A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems
•A hybrid metaheuristic optimization algorithm that combines strong points of firefly and particle swarm algorithms.•A local search strategy is proposed by controlling previous global best fitness value.•Proposed HFPSO are compared with standard, other hybrid and memetic algorithms in the limited fu...
Saved in:
Published in | Applied soft computing Vol. 66; pp. 232 - 249 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A hybrid metaheuristic optimization algorithm that combines strong points of firefly and particle swarm algorithms.•A local search strategy is proposed by controlling previous global best fitness value.•Proposed HFPSO are compared with standard, other hybrid and memetic algorithms in the limited function evaluations.•CEC 2015 and 2017 benchmark, engineering, mechanical design problems and The Holm–Bonferroni statistical test are utilized.
Optimization in computationally expensive numerical problems with limited function evaluations provides computational advantages over constraints based on runtime requirements and hardware resources. Convergence success of a metaheuristic optimization algorithm depends on directing and balancing of its exploration and exploitation abilities. Firefly and particle swarm optimization are successful swarm intelligence algorithms inspired by nature. In this paper, a hybrid algorithm combining firefly and particle swarm optimization (HFPSO) is proposed. The proposed algorithm is able to exploit the strongpoints of both particle swarm and firefly algorithm mechanisms. HFPSO try to determine the start of the local search process properly by checking the previous global best fitness values. In experiments, several dimensional CEC 2015 and CEC 2017 computationally expensive sets of numerical and engineering, mechanical design benchmark problems are used. The proposed HFPSO is compared with standard particle swarm, firefly and other recent hybrid and successful algorithms in limited function evaluations. Runtimes and convergence accuracies are statistically measured and evaluated. The solution results quality of this study show that the proposed HFPSO algorithm provides fast and reliable optimization solutions and outperforms others in unimodal, simple multimodal, hybrid, and composition categories of computationally expensive numerical functions. |
---|---|
AbstractList | •A hybrid metaheuristic optimization algorithm that combines strong points of firefly and particle swarm algorithms.•A local search strategy is proposed by controlling previous global best fitness value.•Proposed HFPSO are compared with standard, other hybrid and memetic algorithms in the limited function evaluations.•CEC 2015 and 2017 benchmark, engineering, mechanical design problems and The Holm–Bonferroni statistical test are utilized.
Optimization in computationally expensive numerical problems with limited function evaluations provides computational advantages over constraints based on runtime requirements and hardware resources. Convergence success of a metaheuristic optimization algorithm depends on directing and balancing of its exploration and exploitation abilities. Firefly and particle swarm optimization are successful swarm intelligence algorithms inspired by nature. In this paper, a hybrid algorithm combining firefly and particle swarm optimization (HFPSO) is proposed. The proposed algorithm is able to exploit the strongpoints of both particle swarm and firefly algorithm mechanisms. HFPSO try to determine the start of the local search process properly by checking the previous global best fitness values. In experiments, several dimensional CEC 2015 and CEC 2017 computationally expensive sets of numerical and engineering, mechanical design benchmark problems are used. The proposed HFPSO is compared with standard particle swarm, firefly and other recent hybrid and successful algorithms in limited function evaluations. Runtimes and convergence accuracies are statistically measured and evaluated. The solution results quality of this study show that the proposed HFPSO algorithm provides fast and reliable optimization solutions and outperforms others in unimodal, simple multimodal, hybrid, and composition categories of computationally expensive numerical functions. |
Author | Aydilek, İbrahim Berkan |
Author_xml | – sequence: 1 givenname: İbrahim Berkan orcidid: 0000-0001-8037-8625 surname: Aydilek fullname: Aydilek, İbrahim Berkan email: berkanaydilek@harran.edu.tr organization: Department of Computer Engineering, Faculty of Engineering, Harran University, Şanlıurfa, Turkey |
BookMark | eNp9kM9KAzEQh4NUsK2-gKe8wNYku8lmwUsp_gPBi55DNsna1OxmSdJqfXpT68lDYZgZGL6B7zcDk8EPBoBrjBYYYXazWcjo1YIgzBeI5KJnYIp5TYqGcTzJO2W8qJqKXYBZjBuUoYbwKfhYwvW-DVbDzgbTuT2Ug4ajDMkqZ2D8lKGHfky2t98yWT9A6d59sGndw84HqHw_btPvRbpMm6_RDNHuDBy2vQlWSQfH4Ftn-ngJzjvporn6m3Pwdn_3unosnl8enlbL50KVjKWCyEq3LZdVSercaqWxbuqO1boyzBCKMcdt1THW0axLaKlUg3SJDWVIUkbKOSDHvyr4GLOVGIPtZdgLjMQhLrERh7jEIS6BSC6aIf4PUvbolYK07jR6e0RNltpZE0RU1gzK6BypSkJ7ewr_Adx5iyE |
CitedBy_id | crossref_primary_10_1007_s00500_019_03887_7 crossref_primary_10_1016_j_advengsoft_2025_103883 crossref_primary_10_1016_j_compbiomed_2024_108780 crossref_primary_10_1049_rpg2_12366 crossref_primary_10_1007_s00500_019_03948_x crossref_primary_10_3390_s22155739 crossref_primary_10_1016_j_aei_2024_102516 crossref_primary_10_1007_s00521_019_04249_y crossref_primary_10_1016_j_asoc_2023_110681 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1109_TITS_2021_3127352 crossref_primary_10_1002_eng2_12124 crossref_primary_10_1007_s12652_023_04541_9 crossref_primary_10_1007_s00500_023_09005_y crossref_primary_10_1007_s10462_022_10167_8 crossref_primary_10_1016_j_ins_2023_119535 crossref_primary_10_1088_1757_899X_768_7_072027 crossref_primary_10_3390_app12031081 crossref_primary_10_1007_s00500_021_06196_0 crossref_primary_10_1007_s10772_020_09783_y crossref_primary_10_1016_j_ijepes_2022_108566 crossref_primary_10_1016_j_pes_2025_100060 crossref_primary_10_26634_jcir_11_2_20073 crossref_primary_10_3233_IDA_194485 crossref_primary_10_3390_biomimetics9100627 crossref_primary_10_1016_j_asoc_2019_02_042 crossref_primary_10_1007_s00607_021_00991_1 crossref_primary_10_32604_cmes_2025_058473 crossref_primary_10_3390_app11188634 crossref_primary_10_1115_1_4053768 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1016_j_apm_2020_08_014 crossref_primary_10_3390_w15244297 crossref_primary_10_1016_j_asoc_2022_108634 crossref_primary_10_3233_JIFS_221125 crossref_primary_10_1007_s00521_020_04839_1 crossref_primary_10_1016_j_asoc_2020_106438 crossref_primary_10_1109_ACCESS_2019_2940582 crossref_primary_10_1556_606_2021_00343 crossref_primary_10_3390_su16208790 crossref_primary_10_1007_s00521_022_08173_6 crossref_primary_10_1007_s10586_022_03715_y crossref_primary_10_1016_j_fuel_2021_120642 crossref_primary_10_1002_2050_7038_12957 crossref_primary_10_1080_08839514_2023_2166232 crossref_primary_10_1007_s10489_024_05537_4 crossref_primary_10_1016_j_asoc_2023_110573 crossref_primary_10_1016_j_jksuci_2024_102219 crossref_primary_10_1007_s00500_018_3570_6 crossref_primary_10_1007_s13369_021_05639_y crossref_primary_10_5121_ijma_2022_14501 crossref_primary_10_1016_j_asoc_2019_105935 crossref_primary_10_1016_j_swevo_2023_101375 crossref_primary_10_1007_s13721_022_00354_6 crossref_primary_10_3390_sym16101290 crossref_primary_10_1007_s00521_020_05413_5 crossref_primary_10_1016_j_knosys_2021_107555 crossref_primary_10_3390_biomimetics8060454 crossref_primary_10_32604_cmes_2023_026643 crossref_primary_10_1002_int_22543 crossref_primary_10_1007_s11042_023_17724_5 crossref_primary_10_1109_ACCESS_2021_3066135 crossref_primary_10_1049_cth2_12626 crossref_primary_10_1049_esi2_12163 crossref_primary_10_1109_TCYB_2021_3101880 crossref_primary_10_32604_cmes_2021_016485 crossref_primary_10_3390_biomimetics8050411 crossref_primary_10_1016_j_ijhydene_2025_01_097 crossref_primary_10_1016_j_engappai_2023_106121 crossref_primary_10_1002_cjce_23766 crossref_primary_10_1016_j_asoc_2019_105823 crossref_primary_10_1016_j_ins_2021_06_064 crossref_primary_10_1016_j_asoc_2020_106793 crossref_primary_10_1007_s00500_025_10428_y crossref_primary_10_1016_j_engappai_2023_106328 crossref_primary_10_3390_act10100249 crossref_primary_10_29130_dubited_589259 crossref_primary_10_1007_s42235_023_00394_2 crossref_primary_10_1109_ACCESS_2020_3004202 crossref_primary_10_1016_j_apm_2022_11_016 crossref_primary_10_3390_en13164265 crossref_primary_10_1109_ACCESS_2021_3051339 crossref_primary_10_1007_s42235_024_00578_4 crossref_primary_10_1016_j_heliyon_2022_e10956 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1145_3582076 crossref_primary_10_1016_j_chaos_2018_07_004 crossref_primary_10_1007_s10489_020_01898_8 crossref_primary_10_1016_j_asoc_2019_105831 crossref_primary_10_1007_s10489_018_1348_2 crossref_primary_10_1080_00051144_2024_2348907 crossref_primary_10_1016_j_asoc_2021_107517 crossref_primary_10_1007_s00521_024_10312_0 crossref_primary_10_1016_j_engappai_2020_103963 crossref_primary_10_1016_j_jksuci_2021_06_015 crossref_primary_10_3390_math11020389 crossref_primary_10_32604_iasc_2023_039531 crossref_primary_10_1016_j_compeleceng_2021_107385 crossref_primary_10_3390_rs12172688 crossref_primary_10_1016_j_asoc_2021_107088 crossref_primary_10_7717_peerj_cs_1068 crossref_primary_10_1007_s11831_022_09773_0 crossref_primary_10_1016_j_engappai_2022_104763 crossref_primary_10_1007_s12206_021_0423_5 crossref_primary_10_1109_ACCESS_2019_2938063 crossref_primary_10_1007_s11042_023_15175_6 crossref_primary_10_1007_s11831_021_09694_4 crossref_primary_10_1016_j_eswa_2022_119495 crossref_primary_10_1109_TFUZZ_2019_2959997 crossref_primary_10_1016_j_jocs_2021_101388 crossref_primary_10_1016_j_eswa_2022_117993 crossref_primary_10_1109_ACCESS_2020_3043029 crossref_primary_10_1007_s42235_024_00579_3 crossref_primary_10_3390_app9163214 crossref_primary_10_1016_j_ijmecsci_2023_108516 crossref_primary_10_1093_jcde_qwac013 crossref_primary_10_3390_diagnostics13030410 crossref_primary_10_1007_s11600_022_00988_0 crossref_primary_10_1002_2050_7038_12992 crossref_primary_10_3390_s21051814 crossref_primary_10_1007_s12652_020_02255_w crossref_primary_10_1016_j_knosys_2022_108225 crossref_primary_10_1007_s13198_024_02386_9 crossref_primary_10_3390_en15010361 crossref_primary_10_3390_su16031204 crossref_primary_10_1016_j_compbiomed_2024_108498 crossref_primary_10_1016_j_asoc_2020_106903 crossref_primary_10_1016_j_eswa_2020_113353 crossref_primary_10_1016_j_jclepro_2021_126591 crossref_primary_10_1016_j_swevo_2022_101207 crossref_primary_10_1080_23311916_2023_2288411 crossref_primary_10_3390_en14113059 crossref_primary_10_1016_j_asoc_2022_109660 crossref_primary_10_1155_2022_5359732 crossref_primary_10_3390_app13020684 crossref_primary_10_3390_math11061473 crossref_primary_10_1111_jfpe_14227 crossref_primary_10_1111_exsy_13081 crossref_primary_10_1007_s11277_023_10626_7 crossref_primary_10_3390_e24081065 crossref_primary_10_17482_uumfd_649003 crossref_primary_10_1007_s40747_021_00346_5 crossref_primary_10_1109_ACCESS_2021_3054636 crossref_primary_10_1155_2021_7695596 crossref_primary_10_3390_app13042336 crossref_primary_10_3390_electronics13020324 crossref_primary_10_1002_int_22274 crossref_primary_10_3390_e24070890 crossref_primary_10_1007_s11042_020_10053_x crossref_primary_10_1016_j_asoc_2024_112060 crossref_primary_10_1016_j_ins_2022_06_059 crossref_primary_10_1016_j_rico_2022_100190 crossref_primary_10_1016_j_dajour_2022_100125 crossref_primary_10_1080_10168664_2022_2129121 crossref_primary_10_1007_s11227_024_06856_6 crossref_primary_10_1016_j_asoc_2019_04_032 crossref_primary_10_1016_j_eswa_2022_117334 crossref_primary_10_1007_s00521_022_07080_0 crossref_primary_10_1109_ACCESS_2019_2933661 crossref_primary_10_1109_ACCESS_2021_3072993 crossref_primary_10_3390_su14063470 crossref_primary_10_1016_j_asoc_2023_110158 crossref_primary_10_1016_j_egyr_2021_02_051 crossref_primary_10_1371_journal_pone_0317596 crossref_primary_10_1016_j_gloei_2020_10_010 crossref_primary_10_1007_s13748_021_00231_9 crossref_primary_10_1109_ACCESS_2019_2904679 crossref_primary_10_1109_ACCESS_2019_2931910 crossref_primary_10_1007_s00500_021_06062_z crossref_primary_10_1016_j_asoc_2018_10_019 crossref_primary_10_1016_j_energy_2022_124340 crossref_primary_10_1007_s00500_019_04234_6 crossref_primary_10_1016_j_aei_2024_102923 crossref_primary_10_1515_mt_2020_0049 crossref_primary_10_1088_1361_6501_ad099a crossref_primary_10_1007_s13202_022_01525_x crossref_primary_10_1016_j_enconman_2019_02_003 crossref_primary_10_1016_j_jngse_2020_103716 crossref_primary_10_1080_01430750_2024_2333915 crossref_primary_10_1109_ACCESS_2019_2898218 crossref_primary_10_3390_axioms11090485 crossref_primary_10_1016_j_jksuci_2021_07_017 crossref_primary_10_1007_s00500_022_07470_5 crossref_primary_10_1016_j_asoc_2021_107564 crossref_primary_10_23919_cje_2023_00_293 crossref_primary_10_32604_cmc_2023_036865 crossref_primary_10_1007_s00500_021_05673_w crossref_primary_10_1007_s11633_021_1282_3 crossref_primary_10_1016_j_heliyon_2021_e08247 crossref_primary_10_3390_app15010250 crossref_primary_10_1007_s00530_020_00716_y crossref_primary_10_1016_j_asoc_2024_112036 crossref_primary_10_1007_s00500_020_05554_8 crossref_primary_10_1007_s00500_022_07155_z crossref_primary_10_3390_s23031384 crossref_primary_10_1016_j_eswa_2024_126186 crossref_primary_10_1007_s00500_023_08201_0 crossref_primary_10_32604_cmes_2023_045096 crossref_primary_10_1016_j_heliyon_2024_e32092 crossref_primary_10_2478_logi_2023_0024 crossref_primary_10_1016_j_rineng_2024_102358 crossref_primary_10_1016_j_chemolab_2018_12_003 crossref_primary_10_1016_j_eswa_2021_114788 crossref_primary_10_1088_1742_6596_1818_1_012041 crossref_primary_10_1016_j_jksuci_2022_08_004 crossref_primary_10_1007_s00500_020_04760_8 crossref_primary_10_1631_FITEE_2000691 crossref_primary_10_3390_en17071547 crossref_primary_10_1007_s11831_024_10185_5 crossref_primary_10_1016_j_eswa_2022_117428 crossref_primary_10_1016_j_knosys_2021_106859 crossref_primary_10_1631_FITEE_2200237 crossref_primary_10_7717_peerj_cs_1760 crossref_primary_10_1007_s11063_022_10821_w crossref_primary_10_1016_j_asoc_2020_106392 crossref_primary_10_1007_s00500_024_10197_0 crossref_primary_10_1016_j_asoc_2022_109585 crossref_primary_10_1155_2020_7824785 crossref_primary_10_1016_j_ipm_2021_102854 crossref_primary_10_1016_j_engappai_2023_105998 crossref_primary_10_1007_s10846_022_01627_y crossref_primary_10_1016_j_asoc_2022_108717 crossref_primary_10_3390_math11163569 crossref_primary_10_1016_j_asoc_2020_106655 crossref_primary_10_1109_ACCESS_2024_3362907 crossref_primary_10_1016_j_advengsoft_2022_103283 crossref_primary_10_1109_ACCESS_2020_3046910 crossref_primary_10_1016_j_swevo_2018_07_002 crossref_primary_10_1108_CW_11_2020_0316 crossref_primary_10_1080_0952813X_2020_1785020 crossref_primary_10_1007_s00500_021_06205_2 crossref_primary_10_1007_s42044_025_00245_9 crossref_primary_10_1016_j_ins_2021_10_076 crossref_primary_10_1016_j_asoc_2022_109011 crossref_primary_10_1007_s00500_020_05366_w crossref_primary_10_1109_ACCESS_2020_2981656 crossref_primary_10_1016_j_compeleceng_2024_109278 crossref_primary_10_3390_app122312011 crossref_primary_10_1016_j_measurement_2025_116970 crossref_primary_10_1109_ACCESS_2019_2903015 crossref_primary_10_1007_s11831_021_09701_8 crossref_primary_10_1016_j_jngse_2021_104210 crossref_primary_10_1016_j_asoc_2022_109255 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_1002_dac_4690 crossref_primary_10_1007_s11831_025_10247_2 crossref_primary_10_1016_j_asoc_2021_107476 crossref_primary_10_1016_j_ins_2024_121417 crossref_primary_10_1093_jcde_qwad087 crossref_primary_10_3390_su13063206 crossref_primary_10_48084_etasr_5255 crossref_primary_10_1371_journal_pone_0301078 crossref_primary_10_1145_3580502 crossref_primary_10_26634_jps_11_3_20045 crossref_primary_10_1007_s00521_019_04465_6 crossref_primary_10_1007_s42235_023_00386_2 crossref_primary_10_1109_ACCESS_2020_2972826 crossref_primary_10_1016_j_bspc_2023_104984 crossref_primary_10_1007_s11042_021_11519_2 crossref_primary_10_3233_JIFS_181936 crossref_primary_10_1016_j_ins_2020_12_090 crossref_primary_10_3390_app9245537 crossref_primary_10_3390_w15101906 crossref_primary_10_1109_ACCESS_2021_3094471 crossref_primary_10_1002_widm_1564 crossref_primary_10_1016_j_asoc_2020_107061 crossref_primary_10_1007_s00521_023_08408_0 crossref_primary_10_1016_j_asoc_2022_109005 crossref_primary_10_1109_ACCESS_2022_3208169 crossref_primary_10_1007_s00366_020_00994_0 crossref_primary_10_3390_su15118538 crossref_primary_10_1007_s11600_021_00597_3 crossref_primary_10_1155_2021_6676449 crossref_primary_10_1016_j_csfx_2022_100089 crossref_primary_10_1155_2023_1964666 crossref_primary_10_3389_fbioe_2022_832829 crossref_primary_10_1016_j_matpr_2020_12_692 crossref_primary_10_1016_j_eswa_2024_123958 crossref_primary_10_3390_fractalfract5020033 crossref_primary_10_1016_j_aej_2025_01_055 crossref_primary_10_1007_s12046_021_01572_w crossref_primary_10_1515_mt_2020_0077 crossref_primary_10_1016_j_jmrt_2020_05_003 crossref_primary_10_1016_j_asoc_2023_110776 crossref_primary_10_17780_ksujes_1580774 crossref_primary_10_1109_ACCESS_2019_2942169 crossref_primary_10_1109_ACCESS_2023_3234918 crossref_primary_10_1016_j_swevo_2019_01_006 crossref_primary_10_1109_ACCESS_2019_2923557 crossref_primary_10_3390_biomimetics9080478 crossref_primary_10_1016_j_jksuci_2021_08_027 crossref_primary_10_1155_2020_6693411 crossref_primary_10_6089_jscm_49_91 crossref_primary_10_1088_1755_1315_189_5_052038 crossref_primary_10_1007_s10462_020_09944_0 crossref_primary_10_1109_ACCESS_2023_3296589 crossref_primary_10_1016_j_clwat_2024_100003 crossref_primary_10_1080_15325008_2023_2185835 crossref_primary_10_1109_TCSS_2022_3140862 crossref_primary_10_3390_su162410845 crossref_primary_10_1002_ett_4725 crossref_primary_10_1016_j_swevo_2024_101766 |
Cites_doi | 10.1016/j.ins.2010.05.025 10.1016/j.ijepes.2012.10.047 10.1080/03052150500384759 10.1016/j.asoc.2014.10.016 10.1016/j.asoc.2013.06.005 10.1016/j.swevo.2013.06.001 10.1016/j.asoc.2011.01.037 10.1016/j.asoc.2015.10.004 10.1109/ICEC.1998.699146 10.1016/j.ins.2014.09.053 10.1016/j.ins.2014.08.039 10.1016/j.ins.2014.03.031 10.1115/1.2919393 10.1016/j.asoc.2015.04.037 10.1109/ICNN.1995.488968 10.1016/S0166-3615(99)00046-9 10.1109/TST.2016.7442504 10.1016/j.asoc.2016.01.019 10.1016/j.asoc.2012.11.026 10.1016/j.amc.2010.12.053 10.1016/j.jocs.2016.01.004 10.1016/j.asoc.2014.11.018 10.1016/j.aeue.2016.03.006 10.1007/BF02125421 10.1007/s11721-016-0128-z 10.1007/s10479-007-0224-y 10.1007/978-3-540-78295-7_2 10.1016/j.protcy.2012.05.048 10.1007/s40436-014-0059-0 10.1016/j.ins.2013.03.026 10.1016/j.ins.2016.01.090 10.1016/j.asoc.2015.03.003 10.1016/j.swevo.2016.01.006 10.1016/j.chemolab.2013.08.009 10.1016/j.ejor.2012.02.038 10.1142/S021821300900024X 10.1007/s00500-008-0392-y 10.1007/978-3-540-78295-7_4 10.1504/IJBIC.2010.032124 10.1016/j.ijcac.2015.12.001 10.1016/j.asoc.2015.01.004 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2018.02.025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 249 |
ExternalDocumentID | 10_1016_j_asoc_2018_02_025 S156849461830084X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-2a4dbb8a4327a437cd1d97f67d4e6e251181b4f66f5018253cc90d31e560a5623 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:00 EDT 2025 Thu Apr 24 22:56:22 EDT 2025 Fri Feb 23 02:24:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hybrid optimization Particle swarm optimization Firefly algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-2a4dbb8a4327a437cd1d97f67d4e6e251181b4f66f5018253cc90d31e560a5623 |
ORCID | 0000-0001-8037-8625 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2018_02_025 crossref_citationtrail_10_1016_j_asoc_2018_02_025 elsevier_sciencedirect_doi_10_1016_j_asoc_2018_02_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2018 2018-05-00 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | D’Andreagiovanni, Krolikowski, Pulaj (bib0130) 2015; 26 Sahu, Panigrahi, Pattnaik (bib0230) 2012; 4 Heris (bib0260) 2015 Yang (bib0210) 2014 Arasomwan, Adewumi (bib0195) 2013 Eusuff, Lansey, Pasha (bib0320) 2006; 38 Fister, Yang, Brest (bib0060) 2013; 13 Wen, Ma, Zhang (bib0040) 2016; 21 Osman, Laporte (bib0075) 1996; 63 Coello Coello (bib0290) 2000; 41 Arora (bib0295) 2004 Abd-Elazim, Ali (bib0235) 2013; 46 Agarwal, Mehta (bib0025) 2014; 100 Harrison, Engelbrecht, Ombuki-Berman (bib0200) 2016; 10 Tanweer, Suresh, Sundararajan (bib0010) 2015 D’Andreagiovanni, Nardin (bib0125) 2015; 37 Blum, Cotta, Fernàndez, Gallardo, Mastrolilli (bib0090) 2008; 114 Ngo, Sadollah, Kim (bib0020) 2016; 13 Fister, Yang, Brest, Fister (bib0035) 2013; 80 Huang, Oh, Guo, Pedrycz (bib0110) 2013; 13 Zhang, Tang, Hua, Guan (bib0145) 2015; 28 Yang (bib0205) 2010; 2 Cheng, Jin (bib0315) 2015; 291 Pal, Rai, Singh (bib0065) 2012; 4 Bharti, Singh (bib0265) 2016; 43 Kennedy, Eberhart (bib0150) 1995; 4 J. Xin, Chen (bib0250) 2009 Han, Yang, Ren, Sun (bib0270) 2010 Yang (bib0055) 2009 Wang, Wang, Sun, Zhao, Zhang, Liu, Zhou (bib0105) 2016 Uymaz, Tezel, Yel (bib0030) 2015; 31 Thangaraj, Pant, Abraham, Bouvry (bib0050) 2011; 217 Shi, Liu, Gao, Zhang (bib0155) 2011; 181 Holm (bib0305) 1979; 6 Gheisari, Meybodi (bib0185) 2016; 348 Tanweer, Auditya, Suresh, Sundararajan, Srikanth (bib0275) 2016; 28 Helwig, Wanka (bib0180) 2008 Kora, Rama Krishna (bib0220) 2016; 2 Kannan, Kramer (bib0285) 1994; 116 Petalas, Parsopoulos, Vrahatis (bib0100) 2007; 156 Shi, Eberhart (bib0165) 1998 Tanweer, Suresh, Sundararajan (bib0045) 2015; 294 D’Andreagiovanni, Mett, Pulaj (bib0135) 2016 Nickabadi, Ebadzadeh, Safabakhsh (bib0240) 2011; 11 D’Andreagiovanni (bib0120) 2011 Yu, Wang (bib0170) 2014; 2 García, Fernández, Luengo, Herrera (bib0300) 2009; 13 Neri, Mininno, Iacca (bib0310) 2013; 239 Chen, Liu, Zhang, Liang (bib0005) 2015 Raidl, Puchinger (bib0085) 2008; 62 Yang, Gao, Liu, Song (bib0115) 2015; 29 Li, Nantasenamat, Monnor, Isarankura-Na-Ayudhya, Prachayasittikul (bib0080) 2013; 128 Blum, Roli, Sampels (bib0070) 2008 Vassiliadis, Dounias (bib0160) 2009; 18 Lim, Mat Isa (bib0190) 2014; 273 Taherkhani, Safabakhsh (bib0245) 2016; 38 Dou, Yu, Shi, Yu, Zheng (bib0255) 2008 Kennedy, Eberhart, Shi, Jacob, Koza, Iii, Andre, Keane (bib0225) 2001 Rueda, Erlich (bib0015) 2015 Arunachalam, AgnesBhomila, Ramesh Babu (bib0215) 2015 Çavdar (bib0175) 2016; 70 Sadollah, Bahreininejad, Eskandar, Hamdi (bib0280) 2013; 13 Wan, Jiang, Sangeeth, Nijhuis (bib0095) 2014 Gambardella, Montemanni, Weyland (bib0140) 2012; 220 Kannan (10.1016/j.asoc.2018.02.025_bib0285) 1994; 116 Helwig (10.1016/j.asoc.2018.02.025_bib0180) 2008 Li (10.1016/j.asoc.2018.02.025_bib0080) 2013; 128 D’Andreagiovanni (10.1016/j.asoc.2018.02.025_bib0125) 2015; 37 Zhang (10.1016/j.asoc.2018.02.025_bib0145) 2015; 28 Thangaraj (10.1016/j.asoc.2018.02.025_bib0050) 2011; 217 Gheisari (10.1016/j.asoc.2018.02.025_bib0185) 2016; 348 D’Andreagiovanni (10.1016/j.asoc.2018.02.025_bib0135) 2016 Abd-Elazim (10.1016/j.asoc.2018.02.025_bib0235) 2013; 46 Vassiliadis (10.1016/j.asoc.2018.02.025_bib0160) 2009; 18 Yu (10.1016/j.asoc.2018.02.025_bib0170) 2014; 2 Wang (10.1016/j.asoc.2018.02.025_bib0105) 2016 Ngo (10.1016/j.asoc.2018.02.025_bib0020) 2016; 13 Pal (10.1016/j.asoc.2018.02.025_bib0065) 2012; 4 Shi (10.1016/j.asoc.2018.02.025_bib0155) 2011; 181 Rueda (10.1016/j.asoc.2018.02.025_bib0015) 2015 Yang (10.1016/j.asoc.2018.02.025_bib0055) 2009 Blum (10.1016/j.asoc.2018.02.025_bib0090) 2008; 114 Lim (10.1016/j.asoc.2018.02.025_bib0190) 2014; 273 Fister (10.1016/j.asoc.2018.02.025_bib0060) 2013; 13 Wen (10.1016/j.asoc.2018.02.025_bib0040) 2016; 21 Osman (10.1016/j.asoc.2018.02.025_bib0075) 1996; 63 Arunachalam (10.1016/j.asoc.2018.02.025_bib0215) 2015 Gambardella (10.1016/j.asoc.2018.02.025_bib0140) 2012; 220 Shi (10.1016/j.asoc.2018.02.025_bib0165) 1998 Yang (10.1016/j.asoc.2018.02.025_bib0115) 2015; 29 Yang (10.1016/j.asoc.2018.02.025_bib0210) 2014 Taherkhani (10.1016/j.asoc.2018.02.025_bib0245) 2016; 38 Agarwal (10.1016/j.asoc.2018.02.025_bib0025) 2014; 100 Han (10.1016/j.asoc.2018.02.025_bib0270) 2010 Yang (10.1016/j.asoc.2018.02.025_bib0205) 2010; 2 Arora (10.1016/j.asoc.2018.02.025_bib0295) 2004 Tanweer (10.1016/j.asoc.2018.02.025_bib0275) 2016; 28 Petalas (10.1016/j.asoc.2018.02.025_bib0100) 2007; 156 Chen (10.1016/j.asoc.2018.02.025_bib0005) 2015 D’Andreagiovanni (10.1016/j.asoc.2018.02.025_bib0130) 2015; 26 Tanweer (10.1016/j.asoc.2018.02.025_bib0010) 2015 Huang (10.1016/j.asoc.2018.02.025_bib0110) 2013; 13 Wan (10.1016/j.asoc.2018.02.025_bib0095) 2014 Harrison (10.1016/j.asoc.2018.02.025_bib0200) 2016; 10 Cheng (10.1016/j.asoc.2018.02.025_bib0315) 2015; 291 Uymaz (10.1016/j.asoc.2018.02.025_bib0030) 2015; 31 Kennedy (10.1016/j.asoc.2018.02.025_bib0150) 1995; 4 Nickabadi (10.1016/j.asoc.2018.02.025_bib0240) 2011; 11 Kora (10.1016/j.asoc.2018.02.025_bib0220) 2016; 2 Fister (10.1016/j.asoc.2018.02.025_bib0035) 2013; 80 Neri (10.1016/j.asoc.2018.02.025_bib0310) 2013; 239 Çavdar (10.1016/j.asoc.2018.02.025_bib0175) 2016; 70 Heris (10.1016/j.asoc.2018.02.025_bib0260) 2015 Eusuff (10.1016/j.asoc.2018.02.025_bib0320) 2006; 38 Bharti (10.1016/j.asoc.2018.02.025_bib0265) 2016; 43 Holm (10.1016/j.asoc.2018.02.025_bib0305) 1979; 6 Blum (10.1016/j.asoc.2018.02.025_bib0070) 2008 Sahu (10.1016/j.asoc.2018.02.025_bib0230) 2012; 4 Tanweer (10.1016/j.asoc.2018.02.025_bib0045) 2015; 294 Dou (10.1016/j.asoc.2018.02.025_bib0255) 2008 García (10.1016/j.asoc.2018.02.025_bib0300) 2009; 13 Raidl (10.1016/j.asoc.2018.02.025_bib0085) 2008; 62 Coello Coello (10.1016/j.asoc.2018.02.025_bib0290) 2000; 41 Kennedy (10.1016/j.asoc.2018.02.025_bib0225) 2001 D’Andreagiovanni (10.1016/j.asoc.2018.02.025_bib0120) 2011 Sadollah (10.1016/j.asoc.2018.02.025_bib0280) 2013; 13 Arasomwan (10.1016/j.asoc.2018.02.025_bib0195) 2013 J. Xin (10.1016/j.asoc.2018.02.025_bib0250) 2009 |
References_xml | – volume: 2 start-page: 44 year: 2016 end-page: 48 ident: bib0220 article-title: Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block publication-title: Int. J. Cardiovasc. Acad. – volume: 291 start-page: 43 year: 2015 end-page: 60 ident: bib0315 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inf. Sci. (Ny) – start-page: 11 year: 2011 end-page: 20 ident: bib0120 article-title: On improving the capacity of solving large-scale wireless network design problems by genetic algorithms publication-title: EvoApplications 2011, Springer Lect. Notes Comput. Sci. Vol. 6625 – year: 2001 ident: bib0225 article-title: Swarm Intelligence The Morgan Kaufmann Series in Evolutionary Computation – volume: 239 start-page: 96 year: 2013 end-page: 121 ident: bib0310 article-title: Compact particle swarm optimization publication-title: Inf. Sci. (Ny) – volume: 10 start-page: 267 year: 2016 end-page: 305 ident: bib0200 article-title: Inertia weight control strategies for particle swarm optimization: too much momentum, not enough analysis publication-title: Swarm Intell. – volume: 217 start-page: 5208 year: 2011 end-page: 5226 ident: bib0050 article-title: Particle swarm optimization: hybridization perspectives and experimental illustrations publication-title: Appl. Math. Comput. – volume: 31 start-page: 153 year: 2015 end-page: 171 ident: bib0030 article-title: Artificial algae algorithm (AAA) for nonlinear global optimization publication-title: Appl. Soft Comput. J. – year: 2015 ident: bib0010 article-title: Improved SRPSO algorithm for solving CEC 2015 computationally expensive numerical optimization problems publication-title: 2015 IEEE Congr. Evol. Comput. CEC 2015 – Proc. – volume: 62 start-page: 31 year: 2008 end-page: 62 ident: bib0085 article-title: Combining (Integer) linear programming techniques and metaheuristics for combinatorial optimization publication-title: Hybrid Metaheuristics – volume: 294 start-page: 182 year: 2015 end-page: 202 ident: bib0045 article-title: Self regulating particle swarm optimization algorithm publication-title: Inf. Sci. (Ny) – volume: 63 start-page: 511 year: 1996 end-page: 623 ident: bib0075 article-title: Metaheuristics A bibliography publication-title: Ann. Oper. Res. – volume: 18 start-page: 487 year: 2009 end-page: 516 ident: bib0160 article-title: Nature-inspired intelligence: a review of selected methods and applications publication-title: Int. J. Artif. Intell. Tools – volume: 43 start-page: 20 year: 2016 end-page: 34 ident: bib0265 article-title: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering publication-title: Appl. Soft Comput. J. – year: 2014 ident: bib0210 article-title: Genetic Algorithms – volume: 114 start-page: 85 year: 2008 end-page: 116 ident: bib0090 article-title: Hybridizations of metaheuristics with branch & bound derivates publication-title: Stud. Comput. Intell. – volume: 220 start-page: 831 year: 2012 end-page: 843 ident: bib0140 article-title: Coupling ant colony systems with strong local searches publication-title: Eur. J. Oper. Res. – start-page: 2013 year: 2013 ident: bib0195 article-title: On the performance of linear decreasing inertia weight particle swarm optimization for global optimization publication-title: Sci. World J. – start-page: 98 year: 2008 end-page: 106 ident: bib0255 article-title: Cluster-degree analysis and velocity compensation strategy of PSO publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – start-page: 505 year: 2009 end-page: 508 ident: bib0250 article-title: A particle swarm optimizer with multi-stage linearly-decreasing inertia weight publication-title: Proc. 2009 Int. Jt. Conf. Comput. Sci. Optim. – volume: 181 start-page: 4460 year: 2011 end-page: 4493 ident: bib0155 article-title: Cellular particle swarm optimization publication-title: Inf. Sci. (Ny) – year: 2008 ident: bib0070 article-title: Hybrid Metaheuristics– An Emerging Approach to Optimization – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: bib0280 article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. J. – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: bib0285 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. – volume: 38 start-page: 281 year: 2016 end-page: 295 ident: bib0245 article-title: A novel stability-based adaptive inertia weight for particle swarm optimization publication-title: Appl. Soft Comput. J. – volume: 37 start-page: 971 year: 2015 end-page: 982 ident: bib0125 article-title: Towards the fast and robust optimal design of wireless body area networks publication-title: Appl. Soft Comput. J. – year: 2014 ident: bib0095 article-title: Reversible Soft Top-Contacts to Yield Molecular Junctions with Precise and Reproducible Electrical Characteristics – start-page: X5000 year: 2004 end-page: X5009 ident: bib0295 article-title: Introduction to Optimum Design – volume: 28 start-page: 138 year: 2015 end-page: 149 ident: bib0145 article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques publication-title: Appl. Soft Comput. J. – start-page: 280 year: 2010 end-page: 284 ident: bib0270 article-title: Comparison study of several kinds of inertia weights for PSO publication-title: Proc. 2010 IEEE Int. Conf. Prog. Informatics Comput. – volume: 273 start-page: 49 year: 2014 end-page: 72 ident: bib0190 article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy publication-title: Inf. Sci. (Ny) – volume: 13 start-page: 959 year: 2009 end-page: 977 ident: bib0300 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Comput. – volume: 70 start-page: 799 year: 2016 end-page: 807 ident: bib0175 article-title: PSO tuned ANFIS equalizer based on fuzzy C-means clustering algorithm publication-title: AEU Int. J. Electron. Commun. – volume: 13 start-page: 34 year: 2013 end-page: 46 ident: bib0060 article-title: A comprehensive review of firefly algorithms publication-title: Swarm Evol. Comput. – volume: 29 start-page: 386 year: 2015 end-page: 394 ident: bib0115 article-title: Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight publication-title: Appl. Soft Comput. J. – start-page: 283 year: 2016 end-page: 298 ident: bib0135 article-title: An (MI)LP-based primal heuristic for 3-architecture connected facility location in urban access network design publication-title: EvoApplications 2016, Lect. Notes Comput. Sci. LNCS 9597 – volume: 46 start-page: 334 year: 2013 end-page: 341 ident: bib0235 article-title: A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design publication-title: Int. J. Electr. Power Energy Syst. – start-page: 1011 year: 2015 end-page: 1017 ident: bib0015 article-title: MVMO for bound constrained single-objective computationally expensive numerical optimization publication-title: 2015 IEEE Congr. Evol. Comput. CEC 2015 – Proc. – volume: 4 start-page: 50 year: 2012 end-page: 57 ident: bib0065 article-title: Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems publication-title: Int. J. Intell. Syst. Appl. – start-page: 169 year: 2009 end-page: 178 ident: bib0055 article-title: Firefly algorithms for multimodal optimization publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 5792 LNCS – volume: 80 start-page: 116 year: 2013 end-page: 122 ident: bib0035 article-title: A brief review of nature-inspired algorithms for optimization: elektroteh publication-title: Vestnik/Electrotechnical Rev. – volume: 156 start-page: 99 year: 2007 end-page: 127 ident: bib0100 article-title: Memetic particle swarm optimization publication-title: Ann. Oper. Res. – start-page: 889 year: 2008 end-page: 898 ident: bib0180 article-title: Theoretical Analysis of Initial Particle Swarm Behavior, Parallel Probl. Solving from Nature–PPSN X – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: bib0205 article-title: Firefly algorithm, Stochastic test functions and design optimisation publication-title: Int. J. Bio-Inspired Comput. – year: 2015 ident: bib0005 article-title: Evaluation Criteria for CEC 2015 Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization, Singapore – volume: 28 start-page: 98 year: 2016 end-page: 116 ident: bib0275 article-title: Directionally driven self-regulating particle swarm optimization algorithm publication-title: Swarm Evol. Comput. – start-page: 647 year: 2015 end-page: 660 ident: bib0215 article-title: Hybrid particle swarm optimization algorithm and firefly algorithm based combined economic and emission dispatch including valve point effect publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – volume: 4 start-page: 319 year: 2012 end-page: 324 ident: bib0230 article-title: Fast convergence particle swarm optimization for functions optimization publication-title: Procedia Technol. – volume: 2 start-page: 32 year: 2014 end-page: 38 ident: bib0170 article-title: A hybrid point cloud alignment method combining particle swarm optimization and iterative closest point method publication-title: Adv. Manuf. – volume: 100 start-page: 14 year: 2014 end-page: 21 ident: bib0025 article-title: Nature-Inspired algorithms: state-of-art, problems and prospects publication-title: Int. J. Comput. Appl. – volume: 6 start-page: 65 year: 1979 end-page: 70 ident: bib0305 article-title: A simple sequentially rejective multiple test procedure a simple sequentially rejective multiple test procedure publication-title: Scand. J. Stat. Scand. J. Stat. – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0150 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE international conference on neural networks – year: 2015 ident: bib0260 article-title: Implementation of Firefly Algorithm (FA) in MATLAB – start-page: 69 year: 1998 end-page: 73 ident: bib0165 article-title: A modified particle swarm optimizer publication-title: 1998 IEEE Int. Conf. Evol. Comput. Proceedings. IEEE World Congr. Comput. Intell. (Cat. No.98TH8360) – volume: 13 start-page: 4659 year: 2013 end-page: 4675 ident: bib0110 article-title: A space search optimization algorithm with accelerated convergence strategies publication-title: Appl. Soft Comput. J. – year: 2016 ident: bib0105 article-title: A New Firefly Algorithm with Local Search for Numerical Optimization – volume: 26 start-page: 497 year: 2015 end-page: 507 ident: bib0130 article-title: A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods publication-title: Appl. Soft Comput. J. – volume: 13 start-page: 68 year: 2016 end-page: 82 ident: bib0020 article-title: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems publication-title: J. Comput. Sci. – volume: 348 start-page: 272 year: 2016 end-page: 289 ident: bib0185 article-title: BNC-PSO structure learning of bayesian networks by particle swarm optimization publication-title: Inf. Sci. (Ny) – volume: 11 start-page: 3658 year: 2011 end-page: 3670 ident: bib0240 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. J. – volume: 38 start-page: 129 year: 2006 end-page: 154 ident: bib0320 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. – volume: 21 start-page: 221 year: 2016 end-page: 230 ident: bib0040 article-title: Optimization of the occlusion strategy in visual tracking publication-title: Tsinghua Sci. Technol. – volume: 128 start-page: 153 year: 2013 end-page: 159 ident: bib0080 article-title: Genetic algorithm search space splicing particle swarm optimization as general-purpose optimizer publication-title: Chemom. Intell. Lab. Syst. – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: bib0290 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. – volume: 80 start-page: 116 year: 2013 ident: 10.1016/j.asoc.2018.02.025_bib0035 article-title: A brief review of nature-inspired algorithms for optimization: elektroteh publication-title: Vestnik/Electrotechnical Rev. – year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0010 article-title: Improved SRPSO algorithm for solving CEC 2015 computationally expensive numerical optimization problems publication-title: 2015 IEEE Congr. Evol. Comput. CEC 2015 – Proc. – volume: 181 start-page: 4460 year: 2011 ident: 10.1016/j.asoc.2018.02.025_bib0155 article-title: Cellular particle swarm optimization publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2010.05.025 – volume: 46 start-page: 334 year: 2013 ident: 10.1016/j.asoc.2018.02.025_bib0235 article-title: A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.10.047 – volume: 38 start-page: 129 year: 2006 ident: 10.1016/j.asoc.2018.02.025_bib0320 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. doi: 10.1080/03052150500384759 – start-page: 1011 year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0015 article-title: MVMO for bound constrained single-objective computationally expensive numerical optimization publication-title: 2015 IEEE Congr. Evol. Comput. CEC 2015 – Proc. – volume: 26 start-page: 497 year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0130 article-title: A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2014.10.016 – volume: 13 start-page: 4659 year: 2013 ident: 10.1016/j.asoc.2018.02.025_bib0110 article-title: A space search optimization algorithm with accelerated convergence strategies publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2013.06.005 – volume: 13 start-page: 34 year: 2013 ident: 10.1016/j.asoc.2018.02.025_bib0060 article-title: A comprehensive review of firefly algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.06.001 – volume: 11 start-page: 3658 year: 2011 ident: 10.1016/j.asoc.2018.02.025_bib0240 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2011.01.037 – start-page: 283 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0135 article-title: An (MI)LP-based primal heuristic for 3-architecture connected facility location in urban access network design – volume: 38 start-page: 281 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0245 article-title: A novel stability-based adaptive inertia weight for particle swarm optimization publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2015.10.004 – year: 2014 ident: 10.1016/j.asoc.2018.02.025_bib0210 – start-page: 69 year: 1998 ident: 10.1016/j.asoc.2018.02.025_bib0165 article-title: A modified particle swarm optimizer publication-title: 1998 IEEE Int. Conf. Evol. Comput. Proceedings. IEEE World Congr. Comput. Intell. (Cat. No.98TH8360) doi: 10.1109/ICEC.1998.699146 – start-page: 280 year: 2010 ident: 10.1016/j.asoc.2018.02.025_bib0270 article-title: Comparison study of several kinds of inertia weights for PSO – volume: 294 start-page: 182 year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0045 article-title: Self regulating particle swarm optimization algorithm publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2014.09.053 – year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0105 – volume: 291 start-page: 43 year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0315 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2014.08.039 – volume: 273 start-page: 49 year: 2014 ident: 10.1016/j.asoc.2018.02.025_bib0190 article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2014.03.031 – start-page: 11 year: 2011 ident: 10.1016/j.asoc.2018.02.025_bib0120 article-title: On improving the capacity of solving large-scale wireless network design problems by genetic algorithms – volume: 116 start-page: 405 year: 1994 ident: 10.1016/j.asoc.2018.02.025_bib0285 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0005 – year: 2008 ident: 10.1016/j.asoc.2018.02.025_bib0070 – volume: 37 start-page: 971 year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0125 article-title: Towards the fast and robust optimal design of wireless body area networks publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2015.04.037 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2018.02.025_bib0150 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE international conference on neural networks doi: 10.1109/ICNN.1995.488968 – volume: 41 start-page: 113 year: 2000 ident: 10.1016/j.asoc.2018.02.025_bib0290 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 21 start-page: 221 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0040 article-title: Optimization of the occlusion strategy in visual tracking publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2016.7442504 – start-page: 889 year: 2008 ident: 10.1016/j.asoc.2018.02.025_bib0180 – year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0260 – volume: 43 start-page: 20 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0265 article-title: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2016.01.019 – volume: 13 start-page: 2592 year: 2013 ident: 10.1016/j.asoc.2018.02.025_bib0280 article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2012.11.026 – volume: 217 start-page: 5208 year: 2011 ident: 10.1016/j.asoc.2018.02.025_bib0050 article-title: Particle swarm optimization: hybridization perspectives and experimental illustrations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.12.053 – volume: 4 start-page: 50 year: 2012 ident: 10.1016/j.asoc.2018.02.025_bib0065 article-title: Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems publication-title: Int. J. Intell. Syst. Appl. – volume: 13 start-page: 68 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0020 article-title: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2016.01.004 – volume: 28 start-page: 138 year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0145 article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2014.11.018 – start-page: 647 year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0215 article-title: Hybrid particle swarm optimization algorithm and firefly algorithm based combined economic and emission dispatch including valve point effect – volume: 70 start-page: 799 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0175 article-title: PSO tuned ANFIS equalizer based on fuzzy C-means clustering algorithm publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2016.03.006 – volume: 63 start-page: 511 year: 1996 ident: 10.1016/j.asoc.2018.02.025_bib0075 article-title: Metaheuristics A bibliography publication-title: Ann. Oper. Res. doi: 10.1007/BF02125421 – volume: 10 start-page: 267 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0200 article-title: Inertia weight control strategies for particle swarm optimization: too much momentum, not enough analysis publication-title: Swarm Intell. doi: 10.1007/s11721-016-0128-z – volume: 156 start-page: 99 year: 2007 ident: 10.1016/j.asoc.2018.02.025_bib0100 article-title: Memetic particle swarm optimization publication-title: Ann. Oper. Res. doi: 10.1007/s10479-007-0224-y – volume: 62 start-page: 31 year: 2008 ident: 10.1016/j.asoc.2018.02.025_bib0085 article-title: Combining (Integer) linear programming techniques and metaheuristics for combinatorial optimization publication-title: Hybrid Metaheuristics doi: 10.1007/978-3-540-78295-7_2 – volume: 4 start-page: 319 year: 2012 ident: 10.1016/j.asoc.2018.02.025_bib0230 article-title: Fast convergence particle swarm optimization for functions optimization publication-title: Procedia Technol. doi: 10.1016/j.protcy.2012.05.048 – volume: 2 start-page: 32 year: 2014 ident: 10.1016/j.asoc.2018.02.025_bib0170 article-title: A hybrid point cloud alignment method combining particle swarm optimization and iterative closest point method publication-title: Adv. Manuf. doi: 10.1007/s40436-014-0059-0 – volume: 239 start-page: 96 year: 2013 ident: 10.1016/j.asoc.2018.02.025_bib0310 article-title: Compact particle swarm optimization publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2013.03.026 – start-page: 98 year: 2008 ident: 10.1016/j.asoc.2018.02.025_bib0255 article-title: Cluster-degree analysis and velocity compensation strategy of PSO – start-page: 169 year: 2009 ident: 10.1016/j.asoc.2018.02.025_bib0055 article-title: Firefly algorithms for multimodal optimization – volume: 348 start-page: 272 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0185 article-title: BNC-PSO structure learning of bayesian networks by particle swarm optimization publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2016.01.090 – volume: 31 start-page: 153 year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0030 article-title: Artificial algae algorithm (AAA) for nonlinear global optimization publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2015.03.003 – volume: 28 start-page: 98 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0275 article-title: Directionally driven self-regulating particle swarm optimization algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.01.006 – volume: 128 start-page: 153 year: 2013 ident: 10.1016/j.asoc.2018.02.025_bib0080 article-title: Genetic algorithm search space splicing particle swarm optimization as general-purpose optimizer publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.08.009 – volume: 220 start-page: 831 year: 2012 ident: 10.1016/j.asoc.2018.02.025_bib0140 article-title: Coupling ant colony systems with strong local searches publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2012.02.038 – volume: 18 start-page: 487 year: 2009 ident: 10.1016/j.asoc.2018.02.025_bib0160 article-title: Nature-inspired intelligence: a review of selected methods and applications publication-title: Int. J. Artif. Intell. Tools doi: 10.1142/S021821300900024X – volume: 13 start-page: 959 year: 2009 ident: 10.1016/j.asoc.2018.02.025_bib0300 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Comput. doi: 10.1007/s00500-008-0392-y – volume: 6 start-page: 65 year: 1979 ident: 10.1016/j.asoc.2018.02.025_bib0305 article-title: A simple sequentially rejective multiple test procedure a simple sequentially rejective multiple test procedure publication-title: Scand. J. Stat. Scand. J. Stat. – year: 2014 ident: 10.1016/j.asoc.2018.02.025_bib0095 – start-page: X5000 year: 2004 ident: 10.1016/j.asoc.2018.02.025_bib0295 – volume: 114 start-page: 85 year: 2008 ident: 10.1016/j.asoc.2018.02.025_bib0090 article-title: Hybridizations of metaheuristics with branch & bound derivates publication-title: Stud. Comput. Intell. doi: 10.1007/978-3-540-78295-7_4 – volume: 100 start-page: 14 year: 2014 ident: 10.1016/j.asoc.2018.02.025_bib0025 article-title: Nature-Inspired algorithms: state-of-art, problems and prospects publication-title: Int. J. Comput. Appl. – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.asoc.2018.02.025_bib0205 article-title: Firefly algorithm, Stochastic test functions and design optimisation publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2010.032124 – start-page: 505 year: 2009 ident: 10.1016/j.asoc.2018.02.025_bib0250 article-title: A particle swarm optimizer with multi-stage linearly-decreasing inertia weight – volume: 2 start-page: 44 year: 2016 ident: 10.1016/j.asoc.2018.02.025_bib0220 article-title: Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block publication-title: Int. J. Cardiovasc. Acad. doi: 10.1016/j.ijcac.2015.12.001 – start-page: 2013 year: 2013 ident: 10.1016/j.asoc.2018.02.025_bib0195 article-title: On the performance of linear decreasing inertia weight particle swarm optimization for global optimization publication-title: Sci. World J. – volume: 29 start-page: 386 year: 2015 ident: 10.1016/j.asoc.2018.02.025_bib0115 article-title: Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2015.01.004 – year: 2001 ident: 10.1016/j.asoc.2018.02.025_bib0225 |
SSID | ssj0016928 |
Score | 2.631834 |
Snippet | •A hybrid metaheuristic optimization algorithm that combines strong points of firefly and particle swarm algorithms.•A local search strategy is proposed by... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 232 |
SubjectTerms | Firefly algorithm Hybrid optimization Particle swarm optimization |
Title | A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems |
URI | https://dx.doi.org/10.1016/j.asoc.2018.02.025 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalu-yy91j3KD7sNrImtuskx1JWulcZ2wq9Bcex125pWvpg9LLfPitxygajh0FISJBCrMiSnHySELqkxmtz4UpHSp84LDbLnYDQ2BGBCBNX-zGRkJz82OPdPrsbNAcV1C5zYQBWaW1_YdNza22vNKw0G9PRqPFiVh4BCxk3SglV4QeQwc580PLrrzXMw-Nh3l8ViB2gtokzBcZLGAkAvCvI63ZCu-y_nNMPh9PZQzs2UsSt4mH2UUVlB2i37MKA7aQ8RB8tPFxB3hXWZig6XWGRJXhqB4Hnn2I2xhNjGcY25RKL9G0yGy2GY2wiVizzO9pvgoYbav7noHacLYvfOSm2bWfmR6jfuXltdx3bQsGRlPOFQwRL4jgQjBLf7HyZeEnoa-4nTHGVLy-8mGnONRT2I00qZegm1FMmEBIQGh2jajbJ1AnC1IjST0IaaE2YpDog0iNSha5SgZnVvIa8UnaRtPXFoc1FGpVAsvcI5B2BvCOXmK1ZQ1drnmlRXWMjdbN8JdEvHYmM-d_Ad_pPvjO0DWcFvPEcVRezpbowIcgiruc6VkdbrfbzwxMcb--7vW9Knt6s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjXjjASYUmtiukwwMiIfKcwGkbsFxbCi0adUWoS78Kf4g58RBICEGJKQoQ5KznM-nu3Nydx_ADkOvLaSvPKVC6vEUtzsRZaknIxlnvglTqmxx8tW1aNzx82a9OQbvVS2MTat0tr-06YW1dldqDs1ar9Wq3eDOI-IxF6iUtit802VWXujRK-7bBgdnx7jIu5SentweNTxHLeApJsTQo5JnaRpJzmiIp1BlQRaHRoQZ10IXYXeQciOEsQ3vaJ0pFfsZCzQGCNKGDDjuOExyNBeWNmH_7TOvJBBxQehqZ-fZ6blKnTKpTCLkNp8sKhqFWn7un7zhFw93OgczLjQlh-Xbz8OYzhdgtqJ9IM4KLMLzIXkc2UIvYhA70x4RmWek51Ajg1fZ75AumqKOq_Eksv3Q7beGjx2CITJRxYjuIyRKW5KBIoue5C_l_6M2cTw3gyW4-xdgl2Ei7-Z6BQhDKMMsZpExlCtmIqoCqnTsax2hGRGrEFTYJco1NLe8Gu2kylx7SizeicU78Ske9VXY-5Tple08fn26Xi1J8k0pE_Q3v8it_VFuG6Yat1eXyeXZ9cU6TNs7ZW7lBkwM-y96E-OfYbpV6BuB-_9W8A9GDxde |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+firefly+and+particle+swarm+optimization+algorithm+for+computationally+expensive+numerical+problems&rft.jtitle=Applied+soft+computing&rft.au=Aydilek%2C+%C4%B0brahim+Berkan&rft.date=2018-05-01&rft.issn=1568-4946&rft.volume=66&rft.spage=232&rft.epage=249&rft_id=info:doi/10.1016%2Fj.asoc.2018.02.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2018_02_025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |