Feature selection based on artificial bee colony and gradient boosting decision tree
Data from many real-world applications can be high dimensional and features of such data are usually highly redundant. Identifying informative features has become an important step for data mining to not only circumvent the curse of dimensionality but to reduce the amount of data for processing. In...
Saved in:
Published in | Applied soft computing Vol. 74; pp. 634 - 642 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data from many real-world applications can be high dimensional and features of such data are usually highly redundant. Identifying informative features has become an important step for data mining to not only circumvent the curse of dimensionality but to reduce the amount of data for processing. In this paper, we propose a novel feature selection method based on bee colony and gradient boosting decision tree aiming at addressing problems such as efficiency and informative quality of the selected features. Our method achieves global optimization of the inputs of the decision tree using the bee colony algorithm to identify the informative features. The method initializes the feature space spanned by the dataset. Less relevant features are suppressed according to the information they contribute to the decision making using an artificial bee colony algorithm. Experiments are conducted with two breast cancer datasets and six datasets from the public data repository. Experimental results demonstrate that the proposed method effectively reduces the dimensions of the dataset and achieves superior classification accuracy using the selected features.
•A novel method for feature selection based on bee colony and decision tree.•The proposed method improves efficiency and informative quality of the selected features.•Experiments conducted with breast cancer datasets demonstrate superior performance. |
---|---|
AbstractList | Data from many real-world applications can be high dimensional and features of such data are usually highly redundant. Identifying informative features has become an important step for data mining to not only circumvent the curse of dimensionality but to reduce the amount of data for processing. In this paper, we propose a novel feature selection method based on bee colony and gradient boosting decision tree aiming at addressing problems such as efficiency and informative quality of the selected features. Our method achieves global optimization of the inputs of the decision tree using the bee colony algorithm to identify the informative features. The method initializes the feature space spanned by the dataset. Less relevant features are suppressed according to the information they contribute to the decision making using an artificial bee colony algorithm. Experiments are conducted with two breast cancer datasets and six datasets from the public data repository. Experimental results demonstrate that the proposed method effectively reduces the dimensions of the dataset and achieves superior classification accuracy using the selected features.
•A novel method for feature selection based on bee colony and decision tree.•The proposed method improves efficiency and informative quality of the selected features.•Experiments conducted with breast cancer datasets demonstrate superior performance. |
Author | Shi, Xianzhang Elhoseny, Mohamed Rao, Haidi Xia, Yingchun Yuan, Xiaohui Rodrigue, Ahoussou Kouassi Feng, Juanjuan Gu, Lichuan |
Author_xml | – sequence: 1 givenname: Haidi surname: Rao fullname: Rao, Haidi organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China – sequence: 2 givenname: Xianzhang surname: Shi fullname: Shi, Xianzhang organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China – sequence: 3 givenname: Ahoussou Kouassi surname: Rodrigue fullname: Rodrigue, Ahoussou Kouassi organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China – sequence: 4 givenname: Juanjuan surname: Feng fullname: Feng, Juanjuan organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China – sequence: 5 givenname: Yingchun surname: Xia fullname: Xia, Yingchun organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China – sequence: 6 givenname: Mohamed orcidid: 0000-0001-6347-8368 surname: Elhoseny fullname: Elhoseny, Mohamed organization: Mansoura University, Mansoura, 35516, Egypt – sequence: 7 givenname: Xiaohui orcidid: 0000-0001-6897-4563 surname: Yuan fullname: Yuan, Xiaohui email: xiaohui.yuan@unt.edu organization: Department of Computer Science and Engineering, University of North Texas, TX, 76203, USA – sequence: 8 givenname: Lichuan surname: Gu fullname: Gu, Lichuan organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China |
BookMark | eNp9kM1KAzEUhYNUsK2-gKu8wIzJZCbNgBspVoWCm7oO-blTMoyJJFHo25uhrlx0dQ8HvgvnW6GFDx4QuqekpoTyh7FWKZi6IVSUoiaMX6ElFZum6rmgi5I7Lqq2b_kNWqU0kgL1jViiww5U_o6AE0xgsgsea5XA4hJUzG5wxqkJawBswhT8CStv8TEq68BnrENI2fkjtmBcmukcAW7R9aCmBHd_d40-ds-H7Wu1f3952z7tK8M4z1VDjGIMCNWGt9RSSnQ7CNJ3YmhU3_XAOg26I7YbWsW03lg7cGsZaaloG0LYGonzXxNDShEGaVxW84gclZskJXK2I0c525Gznbkrdgra_EO_ovtU8XQZejxDUEb9OIgymaLBgHWxyJM2uEv4L598gZQ |
CitedBy_id | crossref_primary_10_1080_26395940_2022_2102543 crossref_primary_10_1016_j_knosys_2021_106792 crossref_primary_10_3233_JIFS_179081 crossref_primary_10_1016_j_marpetgeo_2021_104939 crossref_primary_10_33851_JMIS_2023_10_2_169 crossref_primary_10_1007_s00521_023_09391_2 crossref_primary_10_1016_j_energy_2024_131146 crossref_primary_10_3233_JIFS_179085 crossref_primary_10_48084_etasr_5964 crossref_primary_10_1016_j_engappai_2021_104506 crossref_primary_10_3389_fonc_2022_832567 crossref_primary_10_1016_j_aej_2022_03_074 crossref_primary_10_3390_electronics12102207 crossref_primary_10_1016_j_inffus_2023_102191 crossref_primary_10_3389_fenrg_2022_882818 crossref_primary_10_1016_j_asoc_2019_02_034 crossref_primary_10_1016_j_neucom_2021_03_027 crossref_primary_10_1007_s11053_021_09894_6 crossref_primary_10_1016_j_jocs_2024_102423 crossref_primary_10_3390_computation9060068 crossref_primary_10_1007_s11831_025_10269_w crossref_primary_10_1016_j_cmpb_2021_106290 crossref_primary_10_1016_j_diii_2022_10_010 crossref_primary_10_1049_rpg2_12494 crossref_primary_10_1002_int_22669 crossref_primary_10_1016_j_ijfatigue_2023_107671 crossref_primary_10_1007_s00521_021_05997_6 crossref_primary_10_3233_JIFS_179091 crossref_primary_10_3390_e23081065 crossref_primary_10_1007_s41870_023_01355_y crossref_primary_10_3233_IDA_215825 crossref_primary_10_1002_joc_7897 crossref_primary_10_3233_JIFS_179093 crossref_primary_10_1109_TGRS_2021_3126319 crossref_primary_10_3233_JIFS_179098 crossref_primary_10_1016_j_iswa_2022_200173 crossref_primary_10_3233_JIFS_179097 crossref_primary_10_1109_ACCESS_2023_3298542 crossref_primary_10_1016_j_jwpe_2023_104303 crossref_primary_10_1093_bib_bbaa154 crossref_primary_10_3390_hydrology9120226 crossref_primary_10_1016_j_gsf_2024_101958 crossref_primary_10_3390_a18030154 crossref_primary_10_1016_j_energy_2024_130608 crossref_primary_10_1371_journal_pone_0249196 crossref_primary_10_3390_electronics10232984 crossref_primary_10_1142_S219688882150007X crossref_primary_10_1016_j_envpol_2020_115434 crossref_primary_10_1155_2021_8872248 crossref_primary_10_1016_j_bbe_2019_12_004 crossref_primary_10_3390_math8101756 crossref_primary_10_3390_rs12081334 crossref_primary_10_1016_j_eswa_2024_124960 crossref_primary_10_1155_2021_6480456 crossref_primary_10_1007_s11042_023_16039_9 crossref_primary_10_1016_j_est_2023_110319 crossref_primary_10_3390_app131910755 crossref_primary_10_1016_j_ifacol_2024_09_300 crossref_primary_10_1109_JIOT_2020_3016297 crossref_primary_10_1109_ACCESS_2022_3156593 crossref_primary_10_1007_s10666_024_09982_w crossref_primary_10_1016_j_engappai_2024_109935 crossref_primary_10_1016_j_catena_2024_108645 crossref_primary_10_1080_01431161_2021_1945158 crossref_primary_10_1007_s00500_020_05070_9 crossref_primary_10_1016_j_aej_2024_02_008 crossref_primary_10_1097_MD_0000000000037258 crossref_primary_10_2166_nh_2021_161 crossref_primary_10_1007_s13349_022_00557_5 crossref_primary_10_1016_j_procs_2021_08_070 crossref_primary_10_3233_IDA_230540 crossref_primary_10_3390_pr10040749 crossref_primary_10_1016_j_compbiomed_2020_103974 crossref_primary_10_1016_j_ijhm_2020_102849 crossref_primary_10_1007_s10479_022_04933_8 crossref_primary_10_1016_j_patcog_2020_107470 crossref_primary_10_1109_ACCESS_2020_3004039 crossref_primary_10_1007_s11771_021_4730_x crossref_primary_10_46604_aiti_2024_13972 crossref_primary_10_1155_2020_8479341 crossref_primary_10_2478_amns_2025_0805 crossref_primary_10_1016_j_petrol_2020_107160 crossref_primary_10_1016_j_compag_2020_105588 crossref_primary_10_1007_s00521_024_10155_9 crossref_primary_10_1016_j_asoc_2020_106672 crossref_primary_10_1016_j_asoc_2021_107625 crossref_primary_10_1016_j_asoc_2021_107622 crossref_primary_10_1038_s41598_024_71431_1 crossref_primary_10_1007_s42235_023_00478_z crossref_primary_10_1016_j_knosys_2021_106875 crossref_primary_10_1016_j_asoc_2023_110240 crossref_primary_10_1016_j_cie_2021_107904 crossref_primary_10_1016_j_est_2023_109072 crossref_primary_10_1108_DTA_11_2020_0286 crossref_primary_10_1007_s11771_024_5758_5 crossref_primary_10_1016_j_sajce_2023_11_001 crossref_primary_10_1016_j_autcon_2021_103678 crossref_primary_10_3390_math12172641 crossref_primary_10_1007_s11042_024_18473_9 crossref_primary_10_1016_j_psep_2022_12_019 crossref_primary_10_1080_17452759_2022_2068446 crossref_primary_10_1007_s11270_021_04989_5 crossref_primary_10_1016_j_engappai_2020_104150 crossref_primary_10_1080_01426397_2024_2307528 crossref_primary_10_1007_s11666_021_01198_8 crossref_primary_10_1016_j_procs_2020_04_178 crossref_primary_10_1109_JIOT_2023_3317089 crossref_primary_10_1002_met_2144 crossref_primary_10_1093_bioinformatics_btz967 crossref_primary_10_3233_JIFS_200937 crossref_primary_10_1016_j_iswcr_2022_03_004 crossref_primary_10_1016_j_jmse_2022_06_001 crossref_primary_10_3390_electronics13122291 crossref_primary_10_1142_S0219265921430362 crossref_primary_10_1016_j_autcon_2023_104767 crossref_primary_10_1088_1742_6596_2767_9_092050 crossref_primary_10_24003_emitter_v9i1_491 crossref_primary_10_1007_s00500_022_06826_1 crossref_primary_10_4015_S1016237221500204 crossref_primary_10_1016_j_eswa_2020_113572 crossref_primary_10_1007_s10462_023_10675_1 crossref_primary_10_1016_j_neucom_2020_07_113 crossref_primary_10_1016_j_advengsoft_2022_103338 crossref_primary_10_1016_j_apacoust_2020_107721 crossref_primary_10_1038_s41598_024_84741_1 crossref_primary_10_3390_su151712885 crossref_primary_10_1016_j_ijepes_2020_106399 crossref_primary_10_1016_j_eswa_2024_124764 crossref_primary_10_1016_j_knosys_2022_109446 crossref_primary_10_1007_s12652_019_01570_1 crossref_primary_10_3390_biomimetics9030187 crossref_primary_10_1007_s11227_022_04579_0 crossref_primary_10_1007_s11042_023_15175_6 crossref_primary_10_2139_ssrn_3967353 crossref_primary_10_1007_s11063_021_10700_w crossref_primary_10_3390_su14116629 crossref_primary_10_1088_2631_8695_acbd87 crossref_primary_10_3233_JIFS_179100 crossref_primary_10_1155_2021_8462493 crossref_primary_10_3233_JIFS_179104 crossref_primary_10_3390_electronics12183748 crossref_primary_10_3390_info13040163 crossref_primary_10_1016_j_microc_2020_105085 crossref_primary_10_1016_j_uclim_2024_102227 crossref_primary_10_1093_comjnl_bxab145 crossref_primary_10_1007_s13369_021_05886_z crossref_primary_10_1016_j_scitotenv_2020_137077 crossref_primary_10_1007_s40430_023_04341_4 crossref_primary_10_1016_j_ecmx_2025_100912 crossref_primary_10_3389_fpsyt_2021_728278 crossref_primary_10_1177_20552076241288833 crossref_primary_10_1007_s00366_021_01342_6 crossref_primary_10_1109_ACCESS_2024_3390684 crossref_primary_10_1080_13467581_2023_2294871 crossref_primary_10_1016_j_mtener_2024_101769 crossref_primary_10_1016_j_compmedimag_2024_102339 crossref_primary_10_1097_MD_0000000000025813 crossref_primary_10_1016_j_asoc_2021_108026 crossref_primary_10_3390_rs14092143 crossref_primary_10_3390_math8050765 crossref_primary_10_1109_ACCESS_2023_3272556 crossref_primary_10_1007_s13042_020_01174_8 crossref_primary_10_1093_bioinformatics_btad615 crossref_primary_10_1177_09544062221133757 crossref_primary_10_1016_j_aej_2023_11_046 crossref_primary_10_1109_MNET_011_2000400 crossref_primary_10_3233_JIFS_179110 crossref_primary_10_1007_s40996_024_01560_0 crossref_primary_10_1007_s00521_023_08547_4 crossref_primary_10_1080_20476965_2021_1966324 crossref_primary_10_1007_s00500_020_05349_x crossref_primary_10_1007_s10489_022_03478_4 crossref_primary_10_1093_comjnl_bxaa066 crossref_primary_10_3233_JIFS_179115 crossref_primary_10_1007_s11517_020_02237_2 crossref_primary_10_3390_e22101093 crossref_primary_10_1016_j_jclepro_2022_131314 crossref_primary_10_1007_s11998_020_00376_7 crossref_primary_10_1016_j_jseaes_2021_104798 crossref_primary_10_1002_er_6270 crossref_primary_10_1007_s10489_024_05267_7 crossref_primary_10_1109_TIM_2024_3470060 crossref_primary_10_1142_S0218126622500682 crossref_primary_10_1177_1748006X221102992 crossref_primary_10_1007_s11053_019_09576_4 crossref_primary_10_1002_rra_3739 crossref_primary_10_1016_j_asoc_2022_109420 crossref_primary_10_1093_jcde_qwac120 crossref_primary_10_1016_j_mtcomm_2024_108043 crossref_primary_10_1007_s10586_024_04879_5 crossref_primary_10_1002_cpe_6535 crossref_primary_10_1155_2020_8896570 crossref_primary_10_1016_j_simpa_2023_100504 crossref_primary_10_1007_s11771_024_5782_5 crossref_primary_10_1016_j_asoc_2019_106041 crossref_primary_10_1016_j_ins_2020_05_130 crossref_primary_10_1016_j_upstre_2023_100089 crossref_primary_10_1016_j_asoc_2024_111650 crossref_primary_10_1016_j_actamat_2021_116917 crossref_primary_10_1016_j_engappai_2023_106648 crossref_primary_10_1155_2022_7111034 crossref_primary_10_1007_s11356_023_30123_5 crossref_primary_10_1007_s10796_024_10559_x crossref_primary_10_1016_j_compeleceng_2024_109631 crossref_primary_10_1016_j_knosys_2023_111191 crossref_primary_10_1007_s11227_019_02985_5 crossref_primary_10_3390_s21010046 crossref_primary_10_1016_j_bbe_2022_09_001 crossref_primary_10_1016_j_conbuildmat_2021_125778 crossref_primary_10_1142_S0218001423510096 crossref_primary_10_1016_j_knosys_2025_113252 crossref_primary_10_1016_j_asoc_2021_107794 crossref_primary_10_4018_IJDWM_319966 crossref_primary_10_1016_j_jcis_2023_05_052 crossref_primary_10_1109_ACCESS_2023_3275967 crossref_primary_10_1038_s41598_021_82796_y crossref_primary_10_1016_j_molliq_2023_122251 crossref_primary_10_1016_j_neucom_2022_04_083 crossref_primary_10_3233_JIFS_179134 crossref_primary_10_1016_j_eswa_2021_115895 crossref_primary_10_1371_journal_pone_0269195 crossref_primary_10_1080_0952813X_2023_2183267 crossref_primary_10_3390_s22114235 crossref_primary_10_1007_s00170_020_05890_x crossref_primary_10_1007_s13198_022_01714_1 crossref_primary_10_1007_s00521_021_06881_z crossref_primary_10_1007_s11042_024_19769_6 crossref_primary_10_1016_j_jmsy_2021_03_014 crossref_primary_10_1016_j_asoc_2020_106299 crossref_primary_10_3233_JIFS_189612 crossref_primary_10_4018_IJSI_292028 crossref_primary_10_1007_s00170_024_14647_9 crossref_primary_10_5812_jjnpp_142058 crossref_primary_10_1016_j_corsci_2025_112875 crossref_primary_10_1109_ACCESS_2020_3033784 crossref_primary_10_3233_JIFS_179142 crossref_primary_10_1002_advs_202307173 crossref_primary_10_1016_j_corsci_2023_111222 crossref_primary_10_1016_j_knosys_2023_110635 crossref_primary_10_3233_JIFS_179140 crossref_primary_10_3233_JIFS_231569 crossref_primary_10_1002_jnm_2787 crossref_primary_10_1016_j_impact_2022_100429 crossref_primary_10_1016_j_imed_2023_06_002 crossref_primary_10_1109_JSTARS_2020_3044250 crossref_primary_10_1016_j_heliyon_2023_e20133 crossref_primary_10_1016_j_molliq_2022_120103 crossref_primary_10_1016_j_heliyon_2024_e26799 crossref_primary_10_1016_j_energy_2021_122561 crossref_primary_10_1007_s11042_023_18034_6 crossref_primary_10_1007_s00477_024_02896_9 crossref_primary_10_1016_j_compag_2023_108388 crossref_primary_10_1021_acs_cgd_1c01519 crossref_primary_10_1007_s11042_023_17044_8 crossref_primary_10_3233_JIFS_222979 crossref_primary_10_1155_2022_1676697 crossref_primary_10_4018_IJDST_307957 crossref_primary_10_1016_j_compbiomed_2025_110034 crossref_primary_10_1115_1_4066923 crossref_primary_10_1016_j_asoc_2020_106946 crossref_primary_10_1016_j_ijrefrig_2023_01_016 crossref_primary_10_1016_j_asoc_2021_107538 crossref_primary_10_3390_machines12010060 crossref_primary_10_1016_j_saa_2020_118918 crossref_primary_10_1016_j_compbiomed_2021_104968 crossref_primary_10_3233_JIFS_179159 crossref_primary_10_1016_j_dajour_2023_100175 crossref_primary_10_1186_s12864_021_07620_3 crossref_primary_10_4108_eetsis_vi_1998 crossref_primary_10_1016_j_cor_2021_105334 crossref_primary_10_1038_s43246_024_00545_w crossref_primary_10_1016_j_petrol_2021_109244 crossref_primary_10_1109_ACCESS_2024_3362228 crossref_primary_10_1615_InterJFluidMechRes_2024051796 crossref_primary_10_3390_rs13214476 crossref_primary_10_1142_S0219877022500043 crossref_primary_10_1007_s12065_023_00819_1 crossref_primary_10_1016_j_scs_2023_104898 crossref_primary_10_1109_ACCESS_2020_2966017 crossref_primary_10_1016_j_eswa_2020_113842 crossref_primary_10_1002_qub2_40 crossref_primary_10_32604_csse_2023_031582 crossref_primary_10_1007_s12665_024_11696_x crossref_primary_10_1016_j_energy_2025_134738 crossref_primary_10_1007_s11600_023_01089_2 crossref_primary_10_1155_2022_2733965 crossref_primary_10_1007_s11416_022_00443_0 crossref_primary_10_3233_JIFS_231263 crossref_primary_10_3390_a16010051 crossref_primary_10_1007_s10462_021_10095_z crossref_primary_10_1016_j_scitotenv_2019_135533 crossref_primary_10_3390_ijms241210348 crossref_primary_10_1080_15481603_2022_2118345 crossref_primary_10_32604_cmc_2023_036894 crossref_primary_10_1016_j_eswa_2023_121478 crossref_primary_10_1038_s43246_020_0012_7 crossref_primary_10_1016_j_asoc_2021_107351 crossref_primary_10_3390_rs11070790 crossref_primary_10_1016_j_geoen_2025_213853 crossref_primary_10_1016_j_scitotenv_2021_150018 crossref_primary_10_1016_j_engappai_2021_104279 crossref_primary_10_3390_jimaging9070138 crossref_primary_10_1002_dac_4434 crossref_primary_10_1002_ldr_4614 crossref_primary_10_1016_j_jag_2025_104365 crossref_primary_10_3390_a14040120 crossref_primary_10_3390_genes12050683 crossref_primary_10_1016_j_solener_2023_112006 crossref_primary_10_1109_ACCESS_2020_3024575 crossref_primary_10_1007_s10660_020_09409_0 crossref_primary_10_1109_TITS_2024_3509868 crossref_primary_10_1002_widm_1564 crossref_primary_10_1186_s40537_021_00465_3 crossref_primary_10_1007_s11227_024_06631_7 crossref_primary_10_1016_j_eswa_2023_121128 crossref_primary_10_1016_j_istruc_2023_105280 crossref_primary_10_1016_j_knosys_2023_110697 crossref_primary_10_2339_politeknik_972844 crossref_primary_10_3233_JIFS_179061 crossref_primary_10_1109_TNSRE_2020_3019063 crossref_primary_10_1007_s13042_022_01562_2 crossref_primary_10_3233_JIFS_179066 crossref_primary_10_3390_app14010356 crossref_primary_10_3390_s23125675 crossref_primary_10_3233_JIFS_179064 crossref_primary_10_1002_cnr2_1293 crossref_primary_10_1016_j_cmpb_2021_106432 crossref_primary_10_3233_JIFS_179068 crossref_primary_10_1007_s10462_021_10009_z crossref_primary_10_3389_fgene_2021_655284 crossref_primary_10_1007_s12273_024_1142_5 crossref_primary_10_3390_en16020643 crossref_primary_10_1016_j_jnlssr_2021_10_003 crossref_primary_10_1109_ACCESS_2024_3445591 crossref_primary_10_1016_j_egyr_2024_01_081 crossref_primary_10_1016_j_comtox_2023_100266 crossref_primary_10_1016_j_resourpol_2023_103548 crossref_primary_10_1007_s11053_024_10402_9 crossref_primary_10_1142_S0219265921470071 crossref_primary_10_1186_s12874_022_01827_y crossref_primary_10_1186_s40854_024_00745_w crossref_primary_10_3390_agriculture12010093 crossref_primary_10_1016_j_chemolab_2021_104445 crossref_primary_10_1093_comjnl_bxaa109 crossref_primary_10_26599_IJCS_2023_9100035 crossref_primary_10_1016_j_measurement_2023_113525 crossref_primary_10_3233_JIFS_179078 crossref_primary_10_1002_smtd_202300285 crossref_primary_10_1016_j_eswa_2020_114288 crossref_primary_10_1016_j_future_2020_05_020 crossref_primary_10_1109_ACCESS_2021_3100638 crossref_primary_10_1016_j_conbuildmat_2023_134154 crossref_primary_10_1108_AJIM_03_2021_0080 crossref_primary_10_1109_ACCESS_2020_3028039 crossref_primary_10_1016_j_procs_2022_09_362 crossref_primary_10_1016_j_engstruct_2023_116378 crossref_primary_10_1080_0952813X_2023_2217813 crossref_primary_10_1109_ACCESS_2020_2992752 crossref_primary_10_1007_s00521_022_07398_9 crossref_primary_10_1007_s11036_019_01385_6 crossref_primary_10_1080_08839514_2021_2014190 crossref_primary_10_46604_ijeti_2020_4646 crossref_primary_10_1016_j_asoc_2021_107346 crossref_primary_10_1016_j_asoc_2021_107101 crossref_primary_10_1142_S012906572450014X |
Cites_doi | 10.1109/TPAMI.2005.159 10.1186/1687-5281-2013-47 10.1016/j.ejor.2004.09.010 10.1007/s00500-016-2385-6 10.1007/s00521-015-2103-9 10.1109/ICRTIT.2013.6844180 10.1145/3136625 10.1016/S0004-3702(03)00079-1 10.1109/JSTARS.2016.2645880 10.1016/j.asoc.2017.11.006 10.1016/j.patcog.2017.12.017 10.1016/j.compbiomed.2017.05.010 10.1109/ICPR.2004.1334169 10.1155/2013/419187 10.1109/TKDE.2017.2763618 10.1007/s10898-007-9149-x 10.1214/aos/1013203451 10.1016/j.eswa.2008.08.022 10.1007/s10462-017-9541-y 10.1016/j.clinbiochem.2004.05.011 10.1007/s10115-012-0487-8 10.1016/j.ejor.2006.02.040 10.1145/2939672.2939785 10.1109/TCYB.2014.2347372 10.1145/2623330.2623635 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2018.10.036 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 642 |
ExternalDocumentID | 10_1016_j_asoc_2018_10_036 S1568494618305933 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-20ca33e01bc641d110b4f80958f2a959e35beb50d5f4a3bb7ddf6dd3041842003 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:55:23 EDT 2025 Tue Jul 01 01:50:02 EDT 2025 Fri Feb 23 02:24:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dimensionality reduction Feature selection Bee colony algorithm Decision tree |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-20ca33e01bc641d110b4f80958f2a959e35beb50d5f4a3bb7ddf6dd3041842003 |
ORCID | 0000-0001-6347-8368 0000-0001-6897-4563 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2018_10_036 crossref_primary_10_1016_j_asoc_2018_10_036 elsevier_sciencedirect_doi_10_1016_j_asoc_2018_10_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gu, Han, Wang, Chen, Jiao, Yuan (b2) 2018 Sikora, Piramuthu (b20) 2007; 180 Peng, Long, Ding (b18) 2005; 27 Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (b17) 2013; 34 Shen, Liu, Yuan (b5) 2017; 10 Gu, Cheng, Jin (b26) 2018; 22 M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. Zhu, Zhang, Hu, Zhu, Song (b12) 2018; 30 Yuan, Abouelenien (b28) 2015; 4 Cheng, NIZW (b34) 2014; 27 Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b10) 2017; 50 Meiri, Zahavi (b22) 2006; 171 Schiezaro, Pedrini (b11) 2013; 2013 Wu, Qian (b33) 2011; 6 Karaboga, Basturk (b32) 2007; 39 Alsaffar, Omar (b7) 2014 Schiezaro, Pedrini (b23) 2013; 2013 Z. Xu, G. Huang, K.Q. Weinberger, A.X. Zheng, Gradient boosted feature selection, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, 2014, pp. 522–531. Uzer, Yilmaz, Inan (b27) 2013; 2013 Friedman (b15) 2001 Wan, Freitas (b4) 2018; 50 Guyon, Elisseeff (b9) 2003; 3 Mafarja, Mirjalili (b13) 2017; 62 Aghdam, Ghasem-Aghaee, Basiri (b19) 2009; 36 Liu, Tang, Zeng (b8) 2015; 45 Bi, Bennett, Embrechts, Breneman, Song (b24) 2003; 3 Aličković, Subasi (b3) 2017; 28 T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, 2016, pp. 785–794. Dash, Liu (b16) 2003; 151 Tuv, Borisov, Runger, Torkkola (b30) 2009; 10 Yuan, Xie, Abouelenien (b1) 2018; 77 H. Wang, Y. Meng, P. Yin, J. Hua, A model-driven method for quality reviews detection: an ensemble model of feature selection, in: Wuhan International Conference On E-Business, 2016, p. 2. P. Shunmugapriya, S. Kanmani, R. Supraja, K. Saranya, et al. Feature selection optimization through enhanced artificial bee colony algorithm, in: International Conference on Recent Trends in Information Technology, Chennai, India, 2013, pp. 56–61. Ramos-González, López-Sánchez, Castellanos-Garzón, d. Paz, Corchado (b31) 2017; 86 Suthaharan (b35) 2016 Rodland (b6) 2004; 37 Shen (10.1016/j.asoc.2018.10.036_b5) 2017; 10 Mafarja (10.1016/j.asoc.2018.10.036_b13) 2017; 62 Wan (10.1016/j.asoc.2018.10.036_b4) 2018; 50 Rodland (10.1016/j.asoc.2018.10.036_b6) 2004; 37 Uzer (10.1016/j.asoc.2018.10.036_b27) 2013; 2013 Yuan (10.1016/j.asoc.2018.10.036_b28) 2015; 4 Guyon (10.1016/j.asoc.2018.10.036_b9) 2003; 3 Tuv (10.1016/j.asoc.2018.10.036_b30) 2009; 10 Peng (10.1016/j.asoc.2018.10.036_b18) 2005; 27 Bi (10.1016/j.asoc.2018.10.036_b24) 2003; 3 10.1016/j.asoc.2018.10.036_b21 Meiri (10.1016/j.asoc.2018.10.036_b22) 2006; 171 Gu (10.1016/j.asoc.2018.10.036_b2) 2018 Bolón-Canedo (10.1016/j.asoc.2018.10.036_b17) 2013; 34 10.1016/j.asoc.2018.10.036_b25 Aličković (10.1016/j.asoc.2018.10.036_b3) 2017; 28 Wu (10.1016/j.asoc.2018.10.036_b33) 2011; 6 Yuan (10.1016/j.asoc.2018.10.036_b1) 2018; 77 Li (10.1016/j.asoc.2018.10.036_b10) 2017; 50 10.1016/j.asoc.2018.10.036_b29 Dash (10.1016/j.asoc.2018.10.036_b16) 2003; 151 Aghdam (10.1016/j.asoc.2018.10.036_b19) 2009; 36 Alsaffar (10.1016/j.asoc.2018.10.036_b7) 2014 Liu (10.1016/j.asoc.2018.10.036_b8) 2015; 45 Karaboga (10.1016/j.asoc.2018.10.036_b32) 2007; 39 Gu (10.1016/j.asoc.2018.10.036_b26) 2018; 22 Suthaharan (10.1016/j.asoc.2018.10.036_b35) 2016 Ramos-González (10.1016/j.asoc.2018.10.036_b31) 2017; 86 Schiezaro (10.1016/j.asoc.2018.10.036_b23) 2013; 2013 Cheng (10.1016/j.asoc.2018.10.036_b34) 2014; 27 Zhu (10.1016/j.asoc.2018.10.036_b12) 2018; 30 Friedman (10.1016/j.asoc.2018.10.036_b15) 2001 Schiezaro (10.1016/j.asoc.2018.10.036_b11) 2013; 2013 10.1016/j.asoc.2018.10.036_b14 10.1016/j.asoc.2018.10.036_b36 Sikora (10.1016/j.asoc.2018.10.036_b20) 2007; 180 |
References_xml | – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: b9 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b18 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 34 start-page: 483 year: 2013 end-page: 519 ident: b17 article-title: A review of feature selection methods on synthetic data publication-title: Knowl. Inf. Syst. – volume: 22 start-page: 811 year: 2018 end-page: 822 ident: b26 article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer publication-title: Soft Comput. – volume: 86 start-page: 98 year: 2017 end-page: 106 ident: b31 article-title: A cbr framework with gradient boosting based feature selection for lung cancer subtype classification publication-title: Comput. Biol. Med. – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b32 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm publication-title: J. Global Optim. – volume: 45 start-page: 1209 year: 2015 end-page: 1221 ident: b8 article-title: Feature selection based on dependency margin publication-title: IEEE Trans. Cybern. – volume: 27 start-page: 1005 year: 2014 end-page: 1014 ident: b34 article-title: Lifecycle-based binary ant colony optimization algorithm publication-title: Pattern Recognit. Artif. Intell. – volume: 2013 start-page: 47 year: 2013 ident: b11 article-title: Data feature selection based on artificial bee colony algorithm publication-title: EURASIP J. Image Video Process. – reference: P. Shunmugapriya, S. Kanmani, R. Supraja, K. Saranya, et al. Feature selection optimization through enhanced artificial bee colony algorithm, in: International Conference on Recent Trends in Information Technology, Chennai, India, 2013, pp. 56–61. – volume: 4 start-page: 13 year: 2015 end-page: 29 ident: b28 article-title: A multi-class boosting method for learning from imbalanced data publication-title: Int. J. Granul. Comput. Rough Sets Intell. Syst. – volume: 30 start-page: 517 year: 2018 end-page: 529 ident: b12 article-title: Local and global structure preservation for robust unsupervised spectral feature selection publication-title: IEEE Trans. Knowl. Data Eng. – volume: 171 start-page: 842 year: 2006 end-page: 858 ident: b22 article-title: Using simulated annealing to optimize the feature selection problem in marketing applications publication-title: European J. Oper. Res. – volume: 62 start-page: 441 year: 2017 end-page: 453 ident: b13 article-title: Whale optimization approaches for wrapper feature selection publication-title: Applied Soft Computing – volume: 50 start-page: 201 year: 2018 end-page: 240 ident: b4 article-title: An empirical evaluation of hierarchical feature selection methods for classification in bioinformatics datasets with gene ontology-based features publication-title: Artif. Intell. Rev. – start-page: 270 year: 2014 end-page: 275 ident: b7 article-title: Study on feature selection and machine learning algorithms for malay sentiment classification publication-title: International Conference on Information Technology and Multimedia – volume: 77 start-page: 160 year: 2018 end-page: 172 ident: b1 article-title: A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data publication-title: Pattern Recognit. – reference: H. Wang, Y. Meng, P. Yin, J. Hua, A model-driven method for quality reviews detection: an ensemble model of feature selection, in: Wuhan International Conference On E-Business, 2016, p. 2. – volume: 28 start-page: 753 year: 2017 end-page: 763 ident: b3 article-title: Breast cancer diagnosis using ga feature selection and rotation forest publication-title: Neural Comput. Appl. – volume: 3 start-page: 1229 year: 2003 end-page: 1243 ident: b24 article-title: Dimensionality reduction via sparse support vector machines publication-title: J. Mach. Learn. Res. – start-page: 1189 year: 2001 end-page: 1232 ident: b15 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. statist. – volume: 180 start-page: 723 year: 2007 end-page: 737 ident: b20 article-title: Framework for efficient feature selection in genetic algorithm based data mining publication-title: European J. Oper. Res. – volume: 2013 year: 2013 ident: b27 article-title: Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification publication-title: Sci. World J. – year: 2016 ident: b35 article-title: Machine Learning Models and Algorithms for Big Data Classification – reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, 2016, pp. 785–794. – volume: 2013 start-page: 47 year: 2013 ident: b23 article-title: Data feature selection based on artificial bee colony algorithm publication-title: EURASIP J. Image Video Process. – volume: 50 start-page: 94 year: 2017 ident: b10 article-title: Feature selection: a data perspective publication-title: ACM Comput. Surv. – volume: 151 start-page: 155 year: 2003 end-page: 176 ident: b16 article-title: Consistency-based search in feature selection publication-title: Artif. Intell. – reference: M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. – start-page: 1 year: 2018 end-page: 10 ident: b2 article-title: Module overlapping structure detection in ppi using an improved link similarity-based markov clustering algorithms publication-title: Neural Comput. Appl. – volume: 36 start-page: 6843 year: 2009 end-page: 6853 ident: b19 article-title: Text feature selection using ant colony optimization publication-title: Expert Syst. Appl. – volume: 37 start-page: 579 year: 2004 end-page: 583 ident: b6 article-title: Proteomics and cancer diagnosis: the potential of mass spectrometry publication-title: Clin. Biochem. – volume: 10 start-page: 1402 year: 2017 end-page: 1412 ident: b5 article-title: Fractal dimension of irregular region of interest application to corn phenology characterization publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 6 start-page: 841 year: 2011 end-page: 848 ident: b33 article-title: Differential artificial bee colony algorithm for global numerical optimization publication-title: J. Comput. – volume: 10 start-page: 1341 year: 2009 end-page: 1366 ident: b30 article-title: Feature selection with ensembles, artificial variables, and redundancy elimination publication-title: J. Mach. Learn. Res. – reference: Z. Xu, G. Huang, K.Q. Weinberger, A.X. Zheng, Gradient boosted feature selection, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, 2014, pp. 522–531. – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.asoc.2018.10.036_b18 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 6 start-page: 841 issue: 5 year: 2011 ident: 10.1016/j.asoc.2018.10.036_b33 article-title: Differential artificial bee colony algorithm for global numerical optimization publication-title: J. Comput. – year: 2016 ident: 10.1016/j.asoc.2018.10.036_b35 – volume: 2013 start-page: 47 issue: 1 year: 2013 ident: 10.1016/j.asoc.2018.10.036_b23 article-title: Data feature selection based on artificial bee colony algorithm publication-title: EURASIP J. Image Video Process. doi: 10.1186/1687-5281-2013-47 – volume: 171 start-page: 842 issue: 3 year: 2006 ident: 10.1016/j.asoc.2018.10.036_b22 article-title: Using simulated annealing to optimize the feature selection problem in marketing applications publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2004.09.010 – volume: 22 start-page: 811 issue: 3 year: 2018 ident: 10.1016/j.asoc.2018.10.036_b26 article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer publication-title: Soft Comput. doi: 10.1007/s00500-016-2385-6 – volume: 28 start-page: 753 issue: 4 year: 2017 ident: 10.1016/j.asoc.2018.10.036_b3 article-title: Breast cancer diagnosis using ga feature selection and rotation forest publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2103-9 – volume: 27 start-page: 1005 issue: 11 year: 2014 ident: 10.1016/j.asoc.2018.10.036_b34 article-title: Lifecycle-based binary ant colony optimization algorithm publication-title: Pattern Recognit. Artif. Intell. – ident: 10.1016/j.asoc.2018.10.036_b25 doi: 10.1109/ICRTIT.2013.6844180 – volume: 50 start-page: 94 issue: 6 year: 2017 ident: 10.1016/j.asoc.2018.10.036_b10 article-title: Feature selection: a data perspective publication-title: ACM Comput. Surv. doi: 10.1145/3136625 – volume: 151 start-page: 155 issue: 1–2 year: 2003 ident: 10.1016/j.asoc.2018.10.036_b16 article-title: Consistency-based search in feature selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(03)00079-1 – volume: 10 start-page: 1402 issue: 4 year: 2017 ident: 10.1016/j.asoc.2018.10.036_b5 article-title: Fractal dimension of irregular region of interest application to corn phenology characterization publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2645880 – volume: 62 start-page: 441 year: 2017 ident: 10.1016/j.asoc.2018.10.036_b13 article-title: Whale optimization approaches for wrapper feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.11.006 – start-page: 270 year: 2014 ident: 10.1016/j.asoc.2018.10.036_b7 article-title: Study on feature selection and machine learning algorithms for malay sentiment classification – volume: 77 start-page: 160 year: 2018 ident: 10.1016/j.asoc.2018.10.036_b1 article-title: A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.12.017 – volume: 86 start-page: 98 year: 2017 ident: 10.1016/j.asoc.2018.10.036_b31 article-title: A cbr framework with gradient boosting based feature selection for lung cancer subtype classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.05.010 – volume: 2013 start-page: 47 issue: 1 year: 2013 ident: 10.1016/j.asoc.2018.10.036_b11 article-title: Data feature selection based on artificial bee colony algorithm publication-title: EURASIP J. Image Video Process. doi: 10.1186/1687-5281-2013-47 – ident: 10.1016/j.asoc.2018.10.036_b21 doi: 10.1109/ICPR.2004.1334169 – volume: 2013 year: 2013 ident: 10.1016/j.asoc.2018.10.036_b27 article-title: Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification publication-title: Sci. World J. doi: 10.1155/2013/419187 – volume: 10 start-page: 1341 issue: Jul year: 2009 ident: 10.1016/j.asoc.2018.10.036_b30 article-title: Feature selection with ensembles, artificial variables, and redundancy elimination publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 517 issue: 3 year: 2018 ident: 10.1016/j.asoc.2018.10.036_b12 article-title: Local and global structure preservation for robust unsupervised spectral feature selection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2763618 – volume: 3 start-page: 1229 issue: Mar year: 2003 ident: 10.1016/j.asoc.2018.10.036_b24 article-title: Dimensionality reduction via sparse support vector machines publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2018.10.036_b2 article-title: Module overlapping structure detection in ppi using an improved link similarity-based markov clustering algorithms publication-title: Neural Comput. Appl. – volume: 3 start-page: 1157 issue: Mar year: 2003 ident: 10.1016/j.asoc.2018.10.036_b9 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.asoc.2018.10.036_b32 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – volume: 4 start-page: 13 issue: 1 year: 2015 ident: 10.1016/j.asoc.2018.10.036_b28 article-title: A multi-class boosting method for learning from imbalanced data publication-title: Int. J. Granul. Comput. Rough Sets Intell. Syst. – ident: 10.1016/j.asoc.2018.10.036_b14 – start-page: 1189 year: 2001 ident: 10.1016/j.asoc.2018.10.036_b15 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. statist. doi: 10.1214/aos/1013203451 – volume: 36 start-page: 6843 issue: 3 year: 2009 ident: 10.1016/j.asoc.2018.10.036_b19 article-title: Text feature selection using ant colony optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.08.022 – volume: 50 start-page: 201 issue: 2 year: 2018 ident: 10.1016/j.asoc.2018.10.036_b4 article-title: An empirical evaluation of hierarchical feature selection methods for classification in bioinformatics datasets with gene ontology-based features publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9541-y – volume: 37 start-page: 579 issue: 7 year: 2004 ident: 10.1016/j.asoc.2018.10.036_b6 article-title: Proteomics and cancer diagnosis: the potential of mass spectrometry publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2004.05.011 – volume: 34 start-page: 483 issue: 3 year: 2013 ident: 10.1016/j.asoc.2018.10.036_b17 article-title: A review of feature selection methods on synthetic data publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-012-0487-8 – volume: 180 start-page: 723 issue: 2 year: 2007 ident: 10.1016/j.asoc.2018.10.036_b20 article-title: Framework for efficient feature selection in genetic algorithm based data mining publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2006.02.040 – ident: 10.1016/j.asoc.2018.10.036_b36 doi: 10.1145/2939672.2939785 – volume: 45 start-page: 1209 issue: 6 year: 2015 ident: 10.1016/j.asoc.2018.10.036_b8 article-title: Feature selection based on dependency margin publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2347372 – ident: 10.1016/j.asoc.2018.10.036_b29 doi: 10.1145/2623330.2623635 |
SSID | ssj0016928 |
Score | 2.6689236 |
Snippet | Data from many real-world applications can be high dimensional and features of such data are usually highly redundant. Identifying informative features has... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 634 |
SubjectTerms | Bee colony algorithm Decision tree Dimensionality reduction Feature selection |
Title | Feature selection based on artificial bee colony and gradient boosting decision tree |
URI | https://dx.doi.org/10.1016/j.asoc.2018.10.036 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHrxJ2jw2afZYiqW-imgLvYV9SkViadODF3-7M8mmKEgPnpIsuyH5mMzMbr6dj5ArngoVGss9A7mqx7QvPWmM8GwYWimM4izFvcOPo2Q4YXfTeNog_XovDNIqne-vfHrprV1Lx6HZmc9mnReYeaSMswSMEnXpsOInY1208vbXmuYRJLzUV8XOHvZ2G2cqjpcABJDelbaR4VWWaf4jOP0IOIM9suMyRdqrHmafNEx-QHZrFQbqPspDMsYsbrUwdFlK2gDOFEOTpnCCb1KViKCADcUK1fknFbmmr4uS61VQyLKXSH2m2qntUPxPfUQmg5txf-g5rQRPRUlSgLErEUXGD6RKWKAhqEtmU8ifUhsKHnMTxdLI2NexZSKSsqu1TbSOfAZTPCSoHZNm_pGbE0LhFpDjyUBhJXfdtVKKWIXMGhHIrm_0KQlqkDLlComjnsV7VjPG3jIENkNgsQ2APSXX6zHzqozGxt5xjX32yxgy8PMbxp39c9w52YYrXq2sXJBmsViZS8g1CtkqjalFtnr954cnPN7eD0ffnn3W-g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ5oPejFt7E-9-DNYHksFI6NsWnV9mJNvJF9mhqDTUsP_ntnYGk0MR68kWWHwJdhZmC_nQ_gKkuFCo3NPIO1qse1Lz1pjPBsGFopjMp4SnuHR-Nk8MzvX-KXNbht9sIQrdLF_jqmV9HajXQcmp3ZdNp5wi-PlGc8QackXbpoHTaoO1Xcgo3e8GEwXi0mJFklsUrzPTJwe2dqmpdAEIjhld4Qyavq1PxLfvqWc_q7sO2KRdar72cP1kyxDzuNEANz7-UBTKiQW84NW1SqNgg1o-ykGR7Qw9RdIhjCw6hJdfHJRKHZ67yie5UMC-0FsZ-ZdoI7jJaqD-G5fze5HXhOLsFTUZKU6O9KRJHxA6kSHmjM65LbFEuo1IYiizMTxdLI2Nex5SKSsqu1TbSOfI5fecRRO4JW8VGYY2B4CSzzZKCombvuWilFrEJujQhk1ze6DUEDUq5cL3GStHjPG9LYW07A5gQsjSGwbbhe2czqThp_zo4b7PMf_pBjqP_D7uSfdpewOZiMHvPH4fjhFLbwTFb_aDmDVjlfmnMsPUp54VzrC0tY2BY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+based+on+artificial+bee+colony+and+gradient+boosting+decision+tree&rft.jtitle=Applied+soft+computing&rft.au=Rao%2C+Haidi&rft.au=Shi%2C+Xianzhang&rft.au=Rodrigue%2C+Ahoussou+Kouassi&rft.au=Feng%2C+Juanjuan&rft.date=2019-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=74&rft.spage=634&rft.epage=642&rft_id=info:doi/10.1016%2Fj.asoc.2018.10.036&rft.externalDocID=S1568494618305933 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |