BiOBr/Bi2S3 heterojunction with S-scheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO2 with H2O
[Display omitted] Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesi...
Saved in:
Published in | Journal of colloid and interface science Vol. 620; pp. 407 - 418 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO2 photoreduction with pure water. The yields of product CO and CH4 are as high as 100.8 and 8.5 µmol g−1h−1, which are 17.5 and 13.5 times higher than that of the pristine Bi2S3, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi2S3 heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO2 and H2O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO2 reduction. |
---|---|
AbstractList | [Display omitted]
Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO2 photoreduction with pure water. The yields of product CO and CH4 are as high as 100.8 and 8.5 µmol g−1h−1, which are 17.5 and 13.5 times higher than that of the pristine Bi2S3, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi2S3 heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO2 and H2O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO2 reduction. Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi₂S₃ heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO₂ photoreduction with pure water. The yields of product CO and CH₄ are as high as 100.8 and 8.5 µmol g⁻¹h⁻¹, which are 17.5 and 13.5 times higher than that of the pristine Bi₂S₃, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi₂S₃ heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO₂ and H₂O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO₂ reduction. Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO2 photoreduction with pure water. The yields of product CO and CH4 are as high as 100.8 and 8.5 µmol g-1h-1, which are 17.5 and 13.5 times higher than that of the pristine Bi2S3, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi2S3 heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO2 and H2O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO2 reduction.Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO2 photoreduction with pure water. The yields of product CO and CH4 are as high as 100.8 and 8.5 µmol g-1h-1, which are 17.5 and 13.5 times higher than that of the pristine Bi2S3, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi2S3 heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO2 and H2O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO2 reduction. |
Author | Wang, Ning Xu, Peng Wang, Xuxu Zhang, Yanfeng Miao, Zerui |
Author_xml | – sequence: 1 givenname: Zerui surname: Miao fullname: Miao, Zerui organization: National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China – sequence: 2 givenname: Yanfeng surname: Zhang fullname: Zhang, Yanfeng email: zhangyanfeng@hebtu.edu.cn organization: National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China – sequence: 3 givenname: Ning surname: Wang fullname: Wang, Ning organization: National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China – sequence: 4 givenname: Peng surname: Xu fullname: Xu, Peng email: xup@nanoctr.cn organization: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, PR China – sequence: 5 givenname: Xuxu surname: Wang fullname: Wang, Xuxu email: zhangyanfeng@mail.hebtu.edu.cn, xwang@fzu.edu.cn organization: State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China |
BookMark | eNqNkT9v3CAcQFGVSr2k_QKdGLv4wh8bm6pL79QmkSLdkHZGGH6usXxwBZz0vkc_cGw5U4eoAzDwHgjeJbrwwQNCHynZUkLF9bAdjEtbRhjbknJLePUGbSiRVVFTwi_QhhBGC1nL-h26TGkghNKqkhv0d-cOu3i9c-yB4x4yxDBM3mQXPH5yuccPRTI9HAGnHCeTpwjaWxz-nH-BxxY6MDl9xne-SC5P2AS_cou_gKc-5GB01uM5O4Nb6PWjCxF384hgX8jQ4f2BrRfessN79LbTY4IPL-sV-vn924_9bXF_uLnbf70vDBciF8ySlnKQjS1p2UkiWyGBiU6Idt7RnLY1N5KUmgvLYJ5qSq0FKkijK24Iv0Kf1nNPMfyeIGV1dMnAOGoPYUqKCUGkrAmr_gOtWCPKRrAZbVbUxJBShE4Zl_Xyzhy1GxUlammmBrU0U0szRUo1N5tV9o96iu6o4_l16csqwfxVjw6iSsaBN2BdnOsoG9xr-jPwH7Pb |
CitedBy_id | crossref_primary_10_1002_ceat_202300108 crossref_primary_10_1016_j_jcis_2022_08_059 crossref_primary_10_1016_j_seppur_2022_122721 crossref_primary_10_1016_S1872_2067_23_64502_4 crossref_primary_10_1016_j_jcis_2024_11_077 crossref_primary_10_1016_j_cep_2023_109370 crossref_primary_10_1016_j_seppur_2023_124509 crossref_primary_10_1016_j_diamond_2023_110385 crossref_primary_10_1016_j_mcat_2024_114115 crossref_primary_10_1021_acs_energyfuels_3c04118 crossref_primary_10_1016_j_fuel_2024_132613 crossref_primary_10_1016_j_jcis_2024_08_017 crossref_primary_10_1016_j_optmat_2023_113894 crossref_primary_10_1016_j_jece_2023_110311 crossref_primary_10_1016_j_molstruc_2024_140041 crossref_primary_10_1021_acs_iecr_4c04683 crossref_primary_10_1016_j_jece_2024_112615 crossref_primary_10_1039_D3TA06943E crossref_primary_10_1016_j_optmat_2024_116088 crossref_primary_10_1016_j_seppur_2023_123096 crossref_primary_10_1002_slct_202204707 crossref_primary_10_1016_j_catcom_2024_106843 crossref_primary_10_1016_j_seppur_2024_131072 crossref_primary_10_1016_j_apcatb_2023_123230 crossref_primary_10_1016_j_ijhydene_2024_10_224 crossref_primary_10_1016_j_mtchem_2023_101697 crossref_primary_10_1016_j_jcis_2024_11_237 crossref_primary_10_1016_j_seppur_2024_129713 crossref_primary_10_1016_j_jcis_2024_09_064 crossref_primary_10_1016_j_apsusc_2022_155495 crossref_primary_10_1016_j_jmst_2023_03_027 crossref_primary_10_1016_j_molstruc_2023_136765 crossref_primary_10_1016_j_jece_2024_112122 crossref_primary_10_1016_j_jece_2022_108582 crossref_primary_10_1016_j_apsusc_2025_162587 crossref_primary_10_1016_j_jece_2025_115813 crossref_primary_10_1016_j_matlet_2023_134806 crossref_primary_10_1021_acssuschemeng_3c07070 crossref_primary_10_2139_ssrn_4168539 crossref_primary_10_1016_j_ces_2024_119874 crossref_primary_10_1016_j_ces_2024_120933 crossref_primary_10_1016_j_jallcom_2024_176905 crossref_primary_10_1016_j_jcis_2024_01_172 crossref_primary_10_1016_j_apsadv_2023_100536 crossref_primary_10_1016_j_jcis_2022_11_106 crossref_primary_10_1016_j_susmat_2023_e00769 crossref_primary_10_1016_j_seppur_2023_123545 crossref_primary_10_3390_catal12121593 crossref_primary_10_1016_j_cej_2023_145053 crossref_primary_10_1016_j_jallcom_2024_173671 crossref_primary_10_1016_j_jallcom_2025_178595 crossref_primary_10_1016_j_colsurfa_2024_134808 crossref_primary_10_1016_j_jece_2024_113961 crossref_primary_10_1016_j_apsusc_2023_159169 crossref_primary_10_1016_S1872_2067_23_64566_8 crossref_primary_10_1016_j_cej_2024_158561 crossref_primary_10_1016_j_enchem_2025_100143 crossref_primary_10_1016_j_surfin_2024_104957 crossref_primary_10_1016_j_cej_2024_158240 crossref_primary_10_1016_j_cej_2024_157310 crossref_primary_10_1016_j_jallcom_2022_167330 crossref_primary_10_1039_D4TA07520J crossref_primary_10_1002_advs_202308546 crossref_primary_10_1016_j_catcom_2023_106664 crossref_primary_10_1016_j_seppur_2024_127114 crossref_primary_10_1016_j_jiec_2022_09_044 crossref_primary_10_1039_D4TA04600E crossref_primary_10_1016_j_inoche_2024_113687 crossref_primary_10_1016_j_colsurfa_2025_136306 crossref_primary_10_1016_j_jcis_2023_11_014 crossref_primary_10_1016_j_seppur_2022_122654 crossref_primary_10_1016_j_jcis_2023_08_025 crossref_primary_10_1016_j_jmat_2024_100998 crossref_primary_10_1039_D4NR00153B crossref_primary_10_1016_j_cej_2022_138167 crossref_primary_10_1039_D2TA04278A crossref_primary_10_1016_j_jallcom_2023_169862 crossref_primary_10_1016_j_jes_2023_07_002 crossref_primary_10_3390_molecules28103982 crossref_primary_10_1016_j_jcis_2022_10_056 crossref_primary_10_1039_D4GC05761A crossref_primary_10_1016_j_jcis_2022_09_115 crossref_primary_10_1016_j_cej_2024_157867 crossref_primary_10_1021_acsanm_3c01911 crossref_primary_10_1016_j_seppur_2023_123365 crossref_primary_10_1016_j_mssp_2023_107869 crossref_primary_10_1016_j_cogsc_2023_100824 crossref_primary_10_1016_j_ijhydene_2024_12_126 crossref_primary_10_1016_j_cej_2023_141271 crossref_primary_10_1016_j_jallcom_2023_171253 |
Cites_doi | 10.1016/j.apcatb.2018.11.011 10.1016/j.cej.2018.01.107 10.1016/j.jmst.2020.03.039 10.1016/j.apcatb.2018.07.066 10.1016/j.jcis.2020.11.075 10.1016/j.nanoen.2019.103955 10.1021/acs.chemmater.6b00349 10.1021/acssuschemeng.1c01155 10.1002/smll.202103447 10.1016/j.apcatb.2020.119008 10.1002/smll.202002140 10.1016/j.nanoen.2019.05.060 10.1016/j.nanoen.2020.105388 10.1016/j.jallcom.2020.155158 10.1021/jacs.9b04482 10.1016/j.jcis.2019.12.091 10.1002/adma.202107668 10.1016/j.matchemphys.2021.124431 10.1002/smll.202100496 10.1016/j.apcatb.2019.118519 10.1002/anie.201910379 10.1016/j.apcatb.2021.120180 10.1016/j.jhazmat.2020.124394 10.1002/smll.202005357 10.1002/smll.202002411 10.1142/S1793292018500121 10.1016/j.jcis.2021.12.196 10.1021/acscatal.0c05354 10.1016/j.cej.2021.130537 10.1016/j.cej.2021.130361 10.1103/PhysRevB.54.11169 10.1016/j.jpcs.2018.05.023 10.1016/S1872-2067(21)63936-0 10.1016/j.jcis.2021.03.066 10.1016/j.jcis.2021.02.117 10.1016/j.cis.2018.03.004 10.1016/j.jcis.2021.08.135 10.1103/PhysRevB.46.6671 10.1016/j.snb.2021.129451 10.1016/j.colsurfa.2019.124069 10.1016/j.nanoen.2020.104959 10.1016/j.apcatb.2020.119063 10.1016/j.apcatb.2021.120802 10.1021/jacs.8b02200 10.1016/j.cej.2020.127506 10.1016/j.jcis.2021.07.137 10.1016/j.cej.2020.125258 10.1021/cs400080w 10.1016/j.jcis.2022.02.044 10.1016/j.apcatb.2021.119923 10.1016/j.cej.2021.128555 10.1002/smll.201603938 10.1016/j.apcatb.2020.118915 10.1016/j.jcis.2021.02.053 10.1002/smll.202103422 10.1016/j.cej.2019.122264 10.1016/j.envres.2021.111136 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2022.04.035 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 418 |
ExternalDocumentID | 10_1016_j_jcis_2022_04_035 S0021979722005859 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-2d0b13e98d414f909b69e26f66bd0ba31b73c904a36d2e36d711dde1608a53c03 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 01:22:12 EDT 2025 Fri Jul 11 00:51:54 EDT 2025 Tue Jul 01 04:18:47 EDT 2025 Thu Apr 24 23:06:57 EDT 2025 Fri Feb 23 02:39:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photocatalytic Bi2S3 BiOBr S-scheme CO2 reduction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-2d0b13e98d414f909b69e26f66bd0ba31b73c904a36d2e36d711dde1608a53c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2652864862 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2660997025 proquest_miscellaneous_2652864862 crossref_citationtrail_10_1016_j_jcis_2022_04_035 crossref_primary_10_1016_j_jcis_2022_04_035 elsevier_sciencedirect_doi_10_1016_j_jcis_2022_04_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Perdew, Chevary, Vosko, Jackson, Pederson, Singh, Fiolhais (b0155) 1992; 46 Wu, Xu, Zhang, Zhu (b0245) 2021; 5 Wu, Guo, Wang, Zhang, Yang, Yang, Gao, Wang, Jiang (b0020) 2021; 585 Wang, Zhang, Li, Zhang, Liu, Zhou, Zhang, Fang, Ke (b0075) 2022; 606 Zhang, Zhang, Yu, Yu (b0055) 2022; 34 Das, Patra, Kumar, Bhagavathiachari, Nair (b0060) 2021; 263 Kong, He, Zhou, Zhao, Li, Wu, Wang, Li (b0175) 2021; 17 Cao, Du, Liu, Wang (b0085) 2018; 13 Fu, Zhu, Jiang, Cheng, You, Yu (b0280) 2017; 13 Zhou, Sun, Huang, Lu, Xie, Zhang, Hart, Toe, Hao, Amal (b0230) 2021; 17 Cheng, Yin, Cai, Fan, Xiang (b0290) 2020; 16 Miao, Wang, Zhang, Meng, Wang (b0045) 2022; 301 Imam, Adnan, Mohd Kaus (b0145) 2020 Li, Wang, Dong, Zhang, Han, Luo, Huang, Feng, Chen, Jia, Zhang (b0015) 2021; 11 Li, Wei, Yang, Gao, Zhang, Li, Huang, Gan (b0265) 2021; 424 Zhou, Dou, Zhao, Zhou, Wu, Li (b0275) 2020; 264 Ren, Gao, Zhang, Zhang, Cao, Wang, Wang (b0035) 2020; 274 Li, Zhong, Chen, Huang, Chen, Xiao, Zou, Chen, Hao, Liu, Sun, Peng (b0095) 2021; 292 Guo, Liu, Qin, Wang, Shi, Pan, Fu, Tang, Jia, Miao, Gu (b0070) 2020; 500 Li, Li, Jin (b0225) 2021; 592 Li, Gao, Jiang, Zhuang, Tan, Li, Li, Wang, Liao, Sun, Zou, Han (b0025) 2021; 286 Liu, Wei, Sun, Guan, Zheng, Li (b0240) 2021; 197 Wang, Li, He, Yang, Dong, Mai, Zhu (b0195) 2020; 78 Long, Zhang, Du, Zhu, Li (b0110) 2021; 407 Ganose, Cuff, Butler, Walsh, Scanlon (b0270) 2016; 28 Zhuang, Qi, Cheng, Chen, Gao, Wang, Sun, Zou, Han (b0010) 2019; 58 Zhang, Zhang, Zhang, Bingham, Tanaka, Li, Kubuki (b0050) 2021; 594 Majhi, Kumar Mishra, Das, Bariki, Mishra (b0115) 2021; 413 Wang, Cai, Liu, Yang, Zhang, Liu, Li (b0295) 2022; 605 Liu, Wang, Huang, Zhang, Ma (b0185) 2020; 75 Wang, Huang, Liao, Jiang, Zhou, Zhang, Chen, Kuang (b0100) 2019; 141 Mu, Zhang, Dong, Su, Zhang, Lu (b0170) 2020; 16 Chen, Lan, Chen, Ren, Shi (b0200) 2022; 616 Wang, Guan, Lou (b0005) 2018; 140 Huang, Tian, Zeng, Wang, Song, Li, Xiao, Xie (b0190) 2013; 3 Fu, Xu, Low, Jiang, Yu (b0220) 2019; 243 He, Wang, Jin, Liu, Zhu (b0250) 2022; 43 Zhou, Li, Yang, Zhang, Wu, Jin, Xing (b0120) 2021; 420 Zhao, Miao, Zhang, Wen, Liu, Wang, Cao, Wang (b0040) 2021; 593 Jia, Wu, Song, Liu, Wang, Qi, He, Qi, Yang, Zhao (b0130) 2020; 396 Saif, Gu, Yang (b0180) 2021 Jin, Lv, Zhou, Xie, Sun, Liu, Meng, Chen (b0285) 2019; 64 Chen, Long, Chen, Rao, Li, Huang (b0105) 2020; 272 Kresse, Furthmüller (b0150) 1996; 54 Zhu, Qi, Zhao, Fang, Han (b0135) 2018; 121 Dashtian, Ghaedi, Shirinzadeh, Hajati, Shahbazi (b0065) 2018; 339 Wang, Zhang, Deng, Luo, Dionysiou (b0125) 2020; 379 Chen, Li, Li, Chen, Jia (b0165) 2020; 270 Yang, Zhang, Lai, Zeng, Huang, Cheng, Wang, Chen, Zhou, Xiong (b0030) 2018; 254 Liu, Xu, Tang, Wang, Wang, Lv, Zhang, Zhong, Cai, Yang, Wu (b0210) 2021; 90 Li, Zhang, Hou, Chen, He (b0080) 2018; 238 Li, Xiong, Tang, Liu, Gao, Zeng, Xie, Tang, Zhuang (b0140) 2021; 331 Ma, Lv, Duan, Sheng, Lu, Zhu, Du, Chen (b0090) 2020; 834 Mu, Dai, Wu, Yang, Li, Zhang, Xu, Liu, Zhao (b0300) 2022; 612 Wu, Yu, Zhang, Zhang, Zhu, Zhu (b0255) 2021; 411 Wang, Wang, Wang, Wu, Zhang (b0205) 2020; 56 Butburee, Sun, Centeno, Xie, Zhao, Wu, Peerakiatkhajohn, Thaweesak, Wang, Wang (b0160) 2019; 62 Wang, Cheng, Zhang, Yu (b0215) 2021; 17 Tang, Sun, Deng, Wang, Wu (b0260) 2020; 564 Wang, Tang, Wu (b0235) 2021; 9 Zhang (10.1016/j.jcis.2022.04.035_b0050) 2021; 594 Das (10.1016/j.jcis.2022.04.035_b0060) 2021; 263 Li (10.1016/j.jcis.2022.04.035_b0095) 2021; 292 Ma (10.1016/j.jcis.2022.04.035_b0090) 2020; 834 Wang (10.1016/j.jcis.2022.04.035_b0235) 2021; 9 Zhou (10.1016/j.jcis.2022.04.035_b0230) 2021; 17 Jin (10.1016/j.jcis.2022.04.035_b0285) 2019; 64 Zhou (10.1016/j.jcis.2022.04.035_b0275) 2020; 264 Wu (10.1016/j.jcis.2022.04.035_b0255) 2021; 411 Mu (10.1016/j.jcis.2022.04.035_b0300) 2022; 612 Jia (10.1016/j.jcis.2022.04.035_b0130) 2020; 396 Imam (10.1016/j.jcis.2022.04.035_b0145) 2020 Yang (10.1016/j.jcis.2022.04.035_b0030) 2018; 254 Wu (10.1016/j.jcis.2022.04.035_b0245) 2021; 5 Li (10.1016/j.jcis.2022.04.035_b0140) 2021; 331 Fu (10.1016/j.jcis.2022.04.035_b0280) 2017; 13 Zhu (10.1016/j.jcis.2022.04.035_b0135) 2018; 121 Zhang (10.1016/j.jcis.2022.04.035_b0055) 2022; 34 Wang (10.1016/j.jcis.2022.04.035_b0215) 2021; 17 Li (10.1016/j.jcis.2022.04.035_b0080) 2018; 238 Huang (10.1016/j.jcis.2022.04.035_b0190) 2013; 3 Dashtian (10.1016/j.jcis.2022.04.035_b0065) 2018; 339 Cao (10.1016/j.jcis.2022.04.035_b0085) 2018; 13 Zhao (10.1016/j.jcis.2022.04.035_b0040) 2021; 593 Ren (10.1016/j.jcis.2022.04.035_b0035) 2020; 274 Miao (10.1016/j.jcis.2022.04.035_b0045) 2022; 301 Mu (10.1016/j.jcis.2022.04.035_b0170) 2020; 16 Majhi (10.1016/j.jcis.2022.04.035_b0115) 2021; 413 Zhou (10.1016/j.jcis.2022.04.035_b0120) 2021; 420 Liu (10.1016/j.jcis.2022.04.035_b0240) 2021; 197 Perdew (10.1016/j.jcis.2022.04.035_b0155) 1992; 46 Wang (10.1016/j.jcis.2022.04.035_b0075) 2022; 606 Cheng (10.1016/j.jcis.2022.04.035_b0290) 2020; 16 Wang (10.1016/j.jcis.2022.04.035_b0295) 2022; 605 Wang (10.1016/j.jcis.2022.04.035_b0205) 2020; 56 Guo (10.1016/j.jcis.2022.04.035_b0070) 2020; 500 Kresse (10.1016/j.jcis.2022.04.035_b0150) 1996; 54 Wang (10.1016/j.jcis.2022.04.035_b0125) 2020; 379 Wu (10.1016/j.jcis.2022.04.035_b0020) 2021; 585 Li (10.1016/j.jcis.2022.04.035_b0225) 2021; 592 Liu (10.1016/j.jcis.2022.04.035_b0185) 2020; 75 Fu (10.1016/j.jcis.2022.04.035_b0220) 2019; 243 Long (10.1016/j.jcis.2022.04.035_b0110) 2021; 407 He (10.1016/j.jcis.2022.04.035_b0250) 2022; 43 Li (10.1016/j.jcis.2022.04.035_b0265) 2021; 424 Chen (10.1016/j.jcis.2022.04.035_b0200) 2022; 616 Tang (10.1016/j.jcis.2022.04.035_b0260) 2020; 564 Chen (10.1016/j.jcis.2022.04.035_b0105) 2020; 272 Li (10.1016/j.jcis.2022.04.035_b0015) 2021; 11 Wang (10.1016/j.jcis.2022.04.035_b0005) 2018; 140 Kong (10.1016/j.jcis.2022.04.035_b0175) 2021; 17 Zhuang (10.1016/j.jcis.2022.04.035_b0010) 2019; 58 Wang (10.1016/j.jcis.2022.04.035_b0195) 2020; 78 Li (10.1016/j.jcis.2022.04.035_b0025) 2021; 286 Ganose (10.1016/j.jcis.2022.04.035_b0270) 2016; 28 Chen (10.1016/j.jcis.2022.04.035_b0165) 2020; 270 Wang (10.1016/j.jcis.2022.04.035_b0100) 2019; 141 Butburee (10.1016/j.jcis.2022.04.035_b0160) 2019; 62 Saif (10.1016/j.jcis.2022.04.035_b0180) 2021 Liu (10.1016/j.jcis.2022.04.035_b0210) 2021; 90 |
References_xml | – volume: 407 year: 2021 ident: b0110 article-title: Preparation and application of BiOBr-Bi publication-title: J. Hazard. Mater. – volume: 121 start-page: 163 year: 2018 end-page: 171 ident: b0135 article-title: Enhanced photocatalytic activity in hybrid composite combined BiOBr nanosheets and Bi publication-title: J. Phys. Chem. Solid. – volume: 78 year: 2020 ident: b0195 article-title: Defect in reduced graphene oxide tailored selectivity of photocatalytic CO publication-title: Nano Energy. – volume: 46 start-page: 6671 year: 1992 end-page: 6687 ident: b0155 article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B. – volume: 264 year: 2020 ident: b0275 article-title: A leaf-branch TiO publication-title: Appl. Catal. B Environ. – volume: 301 year: 2022 ident: b0045 article-title: In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO publication-title: Appl. Catal. B: Environ. – volume: 834 year: 2020 ident: b0090 article-title: Direct Z-scheme Bi publication-title: J. Alloy. Compound. – volume: 75 year: 2020 ident: b0185 article-title: Surface sites engineering on semiconductors to boost photocatalytic CO publication-title: Nano Energy. – volume: 17 start-page: 2103447 year: 2021 ident: b0215 article-title: In situ Irradiated XPS Investigation on S-Scheme TiO publication-title: Small. – volume: 16 start-page: 2002140 year: 2020 ident: b0170 article-title: Ultrathin and Small-Size Graphene Oxide as an Electron Mediator for Perovskite-Based Z-Scheme System to Significantly Enhance Photocatalytic CO2 Reduction publication-title: Small. – volume: 13 start-page: 1603938 year: 2017 ident: b0280 article-title: Hierarchical Porous O-Doped g-C publication-title: Small. – volume: 243 start-page: 556 year: 2019 end-page: 565 ident: b0220 article-title: Ultrathin 2D/2D WO publication-title: Appl. Catal. B Environ. – volume: 270 year: 2020 ident: b0165 article-title: Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction publication-title: Appl. Catal. B Environ. – volume: 424 year: 2021 ident: b0265 article-title: Novel step-scheme red mud based Ag publication-title: Chem. Eng. J. – volume: 413 year: 2021 ident: b0115 article-title: Plasmonic Ag nanoparticle decorated Bi publication-title: Chem. Eng. J. – volume: 56 start-page: 236 year: 2020 end-page: 243 ident: b0205 article-title: Sb publication-title: J. Mater. Sci. Technol. – volume: 90 year: 2021 ident: b0210 article-title: In-situ annealed “M-scheme” MXene-based photocatalyst for enhanced photoelectric performance and highly selective CO2 photoreduction publication-title: Nano Energy. – volume: 11 start-page: 4739 year: 2021 end-page: 4769 ident: b0015 article-title: Recent Advances in Noncontact External-Field-AssistePhotocatalysis: From Fundamentals to Applications publication-title: ACS Catal. – volume: 9 start-page: 8425 year: 2021 end-page: 8434 ident: b0235 article-title: Construction of Few-Layer Ti publication-title: ACS Sustainable Chem. Eng. – volume: 16 start-page: 2002411 year: 2020 ident: b0290 article-title: Single Ni Atoms Anchored on Porous Few-Layer g-C publication-title: Small – volume: 594 start-page: 635 year: 2021 end-page: 649 ident: b0050 article-title: BiOBr/MoS publication-title: J. Colloid Interf. Sci. – volume: 292 year: 2021 ident: b0095 article-title: Regulating the electron–hole separation to promote selective oxidation of biomass using ZnS@Bi publication-title: Appl. Catal. B: Environ. – volume: 263 year: 2021 ident: b0060 article-title: Role of type II heterojunction in ZnO–In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport publication-title: Mater. Chem. Phys. – volume: 331 year: 2021 ident: b0140 article-title: Biocatalysis-induced formation of BiOBr/Bi publication-title: Sensor. Actua. B Chem. – start-page: 2103422 year: 2021 ident: b0180 article-title: The Synthesis of Protein-Encapsulated Ceria Nanorods for Visible-Light Driven Hydrogen Production and Carbon Dioxide Reduction publication-title: Small. – volume: 17 start-page: 2100496 year: 2021 ident: b0230 article-title: Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO publication-title: Small. – volume: 286 year: 2021 ident: b0025 article-title: A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution publication-title: Appl. Catal. B: Environ. – volume: 13 start-page: 1850012 year: 2018 ident: b0085 article-title: Facile Hydrothermal-Ion-Exchange Synthesis and Enhanced Visible Light Photocatalytic Activity of Bi publication-title: Nano. – volume: 605 start-page: 727 year: 2022 end-page: 740 ident: b0295 article-title: Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi publication-title: J. Colloid Interface Sci. – volume: 585 start-page: 95 year: 2021 end-page: 107 ident: b0020 article-title: Green synthesis of boron and nitrogen co-doped TiO2 with rich B-N motifs as Lewis acid-base couples for the effective artificial CO2 photoreduction under simulated sunlight publication-title: J. Colloid Interface Sci. – volume: 17 start-page: 2005357 year: 2021 ident: b0175 article-title: In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO publication-title: Small. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: b0150 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 58 start-page: 18627 year: 2019 ident: b0010 article-title: In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy Angew publication-title: Chem. Int. Ed. – volume: 593 start-page: 231 year: 2021 end-page: 243 ident: b0040 article-title: Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO publication-title: J. Colloid Interf. Sci. – volume: 254 start-page: 76 year: 2018 end-page: 93 ident: b0030 article-title: BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management publication-title: Adv. Colloid Interf. – volume: 420 year: 2021 ident: b0120 article-title: Preparation of novel 0D/2D Ag publication-title: Chem. Eng. J. – volume: 606 start-page: 1745 year: 2022 end-page: 1757 ident: b0075 article-title: The covalent Coordination-driven Bi publication-title: J. Colloid Interf. Sci. – year: 2020 ident: b0145 article-title: Room-temperature synthesis of flower-like BiOBr/Bi publication-title: Colloid. Surface. A 585 – volume: 238 start-page: 656 year: 2018 end-page: 663 ident: b0080 article-title: Highly efficient visible-light driven solar-fuel production over tetra (4-carboxyphenyl) porphyrin iron(III) chloride using CdS/Bi publication-title: Appl. Catal. B Environ. – volume: 500 year: 2020 ident: b0070 article-title: Photocatalytic reduction of CO publication-title: Appl. Surfac. Sci. – volume: 3 start-page: 1477 year: 2013 end-page: 1485 ident: b0190 article-title: Enhanced Photocatalytic Activity of Chemically Bonded TiO publication-title: ACS Catal. – volume: 140 start-page: 5037 year: 2018 end-page: 5040 ident: b0005 article-title: Construction of ZnIn publication-title: J. Am. Chem. Soc. – volume: 64 year: 2019 ident: b0285 article-title: A bismuth rich hollow Bi publication-title: Nano Energy. – volume: 564 start-page: 406 year: 2020 end-page: 417 ident: b0260 article-title: Decorating g-C publication-title: J. Colloid Interf. Sci. – volume: 34 start-page: 2107668 year: 2022 ident: b0055 article-title: Emerging S-Scheme Photocatalyst publication-title: Adv. Mater. – volume: 612 start-page: 722 year: 2022 end-page: 736 ident: b0300 article-title: A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution publication-title: J. Colloid Interface Sci. – volume: 62 start-page: 426 year: 2019 end-page: 433 ident: b0160 article-title: Improved CO publication-title: Nano Energy. – volume: 411 year: 2021 ident: b0255 article-title: Construction of BiOCl/CuBi publication-title: Chem. Eng. J. – volume: 272 year: 2020 ident: b0105 article-title: In situ construction of biocompatible Z-scheme α-Bi publication-title: Appl. Catal. B Environ. – volume: 5 start-page: 2100668 year: 2021 ident: b0245 article-title: Recent Progress on Metallic Bismuth-Based Photocatalysts: Synthesis publication-title: Construction, and Application in Water Purification, Solar RRL – volume: 616 start-page: 253 year: 2022 end-page: 260 ident: b0200 article-title: Construction of WO publication-title: J. Colloid Interf. Sci. – volume: 592 start-page: 237 year: 2021 end-page: 248 ident: b0225 article-title: Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution publication-title: J. Colloid Interface Sci. – volume: 339 start-page: 189 year: 2018 end-page: 203 ident: b0065 article-title: Achieving enhanced blue-light-driven photocatalysis using nanosword-like VO publication-title: Chem. Eng. J. – volume: 141 start-page: 13434 year: 2019 end-page: 13441 ident: b0100 article-title: In Situ Construction of a Cs publication-title: J. Am. Chem. Soc. – volume: 379 year: 2020 ident: b0125 article-title: Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe publication-title: Chem. Eng. J. – volume: 396 year: 2020 ident: b0130 article-title: In situ self-growing 3D hierarchical BiOBr/BiOIO publication-title: Chem. Eng. J. – volume: 43 start-page: 1306 year: 2022 end-page: 1315 ident: b0250 article-title: 2D metal-free heterostructure of covalent triazine framework/g-C publication-title: Chin. J. Catal. – volume: 28 start-page: 1980 year: 2016 end-page: 1984 ident: b0270 article-title: Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI publication-title: Chem. Mater. – volume: 274 year: 2020 ident: b0035 article-title: Photocatalytic reduction of CO publication-title: Appl. Catal. B Environ. – volume: 197 year: 2021 ident: b0240 article-title: Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis publication-title: Environ. Res. – volume: 243 start-page: 556 year: 2019 ident: 10.1016/j.jcis.2022.04.035_b0220 article-title: Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.11.011 – volume: 339 start-page: 189 year: 2018 ident: 10.1016/j.jcis.2022.04.035_b0065 article-title: Achieving enhanced blue-light-driven photocatalysis using nanosword-like VO2/CuWO4 type II n–n heterojunction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.107 – volume: 500 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0070 article-title: Photocatalytic reduction of CO2 into CO over nanostructure Bi2S3 quantum dots/g-C3N4 composites with Z-scheme mechanism publication-title: Appl. Surfac. Sci. – volume: 56 start-page: 236 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0205 article-title: Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.03.039 – volume: 238 start-page: 656 year: 2018 ident: 10.1016/j.jcis.2022.04.035_b0080 article-title: Highly efficient visible-light driven solar-fuel production over tetra (4-carboxyphenyl) porphyrin iron(III) chloride using CdS/Bi2S3 heterostructure as photosensitizer publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.07.066 – volume: 585 start-page: 95 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0020 article-title: Green synthesis of boron and nitrogen co-doped TiO2 with rich B-N motifs as Lewis acid-base couples for the effective artificial CO2 photoreduction under simulated sunlight publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.11.075 – volume: 64 year: 2019 ident: 10.1016/j.jcis.2022.04.035_b0285 article-title: A bismuth rich hollow Bi4O5Br 2 photocatalyst enables dramatic CO2 reduction activity publication-title: Nano Energy. doi: 10.1016/j.nanoen.2019.103955 – volume: 28 start-page: 1980 year: 2016 ident: 10.1016/j.jcis.2022.04.035_b0270 article-title: Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00349 – volume: 9 start-page: 8425 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0235 article-title: Construction of Few-Layer Ti3C2 MXene and Boron-Doped g-C3N4 for Enhanced Photocatalytic CO2 Reduction publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c01155 – volume: 17 start-page: 2103447 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0215 article-title: In situ Irradiated XPS Investigation on S-Scheme TiO2 @ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction publication-title: Small. doi: 10.1002/smll.202103447 – volume: 272 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0105 article-title: In situ construction of biocompatible Z-scheme α-Bi2O3/CuBi2O4 heterojunction for NO removal under visible light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119008 – volume: 16 start-page: 2002140 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0170 article-title: Ultrathin and Small-Size Graphene Oxide as an Electron Mediator for Perovskite-Based Z-Scheme System to Significantly Enhance Photocatalytic CO2 Reduction publication-title: Small. doi: 10.1002/smll.202002140 – volume: 5 start-page: 2100668 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0245 article-title: Recent Progress on Metallic Bismuth-Based Photocatalysts: Synthesis publication-title: Construction, and Application in Water Purification, Solar RRL – volume: 62 start-page: 426 year: 2019 ident: 10.1016/j.jcis.2022.04.035_b0160 article-title: Improved CO2 photocatalytic reduction using a novel 3-component heterojunction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2019.05.060 – volume: 78 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0195 article-title: Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr 6 pervoskite hole-in-microdisk structure publication-title: Nano Energy. doi: 10.1016/j.nanoen.2020.105388 – volume: 834 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0090 article-title: Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity publication-title: J. Alloy. Compound. doi: 10.1016/j.jallcom.2020.155158 – volume: 141 start-page: 13434 year: 2019 ident: 10.1016/j.jcis.2022.04.035_b0100 article-title: In Situ Construction of a Cs2SnI6 Perovskite Nanocrystal/SnS2 Nanosheet Heterojunction with Boosted Interfacial Charge Transfer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04482 – volume: 564 start-page: 406 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0260 article-title: Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2019.12.091 – volume: 34 start-page: 2107668 issue: 11 year: 2022 ident: 10.1016/j.jcis.2022.04.035_b0055 article-title: Emerging S-Scheme Photocatalyst publication-title: Adv. Mater. doi: 10.1002/adma.202107668 – volume: 263 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0060 article-title: Role of type II heterojunction in ZnO–In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124431 – volume: 17 start-page: 2100496 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0230 article-title: Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO2 Reduction publication-title: Small. doi: 10.1002/smll.202100496 – volume: 264 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0275 article-title: A leaf-branch TiO2/carbon@MOF composite for selective CO2 photoreduction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118519 – volume: 58 start-page: 18627 year: 2019 ident: 10.1016/j.jcis.2022.04.035_b0010 article-title: In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy Angew publication-title: Chem. Int. Ed. doi: 10.1002/anie.201910379 – volume: 292 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0095 article-title: Regulating the electron–hole separation to promote selective oxidation of biomass using ZnS@Bi2S3 nanosheet catalyst publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120180 – volume: 407 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0110 article-title: Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124394 – volume: 17 start-page: 2005357 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0175 article-title: In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO2 Reduction publication-title: Small. doi: 10.1002/smll.202005357 – volume: 16 start-page: 2002411 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0290 article-title: Single Ni Atoms Anchored on Porous Few-Layer g-C3N4 for Photocatalytic CO2 Reduction: The Role of Edge Confinement publication-title: Small doi: 10.1002/smll.202002411 – volume: 13 start-page: 1850012 year: 2018 ident: 10.1016/j.jcis.2022.04.035_b0085 article-title: Facile Hydrothermal-Ion-Exchange Synthesis and Enhanced Visible Light Photocatalytic Activity of Bi4Ti3O12/Bi2S3 Heterostructure publication-title: Nano. doi: 10.1142/S1793292018500121 – volume: 612 start-page: 722 year: 2022 ident: 10.1016/j.jcis.2022.04.035_b0300 article-title: A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.196 – volume: 11 start-page: 4739 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0015 article-title: Recent Advances in Noncontact External-Field-AssistePhotocatalysis: From Fundamentals to Applications publication-title: ACS Catal. doi: 10.1021/acscatal.0c05354 – volume: 424 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0265 article-title: Novel step-scheme red mud based Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance and stability in photo-Fenton reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130537 – volume: 420 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0120 article-title: Preparation of novel 0D/2D Ag2WO4/WO3 Step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130361 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.jcis.2022.04.035_b0150 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 121 start-page: 163 year: 2018 ident: 10.1016/j.jcis.2022.04.035_b0135 article-title: Enhanced photocatalytic activity in hybrid composite combined BiOBr nanosheets and Bi2S3 nanoparticles publication-title: J. Phys. Chem. Solid. doi: 10.1016/j.jpcs.2018.05.023 – volume: 43 start-page: 1306 year: 2022 ident: 10.1016/j.jcis.2022.04.035_b0250 article-title: 2D metal-free heterostructure of covalent triazine framework/g-C3N4for enhanced photocatalytic CO2 reduction with high selectivity publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63936-0 – volume: 594 start-page: 635 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0050 article-title: BiOBr/MoS2 catalyst as heterogenous peroxymonosulfate activator toward organic pollutant removal: Energy band alignment and mechanism insight publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.03.066 – volume: 593 start-page: 231 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0040 article-title: Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.02.117 – volume: 254 start-page: 76 year: 2018 ident: 10.1016/j.jcis.2022.04.035_b0030 article-title: BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management publication-title: Adv. Colloid Interf. doi: 10.1016/j.cis.2018.03.004 – volume: 606 start-page: 1745 year: 2022 ident: 10.1016/j.jcis.2022.04.035_b0075 article-title: The covalent Coordination-driven Bi2S3@NH2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.08.135 – volume: 46 start-page: 6671 year: 1992 ident: 10.1016/j.jcis.2022.04.035_b0155 article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.46.6671 – volume: 331 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0140 article-title: Biocatalysis-induced formation of BiOBr/Bi2S3 semiconductor heterostructures: A highly efficient strategy for establishing sensitive photoelectrochemical sensing system for organophosphorus pesticide detection publication-title: Sensor. Actua. B Chem. doi: 10.1016/j.snb.2021.129451 – year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0145 article-title: Room-temperature synthesis of flower-like BiOBr/Bi2S3 composites for the catalytic degradation of fluoroquinolones using indoor fluorescent light illumination publication-title: Colloid. Surface. A 585 doi: 10.1016/j.colsurfa.2019.124069 – volume: 75 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0185 article-title: Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2020.104959 – volume: 274 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0035 article-title: Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119063 – volume: 90 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0210 article-title: In-situ annealed “M-scheme” MXene-based photocatalyst for enhanced photoelectric performance and highly selective CO2 photoreduction publication-title: Nano Energy. – volume: 301 year: 2022 ident: 10.1016/j.jcis.2022.04.035_b0045 article-title: In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120802 – volume: 140 start-page: 5037 issue: 15 year: 2018 ident: 10.1016/j.jcis.2022.04.035_b0005 article-title: Construction of ZnIn2S4-In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02200 – volume: 413 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0115 article-title: Plasmonic Ag nanoparticle decorated Bi2O3/CuBi2O4 photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr(VI) reduction: Insight into electron transfer mechanism and enhanced photocatalytic activity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127506 – volume: 605 start-page: 727 year: 2022 ident: 10.1016/j.jcis.2022.04.035_b0295 article-title: Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.07.137 – volume: 396 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0130 article-title: In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125258 – volume: 3 start-page: 1477 year: 2013 ident: 10.1016/j.jcis.2022.04.035_b0190 article-title: Enhanced Photocatalytic Activity of Chemically Bonded TiO2/Graphene Composites Based on the Effective Interfacial Charge Transfer through the C-Ti Bond publication-title: ACS Catal. doi: 10.1021/cs400080w – volume: 616 start-page: 253 year: 2022 ident: 10.1016/j.jcis.2022.04.035_b0200 article-title: Construction of WO3/CsPbBr 3 S-scheme heterojunction via electrostatic Self-assembly for efficient and Long-Period photocatalytic CO2 reduction publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2022.02.044 – volume: 286 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0025 article-title: A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.119923 – volume: 411 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0255 article-title: Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128555 – volume: 13 start-page: 1603938 year: 2017 ident: 10.1016/j.jcis.2022.04.035_b0280 article-title: Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity publication-title: Small. doi: 10.1002/smll.201603938 – volume: 270 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0165 article-title: Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118915 – volume: 592 start-page: 237 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0225 article-title: Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.02.053 – start-page: 2103422 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0180 article-title: The Synthesis of Protein-Encapsulated Ceria Nanorods for Visible-Light Driven Hydrogen Production and Carbon Dioxide Reduction publication-title: Small. doi: 10.1002/smll.202103422 – volume: 379 year: 2020 ident: 10.1016/j.jcis.2022.04.035_b0125 article-title: Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122264 – volume: 197 year: 2021 ident: 10.1016/j.jcis.2022.04.035_b0240 article-title: Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis publication-title: Environ. Res. doi: 10.1016/j.envres.2021.111136 |
SSID | ssj0011559 |
Score | 2.6444545 |
Snippet | [Display omitted]
Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers... Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 407 |
SubjectTerms | Bi2S3 BiOBr carbon dioxide CO2 reduction hot water treatment oxygen photocatalysis photocatalysts Photocatalytic photoreduction S-scheme solar radiation |
Title | BiOBr/Bi2S3 heterojunction with S-scheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO2 with H2O |
URI | https://dx.doi.org/10.1016/j.jcis.2022.04.035 https://www.proquest.com/docview/2652864862 https://www.proquest.com/docview/2660997025 |
Volume | 620 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWywE4VGUpgrYgI3FD7saPOElv7Aq0CxJ7ACRuVhI7IiuarOgilUt_RX9wZ5yEl6o9NIdIScay5XFmxvY3nwk5gpA788yPNi8ipmRgGXhFy5RzYA0TGeeFB8he6smNOr8Nb3tk3OXCIKyytf2NTffWun0zbHtzuChLzPGFvy1KIoELI3GISXxKRTjKv_1-hnlw3HZrYB6coXSbONNgvOZ5iZTdQni6U3_k2z-d0zsz7X3P2UfyoQ0a6UnTri3Sc9WArI-7s9oGZPMVreA2-TMqZ6OH4agUV5LeId6lnoP7QhVQXHelVwzmtO6How17LALTK0vrX08wmqh1HuHxnU4r9rNcPtK8fmGZpSi4uKuXtV_3eYIG0S7Tn0L8Sx-QCtZL1gUdz0RT4UTMPpGbs9Pr8YS1py-wXGq9ZMIGGZcuia3iqkiCJNOJE7rQOoMvqeRZJPMkUKnUVji4RZyDreQ6iNNQ5oHcIf2qrtwuoRBiZnClGH8oHYcZCCIrEEylIq5ssUd41-0mb6nJ8YSMe9Nh0OYGVWVQVSZQBlS1R46fyywaYo6V0mGnTfNmeBnwHCvLHXaqN6BS3ExJK1c_gpAORawVTAhXyWhMTIaw8vN_1v-FbOATLmLz8Cvpg7bdPkRBy-zAD_MDsnYyvZhc_gXt9Ado |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEBQQbXkYCU7IbPyIkyBxYBeqXVq6h7ZSbyYPR80KklW7FeyFX8E_4Q8y4yTlIbQHpOaQQzJ5yJ8zM3Y-fwPwDFPuzCs_FnkZca2CgmNULLh2Dr1houK89ATZAzM-1u9PwpM1-NGvhSFaZef7W5_uvXV3ZNC15mBeVbTGF7-2KIkkTYzEYdIxK_fc8guO285fT94iyM-l3H13NBrzrrQAz5UxCy6LIBPKJXGhhS6TIMlM4qQpjcnwTKpEFqk8CXSqTCEd7iIh0BEIE8RpqPJA4X2vwXWN7oLKJrz8dskrEfSfr-WVCE6v163UaUlls7wijXApvb6qrzH3z2j4V1zwwW73NtzqslT2pm2IO7Dm6k3YGPXF4Tbh5m86hnfh-7CaDs8Gw0oeKnZKBJtmhvGSMGc00csOOQ6i3WfHWrlaYsLXBWu-LrH7ssJ5SskrNqn5ebW4YHnzS9aWkeH8tFk0fqJpiS_EemkBhgk3OyPtWW_ZlGw0le0Dx3J6D46vBJP7sF43tXsADHPaDLeUEh5t4jBDQ5IhwrFbJHRRboHom93mnRY6leT4ZHvS28wSVJagsoG2CNUWvLi8Zt4qgay0Dns07R_92WKoWnnd0x56i5DS35u0ds0FGplQxkbjCHSVjaGV0JjHbv_n85_Axvjow77dnxzs7cANOkMz6CJ8COuIvHuEKdgie-y7PIOPV_2N_QTvNEJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiOBr%2FBi2S3+heterojunction+with+S-scheme+structureand+oxygen+defects%3A+In-situ+construction+and+photocatalytic+behavior+for+reduction+of+CO2+with+H2O&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Miao%2C+Zerui&rft.au=Zhang%2C+Yanfeng&rft.au=Wang%2C+Ning&rft.au=Xu%2C+Peng&rft.date=2022-08-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=620&rft.spage=407&rft.epage=418&rft_id=info:doi/10.1016%2Fj.jcis.2022.04.035&rft.externalDocID=S0021979722005859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |