A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems

•A hybrid metaheuristic optimization algorithm that combines strong points of firefly and particle swarm algorithms.•A local search strategy is proposed by controlling previous global best fitness value.•Proposed HFPSO are compared with standard, other hybrid and memetic algorithms in the limited fu...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 66; pp. 232 - 249
Main Author Aydilek, İbrahim Berkan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A hybrid metaheuristic optimization algorithm that combines strong points of firefly and particle swarm algorithms.•A local search strategy is proposed by controlling previous global best fitness value.•Proposed HFPSO are compared with standard, other hybrid and memetic algorithms in the limited function evaluations.•CEC 2015 and 2017 benchmark, engineering, mechanical design problems and The Holm–Bonferroni statistical test are utilized. Optimization in computationally expensive numerical problems with limited function evaluations provides computational advantages over constraints based on runtime requirements and hardware resources. Convergence success of a metaheuristic optimization algorithm depends on directing and balancing of its exploration and exploitation abilities. Firefly and particle swarm optimization are successful swarm intelligence algorithms inspired by nature. In this paper, a hybrid algorithm combining firefly and particle swarm optimization (HFPSO) is proposed. The proposed algorithm is able to exploit the strongpoints of both particle swarm and firefly algorithm mechanisms. HFPSO try to determine the start of the local search process properly by checking the previous global best fitness values. In experiments, several dimensional CEC 2015 and CEC 2017 computationally expensive sets of numerical and engineering, mechanical design benchmark problems are used. The proposed HFPSO is compared with standard particle swarm, firefly and other recent hybrid and successful algorithms in limited function evaluations. Runtimes and convergence accuracies are statistically measured and evaluated. The solution results quality of this study show that the proposed HFPSO algorithm provides fast and reliable optimization solutions and outperforms others in unimodal, simple multimodal, hybrid, and composition categories of computationally expensive numerical functions.
AbstractList •A hybrid metaheuristic optimization algorithm that combines strong points of firefly and particle swarm algorithms.•A local search strategy is proposed by controlling previous global best fitness value.•Proposed HFPSO are compared with standard, other hybrid and memetic algorithms in the limited function evaluations.•CEC 2015 and 2017 benchmark, engineering, mechanical design problems and The Holm–Bonferroni statistical test are utilized. Optimization in computationally expensive numerical problems with limited function evaluations provides computational advantages over constraints based on runtime requirements and hardware resources. Convergence success of a metaheuristic optimization algorithm depends on directing and balancing of its exploration and exploitation abilities. Firefly and particle swarm optimization are successful swarm intelligence algorithms inspired by nature. In this paper, a hybrid algorithm combining firefly and particle swarm optimization (HFPSO) is proposed. The proposed algorithm is able to exploit the strongpoints of both particle swarm and firefly algorithm mechanisms. HFPSO try to determine the start of the local search process properly by checking the previous global best fitness values. In experiments, several dimensional CEC 2015 and CEC 2017 computationally expensive sets of numerical and engineering, mechanical design benchmark problems are used. The proposed HFPSO is compared with standard particle swarm, firefly and other recent hybrid and successful algorithms in limited function evaluations. Runtimes and convergence accuracies are statistically measured and evaluated. The solution results quality of this study show that the proposed HFPSO algorithm provides fast and reliable optimization solutions and outperforms others in unimodal, simple multimodal, hybrid, and composition categories of computationally expensive numerical functions.
Author Aydilek, İbrahim Berkan
Author_xml – sequence: 1
  givenname: İbrahim Berkan
  orcidid: 0000-0001-8037-8625
  surname: Aydilek
  fullname: Aydilek, İbrahim Berkan
  email: berkanaydilek@harran.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering, Harran University, Şanlıurfa, Turkey
BookMark eNp9kM9KAzEQh4NUsK2-gKe8wNYku8lmwUsp_gPBi55DNsna1OxmSdJqfXpT68lDYZgZGL6B7zcDk8EPBoBrjBYYYXazWcjo1YIgzBeI5KJnYIp5TYqGcTzJO2W8qJqKXYBZjBuUoYbwKfhYwvW-DVbDzgbTuT2Ug4ajDMkqZ2D8lKGHfky2t98yWT9A6d59sGndw84HqHw_btPvRbpMm6_RDNHuDBy2vQlWSQfH4Ftn-ngJzjvporn6m3Pwdn_3unosnl8enlbL50KVjKWCyEq3LZdVSercaqWxbuqO1boyzBCKMcdt1THW0axLaKlUg3SJDWVIUkbKOSDHvyr4GLOVGIPtZdgLjMQhLrERh7jEIS6BSC6aIf4PUvbolYK07jR6e0RNltpZE0RU1gzK6BypSkJ7ewr_Adx5iyE
CitedBy_id crossref_primary_10_1007_s00500_019_03887_7
crossref_primary_10_1016_j_advengsoft_2025_103883
crossref_primary_10_1016_j_compbiomed_2024_108780
crossref_primary_10_1049_rpg2_12366
crossref_primary_10_1007_s00500_019_03948_x
crossref_primary_10_3390_s22155739
crossref_primary_10_1016_j_aei_2024_102516
crossref_primary_10_1007_s00521_019_04249_y
crossref_primary_10_1016_j_asoc_2023_110681
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1109_TITS_2021_3127352
crossref_primary_10_1002_eng2_12124
crossref_primary_10_1007_s12652_023_04541_9
crossref_primary_10_1007_s00500_023_09005_y
crossref_primary_10_1007_s10462_022_10167_8
crossref_primary_10_1016_j_ins_2023_119535
crossref_primary_10_1088_1757_899X_768_7_072027
crossref_primary_10_3390_app12031081
crossref_primary_10_1007_s00500_021_06196_0
crossref_primary_10_1007_s10772_020_09783_y
crossref_primary_10_1016_j_ijepes_2022_108566
crossref_primary_10_1016_j_pes_2025_100060
crossref_primary_10_26634_jcir_11_2_20073
crossref_primary_10_3233_IDA_194485
crossref_primary_10_3390_biomimetics9100627
crossref_primary_10_1016_j_asoc_2019_02_042
crossref_primary_10_1007_s00607_021_00991_1
crossref_primary_10_32604_cmes_2025_058473
crossref_primary_10_3390_app11188634
crossref_primary_10_1115_1_4053768
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_1016_j_apm_2020_08_014
crossref_primary_10_3390_w15244297
crossref_primary_10_1016_j_asoc_2022_108634
crossref_primary_10_3233_JIFS_221125
crossref_primary_10_1007_s00521_020_04839_1
crossref_primary_10_1016_j_asoc_2020_106438
crossref_primary_10_1109_ACCESS_2019_2940582
crossref_primary_10_1556_606_2021_00343
crossref_primary_10_3390_su16208790
crossref_primary_10_1007_s00521_022_08173_6
crossref_primary_10_1007_s10586_022_03715_y
crossref_primary_10_1016_j_fuel_2021_120642
crossref_primary_10_1002_2050_7038_12957
crossref_primary_10_1080_08839514_2023_2166232
crossref_primary_10_1007_s10489_024_05537_4
crossref_primary_10_1016_j_asoc_2023_110573
crossref_primary_10_1016_j_jksuci_2024_102219
crossref_primary_10_1007_s00500_018_3570_6
crossref_primary_10_1007_s13369_021_05639_y
crossref_primary_10_5121_ijma_2022_14501
crossref_primary_10_1016_j_asoc_2019_105935
crossref_primary_10_1016_j_swevo_2023_101375
crossref_primary_10_1007_s13721_022_00354_6
crossref_primary_10_3390_sym16101290
crossref_primary_10_1007_s00521_020_05413_5
crossref_primary_10_1016_j_knosys_2021_107555
crossref_primary_10_3390_biomimetics8060454
crossref_primary_10_32604_cmes_2023_026643
crossref_primary_10_1002_int_22543
crossref_primary_10_1007_s11042_023_17724_5
crossref_primary_10_1109_ACCESS_2021_3066135
crossref_primary_10_1049_cth2_12626
crossref_primary_10_1049_esi2_12163
crossref_primary_10_1109_TCYB_2021_3101880
crossref_primary_10_32604_cmes_2021_016485
crossref_primary_10_3390_biomimetics8050411
crossref_primary_10_1016_j_ijhydene_2025_01_097
crossref_primary_10_1016_j_engappai_2023_106121
crossref_primary_10_1002_cjce_23766
crossref_primary_10_1016_j_asoc_2019_105823
crossref_primary_10_1016_j_ins_2021_06_064
crossref_primary_10_1016_j_asoc_2020_106793
crossref_primary_10_1007_s00500_025_10428_y
crossref_primary_10_1016_j_engappai_2023_106328
crossref_primary_10_3390_act10100249
crossref_primary_10_29130_dubited_589259
crossref_primary_10_1007_s42235_023_00394_2
crossref_primary_10_1109_ACCESS_2020_3004202
crossref_primary_10_1016_j_apm_2022_11_016
crossref_primary_10_3390_en13164265
crossref_primary_10_1109_ACCESS_2021_3051339
crossref_primary_10_1007_s42235_024_00578_4
crossref_primary_10_1016_j_heliyon_2022_e10956
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1145_3582076
crossref_primary_10_1016_j_chaos_2018_07_004
crossref_primary_10_1007_s10489_020_01898_8
crossref_primary_10_1016_j_asoc_2019_105831
crossref_primary_10_1007_s10489_018_1348_2
crossref_primary_10_1080_00051144_2024_2348907
crossref_primary_10_1016_j_asoc_2021_107517
crossref_primary_10_1007_s00521_024_10312_0
crossref_primary_10_1016_j_engappai_2020_103963
crossref_primary_10_1016_j_jksuci_2021_06_015
crossref_primary_10_3390_math11020389
crossref_primary_10_32604_iasc_2023_039531
crossref_primary_10_1016_j_compeleceng_2021_107385
crossref_primary_10_3390_rs12172688
crossref_primary_10_1016_j_asoc_2021_107088
crossref_primary_10_7717_peerj_cs_1068
crossref_primary_10_1007_s11831_022_09773_0
crossref_primary_10_1016_j_engappai_2022_104763
crossref_primary_10_1007_s12206_021_0423_5
crossref_primary_10_1109_ACCESS_2019_2938063
crossref_primary_10_1007_s11042_023_15175_6
crossref_primary_10_1007_s11831_021_09694_4
crossref_primary_10_1016_j_eswa_2022_119495
crossref_primary_10_1109_TFUZZ_2019_2959997
crossref_primary_10_1016_j_jocs_2021_101388
crossref_primary_10_1016_j_eswa_2022_117993
crossref_primary_10_1109_ACCESS_2020_3043029
crossref_primary_10_1007_s42235_024_00579_3
crossref_primary_10_3390_app9163214
crossref_primary_10_1016_j_ijmecsci_2023_108516
crossref_primary_10_1093_jcde_qwac013
crossref_primary_10_3390_diagnostics13030410
crossref_primary_10_1007_s11600_022_00988_0
crossref_primary_10_1002_2050_7038_12992
crossref_primary_10_3390_s21051814
crossref_primary_10_1007_s12652_020_02255_w
crossref_primary_10_1016_j_knosys_2022_108225
crossref_primary_10_1007_s13198_024_02386_9
crossref_primary_10_3390_en15010361
crossref_primary_10_3390_su16031204
crossref_primary_10_1016_j_compbiomed_2024_108498
crossref_primary_10_1016_j_asoc_2020_106903
crossref_primary_10_1016_j_eswa_2020_113353
crossref_primary_10_1016_j_jclepro_2021_126591
crossref_primary_10_1016_j_swevo_2022_101207
crossref_primary_10_1080_23311916_2023_2288411
crossref_primary_10_3390_en14113059
crossref_primary_10_1016_j_asoc_2022_109660
crossref_primary_10_1155_2022_5359732
crossref_primary_10_3390_app13020684
crossref_primary_10_3390_math11061473
crossref_primary_10_1111_jfpe_14227
crossref_primary_10_1111_exsy_13081
crossref_primary_10_1007_s11277_023_10626_7
crossref_primary_10_3390_e24081065
crossref_primary_10_17482_uumfd_649003
crossref_primary_10_1007_s40747_021_00346_5
crossref_primary_10_1109_ACCESS_2021_3054636
crossref_primary_10_1155_2021_7695596
crossref_primary_10_3390_app13042336
crossref_primary_10_3390_electronics13020324
crossref_primary_10_1002_int_22274
crossref_primary_10_3390_e24070890
crossref_primary_10_1007_s11042_020_10053_x
crossref_primary_10_1016_j_asoc_2024_112060
crossref_primary_10_1016_j_ins_2022_06_059
crossref_primary_10_1016_j_rico_2022_100190
crossref_primary_10_1016_j_dajour_2022_100125
crossref_primary_10_1080_10168664_2022_2129121
crossref_primary_10_1007_s11227_024_06856_6
crossref_primary_10_1016_j_asoc_2019_04_032
crossref_primary_10_1016_j_eswa_2022_117334
crossref_primary_10_1007_s00521_022_07080_0
crossref_primary_10_1109_ACCESS_2019_2933661
crossref_primary_10_1109_ACCESS_2021_3072993
crossref_primary_10_3390_su14063470
crossref_primary_10_1016_j_asoc_2023_110158
crossref_primary_10_1016_j_egyr_2021_02_051
crossref_primary_10_1371_journal_pone_0317596
crossref_primary_10_1016_j_gloei_2020_10_010
crossref_primary_10_1007_s13748_021_00231_9
crossref_primary_10_1109_ACCESS_2019_2904679
crossref_primary_10_1109_ACCESS_2019_2931910
crossref_primary_10_1007_s00500_021_06062_z
crossref_primary_10_1016_j_asoc_2018_10_019
crossref_primary_10_1016_j_energy_2022_124340
crossref_primary_10_1007_s00500_019_04234_6
crossref_primary_10_1016_j_aei_2024_102923
crossref_primary_10_1515_mt_2020_0049
crossref_primary_10_1088_1361_6501_ad099a
crossref_primary_10_1007_s13202_022_01525_x
crossref_primary_10_1016_j_enconman_2019_02_003
crossref_primary_10_1016_j_jngse_2020_103716
crossref_primary_10_1080_01430750_2024_2333915
crossref_primary_10_1109_ACCESS_2019_2898218
crossref_primary_10_3390_axioms11090485
crossref_primary_10_1016_j_jksuci_2021_07_017
crossref_primary_10_1007_s00500_022_07470_5
crossref_primary_10_1016_j_asoc_2021_107564
crossref_primary_10_23919_cje_2023_00_293
crossref_primary_10_32604_cmc_2023_036865
crossref_primary_10_1007_s00500_021_05673_w
crossref_primary_10_1007_s11633_021_1282_3
crossref_primary_10_1016_j_heliyon_2021_e08247
crossref_primary_10_3390_app15010250
crossref_primary_10_1007_s00530_020_00716_y
crossref_primary_10_1016_j_asoc_2024_112036
crossref_primary_10_1007_s00500_020_05554_8
crossref_primary_10_1007_s00500_022_07155_z
crossref_primary_10_3390_s23031384
crossref_primary_10_1016_j_eswa_2024_126186
crossref_primary_10_1007_s00500_023_08201_0
crossref_primary_10_32604_cmes_2023_045096
crossref_primary_10_1016_j_heliyon_2024_e32092
crossref_primary_10_2478_logi_2023_0024
crossref_primary_10_1016_j_rineng_2024_102358
crossref_primary_10_1016_j_chemolab_2018_12_003
crossref_primary_10_1016_j_eswa_2021_114788
crossref_primary_10_1088_1742_6596_1818_1_012041
crossref_primary_10_1016_j_jksuci_2022_08_004
crossref_primary_10_1007_s00500_020_04760_8
crossref_primary_10_1631_FITEE_2000691
crossref_primary_10_3390_en17071547
crossref_primary_10_1007_s11831_024_10185_5
crossref_primary_10_1016_j_eswa_2022_117428
crossref_primary_10_1016_j_knosys_2021_106859
crossref_primary_10_1631_FITEE_2200237
crossref_primary_10_7717_peerj_cs_1760
crossref_primary_10_1007_s11063_022_10821_w
crossref_primary_10_1016_j_asoc_2020_106392
crossref_primary_10_1007_s00500_024_10197_0
crossref_primary_10_1016_j_asoc_2022_109585
crossref_primary_10_1155_2020_7824785
crossref_primary_10_1016_j_ipm_2021_102854
crossref_primary_10_1016_j_engappai_2023_105998
crossref_primary_10_1007_s10846_022_01627_y
crossref_primary_10_1016_j_asoc_2022_108717
crossref_primary_10_3390_math11163569
crossref_primary_10_1016_j_asoc_2020_106655
crossref_primary_10_1109_ACCESS_2024_3362907
crossref_primary_10_1016_j_advengsoft_2022_103283
crossref_primary_10_1109_ACCESS_2020_3046910
crossref_primary_10_1016_j_swevo_2018_07_002
crossref_primary_10_1108_CW_11_2020_0316
crossref_primary_10_1080_0952813X_2020_1785020
crossref_primary_10_1007_s00500_021_06205_2
crossref_primary_10_1007_s42044_025_00245_9
crossref_primary_10_1016_j_ins_2021_10_076
crossref_primary_10_1016_j_asoc_2022_109011
crossref_primary_10_1007_s00500_020_05366_w
crossref_primary_10_1109_ACCESS_2020_2981656
crossref_primary_10_1016_j_compeleceng_2024_109278
crossref_primary_10_3390_app122312011
crossref_primary_10_1016_j_measurement_2025_116970
crossref_primary_10_1109_ACCESS_2019_2903015
crossref_primary_10_1007_s11831_021_09701_8
crossref_primary_10_1016_j_jngse_2021_104210
crossref_primary_10_1016_j_asoc_2022_109255
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_1002_dac_4690
crossref_primary_10_1007_s11831_025_10247_2
crossref_primary_10_1016_j_asoc_2021_107476
crossref_primary_10_1016_j_ins_2024_121417
crossref_primary_10_1093_jcde_qwad087
crossref_primary_10_3390_su13063206
crossref_primary_10_48084_etasr_5255
crossref_primary_10_1371_journal_pone_0301078
crossref_primary_10_1145_3580502
crossref_primary_10_26634_jps_11_3_20045
crossref_primary_10_1007_s00521_019_04465_6
crossref_primary_10_1007_s42235_023_00386_2
crossref_primary_10_1109_ACCESS_2020_2972826
crossref_primary_10_1016_j_bspc_2023_104984
crossref_primary_10_1007_s11042_021_11519_2
crossref_primary_10_3233_JIFS_181936
crossref_primary_10_1016_j_ins_2020_12_090
crossref_primary_10_3390_app9245537
crossref_primary_10_3390_w15101906
crossref_primary_10_1109_ACCESS_2021_3094471
crossref_primary_10_1002_widm_1564
crossref_primary_10_1016_j_asoc_2020_107061
crossref_primary_10_1007_s00521_023_08408_0
crossref_primary_10_1016_j_asoc_2022_109005
crossref_primary_10_1109_ACCESS_2022_3208169
crossref_primary_10_1007_s00366_020_00994_0
crossref_primary_10_3390_su15118538
crossref_primary_10_1007_s11600_021_00597_3
crossref_primary_10_1155_2021_6676449
crossref_primary_10_1016_j_csfx_2022_100089
crossref_primary_10_1155_2023_1964666
crossref_primary_10_3389_fbioe_2022_832829
crossref_primary_10_1016_j_matpr_2020_12_692
crossref_primary_10_1016_j_eswa_2024_123958
crossref_primary_10_3390_fractalfract5020033
crossref_primary_10_1016_j_aej_2025_01_055
crossref_primary_10_1007_s12046_021_01572_w
crossref_primary_10_1515_mt_2020_0077
crossref_primary_10_1016_j_jmrt_2020_05_003
crossref_primary_10_1016_j_asoc_2023_110776
crossref_primary_10_17780_ksujes_1580774
crossref_primary_10_1109_ACCESS_2019_2942169
crossref_primary_10_1109_ACCESS_2023_3234918
crossref_primary_10_1016_j_swevo_2019_01_006
crossref_primary_10_1109_ACCESS_2019_2923557
crossref_primary_10_3390_biomimetics9080478
crossref_primary_10_1016_j_jksuci_2021_08_027
crossref_primary_10_1155_2020_6693411
crossref_primary_10_6089_jscm_49_91
crossref_primary_10_1088_1755_1315_189_5_052038
crossref_primary_10_1007_s10462_020_09944_0
crossref_primary_10_1109_ACCESS_2023_3296589
crossref_primary_10_1016_j_clwat_2024_100003
crossref_primary_10_1080_15325008_2023_2185835
crossref_primary_10_1109_TCSS_2022_3140862
crossref_primary_10_3390_su162410845
crossref_primary_10_1002_ett_4725
crossref_primary_10_1016_j_swevo_2024_101766
Cites_doi 10.1016/j.ins.2010.05.025
10.1016/j.ijepes.2012.10.047
10.1080/03052150500384759
10.1016/j.asoc.2014.10.016
10.1016/j.asoc.2013.06.005
10.1016/j.swevo.2013.06.001
10.1016/j.asoc.2011.01.037
10.1016/j.asoc.2015.10.004
10.1109/ICEC.1998.699146
10.1016/j.ins.2014.09.053
10.1016/j.ins.2014.08.039
10.1016/j.ins.2014.03.031
10.1115/1.2919393
10.1016/j.asoc.2015.04.037
10.1109/ICNN.1995.488968
10.1016/S0166-3615(99)00046-9
10.1109/TST.2016.7442504
10.1016/j.asoc.2016.01.019
10.1016/j.asoc.2012.11.026
10.1016/j.amc.2010.12.053
10.1016/j.jocs.2016.01.004
10.1016/j.asoc.2014.11.018
10.1016/j.aeue.2016.03.006
10.1007/BF02125421
10.1007/s11721-016-0128-z
10.1007/s10479-007-0224-y
10.1007/978-3-540-78295-7_2
10.1016/j.protcy.2012.05.048
10.1007/s40436-014-0059-0
10.1016/j.ins.2013.03.026
10.1016/j.ins.2016.01.090
10.1016/j.asoc.2015.03.003
10.1016/j.swevo.2016.01.006
10.1016/j.chemolab.2013.08.009
10.1016/j.ejor.2012.02.038
10.1142/S021821300900024X
10.1007/s00500-008-0392-y
10.1007/978-3-540-78295-7_4
10.1504/IJBIC.2010.032124
10.1016/j.ijcac.2015.12.001
10.1016/j.asoc.2015.01.004
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.02.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 249
ExternalDocumentID 10_1016_j_asoc_2018_02_025
S156849461830084X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-2a4dbb8a4327a437cd1d97f67d4e6e251181b4f66f5018253cc90d31e560a5623
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:00 EDT 2025
Thu Apr 24 22:56:22 EDT 2025
Fri Feb 23 02:24:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid optimization
Particle swarm optimization
Firefly algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-2a4dbb8a4327a437cd1d97f67d4e6e251181b4f66f5018253cc90d31e560a5623
ORCID 0000-0001-8037-8625
PageCount 18
ParticipantIDs crossref_primary_10_1016_j_asoc_2018_02_025
crossref_citationtrail_10_1016_j_asoc_2018_02_025
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_02_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References D’Andreagiovanni, Krolikowski, Pulaj (bib0130) 2015; 26
Sahu, Panigrahi, Pattnaik (bib0230) 2012; 4
Heris (bib0260) 2015
Yang (bib0210) 2014
Arasomwan, Adewumi (bib0195) 2013
Eusuff, Lansey, Pasha (bib0320) 2006; 38
Fister, Yang, Brest (bib0060) 2013; 13
Wen, Ma, Zhang (bib0040) 2016; 21
Osman, Laporte (bib0075) 1996; 63
Coello Coello (bib0290) 2000; 41
Arora (bib0295) 2004
Abd-Elazim, Ali (bib0235) 2013; 46
Agarwal, Mehta (bib0025) 2014; 100
Harrison, Engelbrecht, Ombuki-Berman (bib0200) 2016; 10
Tanweer, Suresh, Sundararajan (bib0010) 2015
D’Andreagiovanni, Nardin (bib0125) 2015; 37
Blum, Cotta, Fernàndez, Gallardo, Mastrolilli (bib0090) 2008; 114
Ngo, Sadollah, Kim (bib0020) 2016; 13
Fister, Yang, Brest, Fister (bib0035) 2013; 80
Huang, Oh, Guo, Pedrycz (bib0110) 2013; 13
Zhang, Tang, Hua, Guan (bib0145) 2015; 28
Yang (bib0205) 2010; 2
Cheng, Jin (bib0315) 2015; 291
Pal, Rai, Singh (bib0065) 2012; 4
Bharti, Singh (bib0265) 2016; 43
Kennedy, Eberhart (bib0150) 1995; 4
J. Xin, Chen (bib0250) 2009
Han, Yang, Ren, Sun (bib0270) 2010
Yang (bib0055) 2009
Wang, Wang, Sun, Zhao, Zhang, Liu, Zhou (bib0105) 2016
Uymaz, Tezel, Yel (bib0030) 2015; 31
Thangaraj, Pant, Abraham, Bouvry (bib0050) 2011; 217
Shi, Liu, Gao, Zhang (bib0155) 2011; 181
Holm (bib0305) 1979; 6
Gheisari, Meybodi (bib0185) 2016; 348
Tanweer, Auditya, Suresh, Sundararajan, Srikanth (bib0275) 2016; 28
Helwig, Wanka (bib0180) 2008
Kora, Rama Krishna (bib0220) 2016; 2
Kannan, Kramer (bib0285) 1994; 116
Petalas, Parsopoulos, Vrahatis (bib0100) 2007; 156
Shi, Eberhart (bib0165) 1998
Tanweer, Suresh, Sundararajan (bib0045) 2015; 294
D’Andreagiovanni, Mett, Pulaj (bib0135) 2016
Nickabadi, Ebadzadeh, Safabakhsh (bib0240) 2011; 11
D’Andreagiovanni (bib0120) 2011
Yu, Wang (bib0170) 2014; 2
García, Fernández, Luengo, Herrera (bib0300) 2009; 13
Neri, Mininno, Iacca (bib0310) 2013; 239
Chen, Liu, Zhang, Liang (bib0005) 2015
Raidl, Puchinger (bib0085) 2008; 62
Yang, Gao, Liu, Song (bib0115) 2015; 29
Li, Nantasenamat, Monnor, Isarankura-Na-Ayudhya, Prachayasittikul (bib0080) 2013; 128
Blum, Roli, Sampels (bib0070) 2008
Vassiliadis, Dounias (bib0160) 2009; 18
Lim, Mat Isa (bib0190) 2014; 273
Taherkhani, Safabakhsh (bib0245) 2016; 38
Dou, Yu, Shi, Yu, Zheng (bib0255) 2008
Kennedy, Eberhart, Shi, Jacob, Koza, Iii, Andre, Keane (bib0225) 2001
Rueda, Erlich (bib0015) 2015
Arunachalam, AgnesBhomila, Ramesh Babu (bib0215) 2015
Çavdar (bib0175) 2016; 70
Sadollah, Bahreininejad, Eskandar, Hamdi (bib0280) 2013; 13
Wan, Jiang, Sangeeth, Nijhuis (bib0095) 2014
Gambardella, Montemanni, Weyland (bib0140) 2012; 220
Kannan (10.1016/j.asoc.2018.02.025_bib0285) 1994; 116
Helwig (10.1016/j.asoc.2018.02.025_bib0180) 2008
Li (10.1016/j.asoc.2018.02.025_bib0080) 2013; 128
D’Andreagiovanni (10.1016/j.asoc.2018.02.025_bib0125) 2015; 37
Zhang (10.1016/j.asoc.2018.02.025_bib0145) 2015; 28
Thangaraj (10.1016/j.asoc.2018.02.025_bib0050) 2011; 217
Gheisari (10.1016/j.asoc.2018.02.025_bib0185) 2016; 348
D’Andreagiovanni (10.1016/j.asoc.2018.02.025_bib0135) 2016
Abd-Elazim (10.1016/j.asoc.2018.02.025_bib0235) 2013; 46
Vassiliadis (10.1016/j.asoc.2018.02.025_bib0160) 2009; 18
Yu (10.1016/j.asoc.2018.02.025_bib0170) 2014; 2
Wang (10.1016/j.asoc.2018.02.025_bib0105) 2016
Ngo (10.1016/j.asoc.2018.02.025_bib0020) 2016; 13
Pal (10.1016/j.asoc.2018.02.025_bib0065) 2012; 4
Shi (10.1016/j.asoc.2018.02.025_bib0155) 2011; 181
Rueda (10.1016/j.asoc.2018.02.025_bib0015) 2015
Yang (10.1016/j.asoc.2018.02.025_bib0055) 2009
Blum (10.1016/j.asoc.2018.02.025_bib0090) 2008; 114
Lim (10.1016/j.asoc.2018.02.025_bib0190) 2014; 273
Fister (10.1016/j.asoc.2018.02.025_bib0060) 2013; 13
Wen (10.1016/j.asoc.2018.02.025_bib0040) 2016; 21
Osman (10.1016/j.asoc.2018.02.025_bib0075) 1996; 63
Arunachalam (10.1016/j.asoc.2018.02.025_bib0215) 2015
Gambardella (10.1016/j.asoc.2018.02.025_bib0140) 2012; 220
Shi (10.1016/j.asoc.2018.02.025_bib0165) 1998
Yang (10.1016/j.asoc.2018.02.025_bib0115) 2015; 29
Yang (10.1016/j.asoc.2018.02.025_bib0210) 2014
Taherkhani (10.1016/j.asoc.2018.02.025_bib0245) 2016; 38
Agarwal (10.1016/j.asoc.2018.02.025_bib0025) 2014; 100
Han (10.1016/j.asoc.2018.02.025_bib0270) 2010
Yang (10.1016/j.asoc.2018.02.025_bib0205) 2010; 2
Arora (10.1016/j.asoc.2018.02.025_bib0295) 2004
Tanweer (10.1016/j.asoc.2018.02.025_bib0275) 2016; 28
Petalas (10.1016/j.asoc.2018.02.025_bib0100) 2007; 156
Chen (10.1016/j.asoc.2018.02.025_bib0005) 2015
D’Andreagiovanni (10.1016/j.asoc.2018.02.025_bib0130) 2015; 26
Tanweer (10.1016/j.asoc.2018.02.025_bib0010) 2015
Huang (10.1016/j.asoc.2018.02.025_bib0110) 2013; 13
Wan (10.1016/j.asoc.2018.02.025_bib0095) 2014
Harrison (10.1016/j.asoc.2018.02.025_bib0200) 2016; 10
Cheng (10.1016/j.asoc.2018.02.025_bib0315) 2015; 291
Uymaz (10.1016/j.asoc.2018.02.025_bib0030) 2015; 31
Kennedy (10.1016/j.asoc.2018.02.025_bib0150) 1995; 4
Nickabadi (10.1016/j.asoc.2018.02.025_bib0240) 2011; 11
Kora (10.1016/j.asoc.2018.02.025_bib0220) 2016; 2
Fister (10.1016/j.asoc.2018.02.025_bib0035) 2013; 80
Neri (10.1016/j.asoc.2018.02.025_bib0310) 2013; 239
Çavdar (10.1016/j.asoc.2018.02.025_bib0175) 2016; 70
Heris (10.1016/j.asoc.2018.02.025_bib0260) 2015
Eusuff (10.1016/j.asoc.2018.02.025_bib0320) 2006; 38
Bharti (10.1016/j.asoc.2018.02.025_bib0265) 2016; 43
Holm (10.1016/j.asoc.2018.02.025_bib0305) 1979; 6
Blum (10.1016/j.asoc.2018.02.025_bib0070) 2008
Sahu (10.1016/j.asoc.2018.02.025_bib0230) 2012; 4
Tanweer (10.1016/j.asoc.2018.02.025_bib0045) 2015; 294
Dou (10.1016/j.asoc.2018.02.025_bib0255) 2008
García (10.1016/j.asoc.2018.02.025_bib0300) 2009; 13
Raidl (10.1016/j.asoc.2018.02.025_bib0085) 2008; 62
Coello Coello (10.1016/j.asoc.2018.02.025_bib0290) 2000; 41
Kennedy (10.1016/j.asoc.2018.02.025_bib0225) 2001
D’Andreagiovanni (10.1016/j.asoc.2018.02.025_bib0120) 2011
Sadollah (10.1016/j.asoc.2018.02.025_bib0280) 2013; 13
Arasomwan (10.1016/j.asoc.2018.02.025_bib0195) 2013
J. Xin (10.1016/j.asoc.2018.02.025_bib0250) 2009
References_xml – volume: 2
  start-page: 44
  year: 2016
  end-page: 48
  ident: bib0220
  article-title: Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block
  publication-title: Int. J. Cardiovasc. Acad.
– volume: 291
  start-page: 43
  year: 2015
  end-page: 60
  ident: bib0315
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
  publication-title: Inf. Sci. (Ny)
– start-page: 11
  year: 2011
  end-page: 20
  ident: bib0120
  article-title: On improving the capacity of solving large-scale wireless network design problems by genetic algorithms
  publication-title: EvoApplications 2011, Springer Lect. Notes Comput. Sci. Vol. 6625
– year: 2001
  ident: bib0225
  article-title: Swarm Intelligence The Morgan Kaufmann Series in Evolutionary Computation
– volume: 239
  start-page: 96
  year: 2013
  end-page: 121
  ident: bib0310
  article-title: Compact particle swarm optimization
  publication-title: Inf. Sci. (Ny)
– volume: 10
  start-page: 267
  year: 2016
  end-page: 305
  ident: bib0200
  article-title: Inertia weight control strategies for particle swarm optimization: too much momentum, not enough analysis
  publication-title: Swarm Intell.
– volume: 217
  start-page: 5208
  year: 2011
  end-page: 5226
  ident: bib0050
  article-title: Particle swarm optimization: hybridization perspectives and experimental illustrations
  publication-title: Appl. Math. Comput.
– volume: 31
  start-page: 153
  year: 2015
  end-page: 171
  ident: bib0030
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Appl. Soft Comput. J.
– year: 2015
  ident: bib0010
  article-title: Improved SRPSO algorithm for solving CEC 2015 computationally expensive numerical optimization problems
  publication-title: 2015 IEEE Congr. Evol. Comput. CEC 2015 – Proc.
– volume: 62
  start-page: 31
  year: 2008
  end-page: 62
  ident: bib0085
  article-title: Combining (Integer) linear programming techniques and metaheuristics for combinatorial optimization
  publication-title: Hybrid Metaheuristics
– volume: 294
  start-page: 182
  year: 2015
  end-page: 202
  ident: bib0045
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inf. Sci. (Ny)
– volume: 63
  start-page: 511
  year: 1996
  end-page: 623
  ident: bib0075
  article-title: Metaheuristics A bibliography
  publication-title: Ann. Oper. Res.
– volume: 18
  start-page: 487
  year: 2009
  end-page: 516
  ident: bib0160
  article-title: Nature-inspired intelligence: a review of selected methods and applications
  publication-title: Int. J. Artif. Intell. Tools
– volume: 43
  start-page: 20
  year: 2016
  end-page: 34
  ident: bib0265
  article-title: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering
  publication-title: Appl. Soft Comput. J.
– year: 2014
  ident: bib0210
  article-title: Genetic Algorithms
– volume: 114
  start-page: 85
  year: 2008
  end-page: 116
  ident: bib0090
  article-title: Hybridizations of metaheuristics with branch & bound derivates
  publication-title: Stud. Comput. Intell.
– volume: 220
  start-page: 831
  year: 2012
  end-page: 843
  ident: bib0140
  article-title: Coupling ant colony systems with strong local searches
  publication-title: Eur. J. Oper. Res.
– start-page: 2013
  year: 2013
  ident: bib0195
  article-title: On the performance of linear decreasing inertia weight particle swarm optimization for global optimization
  publication-title: Sci. World J.
– start-page: 98
  year: 2008
  end-page: 106
  ident: bib0255
  article-title: Cluster-degree analysis and velocity compensation strategy of PSO
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– start-page: 505
  year: 2009
  end-page: 508
  ident: bib0250
  article-title: A particle swarm optimizer with multi-stage linearly-decreasing inertia weight
  publication-title: Proc. 2009 Int. Jt. Conf. Comput. Sci. Optim.
– volume: 181
  start-page: 4460
  year: 2011
  end-page: 4493
  ident: bib0155
  article-title: Cellular particle swarm optimization
  publication-title: Inf. Sci. (Ny)
– year: 2008
  ident: bib0070
  article-title: Hybrid Metaheuristics– An Emerging Approach to Optimization
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: bib0280
  article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput. J.
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: bib0285
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
– volume: 38
  start-page: 281
  year: 2016
  end-page: 295
  ident: bib0245
  article-title: A novel stability-based adaptive inertia weight for particle swarm optimization
  publication-title: Appl. Soft Comput. J.
– volume: 37
  start-page: 971
  year: 2015
  end-page: 982
  ident: bib0125
  article-title: Towards the fast and robust optimal design of wireless body area networks
  publication-title: Appl. Soft Comput. J.
– year: 2014
  ident: bib0095
  article-title: Reversible Soft Top-Contacts to Yield Molecular Junctions with Precise and Reproducible Electrical Characteristics
– start-page: X5000
  year: 2004
  end-page: X5009
  ident: bib0295
  article-title: Introduction to Optimum Design
– volume: 28
  start-page: 138
  year: 2015
  end-page: 149
  ident: bib0145
  article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques
  publication-title: Appl. Soft Comput. J.
– start-page: 280
  year: 2010
  end-page: 284
  ident: bib0270
  article-title: Comparison study of several kinds of inertia weights for PSO
  publication-title: Proc. 2010 IEEE Int. Conf. Prog. Informatics Comput.
– volume: 273
  start-page: 49
  year: 2014
  end-page: 72
  ident: bib0190
  article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy
  publication-title: Inf. Sci. (Ny)
– volume: 13
  start-page: 959
  year: 2009
  end-page: 977
  ident: bib0300
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
  publication-title: Soft Comput.
– volume: 70
  start-page: 799
  year: 2016
  end-page: 807
  ident: bib0175
  article-title: PSO tuned ANFIS equalizer based on fuzzy C-means clustering algorithm
  publication-title: AEU Int. J. Electron. Commun.
– volume: 13
  start-page: 34
  year: 2013
  end-page: 46
  ident: bib0060
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm Evol. Comput.
– volume: 29
  start-page: 386
  year: 2015
  end-page: 394
  ident: bib0115
  article-title: Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight
  publication-title: Appl. Soft Comput. J.
– start-page: 283
  year: 2016
  end-page: 298
  ident: bib0135
  article-title: An (MI)LP-based primal heuristic for 3-architecture connected facility location in urban access network design
  publication-title: EvoApplications 2016, Lect. Notes Comput. Sci. LNCS 9597
– volume: 46
  start-page: 334
  year: 2013
  end-page: 341
  ident: bib0235
  article-title: A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 1011
  year: 2015
  end-page: 1017
  ident: bib0015
  article-title: MVMO for bound constrained single-objective computationally expensive numerical optimization
  publication-title: 2015 IEEE Congr. Evol. Comput. CEC 2015 – Proc.
– volume: 4
  start-page: 50
  year: 2012
  end-page: 57
  ident: bib0065
  article-title: Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems
  publication-title: Int. J. Intell. Syst. Appl.
– start-page: 169
  year: 2009
  end-page: 178
  ident: bib0055
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 5792 LNCS
– volume: 80
  start-page: 116
  year: 2013
  end-page: 122
  ident: bib0035
  article-title: A brief review of nature-inspired algorithms for optimization: elektroteh
  publication-title: Vestnik/Electrotechnical Rev.
– volume: 156
  start-page: 99
  year: 2007
  end-page: 127
  ident: bib0100
  article-title: Memetic particle swarm optimization
  publication-title: Ann. Oper. Res.
– start-page: 889
  year: 2008
  end-page: 898
  ident: bib0180
  article-title: Theoretical Analysis of Initial Particle Swarm Behavior, Parallel Probl. Solving from Nature–PPSN X
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: bib0205
  article-title: Firefly algorithm, Stochastic test functions and design optimisation
  publication-title: Int. J. Bio-Inspired Comput.
– year: 2015
  ident: bib0005
  article-title: Evaluation Criteria for CEC 2015 Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization, Singapore
– volume: 28
  start-page: 98
  year: 2016
  end-page: 116
  ident: bib0275
  article-title: Directionally driven self-regulating particle swarm optimization algorithm
  publication-title: Swarm Evol. Comput.
– start-page: 647
  year: 2015
  end-page: 660
  ident: bib0215
  article-title: Hybrid particle swarm optimization algorithm and firefly algorithm based combined economic and emission dispatch including valve point effect
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– volume: 4
  start-page: 319
  year: 2012
  end-page: 324
  ident: bib0230
  article-title: Fast convergence particle swarm optimization for functions optimization
  publication-title: Procedia Technol.
– volume: 2
  start-page: 32
  year: 2014
  end-page: 38
  ident: bib0170
  article-title: A hybrid point cloud alignment method combining particle swarm optimization and iterative closest point method
  publication-title: Adv. Manuf.
– volume: 100
  start-page: 14
  year: 2014
  end-page: 21
  ident: bib0025
  article-title: Nature-Inspired algorithms: state-of-art, problems and prospects
  publication-title: Int. J. Comput. Appl.
– volume: 6
  start-page: 65
  year: 1979
  end-page: 70
  ident: bib0305
  article-title: A simple sequentially rejective multiple test procedure a simple sequentially rejective multiple test procedure
  publication-title: Scand. J. Stat. Scand. J. Stat.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0150
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE international conference on neural networks
– year: 2015
  ident: bib0260
  article-title: Implementation of Firefly Algorithm (FA) in MATLAB
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0165
  article-title: A modified particle swarm optimizer
  publication-title: 1998 IEEE Int. Conf. Evol. Comput. Proceedings. IEEE World Congr. Comput. Intell. (Cat. No.98TH8360)
– volume: 13
  start-page: 4659
  year: 2013
  end-page: 4675
  ident: bib0110
  article-title: A space search optimization algorithm with accelerated convergence strategies
  publication-title: Appl. Soft Comput. J.
– year: 2016
  ident: bib0105
  article-title: A New Firefly Algorithm with Local Search for Numerical Optimization
– volume: 26
  start-page: 497
  year: 2015
  end-page: 507
  ident: bib0130
  article-title: A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods
  publication-title: Appl. Soft Comput. J.
– volume: 13
  start-page: 68
  year: 2016
  end-page: 82
  ident: bib0020
  article-title: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems
  publication-title: J. Comput. Sci.
– volume: 348
  start-page: 272
  year: 2016
  end-page: 289
  ident: bib0185
  article-title: BNC-PSO structure learning of bayesian networks by particle swarm optimization
  publication-title: Inf. Sci. (Ny)
– volume: 11
  start-page: 3658
  year: 2011
  end-page: 3670
  ident: bib0240
  article-title: A novel particle swarm optimization algorithm with adaptive inertia weight
  publication-title: Appl. Soft Comput. J.
– volume: 38
  start-page: 129
  year: 2006
  end-page: 154
  ident: bib0320
  article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
– volume: 21
  start-page: 221
  year: 2016
  end-page: 230
  ident: bib0040
  article-title: Optimization of the occlusion strategy in visual tracking
  publication-title: Tsinghua Sci. Technol.
– volume: 128
  start-page: 153
  year: 2013
  end-page: 159
  ident: bib0080
  article-title: Genetic algorithm search space splicing particle swarm optimization as general-purpose optimizer
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: bib0290
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
– volume: 80
  start-page: 116
  year: 2013
  ident: 10.1016/j.asoc.2018.02.025_bib0035
  article-title: A brief review of nature-inspired algorithms for optimization: elektroteh
  publication-title: Vestnik/Electrotechnical Rev.
– year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0010
  article-title: Improved SRPSO algorithm for solving CEC 2015 computationally expensive numerical optimization problems
  publication-title: 2015 IEEE Congr. Evol. Comput. CEC 2015 – Proc.
– volume: 181
  start-page: 4460
  year: 2011
  ident: 10.1016/j.asoc.2018.02.025_bib0155
  article-title: Cellular particle swarm optimization
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2010.05.025
– volume: 46
  start-page: 334
  year: 2013
  ident: 10.1016/j.asoc.2018.02.025_bib0235
  article-title: A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.10.047
– volume: 38
  start-page: 129
  year: 2006
  ident: 10.1016/j.asoc.2018.02.025_bib0320
  article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500384759
– start-page: 1011
  year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0015
  article-title: MVMO for bound constrained single-objective computationally expensive numerical optimization
  publication-title: 2015 IEEE Congr. Evol. Comput. CEC 2015 – Proc.
– volume: 26
  start-page: 497
  year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0130
  article-title: A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2014.10.016
– volume: 13
  start-page: 4659
  year: 2013
  ident: 10.1016/j.asoc.2018.02.025_bib0110
  article-title: A space search optimization algorithm with accelerated convergence strategies
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2013.06.005
– volume: 13
  start-page: 34
  year: 2013
  ident: 10.1016/j.asoc.2018.02.025_bib0060
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.06.001
– volume: 11
  start-page: 3658
  year: 2011
  ident: 10.1016/j.asoc.2018.02.025_bib0240
  article-title: A novel particle swarm optimization algorithm with adaptive inertia weight
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2011.01.037
– start-page: 283
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0135
  article-title: An (MI)LP-based primal heuristic for 3-architecture connected facility location in urban access network design
– volume: 38
  start-page: 281
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0245
  article-title: A novel stability-based adaptive inertia weight for particle swarm optimization
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.10.004
– year: 2014
  ident: 10.1016/j.asoc.2018.02.025_bib0210
– start-page: 69
  year: 1998
  ident: 10.1016/j.asoc.2018.02.025_bib0165
  article-title: A modified particle swarm optimizer
  publication-title: 1998 IEEE Int. Conf. Evol. Comput. Proceedings. IEEE World Congr. Comput. Intell. (Cat. No.98TH8360)
  doi: 10.1109/ICEC.1998.699146
– start-page: 280
  year: 2010
  ident: 10.1016/j.asoc.2018.02.025_bib0270
  article-title: Comparison study of several kinds of inertia weights for PSO
– volume: 294
  start-page: 182
  year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0045
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.09.053
– year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0105
– volume: 291
  start-page: 43
  year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0315
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.08.039
– volume: 273
  start-page: 49
  year: 2014
  ident: 10.1016/j.asoc.2018.02.025_bib0190
  article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.03.031
– start-page: 11
  year: 2011
  ident: 10.1016/j.asoc.2018.02.025_bib0120
  article-title: On improving the capacity of solving large-scale wireless network design problems by genetic algorithms
– volume: 116
  start-page: 405
  year: 1994
  ident: 10.1016/j.asoc.2018.02.025_bib0285
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0005
– year: 2008
  ident: 10.1016/j.asoc.2018.02.025_bib0070
– volume: 37
  start-page: 971
  year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0125
  article-title: Towards the fast and robust optimal design of wireless body area networks
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.04.037
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2018.02.025_bib0150
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE international conference on neural networks
  doi: 10.1109/ICNN.1995.488968
– volume: 41
  start-page: 113
  year: 2000
  ident: 10.1016/j.asoc.2018.02.025_bib0290
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 21
  start-page: 221
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0040
  article-title: Optimization of the occlusion strategy in visual tracking
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2016.7442504
– start-page: 889
  year: 2008
  ident: 10.1016/j.asoc.2018.02.025_bib0180
– year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0260
– volume: 43
  start-page: 20
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0265
  article-title: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2016.01.019
– volume: 13
  start-page: 2592
  year: 2013
  ident: 10.1016/j.asoc.2018.02.025_bib0280
  article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 217
  start-page: 5208
  year: 2011
  ident: 10.1016/j.asoc.2018.02.025_bib0050
  article-title: Particle swarm optimization: hybridization perspectives and experimental illustrations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.12.053
– volume: 4
  start-page: 50
  year: 2012
  ident: 10.1016/j.asoc.2018.02.025_bib0065
  article-title: Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems
  publication-title: Int. J. Intell. Syst. Appl.
– volume: 13
  start-page: 68
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0020
  article-title: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.01.004
– volume: 28
  start-page: 138
  year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0145
  article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2014.11.018
– start-page: 647
  year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0215
  article-title: Hybrid particle swarm optimization algorithm and firefly algorithm based combined economic and emission dispatch including valve point effect
– volume: 70
  start-page: 799
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0175
  article-title: PSO tuned ANFIS equalizer based on fuzzy C-means clustering algorithm
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2016.03.006
– volume: 63
  start-page: 511
  year: 1996
  ident: 10.1016/j.asoc.2018.02.025_bib0075
  article-title: Metaheuristics A bibliography
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02125421
– volume: 10
  start-page: 267
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0200
  article-title: Inertia weight control strategies for particle swarm optimization: too much momentum, not enough analysis
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-016-0128-z
– volume: 156
  start-page: 99
  year: 2007
  ident: 10.1016/j.asoc.2018.02.025_bib0100
  article-title: Memetic particle swarm optimization
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-007-0224-y
– volume: 62
  start-page: 31
  year: 2008
  ident: 10.1016/j.asoc.2018.02.025_bib0085
  article-title: Combining (Integer) linear programming techniques and metaheuristics for combinatorial optimization
  publication-title: Hybrid Metaheuristics
  doi: 10.1007/978-3-540-78295-7_2
– volume: 4
  start-page: 319
  year: 2012
  ident: 10.1016/j.asoc.2018.02.025_bib0230
  article-title: Fast convergence particle swarm optimization for functions optimization
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2012.05.048
– volume: 2
  start-page: 32
  year: 2014
  ident: 10.1016/j.asoc.2018.02.025_bib0170
  article-title: A hybrid point cloud alignment method combining particle swarm optimization and iterative closest point method
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-014-0059-0
– volume: 239
  start-page: 96
  year: 2013
  ident: 10.1016/j.asoc.2018.02.025_bib0310
  article-title: Compact particle swarm optimization
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2013.03.026
– start-page: 98
  year: 2008
  ident: 10.1016/j.asoc.2018.02.025_bib0255
  article-title: Cluster-degree analysis and velocity compensation strategy of PSO
– start-page: 169
  year: 2009
  ident: 10.1016/j.asoc.2018.02.025_bib0055
  article-title: Firefly algorithms for multimodal optimization
– volume: 348
  start-page: 272
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0185
  article-title: BNC-PSO structure learning of bayesian networks by particle swarm optimization
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2016.01.090
– volume: 31
  start-page: 153
  year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0030
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.03.003
– volume: 28
  start-page: 98
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0275
  article-title: Directionally driven self-regulating particle swarm optimization algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.01.006
– volume: 128
  start-page: 153
  year: 2013
  ident: 10.1016/j.asoc.2018.02.025_bib0080
  article-title: Genetic algorithm search space splicing particle swarm optimization as general-purpose optimizer
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.08.009
– volume: 220
  start-page: 831
  year: 2012
  ident: 10.1016/j.asoc.2018.02.025_bib0140
  article-title: Coupling ant colony systems with strong local searches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.02.038
– volume: 18
  start-page: 487
  year: 2009
  ident: 10.1016/j.asoc.2018.02.025_bib0160
  article-title: Nature-inspired intelligence: a review of selected methods and applications
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S021821300900024X
– volume: 13
  start-page: 959
  year: 2009
  ident: 10.1016/j.asoc.2018.02.025_bib0300
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0392-y
– volume: 6
  start-page: 65
  year: 1979
  ident: 10.1016/j.asoc.2018.02.025_bib0305
  article-title: A simple sequentially rejective multiple test procedure a simple sequentially rejective multiple test procedure
  publication-title: Scand. J. Stat. Scand. J. Stat.
– year: 2014
  ident: 10.1016/j.asoc.2018.02.025_bib0095
– start-page: X5000
  year: 2004
  ident: 10.1016/j.asoc.2018.02.025_bib0295
– volume: 114
  start-page: 85
  year: 2008
  ident: 10.1016/j.asoc.2018.02.025_bib0090
  article-title: Hybridizations of metaheuristics with branch & bound derivates
  publication-title: Stud. Comput. Intell.
  doi: 10.1007/978-3-540-78295-7_4
– volume: 100
  start-page: 14
  year: 2014
  ident: 10.1016/j.asoc.2018.02.025_bib0025
  article-title: Nature-Inspired algorithms: state-of-art, problems and prospects
  publication-title: Int. J. Comput. Appl.
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2018.02.025_bib0205
  article-title: Firefly algorithm, Stochastic test functions and design optimisation
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2010.032124
– start-page: 505
  year: 2009
  ident: 10.1016/j.asoc.2018.02.025_bib0250
  article-title: A particle swarm optimizer with multi-stage linearly-decreasing inertia weight
– volume: 2
  start-page: 44
  year: 2016
  ident: 10.1016/j.asoc.2018.02.025_bib0220
  article-title: Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block
  publication-title: Int. J. Cardiovasc. Acad.
  doi: 10.1016/j.ijcac.2015.12.001
– start-page: 2013
  year: 2013
  ident: 10.1016/j.asoc.2018.02.025_bib0195
  article-title: On the performance of linear decreasing inertia weight particle swarm optimization for global optimization
  publication-title: Sci. World J.
– volume: 29
  start-page: 386
  year: 2015
  ident: 10.1016/j.asoc.2018.02.025_bib0115
  article-title: Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.01.004
– year: 2001
  ident: 10.1016/j.asoc.2018.02.025_bib0225
SSID ssj0016928
Score 2.631834
Snippet •A hybrid metaheuristic optimization algorithm that combines strong points of firefly and particle swarm algorithms.•A local search strategy is proposed by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 232
SubjectTerms Firefly algorithm
Hybrid optimization
Particle swarm optimization
Title A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems
URI https://dx.doi.org/10.1016/j.asoc.2018.02.025
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalu-yy91j3KD7sNrImtuskx1JWulcZ2wq9Bcex125pWvpg9LLfPitxygajh0FISJBCrMiSnHySELqkxmtz4UpHSp84LDbLnYDQ2BGBCBNX-zGRkJz82OPdPrsbNAcV1C5zYQBWaW1_YdNza22vNKw0G9PRqPFiVh4BCxk3SglV4QeQwc580PLrrzXMw-Nh3l8ViB2gtokzBcZLGAkAvCvI63ZCu-y_nNMPh9PZQzs2UsSt4mH2UUVlB2i37MKA7aQ8RB8tPFxB3hXWZig6XWGRJXhqB4Hnn2I2xhNjGcY25RKL9G0yGy2GY2wiVizzO9pvgoYbav7noHacLYvfOSm2bWfmR6jfuXltdx3bQsGRlPOFQwRL4jgQjBLf7HyZeEnoa-4nTHGVLy-8mGnONRT2I00qZegm1FMmEBIQGh2jajbJ1AnC1IjST0IaaE2YpDog0iNSha5SgZnVvIa8UnaRtPXFoc1FGpVAsvcI5B2BvCOXmK1ZQ1drnmlRXWMjdbN8JdEvHYmM-d_Ad_pPvjO0DWcFvPEcVRezpbowIcgiruc6VkdbrfbzwxMcb--7vW9Knt6s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjXjjASYUmtiukwwMiIfKcwGkbsFxbCi0adUWoS78Kf4g58RBICEGJKQoQ5KznM-nu3Nydx_ADkOvLaSvPKVC6vEUtzsRZaknIxlnvglTqmxx8tW1aNzx82a9OQbvVS2MTat0tr-06YW1dldqDs1ar9Wq3eDOI-IxF6iUtit802VWXujRK-7bBgdnx7jIu5SentweNTxHLeApJsTQo5JnaRpJzmiIp1BlQRaHRoQZ10IXYXeQciOEsQ3vaJ0pFfsZCzQGCNKGDDjuOExyNBeWNmH_7TOvJBBxQehqZ-fZ6blKnTKpTCLkNp8sKhqFWn7un7zhFw93OgczLjQlh-Xbz8OYzhdgtqJ9IM4KLMLzIXkc2UIvYhA70x4RmWek51Ajg1fZ75AumqKOq_Eksv3Q7beGjx2CITJRxYjuIyRKW5KBIoue5C_l_6M2cTw3gyW4-xdgl2Ei7-Z6BQhDKMMsZpExlCtmIqoCqnTsax2hGRGrEFTYJco1NLe8Gu2kylx7SizeicU78Ske9VXY-5Tple08fn26Xi1J8k0pE_Q3v8it_VFuG6Yat1eXyeXZ9cU6TNs7ZW7lBkwM-y96E-OfYbpV6BuB-_9W8A9GDxde
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+firefly+and+particle+swarm+optimization+algorithm+for+computationally+expensive+numerical+problems&rft.jtitle=Applied+soft+computing&rft.au=Aydilek%2C+%C4%B0brahim+Berkan&rft.date=2018-05-01&rft.issn=1568-4946&rft.volume=66&rft.spage=232&rft.epage=249&rft_id=info:doi/10.1016%2Fj.asoc.2018.02.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2018_02_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon