Plant Counting of Cotton from UAS Imagery Using Deep Learning-Based Object Detection Framework
Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement of plant population in the field is labor intensive and subject to error, in this study, a new approach of image-based plant counting is propo...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 18; p. 2981 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement of plant population in the field is labor intensive and subject to error, in this study, a new approach of image-based plant counting is proposed, using unmanned aircraft systems (UAS; DJI Mavic 2 Pro, Shenzhen, China) data. The previously developed image-based techniques required a priori information of geometry or statistical characteristics of plant canopy features, while also limiting the versatility of the methods in variable field conditions. In this regard, a deep learning-based plant counting algorithm was proposed to reduce the number of input variables, and to remove requirements for acquiring geometric or statistical information. The object detection model named You Only Look Once version 3 (YOLOv3) and photogrammetry were utilized to separate, locate, and count cotton plants in the seedling stage. The proposed algorithm was tested with four different UAS datasets, containing variability in plant size, overall illumination, and background brightness. Root mean square error (RMSE) and R2 values of the optimal plant count results ranged from 0.50 to 0.60 plants per linear meter of row (number of plants within 1 m distance along the planting row direction) and 0.96 to 0.97, respectively. The object detection algorithm, trained with variable plant size, ground wetness, and lighting conditions generally resulted in a lower detection error, unless an observable difference of developmental stages of cotton existed. The proposed plant counting algorithm performed well with 0–14 plants per linear meter of row, when cotton plants are generally separable in the seedling stage. This study is expected to provide an automated methodology for in situ evaluation of plant emergence using UAS data. |
---|---|
AbstractList | Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement of plant population in the field is labor intensive and subject to error, in this study, a new approach of image-based plant counting is proposed, using unmanned aircraft systems (UAS; DJI Mavic 2 Pro, Shenzhen, China) data. The previously developed image-based techniques required a priori information of geometry or statistical characteristics of plant canopy features, while also limiting the versatility of the methods in variable field conditions. In this regard, a deep learning-based plant counting algorithm was proposed to reduce the number of input variables, and to remove requirements for acquiring geometric or statistical information. The object detection model named You Only Look Once version 3 (YOLOv3) and photogrammetry were utilized to separate, locate, and count cotton plants in the seedling stage. The proposed algorithm was tested with four different UAS datasets, containing variability in plant size, overall illumination, and background brightness. Root mean square error (RMSE) and R2 values of the optimal plant count results ranged from 0.50 to 0.60 plants per linear meter of row (number of plants within 1 m distance along the planting row direction) and 0.96 to 0.97, respectively. The object detection algorithm, trained with variable plant size, ground wetness, and lighting conditions generally resulted in a lower detection error, unless an observable difference of developmental stages of cotton existed. The proposed plant counting algorithm performed well with 0–14 plants per linear meter of row, when cotton plants are generally separable in the seedling stage. This study is expected to provide an automated methodology for in situ evaluation of plant emergence using UAS data. Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement of plant population in the field is labor intensive and subject to error, in this study, a new approach of image-based plant counting is proposed, using unmanned aircraft systems (UAS; DJI Mavic 2 Pro, Shenzhen, China) data. The previously developed image-based techniques required a priori information of geometry or statistical characteristics of plant canopy features, while also limiting the versatility of the methods in variable field conditions. In this regard, a deep learning-based plant counting algorithm was proposed to reduce the number of input variables, and to remove requirements for acquiring geometric or statistical information. The object detection model named You Only Look Once version 3 (YOLOv3) and photogrammetry were utilized to separate, locate, and count cotton plants in the seedling stage. The proposed algorithm was tested with four different UAS datasets, containing variability in plant size, overall illumination, and background brightness. Root mean square error (RMSE) and R² values of the optimal plant count results ranged from 0.50 to 0.60 plants per linear meter of row (number of plants within 1 m distance along the planting row direction) and 0.96 to 0.97, respectively. The object detection algorithm, trained with variable plant size, ground wetness, and lighting conditions generally resulted in a lower detection error, unless an observable difference of developmental stages of cotton existed. The proposed plant counting algorithm performed well with 0–14 plants per linear meter of row, when cotton plants are generally separable in the seedling stage. This study is expected to provide an automated methodology for in situ evaluation of plant emergence using UAS data. |
Author | Ashapure, Akash Dube, Nothabo Gonzalez, Daniel Maeda, Murilo Landivar, Juan Chang, Anjin Oh, Sungchan Jung, Jinha |
Author_xml | – sequence: 1 givenname: Sungchan orcidid: 0000-0003-2337-9693 surname: Oh fullname: Oh, Sungchan – sequence: 2 givenname: Anjin surname: Chang fullname: Chang, Anjin – sequence: 3 givenname: Akash orcidid: 0000-0003-4050-0301 surname: Ashapure fullname: Ashapure, Akash – sequence: 4 givenname: Jinha orcidid: 0000-0003-1176-3540 surname: Jung fullname: Jung, Jinha – sequence: 5 givenname: Nothabo surname: Dube fullname: Dube, Nothabo – sequence: 6 givenname: Murilo orcidid: 0000-0001-6870-3771 surname: Maeda fullname: Maeda, Murilo – sequence: 7 givenname: Daniel surname: Gonzalez fullname: Gonzalez, Daniel – sequence: 8 givenname: Juan surname: Landivar fullname: Landivar, Juan |
BookMark | eNptkU1rGzEQhkVIIGmSS37BHkNgW0mjtVbHxG1agyGB1NeKiXZk1tlduZJMyb-vXIe2lOoyH3rmnWHmHTuewkSMXQn-HsDwDzEJKVppWnHEziTXslbSyOO__FN2mdKGlwcgDFdn7NvjgFOu5mE35X5aV8EXP-cwVT6GsVrdPlWLEdcUX6tV2gMfibbVkjBOJarvMFFXPTxvyOXylYvpS-19xJF-hPhywU48Doku3-w5W91_-jr_Ui8fPi_mt8vawWyWa1CkW1AoYYZlMu05gZOtAlDQ-kYZrZ87D9hx45RojDOtbkA5Dp3yutFwzhYH3S7gxm5jP2J8tQF7-ysR4tpizL0byHoOnoQR6Dkqpzs06KExHkG1DpUsWtcHrW0M33eUsh375Ggoi6KwS1Y2QggtNOzRmwPqYkgpkv_dWnC7v4n9c5MC839g12fc7ytH7If_lfwECjCOSw |
CitedBy_id | crossref_primary_10_3390_agriengineering6020058 crossref_primary_10_3390_bdcc5040050 crossref_primary_10_1186_s13007_025_01356_x crossref_primary_10_3390_agronomy13122861 crossref_primary_10_3390_rs13132548 crossref_primary_10_3390_electronics11172748 crossref_primary_10_1016_j_compag_2023_108045 crossref_primary_10_1016_j_eswa_2023_120220 crossref_primary_10_1186_s13007_023_01017_x crossref_primary_10_3390_rs13132450 crossref_primary_10_1016_j_compag_2022_107064 crossref_primary_10_3389_fpls_2022_992789 crossref_primary_10_3390_rs14235923 crossref_primary_10_3390_s23135790 crossref_primary_10_1016_j_atech_2025_100888 crossref_primary_10_1109_LGRS_2022_3214281 crossref_primary_10_3390_rs13152918 crossref_primary_10_1017_wsc_2022_64 crossref_primary_10_1515_nleng_2022_0299 crossref_primary_10_1016_j_compag_2024_109601 crossref_primary_10_3390_rs14225846 crossref_primary_10_1016_j_compag_2022_106721 crossref_primary_10_1016_j_compag_2022_107576 crossref_primary_10_1109_JSTARS_2022_3206399 crossref_primary_10_1155_2022_9249530 crossref_primary_10_3390_rs13132482 crossref_primary_10_3390_agronomy13071728 crossref_primary_10_3390_agriculture14030411 crossref_primary_10_3934_agrfood_2023038 crossref_primary_10_3390_agronomy14102205 crossref_primary_10_3390_rs17020223 crossref_primary_10_3390_rs13071358 crossref_primary_10_1016_j_compag_2023_108425 crossref_primary_10_3390_jimaging11010028 crossref_primary_10_1016_j_compag_2024_108617 crossref_primary_10_1007_s11356_022_18985_7 crossref_primary_10_3390_drones7100644 crossref_primary_10_1016_j_compag_2021_106493 crossref_primary_10_3390_rs13132591 crossref_primary_10_1016_j_eja_2024_127477 crossref_primary_10_3390_rs14194892 crossref_primary_10_1016_j_gecco_2024_e02884 crossref_primary_10_3390_plants14010039 crossref_primary_10_1002_agj2_20902 crossref_primary_10_52013_2658_7556_66_4_12 crossref_primary_10_3390_rs13142822 crossref_primary_10_32604_cmc_2025_059245 crossref_primary_10_1016_j_compag_2023_108359 crossref_primary_10_1016_j_compag_2023_108557 crossref_primary_10_1038_s41598_025_91364_7 crossref_primary_10_1016_j_compag_2024_109789 crossref_primary_10_1007_s12524_024_01932_z |
Cites_doi | 10.1016/j.rse.2017.06.007 10.1016/S0167-8809(00)00224-3 10.3390/rs10020285 10.1071/FP16123 10.1109/TPAMI.2008.128 10.1080/03650340.2014.947284 10.1007/s00357-014-9161-z 10.3390/rs10121895 10.13031/aim.201900807 10.1016/j.imavis.2020.103910 10.1145/2786984.2786995 10.1109/TPAMI.2009.161 10.1007/s11119-015-9425-6 10.13031/2013.17963 10.1016/j.eswa.2014.09.054 10.1016/j.isprsjprs.2019.04.003 10.1016/j.marpolbul.2016.02.013 10.1007/s11119-017-9501-1 10.1127/1432-8364/2012/0121 10.1016/j.isprsjprs.2017.10.011 10.1016/j.agwat.2019.02.017 10.1016/S0168-1702(00)00195-7 10.1109/CVPR.2017.690 10.1007/s11119-017-9508-7 10.1109/CVPR.2016.445 10.2134/agronj2016.07.0439 10.3390/rs9060544 10.1080/01431161.2017.1410300 10.2134/agronj1992.00021962008400020021x 10.13031/aim.201901311 10.1016/j.geomorph.2012.08.021 10.1023/B:VISI.0000029664.99615.94 10.1109/TGRS.2008.2010457 10.5040/9781641899444 10.1016/j.compag.2018.06.051 10.1016/j.biosystemseng.2007.03.013 10.1016/j.biombioe.2017.06.027 10.3390/rs12152363 10.1016/j.compag.2017.07.008 10.1080/2150704X.2018.1498600 10.3390/rs11030316 10.2134/agronj15.0150 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/rs12182981 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Agriculture |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_f03fe191af0a4c7da9af359fa348ca42 10_3390_rs12182981 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7S9 L.6 PQGLB PUEGO |
ID | FETCH-LOGICAL-c366t-34e7834a236a3317f0e3c28433438f54977bdf3ad09c4159c987534c03d4f7573 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:47 EDT 2025 Fri Jul 11 01:03:13 EDT 2025 Tue Jul 01 04:15:13 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-34e7834a236a3317f0e3c28433438f54977bdf3ad09c4159c987534c03d4f7573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4050-0301 0000-0003-2337-9693 0000-0001-6870-3771 0000-0003-1176-3540 |
OpenAccessLink | https://doaj.org/article/f03fe191af0a4c7da9af359fa348ca42 |
PQID | 2511171732 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f03fe191af0a4c7da9af359fa348ca42 proquest_miscellaneous_2511171732 crossref_primary_10_3390_rs12182981 crossref_citationtrail_10_3390_rs12182981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chung (ref_44) 2017; 105 Khan (ref_48) 2015; 61 Patrignani (ref_43) 2015; 107 Wheeler (ref_4) 2000; 82 Tong (ref_39) 2020; 97 Westoby (ref_32) 2012; 179 Enciso (ref_47) 2005; 48 ref_19 Lowe (ref_33) 2004; 60 ref_18 Jin (ref_23) 2017; 198 Chen (ref_16) 2019; 216 ref_24 Roth (ref_10) 2018; 19 ref_22 ref_29 ref_28 ref_27 ref_26 Yazgi (ref_49) 2007; 97 Pedregosa (ref_41) 2011; 12 Reddy (ref_2) 2017; 109 Nichols (ref_50) 2004; 8 Reddy (ref_1) 1992; 84 Ashapure (ref_15) 2019; 152 ref_34 Berni (ref_12) 2009; 47 ref_31 Wrather (ref_6) 2008; 12 Bouguettaya (ref_52) 2015; 42 Haala (ref_36) 2012; 2012 Wetz (ref_30) 2016; 104 ref_38 ref_37 Maimaitijiang (ref_11) 2017; 134 Furukawa (ref_35) 2010; 32 Jung (ref_14) 2018; 152 Huang (ref_17) 2018; 9 Torralba (ref_40) 2008; 30 ref_46 ref_45 Hunt (ref_8) 2018; 39 Chang (ref_9) 2017; 141 ref_42 Chen (ref_21) 2018; 19 Briddon (ref_3) 2000; 71 Ehsani (ref_20) 2016; 23 Liu (ref_25) 2016; 17 Duan (ref_13) 2017; 44 Murtagh (ref_51) 2014; 31 ref_5 ref_7 |
References_xml | – volume: 198 start-page: 105 year: 2017 ident: ref_23 article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.007 – volume: 82 start-page: 159 year: 2000 ident: ref_4 article-title: Temperature variability and the yield of annual crops publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(00)00224-3 – ident: ref_29 doi: 10.3390/rs10020285 – ident: ref_5 – volume: 44 start-page: 169 year: 2017 ident: ref_13 article-title: Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV publication-title: Funct. Plant Biol. doi: 10.1071/FP16123 – ident: ref_26 – volume: 30 start-page: 1958 year: 2008 ident: ref_40 article-title: 80 million tiny images: A large data set for nonparametric object and scene recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.128 – volume: 61 start-page: 581 year: 2015 ident: ref_48 article-title: Impact of tillage and intra-row spacing on cotton yield and quality in wheat–cotton system publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2014.947284 – volume: 31 start-page: 274 year: 2014 ident: ref_51 article-title: Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? publication-title: J. Classif. doi: 10.1007/s00357-014-9161-z – ident: ref_19 doi: 10.3390/rs10121895 – ident: ref_22 doi: 10.13031/aim.201900807 – volume: 97 start-page: 103910 year: 2020 ident: ref_39 article-title: Recent advances in small object detection based on deep learning: A review publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2020.103910 – ident: ref_42 doi: 10.1145/2786984.2786995 – volume: 32 start-page: 1362 year: 2010 ident: ref_35 article-title: Accurate, dense, and robust multiview stereopsis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.161 – volume: 17 start-page: 392 year: 2016 ident: ref_25 article-title: Automated image-processing for counting seedlings in a wheat field publication-title: Precis. Agric. doi: 10.1007/s11119-015-9425-6 – volume: 48 start-page: 197 year: 2005 ident: ref_47 article-title: Economic analysis of subsurface drip irrigation lateral spacing and installation depth for cotton publication-title: Trans. Am. Soc. Agric. Eng. doi: 10.13031/2013.17963 – volume: 42 start-page: 2785 year: 2015 ident: ref_52 article-title: Efficient agglomerative hierarchical clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.09.054 – volume: 152 start-page: 49 year: 2019 ident: ref_15 article-title: A novel framework to detect conventional tillage and no-tillage cropping system effect on cotton growth and development using multi-temporal UAS data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.003 – ident: ref_45 – volume: 104 start-page: 44 year: 2016 ident: ref_30 article-title: Water quality dynamics in an urbanizing subtropical estuary (Oso Bay, Texas) publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.02.013 – ident: ref_7 – volume: 19 start-page: 93 year: 2018 ident: ref_10 article-title: Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: An applied photogrammetric approach publication-title: Precis. Agric. doi: 10.1007/s11119-017-9501-1 – volume: 2012 start-page: 331 year: 2012 ident: ref_36 article-title: Dense multi-stereo matching for high quality digital elevation models publication-title: Photogramm. Fernerkund. Geoinf. doi: 10.1127/1432-8364/2012/0121 – volume: 134 start-page: 43 year: 2017 ident: ref_11 article-title: Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.10.011 – volume: 216 start-page: 196 year: 2019 ident: ref_16 article-title: Applying high-resolution visible-channel aerial imaging of crop canopy to precision irrigation management publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.02.017 – volume: 71 start-page: 151 year: 2000 ident: ref_3 article-title: Cotton leaf curl virus disease publication-title: Virus Res. doi: 10.1016/S0168-1702(00)00195-7 – ident: ref_38 doi: 10.1109/CVPR.2017.690 – volume: 19 start-page: 161 year: 2018 ident: ref_21 article-title: Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images publication-title: Precis. Agric. doi: 10.1007/s11119-017-9508-7 – ident: ref_31 doi: 10.1109/CVPR.2016.445 – ident: ref_37 – volume: 109 start-page: 1379 year: 2017 ident: ref_2 article-title: Temperature effects on cotton seedling emergence, growth, and development publication-title: Agron. J. doi: 10.2134/agronj2016.07.0439 – ident: ref_24 doi: 10.3390/rs9060544 – volume: 39 start-page: 5345 year: 2018 ident: ref_8 article-title: What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1410300 – volume: 8 start-page: 1 year: 2004 ident: ref_50 article-title: Cotton growth, lint yield, and fiber quality as affected by row spacing and cultivar publication-title: J. Cotton Sci. – volume: 84 start-page: 229 year: 1992 ident: ref_1 article-title: Temperature effects on early season cotton growth and development publication-title: Agron. J. doi: 10.2134/agronj1992.00021962008400020021x – ident: ref_18 doi: 10.13031/aim.201901311 – volume: 179 start-page: 300 year: 2012 ident: ref_32 article-title: “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.08.021 – volume: 60 start-page: 91 year: 2004 ident: ref_33 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 47 start-page: 722 year: 2009 ident: ref_12 article-title: Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2010457 – volume: 12 start-page: 1 year: 2008 ident: ref_6 article-title: Cotton planting date and plant population effects on yield and fiber quality in the Mississippi Delta publication-title: J. Cotton Sci. – ident: ref_34 doi: 10.5040/9781641899444 – ident: ref_46 – volume: 152 start-page: 74 year: 2018 ident: ref_14 article-title: Unmanned aerial system assisted framework for the selection of high yielding cotton genotypes publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.06.051 – volume: 97 start-page: 347 year: 2007 ident: ref_49 article-title: Optimisation of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2007.03.013 – volume: 23 start-page: 16 year: 2016 ident: ref_20 article-title: Yield estimation: A low-hanging fruit for application of small UAS publication-title: Resour. Eng. Technol. Sustain. World – volume: 105 start-page: 207 year: 2017 ident: ref_44 article-title: Case study: Estimation of sorghum biomass using digital image analysis with Canopeo publication-title: Biomass Bioenerg. doi: 10.1016/j.biombioe.2017.06.027 – ident: ref_28 doi: 10.3390/rs12152363 – volume: 141 start-page: 232 year: 2017 ident: ref_9 article-title: Crop height monitoring with digital imagery from Unmanned Aerial System (UAS) publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.07.008 – volume: 9 start-page: 933 year: 2018 ident: ref_17 article-title: A two-stage classification approach for the detection of spider mite- infested cotton using UAV multispectral imagery publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2018.1498600 – ident: ref_27 doi: 10.3390/rs11030316 – volume: 12 start-page: 2826 year: 2011 ident: ref_41 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 107 start-page: 2312 year: 2015 ident: ref_43 article-title: Canopeo: A powerful new tool for measuring fractional green canopy cover publication-title: Agron. J. doi: 10.2134/agronj15.0150 |
SSID | ssj0000331904 |
Score | 2.4993434 |
Snippet | Assessing plant population of cotton is important to make replanting decisions in low plant density areas, prone to yielding penalties. Since the measurement... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2981 |
SubjectTerms | agriculture algorithms automation canopy China cotton data collection detection geometry information labor lighting measurement photogrammetry plant count plant population assessment planting population remote sensing seedlings unmanned aerial vehicles unmanned aircraft systems variability |
Title | Plant Counting of Cotton from UAS Imagery Using Deep Learning-Based Object Detection Framework |
URI | https://www.proquest.com/docview/2511171732 https://doaj.org/article/f03fe191af0a4c7da9af359fa348ca42 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T9xAEB0FUgAFSiCIg-S0UdJQWNie9ceWd8CFRIFEkJOosNb7AUXiQ4cp-PeZWfsIUZBoUtmyR7I9O57Ztx6_B_AxqaVNMpNFeWltJFHGkVK1jaxO80wz-0nQWDo5zY-n8stFdvFI6ot7wjp64M5x-z5G7whUaB9raQqrlfaYKa9RlkbLkH2p5j0CUyEHI4VWLDs-UiRcvz-_TZisXJXJXxUoEPX_k4dDcZm8gvV-VihG3d28hheu2YC10dW8Z8ZwG7DSy5Vf32_CJUsNteKg13kQM0_7Lc3iBP8tIqajc_H5F5NT3IvQEiAOnbsRPZXqVTSmymXFt5qXYOhUG7qxGjFZ9Gm9genk6MfBcdQLJUQG87yNUDrWy9Ap5poevPCxQ0N1B1Fi6QkBFkVtPWobK0MFWxnFKEWaGK30RVbgFiw3s8Ztg3AeMS20TuO6lqb2KreptVnqZG6MKrIB7C2cV5meRZzFLH5WhCbY0dUfRw_gw4PtTced8aTVmMfgwYL5rsMBioKqj4LquSgYwPvFCFb0fvBHD9242d1txRAq4VaDdOd_XGgXVlNG3KHL7C0st_M7946mJW09hKVy8mkIL0eHJ1_PaTs-Ov1-Ngxx-Rs6N-QV |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+Counting+of+Cotton+from+UAS+Imagery+Using+Deep+Learning-Based+Object+Detection+Framework&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Sungchan+Oh&rft.au=Anjin+Chang&rft.au=Akash+Ashapure&rft.au=Jinha+Jung&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=18&rft.spage=2981&rft_id=info:doi/10.3390%2Frs12182981&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f03fe191af0a4c7da9af359fa348ca42 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |