007/JHEP10(2018)108 10.1103/PhysRevX.11.031043 10.1007/jhep02(2015)172 10.1007/jhep06(2020)142 10.1103/PhysRevB.104.L081109 10.1103/PhysRevB.73.014431 10.1103/PhysRevLett.112.030402 10.1088/1742-5468/ac08fe 10.1103/PhysRevLett.115.267203 10.1103/PhysRevB.80.180414 10.1103/PhysRevLett.124.206602 10.1103/PhysRevB.90.245109 10.1073/pnas.0803726105 10.1103/PhysRevB.104.205142 10.1103/PhysRevB.102.020407 10.1103/PhysRevB.106.075111 10.1126/science.aal3099 10.1103/PhysRevB.92.245137 10.1103/RevModPhys.91.015002 10.1126/science.aad5007 10.1038/s41567-019-0484-x 10.1103/PhysRevB.102.201116 10.1103/PhysRevB.98.174421 10.1103/PhysRevX.7.031051 10.1103/PhysRevResearch.2.033417 10.1103/PhysRevResearch.3.033024 10.1088/1742-5468/2014/06/P06009 10.1103/PhysRevX.5.041048 10.1038/nphys2913 10.1103/PhysRevLett.64.587 10.1103/PhysRevB.70.144407 10.1038/s41467-021-27727-1 10.1103/PhysRevLett.104.177201 10.1038/s41467-019-10372-0 10.21468/SciPostPhys.5.5.050 10.1103/PhysRevB.105.L060409 10.1103/PhysRevLett.98.227202 10.21468/SciPostPhys.11.2.033 10.1016/j.aop.2008.11.002 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.21468/SciPostPhys.13.6.123 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2542-4653 |
ExternalDocumentID | oai_doaj_org_article_1a83f094fdff4b5b8cbc9a3f2e0aa355 10_21468_SciPostPhys_13_6_123 |
GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c366t-39b4ac59d33f8c39a89a1e149d00dc899ad0de77536190faaa0420c9d571e7eb3 |
IEDL.DBID | DOA |
ISSN | 2542-4653 |
IngestDate | Tue Oct 22 15:03:49 EDT 2024 Fri Aug 23 00:33:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-39b4ac59d33f8c39a89a1e149d00dc899ad0de77536190faaa0420c9d571e7eb3 |
OpenAccessLink | https://doaj.org/article/1a83f094fdff4b5b8cbc9a3f2e0aa355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a83f094fdff4b5b8cbc9a3f2e0aa355 crossref_primary_10_21468_SciPostPhys_13_6_123 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | SciPost physics |
PublicationYear | 2022 |
Publisher | SciPost |
Publisher_xml | – name: SciPost |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref10 doi: 10.1038/s41586-021-03411-8 – ident: ref47 doi: 10.1007/JHEP11(2012)087 – ident: ref19 doi: 10.1103/PhysRevLett.126.045701 – ident: ref21 doi: 10.1103/PhysRevX.11.041008 – ident: ref18 doi: 10.1103/PhysRevLett.125.257204 – ident: ref36 doi: 10.1103/PhysRevE.66.046701 – ident: ref23 doi: 10.1103/PhysRevLett.128.010601 – ident: ref8 doi: 10.1103/PhysRevLett.122.175701 – ident: ref12 doi: 10.1088/1674-1056/abf3b8 – ident: ref15 doi: 10.1103/PhysRevLett.117.131601 – ident: ref29 doi: 10.1103/PhysRevResearch.2.043086 – ident: ref39 doi: 10.1103/PhysRevLett.121.117202 – ident: ref48 doi: 10.1007/JHEP09(2015)091 – ident: ref40 doi: 10.1103/PhysRevLett.97.050404 – ident: ref50 doi: 10.1007/JHEP10(2018)108 – ident: ref20 doi: 10.1103/PhysRevX.11.031043 – ident: ref27 doi: 10.1007/jhep02(2015)172 – ident: ref46 doi: 10.1007/jhep06(2020)142 – ident: ref32 doi: 10.1103/PhysRevB.104.L081109 – ident: ref37 doi: 10.1103/PhysRevB.73.014431 – ident: ref45 doi: 10.1103/PhysRevLett.112.030402 – ident: ref33 doi: 10.1088/1742-5468/ac08fe – ident: ref5 doi: 10.1103/PhysRevLett.115.267203 – ident: ref4 doi: 10.1103/PhysRevB.80.180414 – ident: ref9 doi: 10.1103/PhysRevLett.124.206602 – ident: ref44 doi: 10.1103/PhysRevB.90.245109 – ident: ref25 doi: 10.1073/pnas.0803726105 – ident: ref22 doi: 10.1103/PhysRevB.104.205142 – ident: ref17 doi: 10.1103/PhysRevB.102.020407 – ident: ref24 doi: 10.1103/PhysRevB.106.075111 – ident: ref30 doi: 10.1126/science.aal3099 – ident: ref38 doi: 10.1103/PhysRevB.92.245137 – ident: ref49 doi: 10.1103/RevModPhys.91.015002 – ident: ref7 doi: 10.1126/science.aad5007 – ident: ref11 doi: 10.1038/s41567-019-0484-x – ident: ref16 doi: 10.1103/PhysRevB.102.201116 – ident: ref3 doi: 10.1103/PhysRevB.98.174421 – ident: ref6 doi: 10.1103/PhysRevX.7.031051 – ident: ref28 doi: 10.1103/PhysRevResearch.2.033417 – ident: ref31 doi: 10.1103/PhysRevResearch.3.033024 – ident: ref41 doi: 10.1088/1742-5468/2014/06/P06009 – ident: ref14 doi: 10.1103/PhysRevX.5.041048 – ident: ref43 doi: 10.1038/nphys2913 – ident: ref42 doi: 10.1103/PhysRevLett.64.587 – ident: ref2 doi: 10.1103/PhysRevB.70.144407 – ident: ref34 doi: 10.1038/s41467-021-27727-1 – ident: ref53 doi: 10.1103/PhysRevLett.104.177201 – ident: ref52 doi: 10.1038/s41467-019-10372-0 – ident: ref51 doi: 10.21468/SciPostPhys.5.5.050 – ident: ref13 doi: 10.1103/PhysRevB.105.L060409 – ident: ref1 doi: 10.1103/PhysRevLett.98.227202 – ident: ref35 doi: 10.21468/SciPostPhys.11.2.033 – ident: ref26 doi: 10.1016/j.aop.2008.11.002 |
SSID | ssj0002119165 |
Score | 2.418599 |
Snippet | We study scaling behavior of the disorder parameter, defined as the
expectation value of a symmetry transformation applied to a finite
region, at the... We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 123 |
Title | Scaling of the disorder operator at deconfined quantum criticality |
URI | https://doaj.org/article/1a83f094fdff4b5b8cbc9a3f2e0aa355 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxKcoX_LAmjSOE8cZKaKqGFigUjfLH3cbbYH2_3N2AgoTC2tkWda72PeefH7H2J1AjyB0yKx3SAJFQqYllBl4V6HD6HeS3D6f1XxRPS3r5aDVV6wJ6-yBO-AmwmqJpEEwIFaudto731qJJRTWUrJMp2_RDsRUPIOTb5mquyc7sXe1ntBeif1vY2FlLmSuclHKX8lo4NmfksvsiB32rJDfd6s5ZnuwOmH7qTrTf56y6QshSTmGr5ETYeOht8zk6w2ka3JutzxEaYtEGgN_3xFeuzfu-z4GxLTP2GL2-Powz_rmB5mXSm0z2brK-roNUqL2srW6tQJIz4SiCJ5Ukg1FgIbUBkmgAq21tP0K34a6EdCQRD5no9V6BReMa1QNzVMLoHwNOrjKq0ZaqIIqXYnlmOXfKJhN53FhSBsk2MwANiOkUYZgG7NpxOpncLSoTh8ocKYPnPkrcJf_MckVOyjje4RUX3LNRtuPHdwQS9i62_RDfAH6g78i |
link.rule.ids | 315,783,787,867,2109,27938,27939 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+of+the+disorder+operator+at+deconfined+quantum+criticality&rft.jtitle=SciPost+physics&rft.au=Wang%2C+Yan-Cheng&rft.au=Ma%2C+Nvsen&rft.au=Cheng%2C+Meng&rft.au=Meng%2C+Zi+Yang&rft.date=2022-12-01&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=13&rft.issue=6&rft_id=info:doi/10.21468%2FSciPostPhys.13.6.123&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_13_6_123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |