Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy

Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecastin...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 162; p. 112473
Main Authors Tang, Yugui, Yang, Kuo, Zhang, Shujing, Zhang, Zhen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecasting model assisted with a transfer learning strategy is proposed. The hybrid model, named the attention-dilate convolution neural network-bidirectional long short-term memory network, consists of three steps. Step 1 - Input reconstruction: the historical power and meteorological factors are reconstructed as new inputs based on their relevance to the forecast by introducing a long short-term memory-based attention mechanism; Step 2 - Feature extraction: a hybrid structure is applied to extract spatial and temporal features from new inputs in parallel; Step 3 - Feature mapping: the extracted features are mapped into the forecasted photovoltaic output. Furthermore, to address the modeling for new sites, a transfer learning strategy that fine-tunes the pre-trained model is proposed in this work. The structure by step-wise division allows fine-tuning to be applied to the necessary parts rather than the entire model. Subsequently, the data from the actual photovoltaic system was acquired to validate the proposed model and transfer learning strategy. The proposed model showed significantly superior performance than the other models in the tests, and the parameter transferring not only makes up for the data shortage but also effectively accelerates the model training. With the transfer learning strategy, the maximum improvement in accuracy and training efficiency reached 69.51% and 71.42%, respectively. •A hybrid model incorporating transfer learning for photovoltaic power forecasting is proposed.•The model consists of input reconstruction, parallel feature extraction and mapping.•Transfer learning is applied to model for newly built PV sites, addressing the data dependence and training efficiency.
AbstractList Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecasting model assisted with a transfer learning strategy is proposed. The hybrid model, named the attention-dilate convolution neural network-bidirectional long short-term memory network, consists of three steps. Step 1 - Input reconstruction: the historical power and meteorological factors are reconstructed as new inputs based on their relevance to the forecast by introducing a long short-term memory-based attention mechanism; Step 2 - Feature extraction: a hybrid structure is applied to extract spatial and temporal features from new inputs in parallel; Step 3 - Feature mapping: the extracted features are mapped into the forecasted photovoltaic output. Furthermore, to address the modeling for new sites, a transfer learning strategy that fine-tunes the pre-trained model is proposed in this work. The structure by step-wise division allows fine-tuning to be applied to the necessary parts rather than the entire model. Subsequently, the data from the actual photovoltaic system was acquired to validate the proposed model and transfer learning strategy. The proposed model showed significantly superior performance than the other models in the tests, and the parameter transferring not only makes up for the data shortage but also effectively accelerates the model training. With the transfer learning strategy, the maximum improvement in accuracy and training efficiency reached 69.51% and 71.42%, respectively. •A hybrid model incorporating transfer learning for photovoltaic power forecasting is proposed.•The model consists of input reconstruction, parallel feature extraction and mapping.•Transfer learning is applied to model for newly built PV sites, addressing the data dependence and training efficiency.
ArticleNumber 112473
Author Yang, Kuo
Zhang, Shujing
Tang, Yugui
Zhang, Zhen
Author_xml – sequence: 1
  givenname: Yugui
  surname: Tang
  fullname: Tang, Yugui
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
– sequence: 2
  givenname: Kuo
  surname: Yang
  fullname: Yang, Kuo
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
– sequence: 3
  givenname: Shujing
  surname: Zhang
  fullname: Zhang, Shujing
  organization: State Grid Intelligence Technology Co., Ltd., Shandong, China
– sequence: 4
  givenname: Zhen
  orcidid: 0000-0001-6966-0208
  surname: Zhang
  fullname: Zhang, Zhen
  email: zhangzhen_ta@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
BookMark eNp9kM1OwzAMgCMEEtvgBTjlBVry06Yt4jJN_EmT4ADnKk2cLVOXVEk1tLcn1RAHDjvZsv1Z9jdHl847QOiOkpwSKu53eYgQckYYyyllRcUv0IzWVZMR0ZDLlHNRZIQzeo3mMe4IoWVd8RmCj60f_cH3o7QKD_4bAjY-gJJxtG7zgJd4e-yC1VgDDLgHGVyq473X0GPrlA-DD3KaxWOQLpq04G8qptIIm-MNujKyj3D7Gxfo6_npc_Ward9f3lbLdaa4EGPGeNWUouNgjC5lqTsoVUGE6YipiKgUNQ0Y0TVcNh0zhYC6qiUwbnTRAakKvkD1aa8KPsYAplV2TMd5lw6xfUtJO-lqd-2kq510tSddCWX_0CHYvQzH89DjCYL01MGmblQWnAJtk8Kx1d6ew38AyDGJlA
CitedBy_id crossref_primary_10_1016_j_energy_2024_131863
crossref_primary_10_1016_j_renene_2024_120200
crossref_primary_10_1007_s00607_024_01266_1
crossref_primary_10_1016_j_energy_2024_131947
crossref_primary_10_3390_su152115594
crossref_primary_10_54287_gujsa_1581828
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_1016_j_apenergy_2023_122266
crossref_primary_10_1016_j_apenergy_2024_124844
crossref_primary_10_1016_j_measurement_2022_112093
crossref_primary_10_1016_j_apenergy_2024_122709
crossref_primary_10_3390_en17030698
crossref_primary_10_1007_s00202_023_01883_7
crossref_primary_10_3390_en18051042
crossref_primary_10_3390_s24227407
crossref_primary_10_3390_en17235981
crossref_primary_10_1016_j_apenergy_2024_124353
crossref_primary_10_1016_j_egyr_2025_01_067
crossref_primary_10_1016_j_engappai_2024_108814
crossref_primary_10_1109_TSTE_2024_3459415
crossref_primary_10_1016_j_apenergy_2025_125505
crossref_primary_10_1016_j_renene_2023_03_122
crossref_primary_10_1016_j_energy_2023_127864
crossref_primary_10_12688_digitaltwin_17632_2
crossref_primary_10_1155_2024_8163062
crossref_primary_10_1016_j_energy_2024_132152
crossref_primary_10_1016_j_energy_2025_134395
crossref_primary_10_12688_digitaltwin_17632_1
crossref_primary_10_1016_j_rser_2024_115035
crossref_primary_10_3390_en17163877
crossref_primary_10_1109_JIOT_2024_3416527
crossref_primary_10_26599_AIR_2024_9150031
crossref_primary_10_1016_j_measurement_2022_111530
crossref_primary_10_1109_TSTE_2024_3478760
crossref_primary_10_3390_en17163958
crossref_primary_10_1016_j_energy_2023_127542
crossref_primary_10_1016_j_rser_2024_114703
crossref_primary_10_3390_su15086538
crossref_primary_10_3389_fenrg_2024_1367199
crossref_primary_10_1016_j_apenergy_2024_123890
crossref_primary_10_1016_j_renene_2024_120780
crossref_primary_10_1016_j_apenergy_2024_122685
crossref_primary_10_1016_j_bspc_2024_106828
crossref_primary_10_3390_app14125189
crossref_primary_10_3390_en18061378
crossref_primary_10_1016_j_apenergy_2024_123215
crossref_primary_10_1016_j_est_2024_114153
crossref_primary_10_3390_su151713146
crossref_primary_10_1016_j_asoc_2023_110979
crossref_primary_10_3390_en17122969
crossref_primary_10_1016_j_eswa_2023_121055
crossref_primary_10_1016_j_energy_2023_129639
crossref_primary_10_1016_j_eswa_2024_124115
crossref_primary_10_1016_j_eswa_2024_125368
crossref_primary_10_1016_j_energy_2025_135213
crossref_primary_10_1016_j_rser_2024_114691
crossref_primary_10_1007_s11708_024_0915_y
crossref_primary_10_1016_j_engappai_2024_108952
crossref_primary_10_1016_j_measurement_2023_113208
crossref_primary_10_1016_j_energy_2024_132969
crossref_primary_10_1109_ACCESS_2024_3514098
crossref_primary_10_1016_j_compeleceng_2024_109407
crossref_primary_10_1016_j_renene_2024_119967
crossref_primary_10_3390_en17235877
crossref_primary_10_1016_j_energy_2023_127009
crossref_primary_10_1109_TII_2023_3335453
crossref_primary_10_1016_j_engappai_2023_107251
crossref_primary_10_1016_j_engappai_2023_107691
crossref_primary_10_1016_j_renene_2025_122824
crossref_primary_10_3390_s24206590
crossref_primary_10_3390_en16227477
crossref_primary_10_1007_s00202_025_03031_9
Cites_doi 10.1016/j.neucom.2019.08.105
10.1109/TIA.2021.3073652
10.1016/j.jclepro.2019.118858
10.1016/j.renene.2021.04.088
10.1016/j.solener.2018.11.046
10.1016/j.rser.2017.08.017
10.1016/j.ijepes.2021.106916
10.1016/j.solener.2017.04.066
10.1016/j.jclepro.2017.08.081
10.1016/j.solener.2018.05.089
10.1016/j.rser.2020.109792
10.1109/TSTE.2021.3057521
10.3389/fenrg.2021.682852
10.1016/j.energy.2021.120996
10.1063/1.5094494
10.1016/j.energy.2016.04.115
10.1049/iet-gtd.2018.5847
10.1016/j.solener.2018.01.095
10.1016/j.energy.2021.120094
10.1016/j.apenergy.2020.115504
10.1109/TIA.2012.2190816
10.3390/en11051260
10.3390/en11112906
10.1016/j.renene.2019.02.087
10.1109/JSYST.2020.3007184
10.1016/j.jclepro.2019.04.331
10.1016/j.apenergy.2019.114216
10.3390/en11102725
10.1016/j.renene.2016.09.012
10.3390/app8010028
10.1016/j.jclepro.2021.127037
10.1016/j.solener.2014.11.017
10.1109/ACCESS.2019.2921238
10.1016/j.energy.2021.120908
10.1016/j.apenergy.2021.117061
10.3390/en14113086
10.1109/TKDE.2009.191
10.1016/j.knosys.2019.05.028
10.1016/j.solener.2017.09.052
10.1016/j.ijepes.2018.01.025
10.1016/j.solener.2013.10.002
10.1016/j.neucom.2019.09.110
10.1063/1.5087462
10.1016/j.jclepro.2020.123948
10.1016/j.enconman.2017.10.008
10.1016/j.asoc.2020.106389
10.1016/j.renene.2017.11.011
10.1016/j.renene.2021.05.095
10.1109/ACCESS.2021.3099169
10.1016/j.energy.2021.120240
10.1016/j.energy.2019.116225
10.1016/j.solener.2012.04.004
10.1109/TIE.2017.2714127
10.1109/TSTE.2016.2535466
10.1007/s11063-021-10606-7
10.3390/rs13132605
10.1016/j.jclepro.2020.119966
10.1016/j.jclepro.2018.07.311
10.1109/TSTE.2020.3029731
10.1016/j.solener.2017.11.023
10.1016/j.ijepes.2019.105790
10.1016/j.solener.2011.08.027
10.1016/j.enconman.2020.113644
10.1016/j.renene.2018.02.006
10.1016/j.apenergy.2019.114001
10.1016/j.enconman.2021.114569
10.3390/en14164733
10.1016/j.energy.2020.117894
10.1016/j.apenergy.2021.117410
10.1016/j.enconman.2020.112766
10.1016/j.egyr.2021.08.167
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rser.2022.112473
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0690
ExternalDocumentID 10_1016_j_rser_2022_112473
S1364032122003781
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-237956b3effd5a5dbe5c406fb0f7067c1f9ef6b93a9b2f46e878ae23fd4be0743
IEDL.DBID .~1
ISSN 1364-0321
IngestDate Thu Apr 24 22:52:42 EDT 2025
Tue Jul 01 03:18:19 EDT 2025
Fri Feb 23 02:39:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid deep learning
Spatiotemporal features
Attention reconstruction
Transfer learning
Fine-tuning
Parallel extraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-237956b3effd5a5dbe5c406fb0f7067c1f9ef6b93a9b2f46e878ae23fd4be0743
ORCID 0000-0001-6966-0208
ParticipantIDs crossref_citationtrail_10_1016_j_rser_2022_112473
crossref_primary_10_1016_j_rser_2022_112473
elsevier_sciencedirect_doi_10_1016_j_rser_2022_112473
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hu, Cao, Wang, Li, Lv (bib8) 2018; 200
Yang, Yu, Zhao, Zhu (bib6) 2021; 9
Seyedmahmoudian, Jamei, Thirunavukkarasu, Soon, Mortimer, Horan (bib56) 2018; 11
Wang, Qi, Liu (bib58) 2019; 189
Alfadda, Rahman, Pipattansomporn (bib78) 2018; 170
Pan, Li, Gao, Huang, You, Gu (bib47) 2020; 277
Wang, Xuan, Zhen, Li, Wang, Shi (bib24) 2020; 212
Li, Zhang, Ma, Jiao, Wang, Hu (bib35) 2021; 224
Chu, Pedro, Kaur, Kleissl, Coimbra (bib75) 2018; 158
Kumler, Xie, Zhang (bib3) 2019; 177
Pedro, Coimbra, David, Lauret (bib77) 2018; 123
Pedro, Coimbra (bib15) 2012; 86
Zhang, Tan, Wei (bib39) 2020; 244
Sheng, Xiao, Cheng, Ni, Wang (bib22) 2018; 65
Yang (bib69) 2019; 11
VanDeventer, Jamei, Thirunavukkarasu, Seyedmahmoudian, Soon, Horan (bib49) 2019; 140
Liu, Ren, Xu (bib30) 2021; 12
Bouzerdoum, Mellit, Pavan (bib14) 2013; 98
Lateko, Yang, Huang, Aprillia, Hsu, Zhong (bib57) 2021; 14
Chen, Duan, Cai, Liu (bib16) 2011; 85
Chu, Coimbra (bib73) 2017; 101
Korkmaz (bib2) 2021; 300
Agga, Abbou, Labbadi, El Houm (bib61) 2021; 177
Luo, Zhang, Zhu (bib25) 2021; 225
Sahu, Shaw, Nayak, Shashikant (bib48) 2021; 24
Yang, Kleissl, Gueymard, Pedro, Coimbra (bib5) 2018; 168
Tao, Lu, Lang, Peng, Cheng, Duan (bib27) 2021; 14
Li, Wen, Tseng, Wang (bib72) 2019; 228
Cheng, Zang, Ding, Wei, Sun (bib31) 2021; 12
Ahmed, Sreeram, Mishra, Arif (bib1) 2020; 124
Eseye, Zhang, Zheng (bib53) 2018; 118
Pan, Yang (bib62) 2010; 22
Zhou, Zhou, Gong, Jiang (bib43) 2020; 204
Yan, Hu, Zhen, Wang, Qiu, Li (bib40) 2021; 57
Li, Zhu, Kong, Han, Zhao (bib67) 2019; 181
Gundu, Simon (bib23) 2021; 53
Kim, Suh, Otto, Huh (bib11) 2021; 13
Zhen, Niu, Wang, Shi, Ji, Xu (bib51) 2021; 231
Silva, Brito (bib74) 2018; 163
Hu, Shen, Sun (bib66) 2018
Wang, Zhen, Wang, Mi (bib17) 2018; 8
Lin, Li, Tseng, Liu, Yuan, Tan (bib46) 2020; 253
Jia, Zhang, Liu, Gong (bib55) 2021; 9
Persson, Bacher, Shiga, Madsen (bib76) 2017; 150
Crisosto, Hofmann, Mubarak, Seckmeyer (bib7) 2018; 11
Monjoly, Andre, Calif, Soubdhan (bib79) 2017; 119
Zhang, Lv, Ma, Zhao, Wang, O'Hare (bib32) 2020; 397
Li, Zhou, Lu, Yang (bib36) 2020; 259
Ding, Li, Tao (bib42) 2021; 227
Zang, Cheng, Ding, Cheung, Liang, Wei (bib28) 2018; 12
Gou, Ning (bib52) 2021; 128
Das, Tey, Seyedmahmoudian, Mekhilef, Idris, Van Deventer (bib4) 2018; 81
Chu, Urquhart, Gohari, Pedro, Kleissl, Coimbra (bib13) 2015; 112
Li, Sheng, Cheng, Stroe, Teodorescu (bib64) 2020; 277
Najibi, Apostolopoulou, Alonso (bib21) 2021; 130
Kim, Kwon, Park, Kim, Cho (bib26) 2021; 15
Kumari, Toshniwal (bib59) 2021; 295
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette (bib65) 2016; 17
Hossain, Mekhilef, Danesh, Olatomiwa, Shamshirband (bib20) 2017; 167
Niu, Wang, Sun, Wu, Xu (bib34) 2020; 93
Pedro, Larson, Coimbra (bib70) 2019; 11
Zang, Cheng, Ding, Cheung, Wei, Sun (bib37) 2020; 118
Huang, Kuo (bib29) 2019; 7
Rosiek, Alonso-Montesinos, Batlles (bib10) 2018; 99
Al-Dahidi, Ayadi, Adeeb, Alrbai, Qawasmeh (bib19) 2018; 11
Zheng, Zhang, Dai, Wang, Zheng, Liao (bib50) 2020; 257
Desert Knowledge Australia Centre. 11/12/2021. Download data. Alice Spring.
Zhou, Zhou, Mao, Xi (bib63) 2020
Shi, Lee, Liu, Yang, Wang (bib18) 2012; 48
Behera, Nayak (bib33) 2020; 23
Wang, Yi, Peng, Wang, Liu, Jiang (bib38) 2017; 153
Ma, Lv, Zhang, Zhang, Zhu, Yin (bib44) 2021; 7
Yang, Mourshed, Liu, Xu, Feng (bib45) 2020; 397
Jang, Bae, Park, Sung (bib9) 2016; 7
date accessed: 11/12/2021.
Tratar, Strmcnik (bib12) 2016; 109
Guermoui, Bouchouicha, Bailek, Boland (bib41) 2021; 245
Abdel-Basset, Hawash, Chakrabortty, Ryan, Pv-Net (bib71) 2021; 303
Qu, Qian, Pei (bib60) 2021; 232
Dash, Dash, Bisoi (bib54) 2021; 174
Lin (10.1016/j.rser.2022.112473_bib46) 2020; 253
Pedro (10.1016/j.rser.2022.112473_bib15) 2012; 86
Ahmed (10.1016/j.rser.2022.112473_bib1) 2020; 124
Li (10.1016/j.rser.2022.112473_bib35) 2021; 224
Niu (10.1016/j.rser.2022.112473_bib34) 2020; 93
Pan (10.1016/j.rser.2022.112473_bib47) 2020; 277
Pedro (10.1016/j.rser.2022.112473_bib70) 2019; 11
Li (10.1016/j.rser.2022.112473_bib64) 2020; 277
Eseye (10.1016/j.rser.2022.112473_bib53) 2018; 118
Guermoui (10.1016/j.rser.2022.112473_bib41) 2021; 245
Ma (10.1016/j.rser.2022.112473_bib44) 2021; 7
Yan (10.1016/j.rser.2022.112473_bib40) 2021; 57
Najibi (10.1016/j.rser.2022.112473_bib21) 2021; 130
Jang (10.1016/j.rser.2022.112473_bib9) 2016; 7
Chu (10.1016/j.rser.2022.112473_bib13) 2015; 112
Gou (10.1016/j.rser.2022.112473_bib52) 2021; 128
Li (10.1016/j.rser.2022.112473_bib72) 2019; 228
Abdel-Basset (10.1016/j.rser.2022.112473_bib71) 2021; 303
Bouzerdoum (10.1016/j.rser.2022.112473_bib14) 2013; 98
Qu (10.1016/j.rser.2022.112473_bib60) 2021; 232
10.1016/j.rser.2022.112473_bib68
Silva (10.1016/j.rser.2022.112473_bib74) 2018; 163
Chen (10.1016/j.rser.2022.112473_bib16) 2011; 85
Sahu (10.1016/j.rser.2022.112473_bib48) 2021; 24
Yang (10.1016/j.rser.2022.112473_bib69) 2019; 11
Zang (10.1016/j.rser.2022.112473_bib37) 2020; 118
Agga (10.1016/j.rser.2022.112473_bib61) 2021; 177
Chu (10.1016/j.rser.2022.112473_bib75) 2018; 158
Persson (10.1016/j.rser.2022.112473_bib76) 2017; 150
Zhen (10.1016/j.rser.2022.112473_bib51) 2021; 231
Jia (10.1016/j.rser.2022.112473_bib55) 2021; 9
Wang (10.1016/j.rser.2022.112473_bib58) 2019; 189
Li (10.1016/j.rser.2022.112473_bib36) 2020; 259
Tratar (10.1016/j.rser.2022.112473_bib12) 2016; 109
Kumari (10.1016/j.rser.2022.112473_bib59) 2021; 295
Ganin (10.1016/j.rser.2022.112473_bib65) 2016; 17
Rosiek (10.1016/j.rser.2022.112473_bib10) 2018; 99
Hossain (10.1016/j.rser.2022.112473_bib20) 2017; 167
Wang (10.1016/j.rser.2022.112473_bib38) 2017; 153
Chu (10.1016/j.rser.2022.112473_bib73) 2017; 101
Hu (10.1016/j.rser.2022.112473_bib66) 2018
Pan (10.1016/j.rser.2022.112473_bib62) 2010; 22
Zheng (10.1016/j.rser.2022.112473_bib50) 2020; 257
Liu (10.1016/j.rser.2022.112473_bib30) 2021; 12
Kim (10.1016/j.rser.2022.112473_bib11) 2021; 13
Shi (10.1016/j.rser.2022.112473_bib18) 2012; 48
Crisosto (10.1016/j.rser.2022.112473_bib7) 2018; 11
Dash (10.1016/j.rser.2022.112473_bib54) 2021; 174
Kim (10.1016/j.rser.2022.112473_bib26) 2021; 15
Li (10.1016/j.rser.2022.112473_bib67) 2019; 181
Zhang (10.1016/j.rser.2022.112473_bib32) 2020; 397
Korkmaz (10.1016/j.rser.2022.112473_bib2) 2021; 300
Das (10.1016/j.rser.2022.112473_bib4) 2018; 81
Wang (10.1016/j.rser.2022.112473_bib24) 2020; 212
VanDeventer (10.1016/j.rser.2022.112473_bib49) 2019; 140
Pedro (10.1016/j.rser.2022.112473_bib77) 2018; 123
Sheng (10.1016/j.rser.2022.112473_bib22) 2018; 65
Zhou (10.1016/j.rser.2022.112473_bib43) 2020; 204
Yang (10.1016/j.rser.2022.112473_bib6) 2021; 9
Hu (10.1016/j.rser.2022.112473_bib8) 2018; 200
Alfadda (10.1016/j.rser.2022.112473_bib78) 2018; 170
Luo (10.1016/j.rser.2022.112473_bib25) 2021; 225
Zhang (10.1016/j.rser.2022.112473_bib39) 2020; 244
Al-Dahidi (10.1016/j.rser.2022.112473_bib19) 2018; 11
Kumler (10.1016/j.rser.2022.112473_bib3) 2019; 177
Yang (10.1016/j.rser.2022.112473_bib5) 2018; 168
Cheng (10.1016/j.rser.2022.112473_bib31) 2021; 12
Tao (10.1016/j.rser.2022.112473_bib27) 2021; 14
Wang (10.1016/j.rser.2022.112473_bib17) 2018; 8
Zang (10.1016/j.rser.2022.112473_bib28) 2018; 12
Lateko (10.1016/j.rser.2022.112473_bib57) 2021; 14
Ding (10.1016/j.rser.2022.112473_bib42) 2021; 227
Monjoly (10.1016/j.rser.2022.112473_bib79) 2017; 119
Gundu (10.1016/j.rser.2022.112473_bib23) 2021; 53
Zhou (10.1016/j.rser.2022.112473_bib63) 2020
Behera (10.1016/j.rser.2022.112473_bib33) 2020; 23
Yang (10.1016/j.rser.2022.112473_bib45) 2020; 397
Seyedmahmoudian (10.1016/j.rser.2022.112473_bib56) 2018; 11
Huang (10.1016/j.rser.2022.112473_bib29) 2019; 7
References_xml – volume: 140
  start-page: 367
  year: 2019
  end-page: 379
  ident: bib49
  article-title: Short-term PV power forecasting using hybrid GASVM technique
  publication-title: Renew Energy
– volume: 109
  start-page: 266
  year: 2016
  end-page: 276
  ident: bib12
  article-title: The comparison of Holt-Winters method and Multiple regression method: a case study
  publication-title: Energy
– volume: 17
  start-page: 59
  year: 2016
  ident: bib65
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– volume: 168
  start-page: 60
  year: 2018
  end-page: 101
  ident: bib5
  article-title: History and trends in solar irradiance and PV power forecasting: a preliminary assessment and review using text mining
  publication-title: Sol Energy
– volume: 11
  start-page: 1260
  year: 2018
  ident: bib56
  article-title: Short-term forecasting of the output power of a building-Integrated photovoltaic system using a metaheuristic approach
  publication-title: Energies
– volume: 128
  start-page: 803
  year: 2021
  end-page: 822
  ident: bib52
  article-title: Forecasting model of photovoltaic power based on KPCA-MCS-DCNN
  publication-title: CMES-Comp. Model Eng Sci
– volume: 9
  start-page: 682852
  year: 2021
  ident: bib6
  article-title: Kalman filter photovoltaic power prediction model based on forecasting experience
  publication-title: Front Energy Res
– volume: 167
  start-page: 395
  year: 2017
  end-page: 405
  ident: bib20
  article-title: Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems
  publication-title: J Clean Prod
– volume: 153
  start-page: 409
  year: 2017
  end-page: 422
  ident: bib38
  article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network
  publication-title: Energy Convers Manag
– volume: 112
  start-page: 68
  year: 2015
  end-page: 77
  ident: bib13
  article-title: Short-term reforecasting of power output from a 48 MWe solar PV plant
  publication-title: Sol Energy
– volume: 86
  start-page: 2017
  year: 2012
  end-page: 2028
  ident: bib15
  article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs
  publication-title: Sol Energy
– volume: 15
  start-page: 346
  year: 2021
  end-page: 354
  ident: bib26
  article-title: Multiscale LSTM-based deep learning for very-short-term photovoltaic power generation forecasting in smart city energy management
  publication-title: IEEE Syst J
– reference: Desert Knowledge Australia Centre. 11/12/2021. Download data. Alice Spring.
– volume: 9
  start-page: 105939
  year: 2021
  end-page: 105950
  ident: bib55
  article-title: Short-term photovoltaic power forecasting based on VMD and ISSA-GRU
  publication-title: IEEE Access
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib62
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
– volume: 118
  start-page: 357
  year: 2018
  end-page: 367
  ident: bib53
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew Energy
– volume: 200
  start-page: 731
  year: 2018
  end-page: 745
  ident: bib8
  article-title: A new ultra-short-term photovoltaic power prediction model based on ground-based cloud images
  publication-title: J Clean Prod
– volume: 259
  start-page: 114216
  year: 2020
  ident: bib36
  article-title: A hybrid deep learning model for short-term PV power forecasting
  publication-title: Appl Energy
– volume: 158
  start-page: 236
  year: 2018
  end-page: 246
  ident: bib75
  article-title: Net load forecasts for solar-integrated operational grid feeders
  publication-title: Sol Energy
– volume: 189
  start-page: 116225
  year: 2019
  ident: bib58
  article-title: Photovoltaic power forecasting based LSTM-Convolutional Network
  publication-title: Energy
– volume: 170
  start-page: 924
  year: 2018
  end-page: 939
  ident: bib78
  article-title: Solar irradiance forecast using aerosols measurements: a data driven approach
  publication-title: Sol Energy
– volume: 300
  start-page: 117410
  year: 2021
  ident: bib2
  article-title: SolarNet: a hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting
  publication-title: Appl Energy
– volume: 123
  start-page: 191
  year: 2018
  end-page: 203
  ident: bib77
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew Energy
– volume: 57
  start-page: 3282
  year: 2021
  end-page: 3295
  ident: bib40
  article-title: Frequency-domain decomposition and deep learning based solar PV power ultra-short-term forecasting model
  publication-title: IEEE Trans Ind Appl
– volume: 163
  start-page: 329
  year: 2018
  end-page: 337
  ident: bib74
  article-title: Impact of network layout and time resolution on spatio-temporal solar forecasting
  publication-title: Sol Energy
– volume: 53
  start-page: 4407
  year: 2021
  end-page: 4418
  ident: bib23
  article-title: Short term solar power and temperature forecast using recurrent neural networks
  publication-title: Neural Process Lett
– volume: 118
  start-page: 105790
  year: 2020
  ident: bib37
  article-title: Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning
  publication-title: Int J Electr Power Energy Syst
– volume: 303
  start-page: 127037
  year: 2021
  ident: bib71
  article-title: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production
  publication-title: J Clean Prod
– volume: 12
  start-page: 1593
  year: 2021
  end-page: 1603
  ident: bib31
  article-title: Multi-meteorological-factor-based graph modeling for photovoltaic power forecasting
  publication-title: IEEE Trans Sustain Energy
– volume: 231
  start-page: 120908
  year: 2021
  ident: bib51
  article-title: Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information
  publication-title: Energy
– volume: 295
  start-page: 117061
  year: 2021
  ident: bib59
  article-title: Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting
  publication-title: Appl Energy
– volume: 85
  start-page: 2856
  year: 2011
  end-page: 2870
  ident: bib16
  article-title: Online 24-h solar power forecasting based on weather type classification using artificial neural network
  publication-title: Sol Energy
– volume: 93
  start-page: 106389
  year: 2020
  ident: bib34
  article-title: Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study
  publication-title: Appl Soft Comput
– volume: 12
  start-page: 4557
  year: 2018
  end-page: 4567
  ident: bib28
  article-title: Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network
  publication-title: IET Gener, Transm Distrib
– volume: 177
  start-page: 101
  year: 2021
  end-page: 112
  ident: bib61
  article-title: Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models
  publication-title: Renew Energy
– volume: 227
  start-page: 113644
  year: 2021
  ident: bib42
  article-title: A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting
  publication-title: Energy Convers Manag
– volume: 12
  start-page: 1493
  year: 2021
  end-page: 1496
  ident: bib30
  article-title: PV generation forecasting with missing input data: a super-resolution perception approach
  publication-title: IEEE Trans Sustain Energy
– volume: 81
  start-page: 912
  year: 2018
  end-page: 928
  ident: bib4
  article-title: Forecasting of photovoltaic power generation and model optimization: a review
  publication-title: Renew Sustain Energy Rev
– volume: 212
  start-page: 112766
  year: 2020
  ident: bib24
  article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework
  publication-title: Energy Convers Manag
– volume: 13
  start-page: 2605
  year: 2021
  ident: bib11
  article-title: A novel hybrid spatio-temporal forecasting of multisite solar photovoltaic generation
  publication-title: Rem Sens
– volume: 277
  start-page: 115504
  year: 2020
  ident: bib64
  article-title: State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis
  publication-title: Appl Energy
– volume: 204
  start-page: 117894
  year: 2020
  ident: bib43
  article-title: Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine
  publication-title: Energy
– volume: 397
  start-page: 415
  year: 2020
  end-page: 421
  ident: bib45
  article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting
  publication-title: Neurocomputing
– volume: 244
  start-page: 118858
  year: 2020
  ident: bib39
  article-title: An adaptive hybrid model for day-ahead photovoltaic output power prediction
  publication-title: J Clean Prod
– volume: 24
  start-page: 1180
  year: 2021
  end-page: 1200
  ident: bib48
  article-title: Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM
  publication-title: Eng Sci Technol
– volume: 124
  start-page: 109792
  year: 2020
  ident: bib1
  article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization
  publication-title: Renew Sustain Energy Rev
– volume: 277
  start-page: 123948
  year: 2020
  ident: bib47
  article-title: Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization
  publication-title: J Clean Prod
– volume: 99
  start-page: 261
  year: 2018
  end-page: 272
  ident: bib10
  article-title: Online 3-h forecasting of the power output from a BIPV system using satellite observations and ANN
  publication-title: Int J Electr Power Energy Syst
– volume: 7
  start-page: 5495
  year: 2021
  end-page: 5509
  ident: bib44
  article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting
  publication-title: Energy Rep
– volume: 8
  start-page: 28
  year: 2018
  ident: bib17
  article-title: Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting
  publication-title: Appl Sci-Basel
– volume: 11
  start-page: 18
  year: 2018
  ident: bib19
  article-title: Extreme learning machines for solar photovoltaic power predictions
  publication-title: Energies
– volume: 14
  start-page: 4733
  year: 2021
  ident: bib57
  article-title: Stacking ensemble method with the RNN meta-learner for short-term PV power forecasting
  publication-title: Energies
– volume: 245
  start-page: 114569
  year: 2021
  ident: bib41
  article-title: Forecasting intra-hour variance of photovoltaic power using a new integrated model
  publication-title: Energy Convers Manag
– volume: 11
  start-page: 2906
  year: 2018
  ident: bib7
  article-title: One-hour prediction of the global solar irradiance from all-sky images using artificial neural networks
  publication-title: Energies
– volume: 23
  start-page: 156
  year: 2020
  end-page: 167
  ident: bib33
  article-title: A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm
  publication-title: Eng Sci Technol
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bib66
  article-title: Squeeze-and-Excitation networks
  publication-title: 31st IEEE/CVF conference on computer vision and pattern recognition
– volume: 7
  start-page: 1255
  year: 2016
  end-page: 1263
  ident: bib9
  article-title: Solar power prediction based on satellite images and support vector machine
  publication-title: IEEE Trans Sustain Energy
– volume: 98
  start-page: 226
  year: 2013
  end-page: 235
  ident: bib14
  article-title: A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant
  publication-title: Sol Energy
– volume: 14
  start-page: 16
  year: 2021
  ident: bib27
  article-title: Short-term forecasting of photovoltaic power generation based on feature selection and bias compensation-LSTM network
  publication-title: Energies
– start-page: 125
  year: 2020
  end-page: 132
  ident: bib63
  article-title: Transfer learning for photovoltaic power forecasting with long short-term memory neural network
  publication-title: 2020 IEEE international conference ON big DATA and smart computing
– volume: 257
  start-page: 114001
  year: 2020
  ident: bib50
  article-title: Time series prediction for output of multi-region solar power plants
  publication-title: Appl Energy
– volume: 11
  year: 2019
  ident: bib69
  article-title: A guideline to solar forecasting research practice: reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES)
  publication-title: J Renew Sustain Energy
– volume: 101
  start-page: 526
  year: 2017
  end-page: 536
  ident: bib73
  article-title: Short-term probabilistic forecasts for direct normal irradiance
  publication-title: Renew Energy
– volume: 150
  start-page: 423
  year: 2017
  end-page: 436
  ident: bib76
  article-title: Multi-site solar power forecasting using gradient boosted regression trees
  publication-title: Sol Energy
– volume: 11
  year: 2019
  ident: bib70
  article-title: A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods
  publication-title: J Renew Sustain Energy
– volume: 228
  start-page: 359
  year: 2019
  end-page: 375
  ident: bib72
  article-title: Renewable energy prediction: a novel short-term prediction model of photovoltaic output power
  publication-title: J Clean Prod
– volume: 130
  start-page: 106916
  year: 2021
  ident: bib21
  article-title: Enhanced performance Gaussian process regression for probabilistic short-term solar output forecast
  publication-title: Int J Electr Power Energy Syst
– volume: 119
  start-page: 288
  year: 2017
  end-page: 298
  ident: bib79
  article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods
  publication-title: A hybrid approach
– volume: 253
  start-page: 119966
  year: 2020
  ident: bib46
  article-title: An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation
  publication-title: J Clean Prod
– volume: 174
  start-page: 513
  year: 2021
  end-page: 537
  ident: bib54
  article-title: Short term solar power forecasting using hybrid minimum variance expanded RVFLN and Sine-Cosine Levy Flight PSO algorithm
  publication-title: Renew Energy
– volume: 177
  start-page: 494
  year: 2019
  end-page: 500
  ident: bib3
  article-title: A physics-based smart persistence model for intra-hour forecasting of solar radiation (PSPI) using GHI measurements and a cloud retrieval technique
  publication-title: Sol Energy
– volume: 48
  start-page: 1064
  year: 2012
  end-page: 1069
  ident: bib18
  article-title: Forecasting power output of photovoltaic systems based on weather classification and support vector machines
  publication-title: IEEE Trans Ind Appl
– volume: 181
  start-page: 104785
  year: 2019
  ident: bib67
  article-title: EA-LSTM: evolutionary attention-based LSTM for time series prediction
  publication-title: Knowl Base Syst
– volume: 7
  start-page: 74822
  year: 2019
  end-page: 74834
  ident: bib29
  article-title: Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting
  publication-title: IEEE Access
– reference: , date accessed: 11/12/2021.
– volume: 397
  start-page: 438
  year: 2020
  end-page: 446
  ident: bib32
  article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform
  publication-title: Neurocomputing
– volume: 225
  start-page: 120240
  year: 2021
  ident: bib25
  article-title: Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge
  publication-title: Energy
– volume: 65
  start-page: 300
  year: 2018
  end-page: 308
  ident: bib22
  article-title: Short-term solar power forecasting based on weighted Gaussian process regression
  publication-title: IEEE Trans Ind Electron
– volume: 232
  start-page: 120996
  year: 2021
  ident: bib60
  article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern
  publication-title: Energy
– volume: 224
  start-page: 120094
  year: 2021
  ident: bib35
  article-title: A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine
  publication-title: Energy
– volume: 397
  start-page: 438
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib32
  article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.105
– volume: 57
  start-page: 3282
  issue: 4
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib40
  article-title: Frequency-domain decomposition and deep learning based solar PV power ultra-short-term forecasting model
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2021.3073652
– volume: 244
  start-page: 118858
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib39
  article-title: An adaptive hybrid model for day-ahead photovoltaic output power prediction
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118858
– volume: 174
  start-page: 513
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib54
  article-title: Short term solar power forecasting using hybrid minimum variance expanded RVFLN and Sine-Cosine Levy Flight PSO algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.04.088
– volume: 24
  start-page: 1180
  issue: 5
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib48
  article-title: Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM
  publication-title: Eng Sci Technol
– volume: 177
  start-page: 494
  year: 2019
  ident: 10.1016/j.rser.2022.112473_bib3
  article-title: A physics-based smart persistence model for intra-hour forecasting of solar radiation (PSPI) using GHI measurements and a cloud retrieval technique
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.11.046
– volume: 128
  start-page: 803
  issue: 2
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib52
  article-title: Forecasting model of photovoltaic power based on KPCA-MCS-DCNN
  publication-title: CMES-Comp. Model Eng Sci
– volume: 17
  start-page: 59
  year: 2016
  ident: 10.1016/j.rser.2022.112473_bib65
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– volume: 119
  start-page: 288
  year: 2017
  ident: 10.1016/j.rser.2022.112473_bib79
  article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods
  publication-title: A hybrid approach
– volume: 81
  start-page: 912
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib4
  article-title: Forecasting of photovoltaic power generation and model optimization: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.08.017
– volume: 130
  start-page: 106916
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib21
  article-title: Enhanced performance Gaussian process regression for probabilistic short-term solar output forecast
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.106916
– volume: 150
  start-page: 423
  year: 2017
  ident: 10.1016/j.rser.2022.112473_bib76
  article-title: Multi-site solar power forecasting using gradient boosted regression trees
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.04.066
– volume: 167
  start-page: 395
  year: 2017
  ident: 10.1016/j.rser.2022.112473_bib20
  article-title: Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.08.081
– volume: 170
  start-page: 924
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib78
  article-title: Solar irradiance forecast using aerosols measurements: a data driven approach
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.05.089
– volume: 124
  start-page: 109792
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib1
  article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109792
– volume: 12
  start-page: 1593
  issue: 3
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib31
  article-title: Multi-meteorological-factor-based graph modeling for photovoltaic power forecasting
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2021.3057521
– volume: 9
  start-page: 682852
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib6
  article-title: Kalman filter photovoltaic power prediction model based on forecasting experience
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2021.682852
– volume: 232
  start-page: 120996
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib60
  article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120996
– volume: 11
  issue: 3
  year: 2019
  ident: 10.1016/j.rser.2022.112473_bib70
  article-title: A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.5094494
– volume: 109
  start-page: 266
  year: 2016
  ident: 10.1016/j.rser.2022.112473_bib12
  article-title: The comparison of Holt-Winters method and Multiple regression method: a case study
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.115
– volume: 12
  start-page: 4557
  issue: 20
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib28
  article-title: Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network
  publication-title: IET Gener, Transm Distrib
  doi: 10.1049/iet-gtd.2018.5847
– volume: 163
  start-page: 329
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib74
  article-title: Impact of network layout and time resolution on spatio-temporal solar forecasting
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.01.095
– volume: 224
  start-page: 120094
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib35
  article-title: A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120094
– volume: 277
  start-page: 115504
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib64
  article-title: State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115504
– volume: 48
  start-page: 1064
  issue: 3
  year: 2012
  ident: 10.1016/j.rser.2022.112473_bib18
  article-title: Forecasting power output of photovoltaic systems based on weather classification and support vector machines
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2012.2190816
– volume: 11
  start-page: 1260
  issue: 5
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib56
  article-title: Short-term forecasting of the output power of a building-Integrated photovoltaic system using a metaheuristic approach
  publication-title: Energies
  doi: 10.3390/en11051260
– volume: 11
  start-page: 2906
  issue: 11
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib7
  article-title: One-hour prediction of the global solar irradiance from all-sky images using artificial neural networks
  publication-title: Energies
  doi: 10.3390/en11112906
– volume: 140
  start-page: 367
  year: 2019
  ident: 10.1016/j.rser.2022.112473_bib49
  article-title: Short-term PV power forecasting using hybrid GASVM technique
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.02.087
– volume: 15
  start-page: 346
  issue: 1
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib26
  article-title: Multiscale LSTM-based deep learning for very-short-term photovoltaic power generation forecasting in smart city energy management
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2020.3007184
– volume: 228
  start-page: 359
  year: 2019
  ident: 10.1016/j.rser.2022.112473_bib72
  article-title: Renewable energy prediction: a novel short-term prediction model of photovoltaic output power
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.04.331
– volume: 259
  start-page: 114216
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib36
  article-title: A hybrid deep learning model for short-term PV power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114216
– volume: 11
  start-page: 18
  issue: 10
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib19
  article-title: Extreme learning machines for solar photovoltaic power predictions
  publication-title: Energies
  doi: 10.3390/en11102725
– volume: 101
  start-page: 526
  year: 2017
  ident: 10.1016/j.rser.2022.112473_bib73
  article-title: Short-term probabilistic forecasts for direct normal irradiance
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.09.012
– volume: 8
  start-page: 28
  issue: 1
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib17
  article-title: Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting
  publication-title: Appl Sci-Basel
  doi: 10.3390/app8010028
– volume: 303
  start-page: 127037
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib71
  article-title: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.127037
– volume: 112
  start-page: 68
  year: 2015
  ident: 10.1016/j.rser.2022.112473_bib13
  article-title: Short-term reforecasting of power output from a 48 MWe solar PV plant
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2014.11.017
– volume: 7
  start-page: 74822
  year: 2019
  ident: 10.1016/j.rser.2022.112473_bib29
  article-title: Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921238
– start-page: 125
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib63
  article-title: Transfer learning for photovoltaic power forecasting with long short-term memory neural network
– volume: 231
  start-page: 120908
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib51
  article-title: Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120908
– volume: 295
  start-page: 117061
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib59
  article-title: Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117061
– volume: 14
  start-page: 16
  issue: 11
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib27
  article-title: Short-term forecasting of photovoltaic power generation based on feature selection and bias compensation-LSTM network
  publication-title: Energies
  doi: 10.3390/en14113086
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.rser.2022.112473_bib62
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– start-page: 7132
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib66
  article-title: Squeeze-and-Excitation networks
– volume: 181
  start-page: 104785
  year: 2019
  ident: 10.1016/j.rser.2022.112473_bib67
  article-title: EA-LSTM: evolutionary attention-based LSTM for time series prediction
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2019.05.028
– volume: 158
  start-page: 236
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib75
  article-title: Net load forecasts for solar-integrated operational grid feeders
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.09.052
– volume: 99
  start-page: 261
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib10
  article-title: Online 3-h forecasting of the power output from a BIPV system using satellite observations and ANN
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2018.01.025
– volume: 98
  start-page: 226
  year: 2013
  ident: 10.1016/j.rser.2022.112473_bib14
  article-title: A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.10.002
– volume: 397
  start-page: 415
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib45
  article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.110
– volume: 11
  issue: 2
  year: 2019
  ident: 10.1016/j.rser.2022.112473_bib69
  article-title: A guideline to solar forecasting research practice: reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES)
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.5087462
– volume: 277
  start-page: 123948
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib47
  article-title: Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123948
– volume: 153
  start-page: 409
  year: 2017
  ident: 10.1016/j.rser.2022.112473_bib38
  article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.10.008
– volume: 93
  start-page: 106389
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib34
  article-title: Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106389
– volume: 118
  start-page: 357
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib53
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.11.011
– volume: 177
  start-page: 101
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib61
  article-title: Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.05.095
– ident: 10.1016/j.rser.2022.112473_bib68
– volume: 9
  start-page: 105939
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib55
  article-title: Short-term photovoltaic power forecasting based on VMD and ISSA-GRU
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3099169
– volume: 225
  start-page: 120240
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib25
  article-title: Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120240
– volume: 189
  start-page: 116225
  year: 2019
  ident: 10.1016/j.rser.2022.112473_bib58
  article-title: Photovoltaic power forecasting based LSTM-Convolutional Network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116225
– volume: 86
  start-page: 2017
  issue: 7
  year: 2012
  ident: 10.1016/j.rser.2022.112473_bib15
  article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2012.04.004
– volume: 65
  start-page: 300
  issue: 1
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib22
  article-title: Short-term solar power forecasting based on weighted Gaussian process regression
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2714127
– volume: 7
  start-page: 1255
  issue: 3
  year: 2016
  ident: 10.1016/j.rser.2022.112473_bib9
  article-title: Solar power prediction based on satellite images and support vector machine
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2016.2535466
– volume: 53
  start-page: 4407
  issue: 6
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib23
  article-title: Short term solar power and temperature forecast using recurrent neural networks
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10606-7
– volume: 13
  start-page: 2605
  issue: 13
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib11
  article-title: A novel hybrid spatio-temporal forecasting of multisite solar photovoltaic generation
  publication-title: Rem Sens
  doi: 10.3390/rs13132605
– volume: 253
  start-page: 119966
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib46
  article-title: An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.119966
– volume: 200
  start-page: 731
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib8
  article-title: A new ultra-short-term photovoltaic power prediction model based on ground-based cloud images
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.07.311
– volume: 12
  start-page: 1493
  issue: 2
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib30
  article-title: PV generation forecasting with missing input data: a super-resolution perception approach
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2020.3029731
– volume: 168
  start-page: 60
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib5
  article-title: History and trends in solar irradiance and PV power forecasting: a preliminary assessment and review using text mining
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.11.023
– volume: 118
  start-page: 105790
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib37
  article-title: Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.105790
– volume: 85
  start-page: 2856
  issue: 11
  year: 2011
  ident: 10.1016/j.rser.2022.112473_bib16
  article-title: Online 24-h solar power forecasting based on weather type classification using artificial neural network
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.08.027
– volume: 227
  start-page: 113644
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib42
  article-title: A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113644
– volume: 123
  start-page: 191
  year: 2018
  ident: 10.1016/j.rser.2022.112473_bib77
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.02.006
– volume: 257
  start-page: 114001
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib50
  article-title: Time series prediction for output of multi-region solar power plants
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114001
– volume: 245
  start-page: 114569
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib41
  article-title: Forecasting intra-hour variance of photovoltaic power using a new integrated model
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114569
– volume: 14
  start-page: 4733
  issue: 16
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib57
  article-title: Stacking ensemble method with the RNN meta-learner for short-term PV power forecasting
  publication-title: Energies
  doi: 10.3390/en14164733
– volume: 23
  start-page: 156
  issue: 1
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib33
  article-title: A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm
  publication-title: Eng Sci Technol
– volume: 204
  start-page: 117894
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib43
  article-title: Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117894
– volume: 300
  start-page: 117410
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib2
  article-title: SolarNet: a hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117410
– volume: 212
  start-page: 112766
  year: 2020
  ident: 10.1016/j.rser.2022.112473_bib24
  article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112766
– volume: 7
  start-page: 5495
  year: 2021
  ident: 10.1016/j.rser.2022.112473_bib44
  article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.08.167
SSID ssj0015873
Score 2.6325798
Snippet Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112473
SubjectTerms Attention reconstruction
Fine-tuning
Hybrid deep learning
Parallel extraction
Spatiotemporal features
Transfer learning
Title Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy
URI https://dx.doi.org/10.1016/j.rser.2022.112473
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68SWyzr2S9lWKpr1LUQm9hk921FWlDGw-9-NvdyaNUkB48hSwzIcxOZmbJN98gdEUUEypUyn1pUnssMMxT3ErPGl8JJYTkORjzuS96Q_Yw4qMa6lS9MACrLGN_EdPzaF2uNEtrNtPJpPnqU8Fa1IVewFcFefs1YwF4-c33Cubh8zD_ywzCHkiXjTMFxmvuttmdEQmBThoW0L-T01rC6e6jvbJSxO3iZQ5QzUwP0e4af-ARMoPxLJu5AOPO9wlOYeAZdkWoSdQC0My3uI3HS2jJwtqYFJcTIt5xPv4GAy9DQWMMa1lewboHrKQWBXHt8hgNu3dvnZ5Xzk3wEipE5hEauFNPTI21miuuY8MTl7dt3LKBS06Jb6WxIpZUyZhYJkwYhMoQajWLDZQUJ2hrOpuaU4QpY9JaZVqxAO55LROiKeXUEm2ltn4d-ZXBoqQkFYfZFp9RhR77iMDIERg5KoxcR9crnbSg1Ngozat9iH45RuRi_ga9s3_qnaMduCsQuRdoK5t_mUtXd2RxI3esBtpud16eBnC9f-z1fwBQFdt2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqA9VLRQQQvUB3pCYTd-Ja7EAUHR8hQSIHFLnXjc3araXbGpqr30T_UP4km8K5AqDpW4Oh7LGU9mxso33wBscyu1za0NX5pxicxQJlZ5k3hMrbZaG9WAMc8vdO9Gntyq2wX4O6uFIVhl9P2tT2-8dRzpRG12xoNB5yoVWnZFcL2Er8ryNCIrT3H6O9zbJnvHh-GQP3N-9PX6oJfE1gJJJbSuEy6ycDEoBXrvlFWuRFWF0ObLrs-C_65Sb9Dr0ghrSu6lxjzLLXLhnSyRom5Y9wW8lMFdUNuE3T9zXEmq8ua3Nu0uoe3FSp0WVHYX7CpcSjmn0h2ZiX9HwwcR7mgZ3sTUlO23b_8WFnD4Dl4_ICxcAbzsj-pR8Gi1HVRsTB3WWMh6sbITgk9_YfusP6UaMOYQxyy2pPjOmn47jIggWt5kGqublDksMJ81aZlyp6tw8yzafA-Lw9EQ14AJKY33FrulJrJ7ZyruhFDCc-eN8-k6pDOFFVVkMadmGj-LGVztR0FKLkjJRavkddiZy4xbDo8nZ6vZORSPLLEIQeYJuQ__KfcJlnrX52fF2fHF6Ud4RU9aOPAGLNZ3v3AzJD11udUYGYNvz23V9_X-Fwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photovoltaic+power+forecasting%3A+A+hybrid+deep+learning+model+incorporating+transfer+learning+strategy&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Tang%2C+Yugui&rft.au=Yang%2C+Kuo&rft.au=Zhang%2C+Shujing&rft.au=Zhang%2C+Zhen&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=162&rft_id=info:doi/10.1016%2Fj.rser.2022.112473&rft.externalDocID=S1364032122003781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon