Plant Counting of Cotton from UAS Imagery Using Deep Learning-Based Object Detection Framework

Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement of plant population in the field is labor intensive and subject to error, in this study, a new approach of image-based plant counting is propo...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 18; p. 2981
Main Authors Oh, Sungchan, Chang, Anjin, Ashapure, Akash, Jung, Jinha, Dube, Nothabo, Maeda, Murilo, Gonzalez, Daniel, Landivar, Juan
Format Journal Article
LanguageEnglish
Published MDPI AG 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement of plant population in the field is labor intensive and subject to error, in this study, a new approach of image-based plant counting is proposed, using unmanned aircraft systems (UAS; DJI Mavic 2 Pro, Shenzhen, China) data. The previously developed image-based techniques required a priori information of geometry or statistical characteristics of plant canopy features, while also limiting the versatility of the methods in variable field conditions. In this regard, a deep learning-based plant counting algorithm was proposed to reduce the number of input variables, and to remove requirements for acquiring geometric or statistical information. The object detection model named You Only Look Once version 3 (YOLOv3) and photogrammetry were utilized to separate, locate, and count cotton plants in the seedling stage. The proposed algorithm was tested with four different UAS datasets, containing variability in plant size, overall illumination, and background brightness. Root mean square error (RMSE) and R2 values of the optimal plant count results ranged from 0.50 to 0.60 plants per linear meter of row (number of plants within 1 m distance along the planting row direction) and 0.96 to 0.97, respectively. The object detection algorithm, trained with variable plant size, ground wetness, and lighting conditions generally resulted in a lower detection error, unless an observable difference of developmental stages of cotton existed. The proposed plant counting algorithm performed well with 0–14 plants per linear meter of row, when cotton plants are generally separable in the seedling stage. This study is expected to provide an automated methodology for in situ evaluation of plant emergence using UAS data.
AbstractList Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement of plant population in the field is labor intensive and subject to error, in this study, a new approach of image-based plant counting is proposed, using unmanned aircraft systems (UAS; DJI Mavic 2 Pro, Shenzhen, China) data. The previously developed image-based techniques required a priori information of geometry or statistical characteristics of plant canopy features, while also limiting the versatility of the methods in variable field conditions. In this regard, a deep learning-based plant counting algorithm was proposed to reduce the number of input variables, and to remove requirements for acquiring geometric or statistical information. The object detection model named You Only Look Once version 3 (YOLOv3) and photogrammetry were utilized to separate, locate, and count cotton plants in the seedling stage. The proposed algorithm was tested with four different UAS datasets, containing variability in plant size, overall illumination, and background brightness. Root mean square error (RMSE) and R2 values of the optimal plant count results ranged from 0.50 to 0.60 plants per linear meter of row (number of plants within 1 m distance along the planting row direction) and 0.96 to 0.97, respectively. The object detection algorithm, trained with variable plant size, ground wetness, and lighting conditions generally resulted in a lower detection error, unless an observable difference of developmental stages of cotton existed. The proposed plant counting algorithm performed well with 0–14 plants per linear meter of row, when cotton plants are generally separable in the seedling stage. This study is expected to provide an automated methodology for in situ evaluation of plant emergence using UAS data.
Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement of plant population in the field is labor intensive and subject to error, in this study, a new approach of image-based plant counting is proposed, using unmanned aircraft systems (UAS; DJI Mavic 2 Pro, Shenzhen, China) data. The previously developed image-based techniques required a priori information of geometry or statistical characteristics of plant canopy features, while also limiting the versatility of the methods in variable field conditions. In this regard, a deep learning-based plant counting algorithm was proposed to reduce the number of input variables, and to remove requirements for acquiring geometric or statistical information. The object detection model named You Only Look Once version 3 (YOLOv3) and photogrammetry were utilized to separate, locate, and count cotton plants in the seedling stage. The proposed algorithm was tested with four different UAS datasets, containing variability in plant size, overall illumination, and background brightness. Root mean square error (RMSE) and R² values of the optimal plant count results ranged from 0.50 to 0.60 plants per linear meter of row (number of plants within 1 m distance along the planting row direction) and 0.96 to 0.97, respectively. The object detection algorithm, trained with variable plant size, ground wetness, and lighting conditions generally resulted in a lower detection error, unless an observable difference of developmental stages of cotton existed. The proposed plant counting algorithm performed well with 0–14 plants per linear meter of row, when cotton plants are generally separable in the seedling stage. This study is expected to provide an automated methodology for in situ evaluation of plant emergence using UAS data.
Author Ashapure, Akash
Dube, Nothabo
Gonzalez, Daniel
Maeda, Murilo
Landivar, Juan
Chang, Anjin
Oh, Sungchan
Jung, Jinha
Author_xml – sequence: 1
  givenname: Sungchan
  orcidid: 0000-0003-2337-9693
  surname: Oh
  fullname: Oh, Sungchan
– sequence: 2
  givenname: Anjin
  surname: Chang
  fullname: Chang, Anjin
– sequence: 3
  givenname: Akash
  orcidid: 0000-0003-4050-0301
  surname: Ashapure
  fullname: Ashapure, Akash
– sequence: 4
  givenname: Jinha
  orcidid: 0000-0003-1176-3540
  surname: Jung
  fullname: Jung, Jinha
– sequence: 5
  givenname: Nothabo
  surname: Dube
  fullname: Dube, Nothabo
– sequence: 6
  givenname: Murilo
  orcidid: 0000-0001-6870-3771
  surname: Maeda
  fullname: Maeda, Murilo
– sequence: 7
  givenname: Daniel
  surname: Gonzalez
  fullname: Gonzalez, Daniel
– sequence: 8
  givenname: Juan
  surname: Landivar
  fullname: Landivar, Juan
BookMark eNptkU1rGzEQhkVIIGmSS37BHkNgW0mjtVbHxG1agyGB1NeKiXZk1tlduZJMyb-vXIe2lOoyH3rmnWHmHTuewkSMXQn-HsDwDzEJKVppWnHEziTXslbSyOO__FN2mdKGlwcgDFdn7NvjgFOu5mE35X5aV8EXP-cwVT6GsVrdPlWLEdcUX6tV2gMfibbVkjBOJarvMFFXPTxvyOXylYvpS-19xJF-hPhywU48Doku3-w5W91_-jr_Ui8fPi_mt8vawWyWa1CkW1AoYYZlMu05gZOtAlDQ-kYZrZ87D9hx45RojDOtbkA5Dp3yutFwzhYH3S7gxm5jP2J8tQF7-ysR4tpizL0byHoOnoQR6Dkqpzs06KExHkG1DpUsWtcHrW0M33eUsh375Ggoi6KwS1Y2QggtNOzRmwPqYkgpkv_dWnC7v4n9c5MC839g12fc7ytH7If_lfwECjCOSw
CitedBy_id crossref_primary_10_3390_agriengineering6020058
crossref_primary_10_3390_bdcc5040050
crossref_primary_10_1186_s13007_025_01356_x
crossref_primary_10_3390_agronomy13122861
crossref_primary_10_3390_rs13132548
crossref_primary_10_3390_electronics11172748
crossref_primary_10_1016_j_compag_2023_108045
crossref_primary_10_1016_j_eswa_2023_120220
crossref_primary_10_1186_s13007_023_01017_x
crossref_primary_10_3390_rs13132450
crossref_primary_10_1016_j_compag_2022_107064
crossref_primary_10_3389_fpls_2022_992789
crossref_primary_10_3390_rs14235923
crossref_primary_10_3390_s23135790
crossref_primary_10_1016_j_atech_2025_100888
crossref_primary_10_1109_LGRS_2022_3214281
crossref_primary_10_3390_rs13152918
crossref_primary_10_1017_wsc_2022_64
crossref_primary_10_1515_nleng_2022_0299
crossref_primary_10_1016_j_compag_2024_109601
crossref_primary_10_3390_rs14225846
crossref_primary_10_1016_j_compag_2022_106721
crossref_primary_10_1016_j_compag_2022_107576
crossref_primary_10_1109_JSTARS_2022_3206399
crossref_primary_10_1155_2022_9249530
crossref_primary_10_3390_rs13132482
crossref_primary_10_3390_agronomy13071728
crossref_primary_10_3390_agriculture14030411
crossref_primary_10_3934_agrfood_2023038
crossref_primary_10_3390_agronomy14102205
crossref_primary_10_3390_rs17020223
crossref_primary_10_3390_rs13071358
crossref_primary_10_1016_j_compag_2023_108425
crossref_primary_10_3390_jimaging11010028
crossref_primary_10_1016_j_compag_2024_108617
crossref_primary_10_1007_s11356_022_18985_7
crossref_primary_10_3390_drones7100644
crossref_primary_10_1016_j_compag_2021_106493
crossref_primary_10_3390_rs13132591
crossref_primary_10_1016_j_eja_2024_127477
crossref_primary_10_3390_rs14194892
crossref_primary_10_1016_j_gecco_2024_e02884
crossref_primary_10_3390_plants14010039
crossref_primary_10_1002_agj2_20902
crossref_primary_10_52013_2658_7556_66_4_12
crossref_primary_10_3390_rs13142822
crossref_primary_10_32604_cmc_2025_059245
crossref_primary_10_1016_j_compag_2023_108359
crossref_primary_10_1016_j_compag_2023_108557
crossref_primary_10_1038_s41598_025_91364_7
crossref_primary_10_1016_j_compag_2024_109789
crossref_primary_10_1007_s12524_024_01932_z
Cites_doi 10.1016/j.rse.2017.06.007
10.1016/S0167-8809(00)00224-3
10.3390/rs10020285
10.1071/FP16123
10.1109/TPAMI.2008.128
10.1080/03650340.2014.947284
10.1007/s00357-014-9161-z
10.3390/rs10121895
10.13031/aim.201900807
10.1016/j.imavis.2020.103910
10.1145/2786984.2786995
10.1109/TPAMI.2009.161
10.1007/s11119-015-9425-6
10.13031/2013.17963
10.1016/j.eswa.2014.09.054
10.1016/j.isprsjprs.2019.04.003
10.1016/j.marpolbul.2016.02.013
10.1007/s11119-017-9501-1
10.1127/1432-8364/2012/0121
10.1016/j.isprsjprs.2017.10.011
10.1016/j.agwat.2019.02.017
10.1016/S0168-1702(00)00195-7
10.1109/CVPR.2017.690
10.1007/s11119-017-9508-7
10.1109/CVPR.2016.445
10.2134/agronj2016.07.0439
10.3390/rs9060544
10.1080/01431161.2017.1410300
10.2134/agronj1992.00021962008400020021x
10.13031/aim.201901311
10.1016/j.geomorph.2012.08.021
10.1023/B:VISI.0000029664.99615.94
10.1109/TGRS.2008.2010457
10.5040/9781641899444
10.1016/j.compag.2018.06.051
10.1016/j.biosystemseng.2007.03.013
10.1016/j.biombioe.2017.06.027
10.3390/rs12152363
10.1016/j.compag.2017.07.008
10.1080/2150704X.2018.1498600
10.3390/rs11030316
10.2134/agronj15.0150
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs12182981
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_f03fe191af0a4c7da9af359fa348ca42
10_3390_rs12182981
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7S9
L.6
PQGLB
PUEGO
ID FETCH-LOGICAL-c366t-34e7834a236a3317f0e3c28433438f54977bdf3ad09c4159c987534c03d4f7573
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:47 EDT 2025
Fri Jul 11 01:03:13 EDT 2025
Tue Jul 01 04:15:13 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-34e7834a236a3317f0e3c28433438f54977bdf3ad09c4159c987534c03d4f7573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4050-0301
0000-0003-2337-9693
0000-0001-6870-3771
0000-0003-1176-3540
OpenAccessLink https://doaj.org/article/f03fe191af0a4c7da9af359fa348ca42
PQID 2511171732
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_f03fe191af0a4c7da9af359fa348ca42
proquest_miscellaneous_2511171732
crossref_primary_10_3390_rs12182981
crossref_citationtrail_10_3390_rs12182981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chung (ref_44) 2017; 105
Khan (ref_48) 2015; 61
Patrignani (ref_43) 2015; 107
Wheeler (ref_4) 2000; 82
Tong (ref_39) 2020; 97
Westoby (ref_32) 2012; 179
Enciso (ref_47) 2005; 48
ref_19
Lowe (ref_33) 2004; 60
ref_18
Jin (ref_23) 2017; 198
Chen (ref_16) 2019; 216
ref_24
Roth (ref_10) 2018; 19
ref_22
ref_29
ref_28
ref_27
ref_26
Yazgi (ref_49) 2007; 97
Pedregosa (ref_41) 2011; 12
Reddy (ref_2) 2017; 109
Nichols (ref_50) 2004; 8
Reddy (ref_1) 1992; 84
Ashapure (ref_15) 2019; 152
ref_34
Berni (ref_12) 2009; 47
ref_31
Wrather (ref_6) 2008; 12
Bouguettaya (ref_52) 2015; 42
Haala (ref_36) 2012; 2012
Wetz (ref_30) 2016; 104
ref_38
ref_37
Maimaitijiang (ref_11) 2017; 134
Furukawa (ref_35) 2010; 32
Jung (ref_14) 2018; 152
Huang (ref_17) 2018; 9
Torralba (ref_40) 2008; 30
ref_46
ref_45
Hunt (ref_8) 2018; 39
Chang (ref_9) 2017; 141
ref_42
Chen (ref_21) 2018; 19
Briddon (ref_3) 2000; 71
Ehsani (ref_20) 2016; 23
Liu (ref_25) 2016; 17
Duan (ref_13) 2017; 44
Murtagh (ref_51) 2014; 31
ref_5
ref_7
References_xml – volume: 198
  start-page: 105
  year: 2017
  ident: ref_23
  article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.007
– volume: 82
  start-page: 159
  year: 2000
  ident: ref_4
  article-title: Temperature variability and the yield of annual crops
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(00)00224-3
– ident: ref_29
  doi: 10.3390/rs10020285
– ident: ref_5
– volume: 44
  start-page: 169
  year: 2017
  ident: ref_13
  article-title: Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP16123
– ident: ref_26
– volume: 30
  start-page: 1958
  year: 2008
  ident: ref_40
  article-title: 80 million tiny images: A large data set for nonparametric object and scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.128
– volume: 61
  start-page: 581
  year: 2015
  ident: ref_48
  article-title: Impact of tillage and intra-row spacing on cotton yield and quality in wheat–cotton system
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2014.947284
– volume: 31
  start-page: 274
  year: 2014
  ident: ref_51
  article-title: Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?
  publication-title: J. Classif.
  doi: 10.1007/s00357-014-9161-z
– ident: ref_19
  doi: 10.3390/rs10121895
– ident: ref_22
  doi: 10.13031/aim.201900807
– volume: 97
  start-page: 103910
  year: 2020
  ident: ref_39
  article-title: Recent advances in small object detection based on deep learning: A review
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.103910
– ident: ref_42
  doi: 10.1145/2786984.2786995
– volume: 32
  start-page: 1362
  year: 2010
  ident: ref_35
  article-title: Accurate, dense, and robust multiview stereopsis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.161
– volume: 17
  start-page: 392
  year: 2016
  ident: ref_25
  article-title: Automated image-processing for counting seedlings in a wheat field
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-015-9425-6
– volume: 48
  start-page: 197
  year: 2005
  ident: ref_47
  article-title: Economic analysis of subsurface drip irrigation lateral spacing and installation depth for cotton
  publication-title: Trans. Am. Soc. Agric. Eng.
  doi: 10.13031/2013.17963
– volume: 42
  start-page: 2785
  year: 2015
  ident: ref_52
  article-title: Efficient agglomerative hierarchical clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.09.054
– volume: 152
  start-page: 49
  year: 2019
  ident: ref_15
  article-title: A novel framework to detect conventional tillage and no-tillage cropping system effect on cotton growth and development using multi-temporal UAS data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.003
– ident: ref_45
– volume: 104
  start-page: 44
  year: 2016
  ident: ref_30
  article-title: Water quality dynamics in an urbanizing subtropical estuary (Oso Bay, Texas)
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.02.013
– ident: ref_7
– volume: 19
  start-page: 93
  year: 2018
  ident: ref_10
  article-title: Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: An applied photogrammetric approach
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-017-9501-1
– volume: 2012
  start-page: 331
  year: 2012
  ident: ref_36
  article-title: Dense multi-stereo matching for high quality digital elevation models
  publication-title: Photogramm. Fernerkund. Geoinf.
  doi: 10.1127/1432-8364/2012/0121
– volume: 134
  start-page: 43
  year: 2017
  ident: ref_11
  article-title: Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.10.011
– volume: 216
  start-page: 196
  year: 2019
  ident: ref_16
  article-title: Applying high-resolution visible-channel aerial imaging of crop canopy to precision irrigation management
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.02.017
– volume: 71
  start-page: 151
  year: 2000
  ident: ref_3
  article-title: Cotton leaf curl virus disease
  publication-title: Virus Res.
  doi: 10.1016/S0168-1702(00)00195-7
– ident: ref_38
  doi: 10.1109/CVPR.2017.690
– volume: 19
  start-page: 161
  year: 2018
  ident: ref_21
  article-title: Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-017-9508-7
– ident: ref_31
  doi: 10.1109/CVPR.2016.445
– ident: ref_37
– volume: 109
  start-page: 1379
  year: 2017
  ident: ref_2
  article-title: Temperature effects on cotton seedling emergence, growth, and development
  publication-title: Agron. J.
  doi: 10.2134/agronj2016.07.0439
– ident: ref_24
  doi: 10.3390/rs9060544
– volume: 39
  start-page: 5345
  year: 2018
  ident: ref_8
  article-title: What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1410300
– volume: 8
  start-page: 1
  year: 2004
  ident: ref_50
  article-title: Cotton growth, lint yield, and fiber quality as affected by row spacing and cultivar
  publication-title: J. Cotton Sci.
– volume: 84
  start-page: 229
  year: 1992
  ident: ref_1
  article-title: Temperature effects on early season cotton growth and development
  publication-title: Agron. J.
  doi: 10.2134/agronj1992.00021962008400020021x
– ident: ref_18
  doi: 10.13031/aim.201901311
– volume: 179
  start-page: 300
  year: 2012
  ident: ref_32
  article-title: “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.08.021
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_33
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 47
  start-page: 722
  year: 2009
  ident: ref_12
  article-title: Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2010457
– volume: 12
  start-page: 1
  year: 2008
  ident: ref_6
  article-title: Cotton planting date and plant population effects on yield and fiber quality in the Mississippi Delta
  publication-title: J. Cotton Sci.
– ident: ref_34
  doi: 10.5040/9781641899444
– ident: ref_46
– volume: 152
  start-page: 74
  year: 2018
  ident: ref_14
  article-title: Unmanned aerial system assisted framework for the selection of high yielding cotton genotypes
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.06.051
– volume: 97
  start-page: 347
  year: 2007
  ident: ref_49
  article-title: Optimisation of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2007.03.013
– volume: 23
  start-page: 16
  year: 2016
  ident: ref_20
  article-title: Yield estimation: A low-hanging fruit for application of small UAS
  publication-title: Resour. Eng. Technol. Sustain. World
– volume: 105
  start-page: 207
  year: 2017
  ident: ref_44
  article-title: Case study: Estimation of sorghum biomass using digital image analysis with Canopeo
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2017.06.027
– ident: ref_28
  doi: 10.3390/rs12152363
– volume: 141
  start-page: 232
  year: 2017
  ident: ref_9
  article-title: Crop height monitoring with digital imagery from Unmanned Aerial System (UAS)
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.07.008
– volume: 9
  start-page: 933
  year: 2018
  ident: ref_17
  article-title: A two-stage classification approach for the detection of spider mite- infested cotton using UAV multispectral imagery
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2018.1498600
– ident: ref_27
  doi: 10.3390/rs11030316
– volume: 12
  start-page: 2826
  year: 2011
  ident: ref_41
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 107
  start-page: 2312
  year: 2015
  ident: ref_43
  article-title: Canopeo: A powerful new tool for measuring fractional green canopy cover
  publication-title: Agron. J.
  doi: 10.2134/agronj15.0150
SSID ssj0000331904
Score 2.4993434
Snippet Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2981
SubjectTerms agriculture
algorithms
automation
canopy
China
cotton
data collection
detection
geometry
information
labor
lighting
measurement
photogrammetry
plant count
plant population assessment
planting
population
remote sensing
seedlings
unmanned aerial vehicles
unmanned aircraft systems
variability
Title Plant Counting of Cotton from UAS Imagery Using Deep Learning-Based Object Detection Framework
URI https://www.proquest.com/docview/2511171732
https://doaj.org/article/f03fe191af0a4c7da9af359fa348ca42
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T9xAEB0FUgAFSiCIg-S0UdJQWNie9ceWd8CFRIFEkJOosNb7AUXiQ4cp-PeZWfsIUZBoUtmyR7I9O57Ztx6_B_AxqaVNMpNFeWltJFHGkVK1jaxO80wz-0nQWDo5zY-n8stFdvFI6ot7wjp64M5x-z5G7whUaB9raQqrlfaYKa9RlkbLkH2p5j0CUyEHI4VWLDs-UiRcvz-_TZisXJXJXxUoEPX_k4dDcZm8gvV-VihG3d28hheu2YC10dW8Z8ZwG7DSy5Vf32_CJUsNteKg13kQM0_7Lc3iBP8tIqajc_H5F5NT3IvQEiAOnbsRPZXqVTSmymXFt5qXYOhUG7qxGjFZ9Gm9genk6MfBcdQLJUQG87yNUDrWy9Ap5poevPCxQ0N1B1Fi6QkBFkVtPWobK0MFWxnFKEWaGK30RVbgFiw3s8Ztg3AeMS20TuO6lqb2KreptVnqZG6MKrIB7C2cV5meRZzFLH5WhCbY0dUfRw_gw4PtTced8aTVmMfgwYL5rsMBioKqj4LquSgYwPvFCFb0fvBHD9242d1txRAq4VaDdOd_XGgXVlNG3KHL7C0st_M7946mJW09hKVy8mkIL0eHJ1_PaTs-Ov1-Ngxx-Rs6N-QV
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+Counting+of+Cotton+from+UAS+Imagery+Using+Deep+Learning-Based+Object+Detection+Framework&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Sungchan+Oh&rft.au=Anjin+Chang&rft.au=Akash+Ashapure&rft.au=Jinha+Jung&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=18&rft.spage=2981&rft_id=info:doi/10.3390%2Frs12182981&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f03fe191af0a4c7da9af359fa348ca42
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon