BiOBr/Bi2S3 heterojunction with S-scheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO2 with H2O

[Display omitted] Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesi...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 620; pp. 407 - 418
Main Authors Miao, Zerui, Zhang, Yanfeng, Wang, Ning, Xu, Peng, Wang, Xuxu
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO2 photoreduction with pure water. The yields of product CO and CH4 are as high as 100.8 and 8.5 µmol g−1h−1, which are 17.5 and 13.5 times higher than that of the pristine Bi2S3, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi2S3 heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO2 and H2O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO2 reduction.
AbstractList [Display omitted] Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO2 photoreduction with pure water. The yields of product CO and CH4 are as high as 100.8 and 8.5 µmol g−1h−1, which are 17.5 and 13.5 times higher than that of the pristine Bi2S3, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi2S3 heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO2 and H2O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO2 reduction.
Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi₂S₃ heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO₂ photoreduction with pure water. The yields of product CO and CH₄ are as high as 100.8 and 8.5 µmol g⁻¹h⁻¹, which are 17.5 and 13.5 times higher than that of the pristine Bi₂S₃, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi₂S₃ heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO₂ and H₂O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO₂ reduction.
Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO2 photoreduction with pure water. The yields of product CO and CH4 are as high as 100.8 and 8.5 µmol g-1h-1, which are 17.5 and 13.5 times higher than that of the pristine Bi2S3, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi2S3 heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO2 and H2O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO2 reduction.Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox ability of single photocatalyst. Herein, S-scheme BiOBr/Bi2S3 heterojunction with surface oxygen vacancies (OVs) was synthesized in situ by a facile hydrothermal method. The as-prepared photocatalyst show high activity for CO2 photoreduction with pure water. The yields of product CO and CH4 are as high as 100.8 and 8.5 µmol g-1h-1, which are 17.5 and 13.5 times higher than that of the pristine Bi2S3, and 2.3 and 4.7 times higher than that of the pristine BiOBr respectively. The excellent activity of the BiOBr/Bi2S3 heterojunction is attributed to both the S-scheme electron structure and the surface OVs of the component BiOBr. The S-scheme structure can enhance utilization of sunlight and improve the separation and transfer of photogenerated electron/hole pairs. The surface OVs of BiOBr can serve as active sites of CO2 and H2O in the photocatalytic process. This work provides some novel insights of S-scheme heterojunction with defects for photocatalytic CO2 reduction.
Author Wang, Ning
Xu, Peng
Wang, Xuxu
Zhang, Yanfeng
Miao, Zerui
Author_xml – sequence: 1
  givenname: Zerui
  surname: Miao
  fullname: Miao, Zerui
  organization: National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
– sequence: 2
  givenname: Yanfeng
  surname: Zhang
  fullname: Zhang, Yanfeng
  email: zhangyanfeng@hebtu.edu.cn
  organization: National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
– sequence: 3
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
  organization: National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
– sequence: 4
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
  email: xup@nanoctr.cn
  organization: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, PR China
– sequence: 5
  givenname: Xuxu
  surname: Wang
  fullname: Wang, Xuxu
  email: zhangyanfeng@mail.hebtu.edu.cn, xwang@fzu.edu.cn
  organization: State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
BookMark eNqNkT9v3CAcQFGVSr2k_QKdGLv4wh8bm6pL79QmkSLdkHZGGH6usXxwBZz0vkc_cGw5U4eoAzDwHgjeJbrwwQNCHynZUkLF9bAdjEtbRhjbknJLePUGbSiRVVFTwi_QhhBGC1nL-h26TGkghNKqkhv0d-cOu3i9c-yB4x4yxDBM3mQXPH5yuccPRTI9HAGnHCeTpwjaWxz-nH-BxxY6MDl9xne-SC5P2AS_cou_gKc-5GB01uM5O4Nb6PWjCxF384hgX8jQ4f2BrRfessN79LbTY4IPL-sV-vn924_9bXF_uLnbf70vDBciF8ySlnKQjS1p2UkiWyGBiU6Idt7RnLY1N5KUmgvLYJ5qSq0FKkijK24Iv0Kf1nNPMfyeIGV1dMnAOGoPYUqKCUGkrAmr_gOtWCPKRrAZbVbUxJBShE4Zl_Xyzhy1GxUlammmBrU0U0szRUo1N5tV9o96iu6o4_l16csqwfxVjw6iSsaBN2BdnOsoG9xr-jPwH7Pb
CitedBy_id crossref_primary_10_1002_ceat_202300108
crossref_primary_10_1016_j_jcis_2022_08_059
crossref_primary_10_1016_j_seppur_2022_122721
crossref_primary_10_1016_S1872_2067_23_64502_4
crossref_primary_10_1016_j_jcis_2024_11_077
crossref_primary_10_1016_j_cep_2023_109370
crossref_primary_10_1016_j_seppur_2023_124509
crossref_primary_10_1016_j_diamond_2023_110385
crossref_primary_10_1016_j_mcat_2024_114115
crossref_primary_10_1021_acs_energyfuels_3c04118
crossref_primary_10_1016_j_fuel_2024_132613
crossref_primary_10_1016_j_jcis_2024_08_017
crossref_primary_10_1016_j_optmat_2023_113894
crossref_primary_10_1016_j_jece_2023_110311
crossref_primary_10_1016_j_molstruc_2024_140041
crossref_primary_10_1021_acs_iecr_4c04683
crossref_primary_10_1016_j_jece_2024_112615
crossref_primary_10_1039_D3TA06943E
crossref_primary_10_1016_j_optmat_2024_116088
crossref_primary_10_1016_j_seppur_2023_123096
crossref_primary_10_1002_slct_202204707
crossref_primary_10_1016_j_catcom_2024_106843
crossref_primary_10_1016_j_seppur_2024_131072
crossref_primary_10_1016_j_apcatb_2023_123230
crossref_primary_10_1016_j_ijhydene_2024_10_224
crossref_primary_10_1016_j_mtchem_2023_101697
crossref_primary_10_1016_j_jcis_2024_11_237
crossref_primary_10_1016_j_seppur_2024_129713
crossref_primary_10_1016_j_jcis_2024_09_064
crossref_primary_10_1016_j_apsusc_2022_155495
crossref_primary_10_1016_j_jmst_2023_03_027
crossref_primary_10_1016_j_molstruc_2023_136765
crossref_primary_10_1016_j_jece_2024_112122
crossref_primary_10_1016_j_jece_2022_108582
crossref_primary_10_1016_j_apsusc_2025_162587
crossref_primary_10_1016_j_jece_2025_115813
crossref_primary_10_1016_j_matlet_2023_134806
crossref_primary_10_1021_acssuschemeng_3c07070
crossref_primary_10_2139_ssrn_4168539
crossref_primary_10_1016_j_ces_2024_119874
crossref_primary_10_1016_j_ces_2024_120933
crossref_primary_10_1016_j_jallcom_2024_176905
crossref_primary_10_1016_j_jcis_2024_01_172
crossref_primary_10_1016_j_apsadv_2023_100536
crossref_primary_10_1016_j_jcis_2022_11_106
crossref_primary_10_1016_j_susmat_2023_e00769
crossref_primary_10_1016_j_seppur_2023_123545
crossref_primary_10_3390_catal12121593
crossref_primary_10_1016_j_cej_2023_145053
crossref_primary_10_1016_j_jallcom_2024_173671
crossref_primary_10_1016_j_jallcom_2025_178595
crossref_primary_10_1016_j_colsurfa_2024_134808
crossref_primary_10_1016_j_jece_2024_113961
crossref_primary_10_1016_j_apsusc_2023_159169
crossref_primary_10_1016_S1872_2067_23_64566_8
crossref_primary_10_1016_j_cej_2024_158561
crossref_primary_10_1016_j_enchem_2025_100143
crossref_primary_10_1016_j_surfin_2024_104957
crossref_primary_10_1016_j_cej_2024_158240
crossref_primary_10_1016_j_cej_2024_157310
crossref_primary_10_1016_j_jallcom_2022_167330
crossref_primary_10_1039_D4TA07520J
crossref_primary_10_1002_advs_202308546
crossref_primary_10_1016_j_catcom_2023_106664
crossref_primary_10_1016_j_seppur_2024_127114
crossref_primary_10_1016_j_jiec_2022_09_044
crossref_primary_10_1039_D4TA04600E
crossref_primary_10_1016_j_inoche_2024_113687
crossref_primary_10_1016_j_colsurfa_2025_136306
crossref_primary_10_1016_j_jcis_2023_11_014
crossref_primary_10_1016_j_seppur_2022_122654
crossref_primary_10_1016_j_jcis_2023_08_025
crossref_primary_10_1016_j_jmat_2024_100998
crossref_primary_10_1039_D4NR00153B
crossref_primary_10_1016_j_cej_2022_138167
crossref_primary_10_1039_D2TA04278A
crossref_primary_10_1016_j_jallcom_2023_169862
crossref_primary_10_1016_j_jes_2023_07_002
crossref_primary_10_3390_molecules28103982
crossref_primary_10_1016_j_jcis_2022_10_056
crossref_primary_10_1039_D4GC05761A
crossref_primary_10_1016_j_jcis_2022_09_115
crossref_primary_10_1016_j_cej_2024_157867
crossref_primary_10_1021_acsanm_3c01911
crossref_primary_10_1016_j_seppur_2023_123365
crossref_primary_10_1016_j_mssp_2023_107869
crossref_primary_10_1016_j_cogsc_2023_100824
crossref_primary_10_1016_j_ijhydene_2024_12_126
crossref_primary_10_1016_j_cej_2023_141271
crossref_primary_10_1016_j_jallcom_2023_171253
Cites_doi 10.1016/j.apcatb.2018.11.011
10.1016/j.cej.2018.01.107
10.1016/j.jmst.2020.03.039
10.1016/j.apcatb.2018.07.066
10.1016/j.jcis.2020.11.075
10.1016/j.nanoen.2019.103955
10.1021/acs.chemmater.6b00349
10.1021/acssuschemeng.1c01155
10.1002/smll.202103447
10.1016/j.apcatb.2020.119008
10.1002/smll.202002140
10.1016/j.nanoen.2019.05.060
10.1016/j.nanoen.2020.105388
10.1016/j.jallcom.2020.155158
10.1021/jacs.9b04482
10.1016/j.jcis.2019.12.091
10.1002/adma.202107668
10.1016/j.matchemphys.2021.124431
10.1002/smll.202100496
10.1016/j.apcatb.2019.118519
10.1002/anie.201910379
10.1016/j.apcatb.2021.120180
10.1016/j.jhazmat.2020.124394
10.1002/smll.202005357
10.1002/smll.202002411
10.1142/S1793292018500121
10.1016/j.jcis.2021.12.196
10.1021/acscatal.0c05354
10.1016/j.cej.2021.130537
10.1016/j.cej.2021.130361
10.1103/PhysRevB.54.11169
10.1016/j.jpcs.2018.05.023
10.1016/S1872-2067(21)63936-0
10.1016/j.jcis.2021.03.066
10.1016/j.jcis.2021.02.117
10.1016/j.cis.2018.03.004
10.1016/j.jcis.2021.08.135
10.1103/PhysRevB.46.6671
10.1016/j.snb.2021.129451
10.1016/j.colsurfa.2019.124069
10.1016/j.nanoen.2020.104959
10.1016/j.apcatb.2020.119063
10.1016/j.apcatb.2021.120802
10.1021/jacs.8b02200
10.1016/j.cej.2020.127506
10.1016/j.jcis.2021.07.137
10.1016/j.cej.2020.125258
10.1021/cs400080w
10.1016/j.jcis.2022.02.044
10.1016/j.apcatb.2021.119923
10.1016/j.cej.2021.128555
10.1002/smll.201603938
10.1016/j.apcatb.2020.118915
10.1016/j.jcis.2021.02.053
10.1002/smll.202103422
10.1016/j.cej.2019.122264
10.1016/j.envres.2021.111136
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2022.04.035
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 418
ExternalDocumentID 10_1016_j_jcis_2022_04_035
S0021979722005859
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
7S9
L.6
ID FETCH-LOGICAL-c366t-2d0b13e98d414f909b69e26f66bd0ba31b73c904a36d2e36d711dde1608a53c03
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 01:22:12 EDT 2025
Fri Jul 11 00:51:54 EDT 2025
Tue Jul 01 04:18:47 EDT 2025
Thu Apr 24 23:06:57 EDT 2025
Fri Feb 23 02:39:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photocatalytic
Bi2S3
BiOBr
S-scheme
CO2 reduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-2d0b13e98d414f909b69e26f66bd0ba31b73c904a36d2e36d711dde1608a53c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2652864862
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2660997025
proquest_miscellaneous_2652864862
crossref_citationtrail_10_1016_j_jcis_2022_04_035
crossref_primary_10_1016_j_jcis_2022_04_035
elsevier_sciencedirect_doi_10_1016_j_jcis_2022_04_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Perdew, Chevary, Vosko, Jackson, Pederson, Singh, Fiolhais (b0155) 1992; 46
Wu, Xu, Zhang, Zhu (b0245) 2021; 5
Wu, Guo, Wang, Zhang, Yang, Yang, Gao, Wang, Jiang (b0020) 2021; 585
Wang, Zhang, Li, Zhang, Liu, Zhou, Zhang, Fang, Ke (b0075) 2022; 606
Zhang, Zhang, Yu, Yu (b0055) 2022; 34
Das, Patra, Kumar, Bhagavathiachari, Nair (b0060) 2021; 263
Kong, He, Zhou, Zhao, Li, Wu, Wang, Li (b0175) 2021; 17
Cao, Du, Liu, Wang (b0085) 2018; 13
Fu, Zhu, Jiang, Cheng, You, Yu (b0280) 2017; 13
Zhou, Sun, Huang, Lu, Xie, Zhang, Hart, Toe, Hao, Amal (b0230) 2021; 17
Cheng, Yin, Cai, Fan, Xiang (b0290) 2020; 16
Miao, Wang, Zhang, Meng, Wang (b0045) 2022; 301
Imam, Adnan, Mohd Kaus (b0145) 2020
Li, Wang, Dong, Zhang, Han, Luo, Huang, Feng, Chen, Jia, Zhang (b0015) 2021; 11
Li, Wei, Yang, Gao, Zhang, Li, Huang, Gan (b0265) 2021; 424
Zhou, Dou, Zhao, Zhou, Wu, Li (b0275) 2020; 264
Ren, Gao, Zhang, Zhang, Cao, Wang, Wang (b0035) 2020; 274
Li, Zhong, Chen, Huang, Chen, Xiao, Zou, Chen, Hao, Liu, Sun, Peng (b0095) 2021; 292
Guo, Liu, Qin, Wang, Shi, Pan, Fu, Tang, Jia, Miao, Gu (b0070) 2020; 500
Li, Li, Jin (b0225) 2021; 592
Li, Gao, Jiang, Zhuang, Tan, Li, Li, Wang, Liao, Sun, Zou, Han (b0025) 2021; 286
Liu, Wei, Sun, Guan, Zheng, Li (b0240) 2021; 197
Wang, Li, He, Yang, Dong, Mai, Zhu (b0195) 2020; 78
Long, Zhang, Du, Zhu, Li (b0110) 2021; 407
Ganose, Cuff, Butler, Walsh, Scanlon (b0270) 2016; 28
Zhuang, Qi, Cheng, Chen, Gao, Wang, Sun, Zou, Han (b0010) 2019; 58
Zhang, Zhang, Zhang, Bingham, Tanaka, Li, Kubuki (b0050) 2021; 594
Majhi, Kumar Mishra, Das, Bariki, Mishra (b0115) 2021; 413
Wang, Cai, Liu, Yang, Zhang, Liu, Li (b0295) 2022; 605
Liu, Wang, Huang, Zhang, Ma (b0185) 2020; 75
Wang, Huang, Liao, Jiang, Zhou, Zhang, Chen, Kuang (b0100) 2019; 141
Mu, Zhang, Dong, Su, Zhang, Lu (b0170) 2020; 16
Chen, Lan, Chen, Ren, Shi (b0200) 2022; 616
Wang, Guan, Lou (b0005) 2018; 140
Huang, Tian, Zeng, Wang, Song, Li, Xiao, Xie (b0190) 2013; 3
Fu, Xu, Low, Jiang, Yu (b0220) 2019; 243
He, Wang, Jin, Liu, Zhu (b0250) 2022; 43
Zhou, Li, Yang, Zhang, Wu, Jin, Xing (b0120) 2021; 420
Zhao, Miao, Zhang, Wen, Liu, Wang, Cao, Wang (b0040) 2021; 593
Jia, Wu, Song, Liu, Wang, Qi, He, Qi, Yang, Zhao (b0130) 2020; 396
Saif, Gu, Yang (b0180) 2021
Jin, Lv, Zhou, Xie, Sun, Liu, Meng, Chen (b0285) 2019; 64
Chen, Long, Chen, Rao, Li, Huang (b0105) 2020; 272
Kresse, Furthmüller (b0150) 1996; 54
Zhu, Qi, Zhao, Fang, Han (b0135) 2018; 121
Dashtian, Ghaedi, Shirinzadeh, Hajati, Shahbazi (b0065) 2018; 339
Wang, Zhang, Deng, Luo, Dionysiou (b0125) 2020; 379
Chen, Li, Li, Chen, Jia (b0165) 2020; 270
Yang, Zhang, Lai, Zeng, Huang, Cheng, Wang, Chen, Zhou, Xiong (b0030) 2018; 254
Liu, Xu, Tang, Wang, Wang, Lv, Zhang, Zhong, Cai, Yang, Wu (b0210) 2021; 90
Li, Zhang, Hou, Chen, He (b0080) 2018; 238
Li, Xiong, Tang, Liu, Gao, Zeng, Xie, Tang, Zhuang (b0140) 2021; 331
Ma, Lv, Duan, Sheng, Lu, Zhu, Du, Chen (b0090) 2020; 834
Mu, Dai, Wu, Yang, Li, Zhang, Xu, Liu, Zhao (b0300) 2022; 612
Wu, Yu, Zhang, Zhang, Zhu, Zhu (b0255) 2021; 411
Wang, Wang, Wang, Wu, Zhang (b0205) 2020; 56
Butburee, Sun, Centeno, Xie, Zhao, Wu, Peerakiatkhajohn, Thaweesak, Wang, Wang (b0160) 2019; 62
Wang, Cheng, Zhang, Yu (b0215) 2021; 17
Tang, Sun, Deng, Wang, Wu (b0260) 2020; 564
Wang, Tang, Wu (b0235) 2021; 9
Zhang (10.1016/j.jcis.2022.04.035_b0050) 2021; 594
Das (10.1016/j.jcis.2022.04.035_b0060) 2021; 263
Li (10.1016/j.jcis.2022.04.035_b0095) 2021; 292
Ma (10.1016/j.jcis.2022.04.035_b0090) 2020; 834
Wang (10.1016/j.jcis.2022.04.035_b0235) 2021; 9
Zhou (10.1016/j.jcis.2022.04.035_b0230) 2021; 17
Jin (10.1016/j.jcis.2022.04.035_b0285) 2019; 64
Zhou (10.1016/j.jcis.2022.04.035_b0275) 2020; 264
Wu (10.1016/j.jcis.2022.04.035_b0255) 2021; 411
Mu (10.1016/j.jcis.2022.04.035_b0300) 2022; 612
Jia (10.1016/j.jcis.2022.04.035_b0130) 2020; 396
Imam (10.1016/j.jcis.2022.04.035_b0145) 2020
Yang (10.1016/j.jcis.2022.04.035_b0030) 2018; 254
Wu (10.1016/j.jcis.2022.04.035_b0245) 2021; 5
Li (10.1016/j.jcis.2022.04.035_b0140) 2021; 331
Fu (10.1016/j.jcis.2022.04.035_b0280) 2017; 13
Zhu (10.1016/j.jcis.2022.04.035_b0135) 2018; 121
Zhang (10.1016/j.jcis.2022.04.035_b0055) 2022; 34
Wang (10.1016/j.jcis.2022.04.035_b0215) 2021; 17
Li (10.1016/j.jcis.2022.04.035_b0080) 2018; 238
Huang (10.1016/j.jcis.2022.04.035_b0190) 2013; 3
Dashtian (10.1016/j.jcis.2022.04.035_b0065) 2018; 339
Cao (10.1016/j.jcis.2022.04.035_b0085) 2018; 13
Zhao (10.1016/j.jcis.2022.04.035_b0040) 2021; 593
Ren (10.1016/j.jcis.2022.04.035_b0035) 2020; 274
Miao (10.1016/j.jcis.2022.04.035_b0045) 2022; 301
Mu (10.1016/j.jcis.2022.04.035_b0170) 2020; 16
Majhi (10.1016/j.jcis.2022.04.035_b0115) 2021; 413
Zhou (10.1016/j.jcis.2022.04.035_b0120) 2021; 420
Liu (10.1016/j.jcis.2022.04.035_b0240) 2021; 197
Perdew (10.1016/j.jcis.2022.04.035_b0155) 1992; 46
Wang (10.1016/j.jcis.2022.04.035_b0075) 2022; 606
Cheng (10.1016/j.jcis.2022.04.035_b0290) 2020; 16
Wang (10.1016/j.jcis.2022.04.035_b0295) 2022; 605
Wang (10.1016/j.jcis.2022.04.035_b0205) 2020; 56
Guo (10.1016/j.jcis.2022.04.035_b0070) 2020; 500
Kresse (10.1016/j.jcis.2022.04.035_b0150) 1996; 54
Wang (10.1016/j.jcis.2022.04.035_b0125) 2020; 379
Wu (10.1016/j.jcis.2022.04.035_b0020) 2021; 585
Li (10.1016/j.jcis.2022.04.035_b0225) 2021; 592
Liu (10.1016/j.jcis.2022.04.035_b0185) 2020; 75
Fu (10.1016/j.jcis.2022.04.035_b0220) 2019; 243
Long (10.1016/j.jcis.2022.04.035_b0110) 2021; 407
He (10.1016/j.jcis.2022.04.035_b0250) 2022; 43
Li (10.1016/j.jcis.2022.04.035_b0265) 2021; 424
Chen (10.1016/j.jcis.2022.04.035_b0200) 2022; 616
Tang (10.1016/j.jcis.2022.04.035_b0260) 2020; 564
Chen (10.1016/j.jcis.2022.04.035_b0105) 2020; 272
Li (10.1016/j.jcis.2022.04.035_b0015) 2021; 11
Wang (10.1016/j.jcis.2022.04.035_b0005) 2018; 140
Kong (10.1016/j.jcis.2022.04.035_b0175) 2021; 17
Zhuang (10.1016/j.jcis.2022.04.035_b0010) 2019; 58
Wang (10.1016/j.jcis.2022.04.035_b0195) 2020; 78
Li (10.1016/j.jcis.2022.04.035_b0025) 2021; 286
Ganose (10.1016/j.jcis.2022.04.035_b0270) 2016; 28
Chen (10.1016/j.jcis.2022.04.035_b0165) 2020; 270
Wang (10.1016/j.jcis.2022.04.035_b0100) 2019; 141
Butburee (10.1016/j.jcis.2022.04.035_b0160) 2019; 62
Saif (10.1016/j.jcis.2022.04.035_b0180) 2021
Liu (10.1016/j.jcis.2022.04.035_b0210) 2021; 90
References_xml – volume: 407
  year: 2021
  ident: b0110
  article-title: Preparation and application of BiOBr-Bi
  publication-title: J. Hazard. Mater.
– volume: 121
  start-page: 163
  year: 2018
  end-page: 171
  ident: b0135
  article-title: Enhanced photocatalytic activity in hybrid composite combined BiOBr nanosheets and Bi
  publication-title: J. Phys. Chem. Solid.
– volume: 78
  year: 2020
  ident: b0195
  article-title: Defect in reduced graphene oxide tailored selectivity of photocatalytic CO
  publication-title: Nano Energy.
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  ident: b0155
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B.
– volume: 264
  year: 2020
  ident: b0275
  article-title: A leaf-branch TiO
  publication-title: Appl. Catal. B Environ.
– volume: 301
  year: 2022
  ident: b0045
  article-title: In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO
  publication-title: Appl. Catal. B: Environ.
– volume: 834
  year: 2020
  ident: b0090
  article-title: Direct Z-scheme Bi
  publication-title: J. Alloy. Compound.
– volume: 75
  year: 2020
  ident: b0185
  article-title: Surface sites engineering on semiconductors to boost photocatalytic CO
  publication-title: Nano Energy.
– volume: 17
  start-page: 2103447
  year: 2021
  ident: b0215
  article-title: In situ Irradiated XPS Investigation on S-Scheme TiO
  publication-title: Small.
– volume: 16
  start-page: 2002140
  year: 2020
  ident: b0170
  article-title: Ultrathin and Small-Size Graphene Oxide as an Electron Mediator for Perovskite-Based Z-Scheme System to Significantly Enhance Photocatalytic CO2 Reduction
  publication-title: Small.
– volume: 13
  start-page: 1603938
  year: 2017
  ident: b0280
  article-title: Hierarchical Porous O-Doped g-C
  publication-title: Small.
– volume: 243
  start-page: 556
  year: 2019
  end-page: 565
  ident: b0220
  article-title: Ultrathin 2D/2D WO
  publication-title: Appl. Catal. B Environ.
– volume: 270
  year: 2020
  ident: b0165
  article-title: Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction
  publication-title: Appl. Catal. B Environ.
– volume: 424
  year: 2021
  ident: b0265
  article-title: Novel step-scheme red mud based Ag
  publication-title: Chem. Eng. J.
– volume: 413
  year: 2021
  ident: b0115
  article-title: Plasmonic Ag nanoparticle decorated Bi
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 236
  year: 2020
  end-page: 243
  ident: b0205
  article-title: Sb
  publication-title: J. Mater. Sci. Technol.
– volume: 90
  year: 2021
  ident: b0210
  article-title: In-situ annealed “M-scheme” MXene-based photocatalyst for enhanced photoelectric performance and highly selective CO2 photoreduction
  publication-title: Nano Energy.
– volume: 11
  start-page: 4739
  year: 2021
  end-page: 4769
  ident: b0015
  article-title: Recent Advances in Noncontact External-Field-AssistePhotocatalysis: From Fundamentals to Applications
  publication-title: ACS Catal.
– volume: 9
  start-page: 8425
  year: 2021
  end-page: 8434
  ident: b0235
  article-title: Construction of Few-Layer Ti
  publication-title: ACS Sustainable Chem. Eng.
– volume: 16
  start-page: 2002411
  year: 2020
  ident: b0290
  article-title: Single Ni Atoms Anchored on Porous Few-Layer g-C
  publication-title: Small
– volume: 594
  start-page: 635
  year: 2021
  end-page: 649
  ident: b0050
  article-title: BiOBr/MoS
  publication-title: J. Colloid Interf. Sci.
– volume: 292
  year: 2021
  ident: b0095
  article-title: Regulating the electron–hole separation to promote selective oxidation of biomass using ZnS@Bi
  publication-title: Appl. Catal. B: Environ.
– volume: 263
  year: 2021
  ident: b0060
  article-title: Role of type II heterojunction in ZnO–In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport
  publication-title: Mater. Chem. Phys.
– volume: 331
  year: 2021
  ident: b0140
  article-title: Biocatalysis-induced formation of BiOBr/Bi
  publication-title: Sensor. Actua. B Chem.
– start-page: 2103422
  year: 2021
  ident: b0180
  article-title: The Synthesis of Protein-Encapsulated Ceria Nanorods for Visible-Light Driven Hydrogen Production and Carbon Dioxide Reduction
  publication-title: Small.
– volume: 17
  start-page: 2100496
  year: 2021
  ident: b0230
  article-title: Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO
  publication-title: Small.
– volume: 286
  year: 2021
  ident: b0025
  article-title: A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution
  publication-title: Appl. Catal. B: Environ.
– volume: 13
  start-page: 1850012
  year: 2018
  ident: b0085
  article-title: Facile Hydrothermal-Ion-Exchange Synthesis and Enhanced Visible Light Photocatalytic Activity of Bi
  publication-title: Nano.
– volume: 605
  start-page: 727
  year: 2022
  end-page: 740
  ident: b0295
  article-title: Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi
  publication-title: J. Colloid Interface Sci.
– volume: 585
  start-page: 95
  year: 2021
  end-page: 107
  ident: b0020
  article-title: Green synthesis of boron and nitrogen co-doped TiO2 with rich B-N motifs as Lewis acid-base couples for the effective artificial CO2 photoreduction under simulated sunlight
  publication-title: J. Colloid Interface Sci.
– volume: 17
  start-page: 2005357
  year: 2021
  ident: b0175
  article-title: In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO
  publication-title: Small.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: b0150
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 58
  start-page: 18627
  year: 2019
  ident: b0010
  article-title: In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy Angew
  publication-title: Chem. Int. Ed.
– volume: 593
  start-page: 231
  year: 2021
  end-page: 243
  ident: b0040
  article-title: Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO
  publication-title: J. Colloid Interf. Sci.
– volume: 254
  start-page: 76
  year: 2018
  end-page: 93
  ident: b0030
  article-title: BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management
  publication-title: Adv. Colloid Interf.
– volume: 420
  year: 2021
  ident: b0120
  article-title: Preparation of novel 0D/2D Ag
  publication-title: Chem. Eng. J.
– volume: 606
  start-page: 1745
  year: 2022
  end-page: 1757
  ident: b0075
  article-title: The covalent Coordination-driven Bi
  publication-title: J. Colloid Interf. Sci.
– year: 2020
  ident: b0145
  article-title: Room-temperature synthesis of flower-like BiOBr/Bi
  publication-title: Colloid. Surface. A 585
– volume: 238
  start-page: 656
  year: 2018
  end-page: 663
  ident: b0080
  article-title: Highly efficient visible-light driven solar-fuel production over tetra (4-carboxyphenyl) porphyrin iron(III) chloride using CdS/Bi
  publication-title: Appl. Catal. B Environ.
– volume: 500
  year: 2020
  ident: b0070
  article-title: Photocatalytic reduction of CO
  publication-title: Appl. Surfac. Sci.
– volume: 3
  start-page: 1477
  year: 2013
  end-page: 1485
  ident: b0190
  article-title: Enhanced Photocatalytic Activity of Chemically Bonded TiO
  publication-title: ACS Catal.
– volume: 140
  start-page: 5037
  year: 2018
  end-page: 5040
  ident: b0005
  article-title: Construction of ZnIn
  publication-title: J. Am. Chem. Soc.
– volume: 64
  year: 2019
  ident: b0285
  article-title: A bismuth rich hollow Bi
  publication-title: Nano Energy.
– volume: 564
  start-page: 406
  year: 2020
  end-page: 417
  ident: b0260
  article-title: Decorating g-C
  publication-title: J. Colloid Interf. Sci.
– volume: 34
  start-page: 2107668
  year: 2022
  ident: b0055
  article-title: Emerging S-Scheme Photocatalyst
  publication-title: Adv. Mater.
– volume: 612
  start-page: 722
  year: 2022
  end-page: 736
  ident: b0300
  article-title: A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution
  publication-title: J. Colloid Interface Sci.
– volume: 62
  start-page: 426
  year: 2019
  end-page: 433
  ident: b0160
  article-title: Improved CO
  publication-title: Nano Energy.
– volume: 411
  year: 2021
  ident: b0255
  article-title: Construction of BiOCl/CuBi
  publication-title: Chem. Eng. J.
– volume: 272
  year: 2020
  ident: b0105
  article-title: In situ construction of biocompatible Z-scheme α-Bi
  publication-title: Appl. Catal. B Environ.
– volume: 5
  start-page: 2100668
  year: 2021
  ident: b0245
  article-title: Recent Progress on Metallic Bismuth-Based Photocatalysts: Synthesis
  publication-title: Construction, and Application in Water Purification, Solar RRL
– volume: 616
  start-page: 253
  year: 2022
  end-page: 260
  ident: b0200
  article-title: Construction of WO
  publication-title: J. Colloid Interf. Sci.
– volume: 592
  start-page: 237
  year: 2021
  end-page: 248
  ident: b0225
  article-title: Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution
  publication-title: J. Colloid Interface Sci.
– volume: 339
  start-page: 189
  year: 2018
  end-page: 203
  ident: b0065
  article-title: Achieving enhanced blue-light-driven photocatalysis using nanosword-like VO
  publication-title: Chem. Eng. J.
– volume: 141
  start-page: 13434
  year: 2019
  end-page: 13441
  ident: b0100
  article-title: In Situ Construction of a Cs
  publication-title: J. Am. Chem. Soc.
– volume: 379
  year: 2020
  ident: b0125
  article-title: Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe
  publication-title: Chem. Eng. J.
– volume: 396
  year: 2020
  ident: b0130
  article-title: In situ self-growing 3D hierarchical BiOBr/BiOIO
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 1306
  year: 2022
  end-page: 1315
  ident: b0250
  article-title: 2D metal-free heterostructure of covalent triazine framework/g-C
  publication-title: Chin. J. Catal.
– volume: 28
  start-page: 1980
  year: 2016
  end-page: 1984
  ident: b0270
  article-title: Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI
  publication-title: Chem. Mater.
– volume: 274
  year: 2020
  ident: b0035
  article-title: Photocatalytic reduction of CO
  publication-title: Appl. Catal. B Environ.
– volume: 197
  year: 2021
  ident: b0240
  article-title: Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis
  publication-title: Environ. Res.
– volume: 243
  start-page: 556
  year: 2019
  ident: 10.1016/j.jcis.2022.04.035_b0220
  article-title: Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.11.011
– volume: 339
  start-page: 189
  year: 2018
  ident: 10.1016/j.jcis.2022.04.035_b0065
  article-title: Achieving enhanced blue-light-driven photocatalysis using nanosword-like VO2/CuWO4 type II n–n heterojunction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.107
– volume: 500
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0070
  article-title: Photocatalytic reduction of CO2 into CO over nanostructure Bi2S3 quantum dots/g-C3N4 composites with Z-scheme mechanism
  publication-title: Appl. Surfac. Sci.
– volume: 56
  start-page: 236
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0205
  article-title: Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.03.039
– volume: 238
  start-page: 656
  year: 2018
  ident: 10.1016/j.jcis.2022.04.035_b0080
  article-title: Highly efficient visible-light driven solar-fuel production over tetra (4-carboxyphenyl) porphyrin iron(III) chloride using CdS/Bi2S3 heterostructure as photosensitizer
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.07.066
– volume: 585
  start-page: 95
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0020
  article-title: Green synthesis of boron and nitrogen co-doped TiO2 with rich B-N motifs as Lewis acid-base couples for the effective artificial CO2 photoreduction under simulated sunlight
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.11.075
– volume: 64
  year: 2019
  ident: 10.1016/j.jcis.2022.04.035_b0285
  article-title: A bismuth rich hollow Bi4O5Br 2 photocatalyst enables dramatic CO2 reduction activity
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2019.103955
– volume: 28
  start-page: 1980
  year: 2016
  ident: 10.1016/j.jcis.2022.04.035_b0270
  article-title: Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00349
– volume: 9
  start-page: 8425
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0235
  article-title: Construction of Few-Layer Ti3C2 MXene and Boron-Doped g-C3N4 for Enhanced Photocatalytic CO2 Reduction
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c01155
– volume: 17
  start-page: 2103447
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0215
  article-title: In situ Irradiated XPS Investigation on S-Scheme TiO2 @ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction
  publication-title: Small.
  doi: 10.1002/smll.202103447
– volume: 272
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0105
  article-title: In situ construction of biocompatible Z-scheme α-Bi2O3/CuBi2O4 heterojunction for NO removal under visible light
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119008
– volume: 16
  start-page: 2002140
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0170
  article-title: Ultrathin and Small-Size Graphene Oxide as an Electron Mediator for Perovskite-Based Z-Scheme System to Significantly Enhance Photocatalytic CO2 Reduction
  publication-title: Small.
  doi: 10.1002/smll.202002140
– volume: 5
  start-page: 2100668
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0245
  article-title: Recent Progress on Metallic Bismuth-Based Photocatalysts: Synthesis
  publication-title: Construction, and Application in Water Purification, Solar RRL
– volume: 62
  start-page: 426
  year: 2019
  ident: 10.1016/j.jcis.2022.04.035_b0160
  article-title: Improved CO2 photocatalytic reduction using a novel 3-component heterojunction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2019.05.060
– volume: 78
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0195
  article-title: Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr 6 pervoskite hole-in-microdisk structure
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2020.105388
– volume: 834
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0090
  article-title: Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity
  publication-title: J. Alloy. Compound.
  doi: 10.1016/j.jallcom.2020.155158
– volume: 141
  start-page: 13434
  year: 2019
  ident: 10.1016/j.jcis.2022.04.035_b0100
  article-title: In Situ Construction of a Cs2SnI6 Perovskite Nanocrystal/SnS2 Nanosheet Heterojunction with Boosted Interfacial Charge Transfer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04482
– volume: 564
  start-page: 406
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0260
  article-title: Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2019.12.091
– volume: 34
  start-page: 2107668
  issue: 11
  year: 2022
  ident: 10.1016/j.jcis.2022.04.035_b0055
  article-title: Emerging S-Scheme Photocatalyst
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107668
– volume: 263
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0060
  article-title: Role of type II heterojunction in ZnO–In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.124431
– volume: 17
  start-page: 2100496
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0230
  article-title: Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO2 Reduction
  publication-title: Small.
  doi: 10.1002/smll.202100496
– volume: 264
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0275
  article-title: A leaf-branch TiO2/carbon@MOF composite for selective CO2 photoreduction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118519
– volume: 58
  start-page: 18627
  year: 2019
  ident: 10.1016/j.jcis.2022.04.035_b0010
  article-title: In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy Angew
  publication-title: Chem. Int. Ed.
  doi: 10.1002/anie.201910379
– volume: 292
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0095
  article-title: Regulating the electron–hole separation to promote selective oxidation of biomass using ZnS@Bi2S3 nanosheet catalyst
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120180
– volume: 407
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0110
  article-title: Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124394
– volume: 17
  start-page: 2005357
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0175
  article-title: In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO2 Reduction
  publication-title: Small.
  doi: 10.1002/smll.202005357
– volume: 16
  start-page: 2002411
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0290
  article-title: Single Ni Atoms Anchored on Porous Few-Layer g-C3N4 for Photocatalytic CO2 Reduction: The Role of Edge Confinement
  publication-title: Small
  doi: 10.1002/smll.202002411
– volume: 13
  start-page: 1850012
  year: 2018
  ident: 10.1016/j.jcis.2022.04.035_b0085
  article-title: Facile Hydrothermal-Ion-Exchange Synthesis and Enhanced Visible Light Photocatalytic Activity of Bi4Ti3O12/Bi2S3 Heterostructure
  publication-title: Nano.
  doi: 10.1142/S1793292018500121
– volume: 612
  start-page: 722
  year: 2022
  ident: 10.1016/j.jcis.2022.04.035_b0300
  article-title: A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.12.196
– volume: 11
  start-page: 4739
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0015
  article-title: Recent Advances in Noncontact External-Field-AssistePhotocatalysis: From Fundamentals to Applications
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05354
– volume: 424
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0265
  article-title: Novel step-scheme red mud based Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance and stability in photo-Fenton reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130537
– volume: 420
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0120
  article-title: Preparation of novel 0D/2D Ag2WO4/WO3 Step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130361
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.jcis.2022.04.035_b0150
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 121
  start-page: 163
  year: 2018
  ident: 10.1016/j.jcis.2022.04.035_b0135
  article-title: Enhanced photocatalytic activity in hybrid composite combined BiOBr nanosheets and Bi2S3 nanoparticles
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/j.jpcs.2018.05.023
– volume: 43
  start-page: 1306
  year: 2022
  ident: 10.1016/j.jcis.2022.04.035_b0250
  article-title: 2D metal-free heterostructure of covalent triazine framework/g-C3N4for enhanced photocatalytic CO2 reduction with high selectivity
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63936-0
– volume: 594
  start-page: 635
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0050
  article-title: BiOBr/MoS2 catalyst as heterogenous peroxymonosulfate activator toward organic pollutant removal: Energy band alignment and mechanism insight
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.03.066
– volume: 593
  start-page: 231
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0040
  article-title: Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.02.117
– volume: 254
  start-page: 76
  year: 2018
  ident: 10.1016/j.jcis.2022.04.035_b0030
  article-title: BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management
  publication-title: Adv. Colloid Interf.
  doi: 10.1016/j.cis.2018.03.004
– volume: 606
  start-page: 1745
  year: 2022
  ident: 10.1016/j.jcis.2022.04.035_b0075
  article-title: The covalent Coordination-driven Bi2S3@NH2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.08.135
– volume: 46
  start-page: 6671
  year: 1992
  ident: 10.1016/j.jcis.2022.04.035_b0155
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.46.6671
– volume: 331
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0140
  article-title: Biocatalysis-induced formation of BiOBr/Bi2S3 semiconductor heterostructures: A highly efficient strategy for establishing sensitive photoelectrochemical sensing system for organophosphorus pesticide detection
  publication-title: Sensor. Actua. B Chem.
  doi: 10.1016/j.snb.2021.129451
– year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0145
  article-title: Room-temperature synthesis of flower-like BiOBr/Bi2S3 composites for the catalytic degradation of fluoroquinolones using indoor fluorescent light illumination
  publication-title: Colloid. Surface. A 585
  doi: 10.1016/j.colsurfa.2019.124069
– volume: 75
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0185
  article-title: Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2020.104959
– volume: 274
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0035
  article-title: Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119063
– volume: 90
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0210
  article-title: In-situ annealed “M-scheme” MXene-based photocatalyst for enhanced photoelectric performance and highly selective CO2 photoreduction
  publication-title: Nano Energy.
– volume: 301
  year: 2022
  ident: 10.1016/j.jcis.2022.04.035_b0045
  article-title: In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120802
– volume: 140
  start-page: 5037
  issue: 15
  year: 2018
  ident: 10.1016/j.jcis.2022.04.035_b0005
  article-title: Construction of ZnIn2S4-In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02200
– volume: 413
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0115
  article-title: Plasmonic Ag nanoparticle decorated Bi2O3/CuBi2O4 photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr(VI) reduction: Insight into electron transfer mechanism and enhanced photocatalytic activity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127506
– volume: 605
  start-page: 727
  year: 2022
  ident: 10.1016/j.jcis.2022.04.035_b0295
  article-title: Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.07.137
– volume: 396
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0130
  article-title: In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125258
– volume: 3
  start-page: 1477
  year: 2013
  ident: 10.1016/j.jcis.2022.04.035_b0190
  article-title: Enhanced Photocatalytic Activity of Chemically Bonded TiO2/Graphene Composites Based on the Effective Interfacial Charge Transfer through the C-Ti Bond
  publication-title: ACS Catal.
  doi: 10.1021/cs400080w
– volume: 616
  start-page: 253
  year: 2022
  ident: 10.1016/j.jcis.2022.04.035_b0200
  article-title: Construction of WO3/CsPbBr 3 S-scheme heterojunction via electrostatic Self-assembly for efficient and Long-Period photocatalytic CO2 reduction
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2022.02.044
– volume: 286
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0025
  article-title: A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.119923
– volume: 411
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0255
  article-title: Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128555
– volume: 13
  start-page: 1603938
  year: 2017
  ident: 10.1016/j.jcis.2022.04.035_b0280
  article-title: Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity
  publication-title: Small.
  doi: 10.1002/smll.201603938
– volume: 270
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0165
  article-title: Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118915
– volume: 592
  start-page: 237
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0225
  article-title: Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.02.053
– start-page: 2103422
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0180
  article-title: The Synthesis of Protein-Encapsulated Ceria Nanorods for Visible-Light Driven Hydrogen Production and Carbon Dioxide Reduction
  publication-title: Small.
  doi: 10.1002/smll.202103422
– volume: 379
  year: 2020
  ident: 10.1016/j.jcis.2022.04.035_b0125
  article-title: Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122264
– volume: 197
  year: 2021
  ident: 10.1016/j.jcis.2022.04.035_b0240
  article-title: Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.111136
SSID ssj0011559
Score 2.6444545
Snippet [Display omitted] Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers...
Constructing heterojunction has been considered as an efficient strategy to promote the separation and transfer of photogenerated carriers and improve redox...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 407
SubjectTerms Bi2S3
BiOBr
carbon dioxide
CO2 reduction
hot water treatment
oxygen
photocatalysis
photocatalysts
Photocatalytic
photoreduction
S-scheme
solar radiation
Title BiOBr/Bi2S3 heterojunction with S-scheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO2 with H2O
URI https://dx.doi.org/10.1016/j.jcis.2022.04.035
https://www.proquest.com/docview/2652864862
https://www.proquest.com/docview/2660997025
Volume 620
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWywE4VGUpgrYgI3FD7saPOElv7Aq0CxJ7ACRuVhI7IiuarOgilUt_RX9wZ5yEl6o9NIdIScay5XFmxvY3nwk5gpA788yPNi8ipmRgGXhFy5RzYA0TGeeFB8he6smNOr8Nb3tk3OXCIKyytf2NTffWun0zbHtzuChLzPGFvy1KIoELI3GISXxKRTjKv_1-hnlw3HZrYB6coXSbONNgvOZ5iZTdQni6U3_k2z-d0zsz7X3P2UfyoQ0a6UnTri3Sc9WArI-7s9oGZPMVreA2-TMqZ6OH4agUV5LeId6lnoP7QhVQXHelVwzmtO6How17LALTK0vrX08wmqh1HuHxnU4r9rNcPtK8fmGZpSi4uKuXtV_3eYIG0S7Tn0L8Sx-QCtZL1gUdz0RT4UTMPpGbs9Pr8YS1py-wXGq9ZMIGGZcuia3iqkiCJNOJE7rQOoMvqeRZJPMkUKnUVji4RZyDreQ6iNNQ5oHcIf2qrtwuoRBiZnClGH8oHYcZCCIrEEylIq5ssUd41-0mb6nJ8YSMe9Nh0OYGVWVQVSZQBlS1R46fyywaYo6V0mGnTfNmeBnwHCvLHXaqN6BS3ExJK1c_gpAORawVTAhXyWhMTIaw8vN_1v-FbOATLmLz8Cvpg7bdPkRBy-zAD_MDsnYyvZhc_gXt9Ado
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEBQQbXkYCU7IbPyIkyBxYBeqXVq6h7ZSbyYPR80KklW7FeyFX8E_4Q8y4yTlIbQHpOaQQzJ5yJ8zM3Y-fwPwDFPuzCs_FnkZca2CgmNULLh2Dr1houK89ATZAzM-1u9PwpM1-NGvhSFaZef7W5_uvXV3ZNC15mBeVbTGF7-2KIkkTYzEYdIxK_fc8guO285fT94iyM-l3H13NBrzrrQAz5UxCy6LIBPKJXGhhS6TIMlM4qQpjcnwTKpEFqk8CXSqTCEd7iIh0BEIE8RpqPJA4X2vwXWN7oLKJrz8dskrEfSfr-WVCE6v163UaUlls7wijXApvb6qrzH3z2j4V1zwwW73NtzqslT2pm2IO7Dm6k3YGPXF4Tbh5m86hnfh-7CaDs8Gw0oeKnZKBJtmhvGSMGc00csOOQ6i3WfHWrlaYsLXBWu-LrH7ssJ5SskrNqn5ebW4YHnzS9aWkeH8tFk0fqJpiS_EemkBhgk3OyPtWW_ZlGw0le0Dx3J6D46vBJP7sF43tXsADHPaDLeUEh5t4jBDQ5IhwrFbJHRRboHom93mnRY6leT4ZHvS28wSVJagsoG2CNUWvLi8Zt4qgay0Dns07R_92WKoWnnd0x56i5DS35u0ds0FGplQxkbjCHSVjaGV0JjHbv_n85_Axvjow77dnxzs7cANOkMz6CJ8COuIvHuEKdgie-y7PIOPV_2N_QTvNEJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiOBr%2FBi2S3+heterojunction+with+S-scheme+structureand+oxygen+defects%3A+In-situ+construction+and+photocatalytic+behavior+for+reduction+of+CO2+with+H2O&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Miao%2C+Zerui&rft.au=Zhang%2C+Yanfeng&rft.au=Wang%2C+Ning&rft.au=Xu%2C+Peng&rft.date=2022-08-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=620&rft.spage=407&rft.epage=418&rft_id=info:doi/10.1016%2Fj.jcis.2022.04.035&rft.externalDocID=S0021979722005859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon