Cross-reactive CD4 + T cells enhance SARS-CoV-2 immune responses upon infection and vaccination
There is mounting evidence that immunological memory after infection with seasonal human coronaviruses (hCoVs) contributes to cross-protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Loyal et al . identified a universal immunodominant coronavirus peptide found within th...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 374; no. 6564; p. eabh1823 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
08.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is mounting evidence that immunological memory after infection with seasonal human coronaviruses (hCoVs) contributes to cross-protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Loyal
et al
. identified a universal immunodominant coronavirus peptide found within the fusion peptide domain of coronavirus spike protein. This peptide is recognized by CD4
+
T cells in 20% of unexposed individuals, more than 50% of SARS-CoV-2 convalescents, and 97% of subjects treated with the Pfizer–BioNTech COVID-19 vaccine. Although ubiquitous, these coronavirus-reactive T cells decreased with age, which may explain in part the increased susceptibility of elderly people to COVID-19. —STS
Preexisting spike–cross-reactive T cells correlate with higher neutralizing anti-spike protein antibodies in SARS-CoV-2 infection and vaccination
The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4
+
T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830–reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti–SARS-CoV-2-S1-IgG antibodies. Spike–cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike–cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses. |
---|---|
AbstractList | The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4
T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830–reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti–SARS-CoV-2-S1-IgG antibodies. Spike–cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike–cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses. Cross-reactive T cells aid in the fightThere is mounting evidence that immunological memory after infection with seasonal human coronaviruses (hCoVs) contributes to cross-protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Loyal et al. identified a universal immunodominant coronavirus peptide found within the fusion peptide domain of coronavirus spike protein. This peptide is recognized by CD4+ T cells in 20% of unexposed individuals, more than 50% of SARS-CoV-2 convalescents, and 97% of subjects treated with the Pfizer–BioNTech COVID-19 vaccine. Although ubiquitous, these coronavirus-reactive T cells decreased with age, which may explain in part the increased susceptibility of elderly people to COVID-19. —STSINTRODUCTIONThe clinical manifestations of COVID-19 vary from asymptomatic infection to respiratory failure. Severe disease courses are primarily associated with advanced age, immune dysfunctions, and comorbidities. Initially, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was thought to encounter an immunologically unprotected population. However, SARS-CoV-2 has significant homologies with endemic seasonal cold coronaviruses (HCoVs), and recent HCoV infection is associated with a less severe course of COVID-19, suggesting a protective role of cross-reactive immunity.RATIONALEThe preexistence of SARS-CoV-2–cross-reactive CD4+ T cells in unexposed individuals has been repeatedly demonstrated, but their contribution to host responses is an active area of investigation. Here, we investigated the functional role of preexisting SARS-CoV-2–cross-reactive and HCoV-reactive CD4+ T cells with high resolution.RESULTSWe demonstrate broad CD4+ T cell cross-reactivity in unexposed individuals, with the spike glycoprotein serving as one of the immunodominant targets. Although the N-terminal part of spike (covered by the S-I peptide pool) did not elicit cross-reactive T cell responses, the more HCoV-homologous C-terminal section (covered by the S-II peptide pool) induced T cell responses in unexposed donors. We identified a universal immunodominant coronavirus peptide located within the fusion peptide domain of spike (S816-830) recognized by CD4+ T cells in 20% of unexposed individuals, 50 to 60% of SARS-CoV-2 convalescents, and 97% of BNT162b2-vaccinated individuals. S816-830– and spike–cross-reactive T cells were recruited in immune responses to SARS-CoV-2 infection and BNT162b2 COVID-19 mRNA vaccination. S816-830-reactive T cells initially contributed up to 100% of the S-II–reactive CD4+ T cells but their proportion decreased during the course of the S-II–specific immune response. Upon primary vaccination, cross-reactive cellular and humoral immunity exhibited kinetics typical for secondary immune responses. The frequencies of preexisting cross-reactive T cells correlated positively with functional avidity of the T cell receptor, as well as with the induction and stabilization of anti–SARS-CoV-2-S1-IgG and neutralizing antibodies. Although HCoV-responsive T cells are ubiquitous, their frequencies and the frequencies of SARS-CoV-2–cross-reactive CD4+ T cells decreased with age, consistent with an increased vulnerability of the elderly to severe COVID-19 disease.CONCLUSIONPreexisting cross-reactive CD4+ T cells enhance immune responses in SARS-CoV-2 infection and BNT162b2 vaccination. Because these cells are greatly diminished in the elderly, our results suggest that their decrease may contribute to the increased susceptibility of this population to severe COVID-19. Preexisting cross-reactive immunity may be responsible for the unexpectedly rapid induction of protective immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic and mild COVID-19 disease courses.The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4+ T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830–reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti–SARS-CoV-2-S1-IgG antibodies. Spike–cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike–cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses. The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4+ T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830–reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti–SARS-CoV-2-S1-IgG antibodies. Spike–cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike–cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses.The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4+ T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830–reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti–SARS-CoV-2-S1-IgG antibodies. Spike–cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike–cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses. There is mounting evidence that immunological memory after infection with seasonal human coronaviruses (hCoVs) contributes to cross-protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Loyal et al . identified a universal immunodominant coronavirus peptide found within the fusion peptide domain of coronavirus spike protein. This peptide is recognized by CD4 + T cells in 20% of unexposed individuals, more than 50% of SARS-CoV-2 convalescents, and 97% of subjects treated with the Pfizer–BioNTech COVID-19 vaccine. Although ubiquitous, these coronavirus-reactive T cells decreased with age, which may explain in part the increased susceptibility of elderly people to COVID-19. —STS Preexisting spike–cross-reactive T cells correlate with higher neutralizing anti-spike protein antibodies in SARS-CoV-2 infection and vaccination The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4 + T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830–reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti–SARS-CoV-2-S1-IgG antibodies. Spike–cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike–cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses. |
Author | Wenschuh, Holger Sawitzki, Birgit Corman, Victor M. Dingeldey, Manuela Schnatbaum, Karsten Müller, Marcel A. Giesecke-Thiel, Claudia Sander, Leif-Erik Meyer-Arndt, Lil Hocke, Andreas Rosowski, Jennifer Kadler, Shirin Paul, Friedemann Kern, Florian Voigt, Sebastian Loyal, Lucie Miltenyi, Stefan Mall, Marcus A. Drosten, Christian Gürcan, Kübrah Dörfler, Friederike Lachman, Nils Frentsch, Marco Lauster, Roland Schwarz, Tatjana Uyar-Aydin, Zehra Reimer, Ulf Thiel, Andreas Kurth, Florian Röhmel, Jobst Mangold, Maike Eckey, Maren Hippenstiel, Stefan Unger, Clara Braun, Julian Henze, Larissa Kruse, Beate |
Author_xml | – sequence: 1 givenname: Lucie orcidid: 0000-0001-5738-4437 surname: Loyal fullname: Loyal, Lucie organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 2 givenname: Julian orcidid: 0000-0002-7788-8154 surname: Braun fullname: Braun, Julian organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 3 givenname: Larissa orcidid: 0000-0002-6540-4263 surname: Henze fullname: Henze, Larissa organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 4 givenname: Beate surname: Kruse fullname: Kruse, Beate organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 5 givenname: Manuela orcidid: 0000-0001-8412-3910 surname: Dingeldey fullname: Dingeldey, Manuela organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 6 givenname: Ulf orcidid: 0000-0002-3375-6889 surname: Reimer fullname: Reimer, Ulf organization: JPT Peptide Technologies GmbH, Berlin, Germany – sequence: 7 givenname: Florian orcidid: 0000-0002-0368-8408 surname: Kern fullname: Kern, Florian organization: JPT Peptide Technologies GmbH, Berlin, Germany., Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK – sequence: 8 givenname: Tatjana orcidid: 0000-0002-6054-4750 surname: Schwarz fullname: Schwarz, Tatjana organization: Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 9 givenname: Maike orcidid: 0000-0002-4547-7246 surname: Mangold fullname: Mangold, Maike organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 10 givenname: Clara orcidid: 0000-0003-3760-4791 surname: Unger fullname: Unger, Clara organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 11 givenname: Friederike surname: Dörfler fullname: Dörfler, Friederike organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 12 givenname: Shirin orcidid: 0000-0001-9281-4770 surname: Kadler fullname: Kadler, Shirin organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany – sequence: 13 givenname: Jennifer surname: Rosowski fullname: Rosowski, Jennifer organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany – sequence: 14 givenname: Kübrah surname: Gürcan fullname: Gürcan, Kübrah organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany – sequence: 15 givenname: Zehra orcidid: 0000-0002-6042-8311 surname: Uyar-Aydin fullname: Uyar-Aydin, Zehra organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany – sequence: 16 givenname: Marco surname: Frentsch fullname: Frentsch, Marco organization: Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany., Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 17 givenname: Florian orcidid: 0000-0002-3807-473X surname: Kurth fullname: Kurth, Florian organization: Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany., Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany – sequence: 18 givenname: Karsten orcidid: 0000-0002-2840-6294 surname: Schnatbaum fullname: Schnatbaum, Karsten organization: JPT Peptide Technologies GmbH, Berlin, Germany – sequence: 19 givenname: Maren orcidid: 0000-0002-1431-1569 surname: Eckey fullname: Eckey, Maren organization: JPT Peptide Technologies GmbH, Berlin, Germany – sequence: 20 givenname: Stefan orcidid: 0000-0002-5146-1064 surname: Hippenstiel fullname: Hippenstiel, Stefan organization: Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 21 givenname: Andreas orcidid: 0000-0002-6935-8612 surname: Hocke fullname: Hocke, Andreas organization: Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 22 givenname: Marcel A. orcidid: 0000-0003-2242-5117 surname: Müller fullname: Müller, Marcel A. organization: Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany., Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany., German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany – sequence: 23 givenname: Birgit orcidid: 0000-0001-8166-8579 surname: Sawitzki fullname: Sawitzki, Birgit organization: Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 24 givenname: Stefan surname: Miltenyi fullname: Miltenyi, Stefan organization: Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany – sequence: 25 givenname: Friedemann orcidid: 0000-0002-6378-0070 surname: Paul fullname: Paul, Friedemann organization: Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité – Universitätsmedizin Berlin, Berlin, Germany., Clinical Neuroimmunology, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 26 givenname: Marcus A. orcidid: 0000-0002-4057-2199 surname: Mall fullname: Mall, Marcus A. organization: Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany., German Center for Lung Research, Associated Partner, Berlin, Germany – sequence: 27 givenname: Holger surname: Wenschuh fullname: Wenschuh, Holger organization: JPT Peptide Technologies GmbH, Berlin, Germany – sequence: 28 givenname: Sebastian orcidid: 0000-0003-1544-9903 surname: Voigt fullname: Voigt, Sebastian organization: Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany., Institute for Virology, Universitätsklinikum Essen, Essen, Germany – sequence: 29 givenname: Christian orcidid: 0000-0001-7923-0519 surname: Drosten fullname: Drosten, Christian organization: Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany., Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany., German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany – sequence: 30 givenname: Roland surname: Lauster fullname: Lauster, Roland organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany – sequence: 31 givenname: Nils orcidid: 0000-0002-2081-3098 surname: Lachman fullname: Lachman, Nils organization: Institute for Transfusion Medicine, Tissue Typing Laboratory, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 32 givenname: Leif-Erik orcidid: 0000-0002-0476-9947 surname: Sander fullname: Sander, Leif-Erik organization: Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 33 givenname: Victor M. orcidid: 0000-0002-3605-0136 surname: Corman fullname: Corman, Victor M. organization: Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany., Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany., German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany – sequence: 34 givenname: Jobst orcidid: 0000-0002-1535-8852 surname: Röhmel fullname: Röhmel, Jobst organization: Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 35 givenname: Lil orcidid: 0000-0002-7909-020X surname: Meyer-Arndt fullname: Meyer-Arndt, Lil organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany., Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité – Universitätsmedizin Berlin, Berlin, Germany., Clinical Neuroimmunology, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany., Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 36 givenname: Andreas orcidid: 0000-0002-5515-4002 surname: Thiel fullname: Thiel, Andreas organization: Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany., Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 37 givenname: Claudia orcidid: 0000-0002-5927-7018 surname: Giesecke-Thiel fullname: Giesecke-Thiel, Claudia organization: Max Planck Institute for Molecular Genetics, Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34465633$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLxDAUhYMoOj7W7iTgRpBq3rZLqU8QBF_bkKY3GJmmY9IO-O9NdXQhuLoJ-c7h5pxttB76AAjtU3JCKVOnyXoIFk5M80pLxtfQjJJKFhUjfB3NCOGqKMmZ3ELbKb0Rkt8qvom2uBBKKs5nSNexT6mIYOzgl4DrC4GP8RO2MJ8nDOHVZHv8eP7wWNT9S8Gw77oxAI6QFn1IkPCYJ_bBQTbIJxNavDTW-mCm-y7acGaeYG81d9Dz1eVTfVPc3V_f1ud3heVKDQWrGkcdCMFcw0QrSGVLaUrVsFIS0aqSVUA4Y4RS5WjrqFVlw1pSMTCt447voKNv30Xs30dIg-58mj5hAvRj0kxmDyk5kRk9_IO-9WMMeTvNFM9xibNqog5W1Nh00OpF9J2JH_onugycfgN2SjCC-0Uo0VM5elWOXpWTFfKPwvrhK6UhGj__V_cJchCUYg |
CitedBy_id | crossref_primary_10_1016_j_virusres_2022_199024 crossref_primary_10_3389_fimmu_2023_1123158 crossref_primary_10_7554_eLife_89999_4 crossref_primary_10_1016_j_immuni_2022_08_008 crossref_primary_10_3324_haematol_2021_280300 crossref_primary_10_1038_s41423_022_00857_2 crossref_primary_10_1136_bmjmed_2022_000468 crossref_primary_10_1016_j_cels_2022_12_002 crossref_primary_10_1038_s41467_022_32989_4 crossref_primary_10_15252_embr_202154073 crossref_primary_10_7554_eLife_82050 crossref_primary_10_1186_s12929_022_00833_y crossref_primary_10_3390_vaccines12060588 crossref_primary_10_1016_j_clim_2023_109712 crossref_primary_10_1016_j_immuni_2022_08_003 crossref_primary_10_1126_sciimmunol_abn3127 crossref_primary_10_1016_j_crstbi_2024_100148 crossref_primary_10_1111_imm_13487 crossref_primary_10_3389_fmicb_2023_1196721 crossref_primary_10_1016_j_xcrm_2023_101088 crossref_primary_10_1038_s41467_024_47451_w crossref_primary_10_3390_vaccines11091403 crossref_primary_10_1093_cid_ciac310 crossref_primary_10_3389_fimmu_2022_800070 crossref_primary_10_3390_vaccines10071142 crossref_primary_10_4110_in_2023_23_e19 crossref_primary_10_1038_s41591_022_01724_3 crossref_primary_10_1002_jmv_28642 crossref_primary_10_3390_v15010175 crossref_primary_10_1016_j_jvacx_2022_100165 crossref_primary_10_1016_j_celrep_2025_115314 crossref_primary_10_1016_j_immuni_2022_04_010 crossref_primary_10_1038_s41564_021_01046_z crossref_primary_10_1021_acs_biochem_3c00335 crossref_primary_10_1016_j_jiac_2023_11_012 crossref_primary_10_1007_s00428_022_03319_2 crossref_primary_10_3390_vaccines11111705 crossref_primary_10_1172_JCI156083 crossref_primary_10_1002_jmv_29739 crossref_primary_10_4049_immunohorizons_2200003 crossref_primary_10_1016_j_idc_2025_02_001 crossref_primary_10_1016_j_isci_2023_108728 crossref_primary_10_3390_vaccines10071035 crossref_primary_10_1093_infdis_jiae002 crossref_primary_10_1128_mbio_02722_23 crossref_primary_10_1038_s41598_024_77969_4 crossref_primary_10_1016_j_celrep_2022_110952 crossref_primary_10_1128_msphere_00279_22 crossref_primary_10_1002_ijc_35096 crossref_primary_10_1128_jvi_01191_22 crossref_primary_10_1016_j_immuni_2022_07_005 crossref_primary_10_1016_j_it_2023_01_005 crossref_primary_10_1038_s41467_023_41761_1 crossref_primary_10_1002_jmv_29877 crossref_primary_10_3389_fmicb_2021_812729 crossref_primary_10_1016_j_celrep_2021_110169 crossref_primary_10_1136_bmjopen_2022_065221 crossref_primary_10_4049_jimmunol_2100990 crossref_primary_10_1016_j_vaccine_2025_126787 crossref_primary_10_1016_j_transproceed_2022_02_016 crossref_primary_10_1172_JCI163614 crossref_primary_10_3389_fimmu_2023_1092910 crossref_primary_10_1016_j_arcmed_2022_10_007 crossref_primary_10_3389_fimmu_2022_904686 crossref_primary_10_3389_fcimb_2022_978440 crossref_primary_10_3390_v14010078 crossref_primary_10_1038_s41577_021_00631_x crossref_primary_10_1016_j_ebiom_2024_105114 crossref_primary_10_1038_s41541_023_00801_z crossref_primary_10_3390_ijms24054371 crossref_primary_10_1073_pnas_2418170122 crossref_primary_10_3390_ijms231810679 crossref_primary_10_3389_fimmu_2023_1231087 crossref_primary_10_3389_fimmu_2023_1111629 crossref_primary_10_4049_jimmunol_2101052 crossref_primary_10_3390_vaccines11020408 crossref_primary_10_3389_fimmu_2023_1142573 crossref_primary_10_1111_mec_16983 crossref_primary_10_1016_j_immuno_2024_100034 crossref_primary_10_1093_bib_bbae183 crossref_primary_10_3389_fimmu_2024_1501908 crossref_primary_10_1136_jnnp_2022_329395 crossref_primary_10_3389_fimmu_2023_1056525 crossref_primary_10_2139_ssrn_4189020 crossref_primary_10_1134_S0006350923050202 crossref_primary_10_3389_fimmu_2022_926318 crossref_primary_10_3390_vaccines9121503 crossref_primary_10_4049_jimmunol_210_Supp_251_19 crossref_primary_10_1111_all_15441 crossref_primary_10_1128_jvi_01685_24 crossref_primary_10_3389_fimmu_2025_1501704 crossref_primary_10_3390_jcm12113640 crossref_primary_10_1126_sciimmunol_add3899 crossref_primary_10_3389_fimmu_2023_1166765 crossref_primary_10_1038_s41467_021_27040_x crossref_primary_10_7554_eLife_89999 crossref_primary_10_1038_s41392_021_00796_w crossref_primary_10_1002_advs_202303568 crossref_primary_10_3390_diagnostics13172722 crossref_primary_10_1371_journal_ppat_1011032 crossref_primary_10_3390_vaccines12101126 crossref_primary_10_1093_cid_ciac057 crossref_primary_10_1186_s12879_022_07696_6 crossref_primary_10_3390_microorganisms10061191 crossref_primary_10_1134_S0006350922020166 crossref_primary_10_3389_fimmu_2022_1062210 crossref_primary_10_1016_j_ccm_2024_02_019 crossref_primary_10_1016_j_chom_2022_07_012 crossref_primary_10_1093_infdis_jiac355 crossref_primary_10_1038_s41586_021_04186_8 crossref_primary_10_3390_biomedicines12030564 crossref_primary_10_1172_jci_insight_157031 crossref_primary_10_3389_fimmu_2022_1041185 crossref_primary_10_3389_fimmu_2022_929849 crossref_primary_10_2139_ssrn_4100726 crossref_primary_10_3389_fimmu_2023_1251067 crossref_primary_10_1016_j_isci_2022_105904 crossref_primary_10_1172_jci_insight_157836 crossref_primary_10_1002_cti2_1410 crossref_primary_10_1073_pnas_2108395118 crossref_primary_10_1055_a_1582_2327 crossref_primary_10_1136_rmdopen_2022_002293 crossref_primary_10_3390_vaccines10081367 crossref_primary_10_3389_fimmu_2022_1095129 crossref_primary_10_1111_imr_13091 crossref_primary_10_3389_fimmu_2023_1069968 crossref_primary_10_3389_fimmu_2023_1182504 crossref_primary_10_1038_s41590_022_01175_5 crossref_primary_10_3390_v16050801 crossref_primary_10_1002_cbin_12130 crossref_primary_10_3390_microorganisms12030617 crossref_primary_10_1128_jvi_00509_22 crossref_primary_10_1093_oxfimm_iqac003 crossref_primary_10_1038_s41467_023_36250_4 crossref_primary_10_1038_s41541_024_01043_3 crossref_primary_10_1016_S2666_5247_22_00295_6 crossref_primary_10_1016_j_cell_2021_12_026 crossref_primary_10_1016_j_ebiom_2022_104048 crossref_primary_10_1128_jvi_01350_24 crossref_primary_10_3389_fimmu_2022_1004656 crossref_primary_10_3389_fimmu_2022_816220 crossref_primary_10_1073_pnas_2220320120 crossref_primary_10_1093_intimm_dxad014 crossref_primary_10_1080_21505594_2024_2421987 crossref_primary_10_1146_annurev_immunol_101721_061120 crossref_primary_10_3389_fpubh_2022_842303 crossref_primary_10_1111_imr_13089 crossref_primary_10_1038_s41467_024_45043_2 crossref_primary_10_1016_j_celrep_2022_111013 crossref_primary_10_3389_fimmu_2023_1146196 crossref_primary_10_1186_s12879_023_08805_9 crossref_primary_10_3389_fimmu_2024_1459593 crossref_primary_10_3390_vaccines10060904 crossref_primary_10_1111_apm_13284 crossref_primary_10_1371_journal_pone_0276241 crossref_primary_10_1016_j_heliyon_2023_e20192 crossref_primary_10_3389_fimmu_2023_1291048 crossref_primary_10_7759_cureus_26486 crossref_primary_10_1016_j_chom_2023_12_003 crossref_primary_10_7554_eLife_85080 crossref_primary_10_1016_j_xcrm_2022_100562 crossref_primary_10_1007_s41999_023_00902_x crossref_primary_10_1016_j_celrep_2022_111022 crossref_primary_10_1016_j_celrep_2022_111020 crossref_primary_10_1038_s41590_022_01292_1 crossref_primary_10_3389_fpubh_2024_1437063 crossref_primary_10_1038_s41598_022_08573_7 crossref_primary_10_3390_vaccines13030268 crossref_primary_10_1007_s10654_022_00925_x crossref_primary_10_3389_fimmu_2022_835104 crossref_primary_10_3390_cells11010067 crossref_primary_10_4049_jimmunol_2200920 crossref_primary_10_1016_j_heliyon_2024_e37928 crossref_primary_10_1038_s41541_025_01076_2 crossref_primary_10_1016_j_xcrm_2023_100971 crossref_primary_10_1016_j_xcrm_2022_100793 crossref_primary_10_3389_fimmu_2022_1033770 crossref_primary_10_1080_22221751_2022_2049984 crossref_primary_10_1089_vim_2022_0186 crossref_primary_10_3389_fimmu_2022_942192 crossref_primary_10_1038_s42003_023_04755_9 crossref_primary_10_1038_s43587_022_00292_y crossref_primary_10_1186_s41232_022_00239_1 crossref_primary_10_1128_mbio_03479_24 crossref_primary_10_1126_sciimmunol_abl5344 crossref_primary_10_3389_fimmu_2021_750448 crossref_primary_10_1111_pai_14060 crossref_primary_10_1172_jci_insight_166833 crossref_primary_10_1016_j_immuni_2022_05_004 crossref_primary_10_1016_j_isci_2023_107394 crossref_primary_10_1172_jci_insight_157699 crossref_primary_10_1016_j_isci_2024_109992 crossref_primary_10_1016_j_cca_2022_05_025 crossref_primary_10_1016_j_kint_2021_11_024 crossref_primary_10_1038_s41577_022_00809_x crossref_primary_10_1016_j_isci_2022_104959 crossref_primary_10_1038_s41590_022_01351_7 crossref_primary_10_31857_S0006302923050277 crossref_primary_10_1126_sciimmunol_abk0894 crossref_primary_10_1038_s41423_023_01116_8 crossref_primary_10_1016_j_clicom_2021_12_001 crossref_primary_10_1186_s41232_022_00242_6 crossref_primary_10_3389_fimmu_2023_1133225 crossref_primary_10_3390_v14102293 crossref_primary_10_1016_j_jaci_2023_10_012 crossref_primary_10_3389_fimmu_2022_1031254 |
Cites_doi | 10.1084/jem.20091225 10.1038/s41467-020-18450-4 10.1016/j.cell.2021.02.010 10.4049/jimmunol.179.9.5877 10.1016/j.immuni.2020.11.016 10.1016/j.immuni.2020.10.006 10.1038/s41586-020-2521-4 10.3389/fimmu.2021.635942 10.1038/s41586-020-2571-7 10.1172/JCI143380 10.1038/s41586-020-2550-z 10.1016/S0140-6736(21)00448-7 10.1126/science.abd4250 10.3389/fimmu.2012.00078 10.1016/S1074-7613(00)00066-2 10.1084/jem.20102477 10.1038/s41467-020-16638-2 10.1038/s41586-020-2598-9 10.1007/s15010-020-01464-x 10.1038/s41590-020-00808-x 10.3201/eid2607.200841 10.1186/1471-2105-11-568 10.1038/s41586-020-2196-x 10.1016/j.xcrm.2021.100204 10.1016/j.jmb.2017.10.017 10.1172/JCI146927 10.1038/s41577-020-00460-4 10.1016/j.jbi.2019.103208 10.1038/s42003-021-01743-9 10.1371/journal.pcbi.1000048 10.1126/science.abg8663 10.1126/sciadv.abf2467 10.1101/2020.11.24.20216663 10.1056/NEJMoa2101544 10.1182/blood-2008-02-139147 10.1016/j.celrep.2021.108728 10.1038/s41598-020-75972-z 10.1038/s41564-020-00789-5 10.7554/eLife.53704 10.1093/cid/ciaa1803 10.1101/2021.03.01.21252652 10.1182/blood-2008-02-139154 10.1038/nri3567 10.1126/science.abe1107 10.1126/sciimmunol.abd2071 10.1038/s41586-021-03681-2 10.1126/science.abd3871 10.1016/j.cell.2020.08.017 10.1016/j.jbi.2008.08.010 10.1016/j.cell.2020.05.015 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abh1823 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
ExternalDocumentID | 34465633 10_1126_science_abh1823 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c366t-29bf1fe442fb24d409c85a86b28504d6829e03220116f1df1c68b2d092eadf3f3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Tue Aug 05 11:23:59 EDT 2025 Fri Jul 25 19:22:53 EDT 2025 Mon Jul 21 06:04:01 EDT 2025 Tue Jul 01 01:35:36 EDT 2025 Thu Apr 24 23:08:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6564 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-29bf1fe442fb24d409c85a86b28504d6829e03220116f1df1c68b2d092eadf3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6378-0070 0000-0003-1544-9903 0000-0002-6054-4750 0000-0002-6935-8612 0000-0002-6540-4263 0000-0002-2081-3098 0000-0002-3807-473X 0000-0002-1431-1569 0000-0001-7923-0519 0000-0002-4547-7246 0000-0001-5738-4437 0000-0002-0368-8408 0000-0002-2840-6294 0000-0003-2242-5117 0000-0002-6042-8311 0000-0002-7788-8154 0000-0001-9281-4770 0000-0002-0476-9947 0000-0002-3375-6889 0000-0002-4057-2199 0000-0002-1535-8852 0000-0002-5146-1064 0000-0002-3605-0136 0000-0001-8412-3910 0000-0002-5515-4002 0000-0002-7909-020X 0000-0002-5927-7018 0000-0003-3760-4791 0000-0001-8166-8579 |
OpenAccessLink | https://www.science.org/doi/pdf/10.1126/science.abh1823 |
PMID | 34465633 |
PQID | 2638074795 |
PQPubID | 1256 |
ParticipantIDs | proquest_miscellaneous_2568255305 proquest_journals_2638074795 pubmed_primary_34465633 crossref_primary_10_1126_science_abh1823 crossref_citationtrail_10_1126_science_abh1823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-08 2021-Oct-08 20211008 |
PublicationDateYYYYMMDD | 2021-10-08 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_31_2 doi: 10.1084/jem.20091225 – ident: e_1_3_3_36_2 doi: 10.1038/s41467-020-18450-4 – ident: e_1_3_3_10_2 doi: 10.1016/j.cell.2021.02.010 – ident: e_1_3_3_33_2 doi: 10.4049/jimmunol.179.9.5877 – ident: e_1_3_3_9_2 doi: 10.1016/j.immuni.2020.11.016 – ident: e_1_3_3_12_2 doi: 10.1016/j.immuni.2020.10.006 – ident: e_1_3_3_2_2 doi: 10.1038/s41586-020-2521-4 – ident: e_1_3_3_16_2 doi: 10.3389/fimmu.2021.635942 – ident: e_1_3_3_19_2 doi: 10.1038/s41586-020-2571-7 – ident: e_1_3_3_18_2 doi: 10.1172/JCI143380 – ident: e_1_3_3_7_2 doi: 10.1038/s41586-020-2550-z – ident: e_1_3_3_37_2 doi: 10.1016/S0140-6736(21)00448-7 – ident: e_1_3_3_25_2 doi: 10.1126/science.abd4250 – ident: e_1_3_3_27_2 doi: 10.3389/fimmu.2012.00078 – ident: e_1_3_3_23_2 doi: 10.1016/S1074-7613(00)00066-2 – ident: e_1_3_3_32_2 doi: 10.1084/jem.20102477 – ident: e_1_3_3_43_2 doi: 10.1038/s41467-020-16638-2 – ident: e_1_3_3_4_2 doi: 10.1038/s41586-020-2598-9 – ident: e_1_3_3_45_2 doi: 10.1007/s15010-020-01464-x – ident: e_1_3_3_6_2 doi: 10.1038/s41590-020-00808-x – ident: e_1_3_3_47_2 doi: 10.3201/eid2607.200841 – ident: e_1_3_3_49_2 doi: 10.1186/1471-2105-11-568 – ident: e_1_3_3_46_2 doi: 10.1038/s41586-020-2196-x – ident: e_1_3_3_30_2 doi: 10.1016/j.xcrm.2021.100204 – ident: e_1_3_3_42_2 doi: 10.1016/j.jmb.2017.10.017 – ident: e_1_3_3_29_2 doi: 10.1172/JCI146927 – ident: e_1_3_3_35_2 doi: 10.1038/s41577-020-00460-4 – ident: e_1_3_3_50_2 doi: 10.1016/j.jbi.2019.103208 – ident: e_1_3_3_11_2 doi: 10.1038/s42003-021-01743-9 – ident: e_1_3_3_48_2 doi: 10.1371/journal.pcbi.1000048 – ident: e_1_3_3_41_2 doi: 10.1126/science.abg8663 – ident: e_1_3_3_44_2 doi: 10.1126/sciadv.abf2467 – ident: e_1_3_3_24_2 doi: 10.1101/2020.11.24.20216663 – ident: e_1_3_3_39_2 doi: 10.1056/NEJMoa2101544 – ident: e_1_3_3_22_2 doi: 10.1182/blood-2008-02-139147 – ident: e_1_3_3_34_2 doi: 10.1016/j.celrep.2021.108728 – ident: e_1_3_3_3_2 doi: 10.1038/s41598-020-75972-z – ident: e_1_3_3_17_2 doi: 10.1038/s41564-020-00789-5 – ident: e_1_3_3_26_2 doi: 10.7554/eLife.53704 – ident: e_1_3_3_28_2 doi: 10.1093/cid/ciaa1803 – ident: e_1_3_3_40_2 doi: 10.1101/2021.03.01.21252652 – ident: e_1_3_3_21_2 doi: 10.1182/blood-2008-02-139154 – ident: e_1_3_3_20_2 doi: 10.1038/nri3567 – ident: e_1_3_3_13_2 doi: 10.1126/science.abe1107 – ident: e_1_3_3_14_2 doi: 10.1126/sciimmunol.abd2071 – ident: e_1_3_3_38_2 doi: 10.1038/s41586-021-03681-2 – ident: e_1_3_3_8_2 doi: 10.1126/science.abd3871 – ident: e_1_3_3_15_2 doi: 10.1016/j.cell.2020.08.017 – ident: e_1_3_3_51_2 doi: 10.1016/j.jbi.2008.08.010 – ident: e_1_3_3_5_2 doi: 10.1016/j.cell.2020.05.015 |
SSID | ssj0009593 |
Score | 2.6826828 |
Snippet | There is mounting evidence that immunological memory after infection with seasonal human coronaviruses (hCoVs) contributes to cross-protection against severe... The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we... Cross-reactive T cells aid in the fightThere is mounting evidence that immunological memory after infection with seasonal human coronaviruses (hCoVs)... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | eabh1823 |
SubjectTerms | Adult Age Age Factors Aged Aged, 80 and over Antibodies Asymptomatic Asymptomatic Diseases Asymptomatic infection Avidity BNT162 Vaccine CD3 Complex - immunology CD4 antigen CD4-Positive T-Lymphocytes - immunology Coronaviridae Coronaviruses COVID-19 COVID-19 - immunology COVID-19 vaccines COVID-19 Vaccines - immunology Cross Reactions Cross-protection Cross-reactivity Female Glycoproteins Homology Humans Humoral immunity Immune response Immune system Immunity Immunization Immunodominant Epitopes - immunology Immunoglobulin G Immunological memory Immunology Infections Kinetics Logical Thinking Lymphocytes Lymphocytes T Male Memory cells Middle Aged mRNA Older people Open Reading Frames Peptide Fragments - immunology Peptides Respiratory diseases Respiratory failure SARS-CoV-2 - genetics SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein Spike Glycoprotein, Coronavirus - immunology Spike protein T cell receptors Vaccination Vaccines Viral diseases Young Adult |
Title | Cross-reactive CD4 + T cells enhance SARS-CoV-2 immune responses upon infection and vaccination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34465633 https://www.proquest.com/docview/2638074795 https://www.proquest.com/docview/2568255305 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZymAvY-1-NFs3NNigwzjYkqzYj0naELasg9UZeZqxZZkGhlOaeLD-C_und7JkRxkpdHsxQZHsRPf5dDrd3YfQu5CmlIogdwfcoy4bSN_NBjJwaRQUQRoNgqJ2ZX--4NM5-7gIFp3ObytqqdpkfXG7N6_kf6QKbSBXlSX7D5JtbwoN8BnkC1eQMFzvJeOxWuJcMPtqpeWMz9h7MnJiR3nj144sr-p8gMvh10t3vPrmEmepskEUUUodGCvXTnVdhzrqgCwdl_wzFWJZbgVmLNdGCYBF2p7yWLJtwxWHOqigiTEwwyyHw0w5LGp3QCWW9pl-VTYJ21vETmV5q6mgFVniul1DPt1UmhFyBGuJtF0XxMTOWdrWU0SRxNMaTu5pMyqaaiYfg0UwQZmlc2WaXcEuie5fECwKS9m3eu6W3r74kkzms1kSny_iB-iAwJ6DdNHBcHQ2mvxdw7n9haZSlJWD1Txg18i5Y-dSWzDxE_TYbD3wUOPoEHVkeYQeajLSX0fo0IhqjU9NLfIPT9H3XYhhgJiDY1wDDBuA4S3AsAYYbgGGFcBwCzAMAMMWwJ6h-eQ8Hk9dQ8nhCsr5xiVRVviFZIwUGWE58yIRBmnIMxIGHst5SCLpwRqhjvcKPy98wcOM5F5EQGMVtKDPUbdclfIYYZ6FIuS5SH2ZqqKYIZOSFGFOPU_AvWkP9Zs5TISpV69oU34k9b6V8MRMemImvYdO2wHXulTL3V1PGqEk5n1eJ4Qr8gU2iIIeett-DdpWzWlaylUFfQL4i4ppC_q80MJsn0Xr2oOUvrzH6Ffo0faFOEHdzU0lX4N1u8neGNT9Aazzptc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-reactive+CD4%2B+T+cells+enhance+SARS-CoV-2+immune+responses+upon+infection+and+vaccination&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Loyal%2C+Lucie&rft.au=Braun%2C+Julian&rft.au=Henze%2C+Larissa&rft.au=Kruse%2C+Beate&rft.date=2021-10-08&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=374&rft.issue=6564&rft.spage=eabh1823&rft_id=info:doi/10.1126%2Fscience.abh1823&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |