Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy
Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecastin...
Saved in:
Published in | Renewable & sustainable energy reviews Vol. 162; p. 112473 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecasting model assisted with a transfer learning strategy is proposed. The hybrid model, named the attention-dilate convolution neural network-bidirectional long short-term memory network, consists of three steps. Step 1 - Input reconstruction: the historical power and meteorological factors are reconstructed as new inputs based on their relevance to the forecast by introducing a long short-term memory-based attention mechanism; Step 2 - Feature extraction: a hybrid structure is applied to extract spatial and temporal features from new inputs in parallel; Step 3 - Feature mapping: the extracted features are mapped into the forecasted photovoltaic output. Furthermore, to address the modeling for new sites, a transfer learning strategy that fine-tunes the pre-trained model is proposed in this work. The structure by step-wise division allows fine-tuning to be applied to the necessary parts rather than the entire model. Subsequently, the data from the actual photovoltaic system was acquired to validate the proposed model and transfer learning strategy. The proposed model showed significantly superior performance than the other models in the tests, and the parameter transferring not only makes up for the data shortage but also effectively accelerates the model training. With the transfer learning strategy, the maximum improvement in accuracy and training efficiency reached 69.51% and 71.42%, respectively.
•A hybrid model incorporating transfer learning for photovoltaic power forecasting is proposed.•The model consists of input reconstruction, parallel feature extraction and mapping.•Transfer learning is applied to model for newly built PV sites, addressing the data dependence and training efficiency. |
---|---|
AbstractList | Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecasting model assisted with a transfer learning strategy is proposed. The hybrid model, named the attention-dilate convolution neural network-bidirectional long short-term memory network, consists of three steps. Step 1 - Input reconstruction: the historical power and meteorological factors are reconstructed as new inputs based on their relevance to the forecast by introducing a long short-term memory-based attention mechanism; Step 2 - Feature extraction: a hybrid structure is applied to extract spatial and temporal features from new inputs in parallel; Step 3 - Feature mapping: the extracted features are mapped into the forecasted photovoltaic output. Furthermore, to address the modeling for new sites, a transfer learning strategy that fine-tunes the pre-trained model is proposed in this work. The structure by step-wise division allows fine-tuning to be applied to the necessary parts rather than the entire model. Subsequently, the data from the actual photovoltaic system was acquired to validate the proposed model and transfer learning strategy. The proposed model showed significantly superior performance than the other models in the tests, and the parameter transferring not only makes up for the data shortage but also effectively accelerates the model training. With the transfer learning strategy, the maximum improvement in accuracy and training efficiency reached 69.51% and 71.42%, respectively.
•A hybrid model incorporating transfer learning for photovoltaic power forecasting is proposed.•The model consists of input reconstruction, parallel feature extraction and mapping.•Transfer learning is applied to model for newly built PV sites, addressing the data dependence and training efficiency. |
ArticleNumber | 112473 |
Author | Yang, Kuo Zhang, Shujing Tang, Yugui Zhang, Zhen |
Author_xml | – sequence: 1 givenname: Yugui surname: Tang fullname: Tang, Yugui organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China – sequence: 2 givenname: Kuo surname: Yang fullname: Yang, Kuo organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China – sequence: 3 givenname: Shujing surname: Zhang fullname: Zhang, Shujing organization: State Grid Intelligence Technology Co., Ltd., Shandong, China – sequence: 4 givenname: Zhen orcidid: 0000-0001-6966-0208 surname: Zhang fullname: Zhang, Zhen email: zhangzhen_ta@shu.edu.cn organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China |
BookMark | eNp9kM1OwzAMgCMEEtvgBTjlBVry06Yt4jJN_EmT4ADnKk2cLVOXVEk1tLcn1RAHDjvZsv1Z9jdHl847QOiOkpwSKu53eYgQckYYyyllRcUv0IzWVZMR0ZDLlHNRZIQzeo3mMe4IoWVd8RmCj60f_cH3o7QKD_4bAjY-gJJxtG7zgJd4e-yC1VgDDLgHGVyq473X0GPrlA-DD3KaxWOQLpq04G8qptIIm-MNujKyj3D7Gxfo6_npc_Ward9f3lbLdaa4EGPGeNWUouNgjC5lqTsoVUGE6YipiKgUNQ0Y0TVcNh0zhYC6qiUwbnTRAakKvkD1aa8KPsYAplV2TMd5lw6xfUtJO-lqd-2kq510tSddCWX_0CHYvQzH89DjCYL01MGmblQWnAJtk8Kx1d6ew38AyDGJlA |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_131863 crossref_primary_10_1016_j_renene_2024_120200 crossref_primary_10_1007_s00607_024_01266_1 crossref_primary_10_1016_j_energy_2024_131947 crossref_primary_10_3390_su152115594 crossref_primary_10_54287_gujsa_1581828 crossref_primary_10_1016_j_ref_2025_100682 crossref_primary_10_1016_j_apenergy_2023_122266 crossref_primary_10_1016_j_apenergy_2024_124844 crossref_primary_10_1016_j_measurement_2022_112093 crossref_primary_10_1016_j_apenergy_2024_122709 crossref_primary_10_3390_en17030698 crossref_primary_10_1007_s00202_023_01883_7 crossref_primary_10_3390_en18051042 crossref_primary_10_3390_s24227407 crossref_primary_10_3390_en17235981 crossref_primary_10_1016_j_apenergy_2024_124353 crossref_primary_10_1016_j_egyr_2025_01_067 crossref_primary_10_1016_j_engappai_2024_108814 crossref_primary_10_1109_TSTE_2024_3459415 crossref_primary_10_1016_j_apenergy_2025_125505 crossref_primary_10_1016_j_renene_2023_03_122 crossref_primary_10_1016_j_energy_2023_127864 crossref_primary_10_12688_digitaltwin_17632_2 crossref_primary_10_1155_2024_8163062 crossref_primary_10_1016_j_energy_2024_132152 crossref_primary_10_1016_j_energy_2025_134395 crossref_primary_10_12688_digitaltwin_17632_1 crossref_primary_10_1016_j_rser_2024_115035 crossref_primary_10_3390_en17163877 crossref_primary_10_1109_JIOT_2024_3416527 crossref_primary_10_26599_AIR_2024_9150031 crossref_primary_10_1016_j_measurement_2022_111530 crossref_primary_10_1109_TSTE_2024_3478760 crossref_primary_10_3390_en17163958 crossref_primary_10_1016_j_energy_2023_127542 crossref_primary_10_1016_j_rser_2024_114703 crossref_primary_10_3390_su15086538 crossref_primary_10_3389_fenrg_2024_1367199 crossref_primary_10_1016_j_apenergy_2024_123890 crossref_primary_10_1016_j_renene_2024_120780 crossref_primary_10_1016_j_apenergy_2024_122685 crossref_primary_10_1016_j_bspc_2024_106828 crossref_primary_10_3390_app14125189 crossref_primary_10_3390_en18061378 crossref_primary_10_1016_j_apenergy_2024_123215 crossref_primary_10_1016_j_est_2024_114153 crossref_primary_10_3390_su151713146 crossref_primary_10_1016_j_asoc_2023_110979 crossref_primary_10_3390_en17122969 crossref_primary_10_1016_j_eswa_2023_121055 crossref_primary_10_1016_j_energy_2023_129639 crossref_primary_10_1016_j_eswa_2024_124115 crossref_primary_10_1016_j_eswa_2024_125368 crossref_primary_10_1016_j_energy_2025_135213 crossref_primary_10_1016_j_rser_2024_114691 crossref_primary_10_1007_s11708_024_0915_y crossref_primary_10_1016_j_engappai_2024_108952 crossref_primary_10_1016_j_measurement_2023_113208 crossref_primary_10_1016_j_energy_2024_132969 crossref_primary_10_1109_ACCESS_2024_3514098 crossref_primary_10_1016_j_compeleceng_2024_109407 crossref_primary_10_1016_j_renene_2024_119967 crossref_primary_10_3390_en17235877 crossref_primary_10_1016_j_energy_2023_127009 crossref_primary_10_1109_TII_2023_3335453 crossref_primary_10_1016_j_engappai_2023_107251 crossref_primary_10_1016_j_engappai_2023_107691 crossref_primary_10_1016_j_renene_2025_122824 crossref_primary_10_3390_s24206590 crossref_primary_10_3390_en16227477 crossref_primary_10_1007_s00202_025_03031_9 |
Cites_doi | 10.1016/j.neucom.2019.08.105 10.1109/TIA.2021.3073652 10.1016/j.jclepro.2019.118858 10.1016/j.renene.2021.04.088 10.1016/j.solener.2018.11.046 10.1016/j.rser.2017.08.017 10.1016/j.ijepes.2021.106916 10.1016/j.solener.2017.04.066 10.1016/j.jclepro.2017.08.081 10.1016/j.solener.2018.05.089 10.1016/j.rser.2020.109792 10.1109/TSTE.2021.3057521 10.3389/fenrg.2021.682852 10.1016/j.energy.2021.120996 10.1063/1.5094494 10.1016/j.energy.2016.04.115 10.1049/iet-gtd.2018.5847 10.1016/j.solener.2018.01.095 10.1016/j.energy.2021.120094 10.1016/j.apenergy.2020.115504 10.1109/TIA.2012.2190816 10.3390/en11051260 10.3390/en11112906 10.1016/j.renene.2019.02.087 10.1109/JSYST.2020.3007184 10.1016/j.jclepro.2019.04.331 10.1016/j.apenergy.2019.114216 10.3390/en11102725 10.1016/j.renene.2016.09.012 10.3390/app8010028 10.1016/j.jclepro.2021.127037 10.1016/j.solener.2014.11.017 10.1109/ACCESS.2019.2921238 10.1016/j.energy.2021.120908 10.1016/j.apenergy.2021.117061 10.3390/en14113086 10.1109/TKDE.2009.191 10.1016/j.knosys.2019.05.028 10.1016/j.solener.2017.09.052 10.1016/j.ijepes.2018.01.025 10.1016/j.solener.2013.10.002 10.1016/j.neucom.2019.09.110 10.1063/1.5087462 10.1016/j.jclepro.2020.123948 10.1016/j.enconman.2017.10.008 10.1016/j.asoc.2020.106389 10.1016/j.renene.2017.11.011 10.1016/j.renene.2021.05.095 10.1109/ACCESS.2021.3099169 10.1016/j.energy.2021.120240 10.1016/j.energy.2019.116225 10.1016/j.solener.2012.04.004 10.1109/TIE.2017.2714127 10.1109/TSTE.2016.2535466 10.1007/s11063-021-10606-7 10.3390/rs13132605 10.1016/j.jclepro.2020.119966 10.1016/j.jclepro.2018.07.311 10.1109/TSTE.2020.3029731 10.1016/j.solener.2017.11.023 10.1016/j.ijepes.2019.105790 10.1016/j.solener.2011.08.027 10.1016/j.enconman.2020.113644 10.1016/j.renene.2018.02.006 10.1016/j.apenergy.2019.114001 10.1016/j.enconman.2021.114569 10.3390/en14164733 10.1016/j.energy.2020.117894 10.1016/j.apenergy.2021.117410 10.1016/j.enconman.2020.112766 10.1016/j.egyr.2021.08.167 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rser.2022.112473 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0690 |
ExternalDocumentID | 10_1016_j_rser_2022_112473 S1364032122003781 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-237956b3effd5a5dbe5c406fb0f7067c1f9ef6b93a9b2f46e878ae23fd4be0743 |
IEDL.DBID | .~1 |
ISSN | 1364-0321 |
IngestDate | Thu Apr 24 22:52:42 EDT 2025 Tue Jul 01 03:18:19 EDT 2025 Fri Feb 23 02:39:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hybrid deep learning Spatiotemporal features Attention reconstruction Transfer learning Fine-tuning Parallel extraction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-237956b3effd5a5dbe5c406fb0f7067c1f9ef6b93a9b2f46e878ae23fd4be0743 |
ORCID | 0000-0001-6966-0208 |
ParticipantIDs | crossref_citationtrail_10_1016_j_rser_2022_112473 crossref_primary_10_1016_j_rser_2022_112473 elsevier_sciencedirect_doi_10_1016_j_rser_2022_112473 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Renewable & sustainable energy reviews |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hu, Cao, Wang, Li, Lv (bib8) 2018; 200 Yang, Yu, Zhao, Zhu (bib6) 2021; 9 Seyedmahmoudian, Jamei, Thirunavukkarasu, Soon, Mortimer, Horan (bib56) 2018; 11 Wang, Qi, Liu (bib58) 2019; 189 Alfadda, Rahman, Pipattansomporn (bib78) 2018; 170 Pan, Li, Gao, Huang, You, Gu (bib47) 2020; 277 Wang, Xuan, Zhen, Li, Wang, Shi (bib24) 2020; 212 Li, Zhang, Ma, Jiao, Wang, Hu (bib35) 2021; 224 Chu, Pedro, Kaur, Kleissl, Coimbra (bib75) 2018; 158 Kumler, Xie, Zhang (bib3) 2019; 177 Pedro, Coimbra, David, Lauret (bib77) 2018; 123 Pedro, Coimbra (bib15) 2012; 86 Zhang, Tan, Wei (bib39) 2020; 244 Sheng, Xiao, Cheng, Ni, Wang (bib22) 2018; 65 Yang (bib69) 2019; 11 VanDeventer, Jamei, Thirunavukkarasu, Seyedmahmoudian, Soon, Horan (bib49) 2019; 140 Liu, Ren, Xu (bib30) 2021; 12 Bouzerdoum, Mellit, Pavan (bib14) 2013; 98 Lateko, Yang, Huang, Aprillia, Hsu, Zhong (bib57) 2021; 14 Chen, Duan, Cai, Liu (bib16) 2011; 85 Chu, Coimbra (bib73) 2017; 101 Korkmaz (bib2) 2021; 300 Agga, Abbou, Labbadi, El Houm (bib61) 2021; 177 Luo, Zhang, Zhu (bib25) 2021; 225 Sahu, Shaw, Nayak, Shashikant (bib48) 2021; 24 Yang, Kleissl, Gueymard, Pedro, Coimbra (bib5) 2018; 168 Tao, Lu, Lang, Peng, Cheng, Duan (bib27) 2021; 14 Li, Wen, Tseng, Wang (bib72) 2019; 228 Cheng, Zang, Ding, Wei, Sun (bib31) 2021; 12 Ahmed, Sreeram, Mishra, Arif (bib1) 2020; 124 Eseye, Zhang, Zheng (bib53) 2018; 118 Pan, Yang (bib62) 2010; 22 Zhou, Zhou, Gong, Jiang (bib43) 2020; 204 Yan, Hu, Zhen, Wang, Qiu, Li (bib40) 2021; 57 Li, Zhu, Kong, Han, Zhao (bib67) 2019; 181 Gundu, Simon (bib23) 2021; 53 Kim, Suh, Otto, Huh (bib11) 2021; 13 Zhen, Niu, Wang, Shi, Ji, Xu (bib51) 2021; 231 Silva, Brito (bib74) 2018; 163 Hu, Shen, Sun (bib66) 2018 Wang, Zhen, Wang, Mi (bib17) 2018; 8 Lin, Li, Tseng, Liu, Yuan, Tan (bib46) 2020; 253 Jia, Zhang, Liu, Gong (bib55) 2021; 9 Persson, Bacher, Shiga, Madsen (bib76) 2017; 150 Crisosto, Hofmann, Mubarak, Seckmeyer (bib7) 2018; 11 Monjoly, Andre, Calif, Soubdhan (bib79) 2017; 119 Zhang, Lv, Ma, Zhao, Wang, O'Hare (bib32) 2020; 397 Li, Zhou, Lu, Yang (bib36) 2020; 259 Ding, Li, Tao (bib42) 2021; 227 Zang, Cheng, Ding, Cheung, Liang, Wei (bib28) 2018; 12 Gou, Ning (bib52) 2021; 128 Das, Tey, Seyedmahmoudian, Mekhilef, Idris, Van Deventer (bib4) 2018; 81 Chu, Urquhart, Gohari, Pedro, Kleissl, Coimbra (bib13) 2015; 112 Li, Sheng, Cheng, Stroe, Teodorescu (bib64) 2020; 277 Najibi, Apostolopoulou, Alonso (bib21) 2021; 130 Kim, Kwon, Park, Kim, Cho (bib26) 2021; 15 Kumari, Toshniwal (bib59) 2021; 295 Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette (bib65) 2016; 17 Hossain, Mekhilef, Danesh, Olatomiwa, Shamshirband (bib20) 2017; 167 Niu, Wang, Sun, Wu, Xu (bib34) 2020; 93 Pedro, Larson, Coimbra (bib70) 2019; 11 Zang, Cheng, Ding, Cheung, Wei, Sun (bib37) 2020; 118 Huang, Kuo (bib29) 2019; 7 Rosiek, Alonso-Montesinos, Batlles (bib10) 2018; 99 Al-Dahidi, Ayadi, Adeeb, Alrbai, Qawasmeh (bib19) 2018; 11 Zheng, Zhang, Dai, Wang, Zheng, Liao (bib50) 2020; 257 Desert Knowledge Australia Centre. 11/12/2021. Download data. Alice Spring. Zhou, Zhou, Mao, Xi (bib63) 2020 Shi, Lee, Liu, Yang, Wang (bib18) 2012; 48 Behera, Nayak (bib33) 2020; 23 Wang, Yi, Peng, Wang, Liu, Jiang (bib38) 2017; 153 Ma, Lv, Zhang, Zhang, Zhu, Yin (bib44) 2021; 7 Yang, Mourshed, Liu, Xu, Feng (bib45) 2020; 397 Jang, Bae, Park, Sung (bib9) 2016; 7 date accessed: 11/12/2021. Tratar, Strmcnik (bib12) 2016; 109 Guermoui, Bouchouicha, Bailek, Boland (bib41) 2021; 245 Abdel-Basset, Hawash, Chakrabortty, Ryan, Pv-Net (bib71) 2021; 303 Qu, Qian, Pei (bib60) 2021; 232 Dash, Dash, Bisoi (bib54) 2021; 174 Lin (10.1016/j.rser.2022.112473_bib46) 2020; 253 Pedro (10.1016/j.rser.2022.112473_bib15) 2012; 86 Ahmed (10.1016/j.rser.2022.112473_bib1) 2020; 124 Li (10.1016/j.rser.2022.112473_bib35) 2021; 224 Niu (10.1016/j.rser.2022.112473_bib34) 2020; 93 Pan (10.1016/j.rser.2022.112473_bib47) 2020; 277 Pedro (10.1016/j.rser.2022.112473_bib70) 2019; 11 Li (10.1016/j.rser.2022.112473_bib64) 2020; 277 Eseye (10.1016/j.rser.2022.112473_bib53) 2018; 118 Guermoui (10.1016/j.rser.2022.112473_bib41) 2021; 245 Ma (10.1016/j.rser.2022.112473_bib44) 2021; 7 Yan (10.1016/j.rser.2022.112473_bib40) 2021; 57 Najibi (10.1016/j.rser.2022.112473_bib21) 2021; 130 Jang (10.1016/j.rser.2022.112473_bib9) 2016; 7 Chu (10.1016/j.rser.2022.112473_bib13) 2015; 112 Gou (10.1016/j.rser.2022.112473_bib52) 2021; 128 Li (10.1016/j.rser.2022.112473_bib72) 2019; 228 Abdel-Basset (10.1016/j.rser.2022.112473_bib71) 2021; 303 Bouzerdoum (10.1016/j.rser.2022.112473_bib14) 2013; 98 Qu (10.1016/j.rser.2022.112473_bib60) 2021; 232 10.1016/j.rser.2022.112473_bib68 Silva (10.1016/j.rser.2022.112473_bib74) 2018; 163 Chen (10.1016/j.rser.2022.112473_bib16) 2011; 85 Sahu (10.1016/j.rser.2022.112473_bib48) 2021; 24 Yang (10.1016/j.rser.2022.112473_bib69) 2019; 11 Zang (10.1016/j.rser.2022.112473_bib37) 2020; 118 Agga (10.1016/j.rser.2022.112473_bib61) 2021; 177 Chu (10.1016/j.rser.2022.112473_bib75) 2018; 158 Persson (10.1016/j.rser.2022.112473_bib76) 2017; 150 Zhen (10.1016/j.rser.2022.112473_bib51) 2021; 231 Jia (10.1016/j.rser.2022.112473_bib55) 2021; 9 Wang (10.1016/j.rser.2022.112473_bib58) 2019; 189 Li (10.1016/j.rser.2022.112473_bib36) 2020; 259 Tratar (10.1016/j.rser.2022.112473_bib12) 2016; 109 Kumari (10.1016/j.rser.2022.112473_bib59) 2021; 295 Ganin (10.1016/j.rser.2022.112473_bib65) 2016; 17 Rosiek (10.1016/j.rser.2022.112473_bib10) 2018; 99 Hossain (10.1016/j.rser.2022.112473_bib20) 2017; 167 Wang (10.1016/j.rser.2022.112473_bib38) 2017; 153 Chu (10.1016/j.rser.2022.112473_bib73) 2017; 101 Hu (10.1016/j.rser.2022.112473_bib66) 2018 Pan (10.1016/j.rser.2022.112473_bib62) 2010; 22 Zheng (10.1016/j.rser.2022.112473_bib50) 2020; 257 Liu (10.1016/j.rser.2022.112473_bib30) 2021; 12 Kim (10.1016/j.rser.2022.112473_bib11) 2021; 13 Shi (10.1016/j.rser.2022.112473_bib18) 2012; 48 Crisosto (10.1016/j.rser.2022.112473_bib7) 2018; 11 Dash (10.1016/j.rser.2022.112473_bib54) 2021; 174 Kim (10.1016/j.rser.2022.112473_bib26) 2021; 15 Li (10.1016/j.rser.2022.112473_bib67) 2019; 181 Zhang (10.1016/j.rser.2022.112473_bib32) 2020; 397 Korkmaz (10.1016/j.rser.2022.112473_bib2) 2021; 300 Das (10.1016/j.rser.2022.112473_bib4) 2018; 81 Wang (10.1016/j.rser.2022.112473_bib24) 2020; 212 VanDeventer (10.1016/j.rser.2022.112473_bib49) 2019; 140 Pedro (10.1016/j.rser.2022.112473_bib77) 2018; 123 Sheng (10.1016/j.rser.2022.112473_bib22) 2018; 65 Zhou (10.1016/j.rser.2022.112473_bib43) 2020; 204 Yang (10.1016/j.rser.2022.112473_bib6) 2021; 9 Hu (10.1016/j.rser.2022.112473_bib8) 2018; 200 Alfadda (10.1016/j.rser.2022.112473_bib78) 2018; 170 Luo (10.1016/j.rser.2022.112473_bib25) 2021; 225 Zhang (10.1016/j.rser.2022.112473_bib39) 2020; 244 Al-Dahidi (10.1016/j.rser.2022.112473_bib19) 2018; 11 Kumler (10.1016/j.rser.2022.112473_bib3) 2019; 177 Yang (10.1016/j.rser.2022.112473_bib5) 2018; 168 Cheng (10.1016/j.rser.2022.112473_bib31) 2021; 12 Tao (10.1016/j.rser.2022.112473_bib27) 2021; 14 Wang (10.1016/j.rser.2022.112473_bib17) 2018; 8 Zang (10.1016/j.rser.2022.112473_bib28) 2018; 12 Lateko (10.1016/j.rser.2022.112473_bib57) 2021; 14 Ding (10.1016/j.rser.2022.112473_bib42) 2021; 227 Monjoly (10.1016/j.rser.2022.112473_bib79) 2017; 119 Gundu (10.1016/j.rser.2022.112473_bib23) 2021; 53 Zhou (10.1016/j.rser.2022.112473_bib63) 2020 Behera (10.1016/j.rser.2022.112473_bib33) 2020; 23 Yang (10.1016/j.rser.2022.112473_bib45) 2020; 397 Seyedmahmoudian (10.1016/j.rser.2022.112473_bib56) 2018; 11 Huang (10.1016/j.rser.2022.112473_bib29) 2019; 7 |
References_xml | – volume: 140 start-page: 367 year: 2019 end-page: 379 ident: bib49 article-title: Short-term PV power forecasting using hybrid GASVM technique publication-title: Renew Energy – volume: 109 start-page: 266 year: 2016 end-page: 276 ident: bib12 article-title: The comparison of Holt-Winters method and Multiple regression method: a case study publication-title: Energy – volume: 17 start-page: 59 year: 2016 ident: bib65 article-title: Domain-adversarial training of neural networks publication-title: J Mach Learn Res – volume: 168 start-page: 60 year: 2018 end-page: 101 ident: bib5 article-title: History and trends in solar irradiance and PV power forecasting: a preliminary assessment and review using text mining publication-title: Sol Energy – volume: 11 start-page: 1260 year: 2018 ident: bib56 article-title: Short-term forecasting of the output power of a building-Integrated photovoltaic system using a metaheuristic approach publication-title: Energies – volume: 128 start-page: 803 year: 2021 end-page: 822 ident: bib52 article-title: Forecasting model of photovoltaic power based on KPCA-MCS-DCNN publication-title: CMES-Comp. Model Eng Sci – volume: 9 start-page: 682852 year: 2021 ident: bib6 article-title: Kalman filter photovoltaic power prediction model based on forecasting experience publication-title: Front Energy Res – volume: 167 start-page: 395 year: 2017 end-page: 405 ident: bib20 article-title: Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems publication-title: J Clean Prod – volume: 153 start-page: 409 year: 2017 end-page: 422 ident: bib38 article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network publication-title: Energy Convers Manag – volume: 112 start-page: 68 year: 2015 end-page: 77 ident: bib13 article-title: Short-term reforecasting of power output from a 48 MWe solar PV plant publication-title: Sol Energy – volume: 86 start-page: 2017 year: 2012 end-page: 2028 ident: bib15 article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs publication-title: Sol Energy – volume: 15 start-page: 346 year: 2021 end-page: 354 ident: bib26 article-title: Multiscale LSTM-based deep learning for very-short-term photovoltaic power generation forecasting in smart city energy management publication-title: IEEE Syst J – reference: Desert Knowledge Australia Centre. 11/12/2021. Download data. Alice Spring. – volume: 9 start-page: 105939 year: 2021 end-page: 105950 ident: bib55 article-title: Short-term photovoltaic power forecasting based on VMD and ISSA-GRU publication-title: IEEE Access – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib62 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng – volume: 118 start-page: 357 year: 2018 end-page: 367 ident: bib53 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renew Energy – volume: 200 start-page: 731 year: 2018 end-page: 745 ident: bib8 article-title: A new ultra-short-term photovoltaic power prediction model based on ground-based cloud images publication-title: J Clean Prod – volume: 259 start-page: 114216 year: 2020 ident: bib36 article-title: A hybrid deep learning model for short-term PV power forecasting publication-title: Appl Energy – volume: 158 start-page: 236 year: 2018 end-page: 246 ident: bib75 article-title: Net load forecasts for solar-integrated operational grid feeders publication-title: Sol Energy – volume: 189 start-page: 116225 year: 2019 ident: bib58 article-title: Photovoltaic power forecasting based LSTM-Convolutional Network publication-title: Energy – volume: 170 start-page: 924 year: 2018 end-page: 939 ident: bib78 article-title: Solar irradiance forecast using aerosols measurements: a data driven approach publication-title: Sol Energy – volume: 300 start-page: 117410 year: 2021 ident: bib2 article-title: SolarNet: a hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting publication-title: Appl Energy – volume: 123 start-page: 191 year: 2018 end-page: 203 ident: bib77 article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts publication-title: Renew Energy – volume: 57 start-page: 3282 year: 2021 end-page: 3295 ident: bib40 article-title: Frequency-domain decomposition and deep learning based solar PV power ultra-short-term forecasting model publication-title: IEEE Trans Ind Appl – volume: 163 start-page: 329 year: 2018 end-page: 337 ident: bib74 article-title: Impact of network layout and time resolution on spatio-temporal solar forecasting publication-title: Sol Energy – volume: 53 start-page: 4407 year: 2021 end-page: 4418 ident: bib23 article-title: Short term solar power and temperature forecast using recurrent neural networks publication-title: Neural Process Lett – volume: 118 start-page: 105790 year: 2020 ident: bib37 article-title: Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning publication-title: Int J Electr Power Energy Syst – volume: 303 start-page: 127037 year: 2021 ident: bib71 article-title: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production publication-title: J Clean Prod – volume: 12 start-page: 1593 year: 2021 end-page: 1603 ident: bib31 article-title: Multi-meteorological-factor-based graph modeling for photovoltaic power forecasting publication-title: IEEE Trans Sustain Energy – volume: 231 start-page: 120908 year: 2021 ident: bib51 article-title: Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information publication-title: Energy – volume: 295 start-page: 117061 year: 2021 ident: bib59 article-title: Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting publication-title: Appl Energy – volume: 85 start-page: 2856 year: 2011 end-page: 2870 ident: bib16 article-title: Online 24-h solar power forecasting based on weather type classification using artificial neural network publication-title: Sol Energy – volume: 93 start-page: 106389 year: 2020 ident: bib34 article-title: Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study publication-title: Appl Soft Comput – volume: 12 start-page: 4557 year: 2018 end-page: 4567 ident: bib28 article-title: Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network publication-title: IET Gener, Transm Distrib – volume: 177 start-page: 101 year: 2021 end-page: 112 ident: bib61 article-title: Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models publication-title: Renew Energy – volume: 227 start-page: 113644 year: 2021 ident: bib42 article-title: A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting publication-title: Energy Convers Manag – volume: 12 start-page: 1493 year: 2021 end-page: 1496 ident: bib30 article-title: PV generation forecasting with missing input data: a super-resolution perception approach publication-title: IEEE Trans Sustain Energy – volume: 81 start-page: 912 year: 2018 end-page: 928 ident: bib4 article-title: Forecasting of photovoltaic power generation and model optimization: a review publication-title: Renew Sustain Energy Rev – volume: 212 start-page: 112766 year: 2020 ident: bib24 article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework publication-title: Energy Convers Manag – volume: 13 start-page: 2605 year: 2021 ident: bib11 article-title: A novel hybrid spatio-temporal forecasting of multisite solar photovoltaic generation publication-title: Rem Sens – volume: 277 start-page: 115504 year: 2020 ident: bib64 article-title: State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis publication-title: Appl Energy – volume: 204 start-page: 117894 year: 2020 ident: bib43 article-title: Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine publication-title: Energy – volume: 397 start-page: 415 year: 2020 end-page: 421 ident: bib45 article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting publication-title: Neurocomputing – volume: 244 start-page: 118858 year: 2020 ident: bib39 article-title: An adaptive hybrid model for day-ahead photovoltaic output power prediction publication-title: J Clean Prod – volume: 24 start-page: 1180 year: 2021 end-page: 1200 ident: bib48 article-title: Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM publication-title: Eng Sci Technol – volume: 124 start-page: 109792 year: 2020 ident: bib1 article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization publication-title: Renew Sustain Energy Rev – volume: 277 start-page: 123948 year: 2020 ident: bib47 article-title: Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization publication-title: J Clean Prod – volume: 99 start-page: 261 year: 2018 end-page: 272 ident: bib10 article-title: Online 3-h forecasting of the power output from a BIPV system using satellite observations and ANN publication-title: Int J Electr Power Energy Syst – volume: 7 start-page: 5495 year: 2021 end-page: 5509 ident: bib44 article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting publication-title: Energy Rep – volume: 8 start-page: 28 year: 2018 ident: bib17 article-title: Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting publication-title: Appl Sci-Basel – volume: 11 start-page: 18 year: 2018 ident: bib19 article-title: Extreme learning machines for solar photovoltaic power predictions publication-title: Energies – volume: 14 start-page: 4733 year: 2021 ident: bib57 article-title: Stacking ensemble method with the RNN meta-learner for short-term PV power forecasting publication-title: Energies – volume: 245 start-page: 114569 year: 2021 ident: bib41 article-title: Forecasting intra-hour variance of photovoltaic power using a new integrated model publication-title: Energy Convers Manag – volume: 11 start-page: 2906 year: 2018 ident: bib7 article-title: One-hour prediction of the global solar irradiance from all-sky images using artificial neural networks publication-title: Energies – volume: 23 start-page: 156 year: 2020 end-page: 167 ident: bib33 article-title: A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm publication-title: Eng Sci Technol – start-page: 7132 year: 2018 end-page: 7141 ident: bib66 article-title: Squeeze-and-Excitation networks publication-title: 31st IEEE/CVF conference on computer vision and pattern recognition – volume: 7 start-page: 1255 year: 2016 end-page: 1263 ident: bib9 article-title: Solar power prediction based on satellite images and support vector machine publication-title: IEEE Trans Sustain Energy – volume: 98 start-page: 226 year: 2013 end-page: 235 ident: bib14 article-title: A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant publication-title: Sol Energy – volume: 14 start-page: 16 year: 2021 ident: bib27 article-title: Short-term forecasting of photovoltaic power generation based on feature selection and bias compensation-LSTM network publication-title: Energies – start-page: 125 year: 2020 end-page: 132 ident: bib63 article-title: Transfer learning for photovoltaic power forecasting with long short-term memory neural network publication-title: 2020 IEEE international conference ON big DATA and smart computing – volume: 257 start-page: 114001 year: 2020 ident: bib50 article-title: Time series prediction for output of multi-region solar power plants publication-title: Appl Energy – volume: 11 year: 2019 ident: bib69 article-title: A guideline to solar forecasting research practice: reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES) publication-title: J Renew Sustain Energy – volume: 101 start-page: 526 year: 2017 end-page: 536 ident: bib73 article-title: Short-term probabilistic forecasts for direct normal irradiance publication-title: Renew Energy – volume: 150 start-page: 423 year: 2017 end-page: 436 ident: bib76 article-title: Multi-site solar power forecasting using gradient boosted regression trees publication-title: Sol Energy – volume: 11 year: 2019 ident: bib70 article-title: A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods publication-title: J Renew Sustain Energy – volume: 228 start-page: 359 year: 2019 end-page: 375 ident: bib72 article-title: Renewable energy prediction: a novel short-term prediction model of photovoltaic output power publication-title: J Clean Prod – volume: 130 start-page: 106916 year: 2021 ident: bib21 article-title: Enhanced performance Gaussian process regression for probabilistic short-term solar output forecast publication-title: Int J Electr Power Energy Syst – volume: 119 start-page: 288 year: 2017 end-page: 298 ident: bib79 article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods publication-title: A hybrid approach – volume: 253 start-page: 119966 year: 2020 ident: bib46 article-title: An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation publication-title: J Clean Prod – volume: 174 start-page: 513 year: 2021 end-page: 537 ident: bib54 article-title: Short term solar power forecasting using hybrid minimum variance expanded RVFLN and Sine-Cosine Levy Flight PSO algorithm publication-title: Renew Energy – volume: 177 start-page: 494 year: 2019 end-page: 500 ident: bib3 article-title: A physics-based smart persistence model for intra-hour forecasting of solar radiation (PSPI) using GHI measurements and a cloud retrieval technique publication-title: Sol Energy – volume: 48 start-page: 1064 year: 2012 end-page: 1069 ident: bib18 article-title: Forecasting power output of photovoltaic systems based on weather classification and support vector machines publication-title: IEEE Trans Ind Appl – volume: 181 start-page: 104785 year: 2019 ident: bib67 article-title: EA-LSTM: evolutionary attention-based LSTM for time series prediction publication-title: Knowl Base Syst – volume: 7 start-page: 74822 year: 2019 end-page: 74834 ident: bib29 article-title: Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting publication-title: IEEE Access – reference: , date accessed: 11/12/2021. – volume: 397 start-page: 438 year: 2020 end-page: 446 ident: bib32 article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform publication-title: Neurocomputing – volume: 225 start-page: 120240 year: 2021 ident: bib25 article-title: Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge publication-title: Energy – volume: 65 start-page: 300 year: 2018 end-page: 308 ident: bib22 article-title: Short-term solar power forecasting based on weighted Gaussian process regression publication-title: IEEE Trans Ind Electron – volume: 232 start-page: 120996 year: 2021 ident: bib60 article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern publication-title: Energy – volume: 224 start-page: 120094 year: 2021 ident: bib35 article-title: A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine publication-title: Energy – volume: 397 start-page: 438 year: 2020 ident: 10.1016/j.rser.2022.112473_bib32 article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.105 – volume: 57 start-page: 3282 issue: 4 year: 2021 ident: 10.1016/j.rser.2022.112473_bib40 article-title: Frequency-domain decomposition and deep learning based solar PV power ultra-short-term forecasting model publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2021.3073652 – volume: 244 start-page: 118858 year: 2020 ident: 10.1016/j.rser.2022.112473_bib39 article-title: An adaptive hybrid model for day-ahead photovoltaic output power prediction publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118858 – volume: 174 start-page: 513 year: 2021 ident: 10.1016/j.rser.2022.112473_bib54 article-title: Short term solar power forecasting using hybrid minimum variance expanded RVFLN and Sine-Cosine Levy Flight PSO algorithm publication-title: Renew Energy doi: 10.1016/j.renene.2021.04.088 – volume: 24 start-page: 1180 issue: 5 year: 2021 ident: 10.1016/j.rser.2022.112473_bib48 article-title: Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM publication-title: Eng Sci Technol – volume: 177 start-page: 494 year: 2019 ident: 10.1016/j.rser.2022.112473_bib3 article-title: A physics-based smart persistence model for intra-hour forecasting of solar radiation (PSPI) using GHI measurements and a cloud retrieval technique publication-title: Sol Energy doi: 10.1016/j.solener.2018.11.046 – volume: 128 start-page: 803 issue: 2 year: 2021 ident: 10.1016/j.rser.2022.112473_bib52 article-title: Forecasting model of photovoltaic power based on KPCA-MCS-DCNN publication-title: CMES-Comp. Model Eng Sci – volume: 17 start-page: 59 year: 2016 ident: 10.1016/j.rser.2022.112473_bib65 article-title: Domain-adversarial training of neural networks publication-title: J Mach Learn Res – volume: 119 start-page: 288 year: 2017 ident: 10.1016/j.rser.2022.112473_bib79 article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods publication-title: A hybrid approach – volume: 81 start-page: 912 year: 2018 ident: 10.1016/j.rser.2022.112473_bib4 article-title: Forecasting of photovoltaic power generation and model optimization: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.08.017 – volume: 130 start-page: 106916 year: 2021 ident: 10.1016/j.rser.2022.112473_bib21 article-title: Enhanced performance Gaussian process regression for probabilistic short-term solar output forecast publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.106916 – volume: 150 start-page: 423 year: 2017 ident: 10.1016/j.rser.2022.112473_bib76 article-title: Multi-site solar power forecasting using gradient boosted regression trees publication-title: Sol Energy doi: 10.1016/j.solener.2017.04.066 – volume: 167 start-page: 395 year: 2017 ident: 10.1016/j.rser.2022.112473_bib20 article-title: Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.08.081 – volume: 170 start-page: 924 year: 2018 ident: 10.1016/j.rser.2022.112473_bib78 article-title: Solar irradiance forecast using aerosols measurements: a data driven approach publication-title: Sol Energy doi: 10.1016/j.solener.2018.05.089 – volume: 124 start-page: 109792 year: 2020 ident: 10.1016/j.rser.2022.112473_bib1 article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.109792 – volume: 12 start-page: 1593 issue: 3 year: 2021 ident: 10.1016/j.rser.2022.112473_bib31 article-title: Multi-meteorological-factor-based graph modeling for photovoltaic power forecasting publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2021.3057521 – volume: 9 start-page: 682852 year: 2021 ident: 10.1016/j.rser.2022.112473_bib6 article-title: Kalman filter photovoltaic power prediction model based on forecasting experience publication-title: Front Energy Res doi: 10.3389/fenrg.2021.682852 – volume: 232 start-page: 120996 year: 2021 ident: 10.1016/j.rser.2022.112473_bib60 article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern publication-title: Energy doi: 10.1016/j.energy.2021.120996 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.rser.2022.112473_bib70 article-title: A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods publication-title: J Renew Sustain Energy doi: 10.1063/1.5094494 – volume: 109 start-page: 266 year: 2016 ident: 10.1016/j.rser.2022.112473_bib12 article-title: The comparison of Holt-Winters method and Multiple regression method: a case study publication-title: Energy doi: 10.1016/j.energy.2016.04.115 – volume: 12 start-page: 4557 issue: 20 year: 2018 ident: 10.1016/j.rser.2022.112473_bib28 article-title: Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network publication-title: IET Gener, Transm Distrib doi: 10.1049/iet-gtd.2018.5847 – volume: 163 start-page: 329 year: 2018 ident: 10.1016/j.rser.2022.112473_bib74 article-title: Impact of network layout and time resolution on spatio-temporal solar forecasting publication-title: Sol Energy doi: 10.1016/j.solener.2018.01.095 – volume: 224 start-page: 120094 year: 2021 ident: 10.1016/j.rser.2022.112473_bib35 article-title: A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2021.120094 – volume: 277 start-page: 115504 year: 2020 ident: 10.1016/j.rser.2022.112473_bib64 article-title: State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115504 – volume: 48 start-page: 1064 issue: 3 year: 2012 ident: 10.1016/j.rser.2022.112473_bib18 article-title: Forecasting power output of photovoltaic systems based on weather classification and support vector machines publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2012.2190816 – volume: 11 start-page: 1260 issue: 5 year: 2018 ident: 10.1016/j.rser.2022.112473_bib56 article-title: Short-term forecasting of the output power of a building-Integrated photovoltaic system using a metaheuristic approach publication-title: Energies doi: 10.3390/en11051260 – volume: 11 start-page: 2906 issue: 11 year: 2018 ident: 10.1016/j.rser.2022.112473_bib7 article-title: One-hour prediction of the global solar irradiance from all-sky images using artificial neural networks publication-title: Energies doi: 10.3390/en11112906 – volume: 140 start-page: 367 year: 2019 ident: 10.1016/j.rser.2022.112473_bib49 article-title: Short-term PV power forecasting using hybrid GASVM technique publication-title: Renew Energy doi: 10.1016/j.renene.2019.02.087 – volume: 15 start-page: 346 issue: 1 year: 2021 ident: 10.1016/j.rser.2022.112473_bib26 article-title: Multiscale LSTM-based deep learning for very-short-term photovoltaic power generation forecasting in smart city energy management publication-title: IEEE Syst J doi: 10.1109/JSYST.2020.3007184 – volume: 228 start-page: 359 year: 2019 ident: 10.1016/j.rser.2022.112473_bib72 article-title: Renewable energy prediction: a novel short-term prediction model of photovoltaic output power publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.04.331 – volume: 259 start-page: 114216 year: 2020 ident: 10.1016/j.rser.2022.112473_bib36 article-title: A hybrid deep learning model for short-term PV power forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114216 – volume: 11 start-page: 18 issue: 10 year: 2018 ident: 10.1016/j.rser.2022.112473_bib19 article-title: Extreme learning machines for solar photovoltaic power predictions publication-title: Energies doi: 10.3390/en11102725 – volume: 101 start-page: 526 year: 2017 ident: 10.1016/j.rser.2022.112473_bib73 article-title: Short-term probabilistic forecasts for direct normal irradiance publication-title: Renew Energy doi: 10.1016/j.renene.2016.09.012 – volume: 8 start-page: 28 issue: 1 year: 2018 ident: 10.1016/j.rser.2022.112473_bib17 article-title: Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting publication-title: Appl Sci-Basel doi: 10.3390/app8010028 – volume: 303 start-page: 127037 year: 2021 ident: 10.1016/j.rser.2022.112473_bib71 article-title: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.127037 – volume: 112 start-page: 68 year: 2015 ident: 10.1016/j.rser.2022.112473_bib13 article-title: Short-term reforecasting of power output from a 48 MWe solar PV plant publication-title: Sol Energy doi: 10.1016/j.solener.2014.11.017 – volume: 7 start-page: 74822 year: 2019 ident: 10.1016/j.rser.2022.112473_bib29 article-title: Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921238 – start-page: 125 year: 2020 ident: 10.1016/j.rser.2022.112473_bib63 article-title: Transfer learning for photovoltaic power forecasting with long short-term memory neural network – volume: 231 start-page: 120908 year: 2021 ident: 10.1016/j.rser.2022.112473_bib51 article-title: Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information publication-title: Energy doi: 10.1016/j.energy.2021.120908 – volume: 295 start-page: 117061 year: 2021 ident: 10.1016/j.rser.2022.112473_bib59 article-title: Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117061 – volume: 14 start-page: 16 issue: 11 year: 2021 ident: 10.1016/j.rser.2022.112473_bib27 article-title: Short-term forecasting of photovoltaic power generation based on feature selection and bias compensation-LSTM network publication-title: Energies doi: 10.3390/en14113086 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.rser.2022.112473_bib62 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – start-page: 7132 year: 2018 ident: 10.1016/j.rser.2022.112473_bib66 article-title: Squeeze-and-Excitation networks – volume: 181 start-page: 104785 year: 2019 ident: 10.1016/j.rser.2022.112473_bib67 article-title: EA-LSTM: evolutionary attention-based LSTM for time series prediction publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2019.05.028 – volume: 158 start-page: 236 year: 2018 ident: 10.1016/j.rser.2022.112473_bib75 article-title: Net load forecasts for solar-integrated operational grid feeders publication-title: Sol Energy doi: 10.1016/j.solener.2017.09.052 – volume: 99 start-page: 261 year: 2018 ident: 10.1016/j.rser.2022.112473_bib10 article-title: Online 3-h forecasting of the power output from a BIPV system using satellite observations and ANN publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2018.01.025 – volume: 98 start-page: 226 year: 2013 ident: 10.1016/j.rser.2022.112473_bib14 article-title: A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant publication-title: Sol Energy doi: 10.1016/j.solener.2013.10.002 – volume: 397 start-page: 415 year: 2020 ident: 10.1016/j.rser.2022.112473_bib45 article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.110 – volume: 11 issue: 2 year: 2019 ident: 10.1016/j.rser.2022.112473_bib69 article-title: A guideline to solar forecasting research practice: reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES) publication-title: J Renew Sustain Energy doi: 10.1063/1.5087462 – volume: 277 start-page: 123948 year: 2020 ident: 10.1016/j.rser.2022.112473_bib47 article-title: Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123948 – volume: 153 start-page: 409 year: 2017 ident: 10.1016/j.rser.2022.112473_bib38 article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.10.008 – volume: 93 start-page: 106389 year: 2020 ident: 10.1016/j.rser.2022.112473_bib34 article-title: Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106389 – volume: 118 start-page: 357 year: 2018 ident: 10.1016/j.rser.2022.112473_bib53 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renew Energy doi: 10.1016/j.renene.2017.11.011 – volume: 177 start-page: 101 year: 2021 ident: 10.1016/j.rser.2022.112473_bib61 article-title: Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models publication-title: Renew Energy doi: 10.1016/j.renene.2021.05.095 – ident: 10.1016/j.rser.2022.112473_bib68 – volume: 9 start-page: 105939 year: 2021 ident: 10.1016/j.rser.2022.112473_bib55 article-title: Short-term photovoltaic power forecasting based on VMD and ISSA-GRU publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3099169 – volume: 225 start-page: 120240 year: 2021 ident: 10.1016/j.rser.2022.112473_bib25 article-title: Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge publication-title: Energy doi: 10.1016/j.energy.2021.120240 – volume: 189 start-page: 116225 year: 2019 ident: 10.1016/j.rser.2022.112473_bib58 article-title: Photovoltaic power forecasting based LSTM-Convolutional Network publication-title: Energy doi: 10.1016/j.energy.2019.116225 – volume: 86 start-page: 2017 issue: 7 year: 2012 ident: 10.1016/j.rser.2022.112473_bib15 article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs publication-title: Sol Energy doi: 10.1016/j.solener.2012.04.004 – volume: 65 start-page: 300 issue: 1 year: 2018 ident: 10.1016/j.rser.2022.112473_bib22 article-title: Short-term solar power forecasting based on weighted Gaussian process regression publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2714127 – volume: 7 start-page: 1255 issue: 3 year: 2016 ident: 10.1016/j.rser.2022.112473_bib9 article-title: Solar power prediction based on satellite images and support vector machine publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2016.2535466 – volume: 53 start-page: 4407 issue: 6 year: 2021 ident: 10.1016/j.rser.2022.112473_bib23 article-title: Short term solar power and temperature forecast using recurrent neural networks publication-title: Neural Process Lett doi: 10.1007/s11063-021-10606-7 – volume: 13 start-page: 2605 issue: 13 year: 2021 ident: 10.1016/j.rser.2022.112473_bib11 article-title: A novel hybrid spatio-temporal forecasting of multisite solar photovoltaic generation publication-title: Rem Sens doi: 10.3390/rs13132605 – volume: 253 start-page: 119966 year: 2020 ident: 10.1016/j.rser.2022.112473_bib46 article-title: An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.119966 – volume: 200 start-page: 731 year: 2018 ident: 10.1016/j.rser.2022.112473_bib8 article-title: A new ultra-short-term photovoltaic power prediction model based on ground-based cloud images publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.07.311 – volume: 12 start-page: 1493 issue: 2 year: 2021 ident: 10.1016/j.rser.2022.112473_bib30 article-title: PV generation forecasting with missing input data: a super-resolution perception approach publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2020.3029731 – volume: 168 start-page: 60 year: 2018 ident: 10.1016/j.rser.2022.112473_bib5 article-title: History and trends in solar irradiance and PV power forecasting: a preliminary assessment and review using text mining publication-title: Sol Energy doi: 10.1016/j.solener.2017.11.023 – volume: 118 start-page: 105790 year: 2020 ident: 10.1016/j.rser.2022.112473_bib37 article-title: Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.105790 – volume: 85 start-page: 2856 issue: 11 year: 2011 ident: 10.1016/j.rser.2022.112473_bib16 article-title: Online 24-h solar power forecasting based on weather type classification using artificial neural network publication-title: Sol Energy doi: 10.1016/j.solener.2011.08.027 – volume: 227 start-page: 113644 year: 2021 ident: 10.1016/j.rser.2022.112473_bib42 article-title: A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113644 – volume: 123 start-page: 191 year: 2018 ident: 10.1016/j.rser.2022.112473_bib77 article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts publication-title: Renew Energy doi: 10.1016/j.renene.2018.02.006 – volume: 257 start-page: 114001 year: 2020 ident: 10.1016/j.rser.2022.112473_bib50 article-title: Time series prediction for output of multi-region solar power plants publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114001 – volume: 245 start-page: 114569 year: 2021 ident: 10.1016/j.rser.2022.112473_bib41 article-title: Forecasting intra-hour variance of photovoltaic power using a new integrated model publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114569 – volume: 14 start-page: 4733 issue: 16 year: 2021 ident: 10.1016/j.rser.2022.112473_bib57 article-title: Stacking ensemble method with the RNN meta-learner for short-term PV power forecasting publication-title: Energies doi: 10.3390/en14164733 – volume: 23 start-page: 156 issue: 1 year: 2020 ident: 10.1016/j.rser.2022.112473_bib33 article-title: A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm publication-title: Eng Sci Technol – volume: 204 start-page: 117894 year: 2020 ident: 10.1016/j.rser.2022.112473_bib43 article-title: Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2020.117894 – volume: 300 start-page: 117410 year: 2021 ident: 10.1016/j.rser.2022.112473_bib2 article-title: SolarNet: a hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117410 – volume: 212 start-page: 112766 year: 2020 ident: 10.1016/j.rser.2022.112473_bib24 article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112766 – volume: 7 start-page: 5495 year: 2021 ident: 10.1016/j.rser.2022.112473_bib44 article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting publication-title: Energy Rep doi: 10.1016/j.egyr.2021.08.167 |
SSID | ssj0015873 |
Score | 2.6325798 |
Snippet | Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112473 |
SubjectTerms | Attention reconstruction Fine-tuning Hybrid deep learning Parallel extraction Spatiotemporal features Transfer learning |
Title | Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy |
URI | https://dx.doi.org/10.1016/j.rser.2022.112473 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68SWyzr2S9lWKpr1LUQm9hk921FWlDGw-9-NvdyaNUkB48hSwzIcxOZmbJN98gdEUUEypUyn1pUnssMMxT3ErPGl8JJYTkORjzuS96Q_Yw4qMa6lS9MACrLGN_EdPzaF2uNEtrNtPJpPnqU8Fa1IVewFcFefs1YwF4-c33Cubh8zD_ywzCHkiXjTMFxmvuttmdEQmBThoW0L-T01rC6e6jvbJSxO3iZQ5QzUwP0e4af-ARMoPxLJu5AOPO9wlOYeAZdkWoSdQC0My3uI3HS2jJwtqYFJcTIt5xPv4GAy9DQWMMa1lewboHrKQWBXHt8hgNu3dvnZ5Xzk3wEipE5hEauFNPTI21miuuY8MTl7dt3LKBS06Jb6WxIpZUyZhYJkwYhMoQajWLDZQUJ2hrOpuaU4QpY9JaZVqxAO55LROiKeXUEm2ltn4d-ZXBoqQkFYfZFp9RhR77iMDIERg5KoxcR9crnbSg1Ngozat9iH45RuRi_ga9s3_qnaMduCsQuRdoK5t_mUtXd2RxI3esBtpud16eBnC9f-z1fwBQFdt2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqA9VLRQQQvUB3pCYTd-Ja7EAUHR8hQSIHFLnXjc3araXbGpqr30T_UP4km8K5AqDpW4Oh7LGU9mxso33wBscyu1za0NX5pxicxQJlZ5k3hMrbZaG9WAMc8vdO9Gntyq2wX4O6uFIVhl9P2tT2-8dRzpRG12xoNB5yoVWnZFcL2Er8ryNCIrT3H6O9zbJnvHh-GQP3N-9PX6oJfE1gJJJbSuEy6ycDEoBXrvlFWuRFWF0ObLrs-C_65Sb9Dr0ghrSu6lxjzLLXLhnSyRom5Y9wW8lMFdUNuE3T9zXEmq8ua3Nu0uoe3FSp0WVHYX7CpcSjmn0h2ZiX9HwwcR7mgZ3sTUlO23b_8WFnD4Dl4_ICxcAbzsj-pR8Gi1HVRsTB3WWMh6sbITgk9_YfusP6UaMOYQxyy2pPjOmn47jIggWt5kGqublDksMJ81aZlyp6tw8yzafA-Lw9EQ14AJKY33FrulJrJ7ZyruhFDCc-eN8-k6pDOFFVVkMadmGj-LGVztR0FKLkjJRavkddiZy4xbDo8nZ6vZORSPLLEIQeYJuQ__KfcJlnrX52fF2fHF6Ud4RU9aOPAGLNZ3v3AzJD11udUYGYNvz23V9_X-Fwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photovoltaic+power+forecasting%3A+A+hybrid+deep+learning+model+incorporating+transfer+learning+strategy&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Tang%2C+Yugui&rft.au=Yang%2C+Kuo&rft.au=Zhang%2C+Shujing&rft.au=Zhang%2C+Zhen&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=162&rft_id=info:doi/10.1016%2Fj.rser.2022.112473&rft.externalDocID=S1364032122003781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |