Feature selection based on artificial bee colony and gradient boosting decision tree

Data from many real-world applications can be high dimensional and features of such data are usually highly redundant. Identifying informative features has become an important step for data mining to not only circumvent the curse of dimensionality but to reduce the amount of data for processing. In...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 74; pp. 634 - 642
Main Authors Rao, Haidi, Shi, Xianzhang, Rodrigue, Ahoussou Kouassi, Feng, Juanjuan, Xia, Yingchun, Elhoseny, Mohamed, Yuan, Xiaohui, Gu, Lichuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data from many real-world applications can be high dimensional and features of such data are usually highly redundant. Identifying informative features has become an important step for data mining to not only circumvent the curse of dimensionality but to reduce the amount of data for processing. In this paper, we propose a novel feature selection method based on bee colony and gradient boosting decision tree aiming at addressing problems such as efficiency and informative quality of the selected features. Our method achieves global optimization of the inputs of the decision tree using the bee colony algorithm to identify the informative features. The method initializes the feature space spanned by the dataset. Less relevant features are suppressed according to the information they contribute to the decision making using an artificial bee colony algorithm. Experiments are conducted with two breast cancer datasets and six datasets from the public data repository. Experimental results demonstrate that the proposed method effectively reduces the dimensions of the dataset and achieves superior classification accuracy using the selected features. •A novel method for feature selection based on bee colony and decision tree.•The proposed method improves efficiency and informative quality of the selected features.•Experiments conducted with breast cancer datasets demonstrate superior performance.
AbstractList Data from many real-world applications can be high dimensional and features of such data are usually highly redundant. Identifying informative features has become an important step for data mining to not only circumvent the curse of dimensionality but to reduce the amount of data for processing. In this paper, we propose a novel feature selection method based on bee colony and gradient boosting decision tree aiming at addressing problems such as efficiency and informative quality of the selected features. Our method achieves global optimization of the inputs of the decision tree using the bee colony algorithm to identify the informative features. The method initializes the feature space spanned by the dataset. Less relevant features are suppressed according to the information they contribute to the decision making using an artificial bee colony algorithm. Experiments are conducted with two breast cancer datasets and six datasets from the public data repository. Experimental results demonstrate that the proposed method effectively reduces the dimensions of the dataset and achieves superior classification accuracy using the selected features. •A novel method for feature selection based on bee colony and decision tree.•The proposed method improves efficiency and informative quality of the selected features.•Experiments conducted with breast cancer datasets demonstrate superior performance.
Author Shi, Xianzhang
Elhoseny, Mohamed
Rao, Haidi
Xia, Yingchun
Yuan, Xiaohui
Rodrigue, Ahoussou Kouassi
Feng, Juanjuan
Gu, Lichuan
Author_xml – sequence: 1
  givenname: Haidi
  surname: Rao
  fullname: Rao, Haidi
  organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China
– sequence: 2
  givenname: Xianzhang
  surname: Shi
  fullname: Shi, Xianzhang
  organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China
– sequence: 3
  givenname: Ahoussou Kouassi
  surname: Rodrigue
  fullname: Rodrigue, Ahoussou Kouassi
  organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China
– sequence: 4
  givenname: Juanjuan
  surname: Feng
  fullname: Feng, Juanjuan
  organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China
– sequence: 5
  givenname: Yingchun
  surname: Xia
  fullname: Xia, Yingchun
  organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China
– sequence: 6
  givenname: Mohamed
  orcidid: 0000-0001-6347-8368
  surname: Elhoseny
  fullname: Elhoseny, Mohamed
  organization: Mansoura University, Mansoura, 35516, Egypt
– sequence: 7
  givenname: Xiaohui
  orcidid: 0000-0001-6897-4563
  surname: Yuan
  fullname: Yuan, Xiaohui
  email: xiaohui.yuan@unt.edu
  organization: Department of Computer Science and Engineering, University of North Texas, TX, 76203, USA
– sequence: 8
  givenname: Lichuan
  surname: Gu
  fullname: Gu, Lichuan
  organization: College of Computer and Information, Anhui Agricultural University, Hefei, 230036, China
BookMark eNp9kM1KAzEUhYNUsK2-gKu8wIzJZCbNgBspVoWCm7oO-blTMoyJJFHo25uhrlx0dQ8HvgvnW6GFDx4QuqekpoTyh7FWKZi6IVSUoiaMX6ElFZum6rmgi5I7Lqq2b_kNWqU0kgL1jViiww5U_o6AE0xgsgsea5XA4hJUzG5wxqkJawBswhT8CStv8TEq68BnrENI2fkjtmBcmukcAW7R9aCmBHd_d40-ds-H7Wu1f3952z7tK8M4z1VDjGIMCNWGt9RSSnQ7CNJ3YmhU3_XAOg26I7YbWsW03lg7cGsZaaloG0LYGonzXxNDShEGaVxW84gclZskJXK2I0c525Gznbkrdgra_EO_ovtU8XQZejxDUEb9OIgymaLBgHWxyJM2uEv4L598gZQ
CitedBy_id crossref_primary_10_1080_26395940_2022_2102543
crossref_primary_10_1016_j_knosys_2021_106792
crossref_primary_10_3233_JIFS_179081
crossref_primary_10_1016_j_marpetgeo_2021_104939
crossref_primary_10_33851_JMIS_2023_10_2_169
crossref_primary_10_1007_s00521_023_09391_2
crossref_primary_10_1016_j_energy_2024_131146
crossref_primary_10_3233_JIFS_179085
crossref_primary_10_48084_etasr_5964
crossref_primary_10_1016_j_engappai_2021_104506
crossref_primary_10_3389_fonc_2022_832567
crossref_primary_10_1016_j_aej_2022_03_074
crossref_primary_10_3390_electronics12102207
crossref_primary_10_1016_j_inffus_2023_102191
crossref_primary_10_3389_fenrg_2022_882818
crossref_primary_10_1016_j_asoc_2019_02_034
crossref_primary_10_1016_j_neucom_2021_03_027
crossref_primary_10_1007_s11053_021_09894_6
crossref_primary_10_1016_j_jocs_2024_102423
crossref_primary_10_3390_computation9060068
crossref_primary_10_1007_s11831_025_10269_w
crossref_primary_10_1016_j_cmpb_2021_106290
crossref_primary_10_1016_j_diii_2022_10_010
crossref_primary_10_1049_rpg2_12494
crossref_primary_10_1002_int_22669
crossref_primary_10_1016_j_ijfatigue_2023_107671
crossref_primary_10_1007_s00521_021_05997_6
crossref_primary_10_3233_JIFS_179091
crossref_primary_10_3390_e23081065
crossref_primary_10_1007_s41870_023_01355_y
crossref_primary_10_3233_IDA_215825
crossref_primary_10_1002_joc_7897
crossref_primary_10_3233_JIFS_179093
crossref_primary_10_1109_TGRS_2021_3126319
crossref_primary_10_3233_JIFS_179098
crossref_primary_10_1016_j_iswa_2022_200173
crossref_primary_10_3233_JIFS_179097
crossref_primary_10_1109_ACCESS_2023_3298542
crossref_primary_10_1016_j_jwpe_2023_104303
crossref_primary_10_1093_bib_bbaa154
crossref_primary_10_3390_hydrology9120226
crossref_primary_10_1016_j_gsf_2024_101958
crossref_primary_10_3390_a18030154
crossref_primary_10_1016_j_energy_2024_130608
crossref_primary_10_1371_journal_pone_0249196
crossref_primary_10_3390_electronics10232984
crossref_primary_10_1142_S219688882150007X
crossref_primary_10_1016_j_envpol_2020_115434
crossref_primary_10_1155_2021_8872248
crossref_primary_10_1016_j_bbe_2019_12_004
crossref_primary_10_3390_math8101756
crossref_primary_10_3390_rs12081334
crossref_primary_10_1016_j_eswa_2024_124960
crossref_primary_10_1155_2021_6480456
crossref_primary_10_1007_s11042_023_16039_9
crossref_primary_10_1016_j_est_2023_110319
crossref_primary_10_3390_app131910755
crossref_primary_10_1016_j_ifacol_2024_09_300
crossref_primary_10_1109_JIOT_2020_3016297
crossref_primary_10_1109_ACCESS_2022_3156593
crossref_primary_10_1007_s10666_024_09982_w
crossref_primary_10_1016_j_engappai_2024_109935
crossref_primary_10_1016_j_catena_2024_108645
crossref_primary_10_1080_01431161_2021_1945158
crossref_primary_10_1007_s00500_020_05070_9
crossref_primary_10_1016_j_aej_2024_02_008
crossref_primary_10_1097_MD_0000000000037258
crossref_primary_10_2166_nh_2021_161
crossref_primary_10_1007_s13349_022_00557_5
crossref_primary_10_1016_j_procs_2021_08_070
crossref_primary_10_3233_IDA_230540
crossref_primary_10_3390_pr10040749
crossref_primary_10_1016_j_compbiomed_2020_103974
crossref_primary_10_1016_j_ijhm_2020_102849
crossref_primary_10_1007_s10479_022_04933_8
crossref_primary_10_1016_j_patcog_2020_107470
crossref_primary_10_1109_ACCESS_2020_3004039
crossref_primary_10_1007_s11771_021_4730_x
crossref_primary_10_46604_aiti_2024_13972
crossref_primary_10_1155_2020_8479341
crossref_primary_10_2478_amns_2025_0805
crossref_primary_10_1016_j_petrol_2020_107160
crossref_primary_10_1016_j_compag_2020_105588
crossref_primary_10_1007_s00521_024_10155_9
crossref_primary_10_1016_j_asoc_2020_106672
crossref_primary_10_1016_j_asoc_2021_107625
crossref_primary_10_1016_j_asoc_2021_107622
crossref_primary_10_1038_s41598_024_71431_1
crossref_primary_10_1007_s42235_023_00478_z
crossref_primary_10_1016_j_knosys_2021_106875
crossref_primary_10_1016_j_asoc_2023_110240
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_1016_j_est_2023_109072
crossref_primary_10_1108_DTA_11_2020_0286
crossref_primary_10_1007_s11771_024_5758_5
crossref_primary_10_1016_j_sajce_2023_11_001
crossref_primary_10_1016_j_autcon_2021_103678
crossref_primary_10_3390_math12172641
crossref_primary_10_1007_s11042_024_18473_9
crossref_primary_10_1016_j_psep_2022_12_019
crossref_primary_10_1080_17452759_2022_2068446
crossref_primary_10_1007_s11270_021_04989_5
crossref_primary_10_1016_j_engappai_2020_104150
crossref_primary_10_1080_01426397_2024_2307528
crossref_primary_10_1007_s11666_021_01198_8
crossref_primary_10_1016_j_procs_2020_04_178
crossref_primary_10_1109_JIOT_2023_3317089
crossref_primary_10_1002_met_2144
crossref_primary_10_1093_bioinformatics_btz967
crossref_primary_10_3233_JIFS_200937
crossref_primary_10_1016_j_iswcr_2022_03_004
crossref_primary_10_1016_j_jmse_2022_06_001
crossref_primary_10_3390_electronics13122291
crossref_primary_10_1142_S0219265921430362
crossref_primary_10_1016_j_autcon_2023_104767
crossref_primary_10_1088_1742_6596_2767_9_092050
crossref_primary_10_24003_emitter_v9i1_491
crossref_primary_10_1007_s00500_022_06826_1
crossref_primary_10_4015_S1016237221500204
crossref_primary_10_1016_j_eswa_2020_113572
crossref_primary_10_1007_s10462_023_10675_1
crossref_primary_10_1016_j_neucom_2020_07_113
crossref_primary_10_1016_j_advengsoft_2022_103338
crossref_primary_10_1016_j_apacoust_2020_107721
crossref_primary_10_1038_s41598_024_84741_1
crossref_primary_10_3390_su151712885
crossref_primary_10_1016_j_ijepes_2020_106399
crossref_primary_10_1016_j_eswa_2024_124764
crossref_primary_10_1016_j_knosys_2022_109446
crossref_primary_10_1007_s12652_019_01570_1
crossref_primary_10_3390_biomimetics9030187
crossref_primary_10_1007_s11227_022_04579_0
crossref_primary_10_1007_s11042_023_15175_6
crossref_primary_10_2139_ssrn_3967353
crossref_primary_10_1007_s11063_021_10700_w
crossref_primary_10_3390_su14116629
crossref_primary_10_1088_2631_8695_acbd87
crossref_primary_10_3233_JIFS_179100
crossref_primary_10_1155_2021_8462493
crossref_primary_10_3233_JIFS_179104
crossref_primary_10_3390_electronics12183748
crossref_primary_10_3390_info13040163
crossref_primary_10_1016_j_microc_2020_105085
crossref_primary_10_1016_j_uclim_2024_102227
crossref_primary_10_1093_comjnl_bxab145
crossref_primary_10_1007_s13369_021_05886_z
crossref_primary_10_1016_j_scitotenv_2020_137077
crossref_primary_10_1007_s40430_023_04341_4
crossref_primary_10_1016_j_ecmx_2025_100912
crossref_primary_10_3389_fpsyt_2021_728278
crossref_primary_10_1177_20552076241288833
crossref_primary_10_1007_s00366_021_01342_6
crossref_primary_10_1109_ACCESS_2024_3390684
crossref_primary_10_1080_13467581_2023_2294871
crossref_primary_10_1016_j_mtener_2024_101769
crossref_primary_10_1016_j_compmedimag_2024_102339
crossref_primary_10_1097_MD_0000000000025813
crossref_primary_10_1016_j_asoc_2021_108026
crossref_primary_10_3390_rs14092143
crossref_primary_10_3390_math8050765
crossref_primary_10_1109_ACCESS_2023_3272556
crossref_primary_10_1007_s13042_020_01174_8
crossref_primary_10_1093_bioinformatics_btad615
crossref_primary_10_1177_09544062221133757
crossref_primary_10_1016_j_aej_2023_11_046
crossref_primary_10_1109_MNET_011_2000400
crossref_primary_10_3233_JIFS_179110
crossref_primary_10_1007_s40996_024_01560_0
crossref_primary_10_1007_s00521_023_08547_4
crossref_primary_10_1080_20476965_2021_1966324
crossref_primary_10_1007_s00500_020_05349_x
crossref_primary_10_1007_s10489_022_03478_4
crossref_primary_10_1093_comjnl_bxaa066
crossref_primary_10_3233_JIFS_179115
crossref_primary_10_1007_s11517_020_02237_2
crossref_primary_10_3390_e22101093
crossref_primary_10_1016_j_jclepro_2022_131314
crossref_primary_10_1007_s11998_020_00376_7
crossref_primary_10_1016_j_jseaes_2021_104798
crossref_primary_10_1002_er_6270
crossref_primary_10_1007_s10489_024_05267_7
crossref_primary_10_1109_TIM_2024_3470060
crossref_primary_10_1142_S0218126622500682
crossref_primary_10_1177_1748006X221102992
crossref_primary_10_1007_s11053_019_09576_4
crossref_primary_10_1002_rra_3739
crossref_primary_10_1016_j_asoc_2022_109420
crossref_primary_10_1093_jcde_qwac120
crossref_primary_10_1016_j_mtcomm_2024_108043
crossref_primary_10_1007_s10586_024_04879_5
crossref_primary_10_1002_cpe_6535
crossref_primary_10_1155_2020_8896570
crossref_primary_10_1016_j_simpa_2023_100504
crossref_primary_10_1007_s11771_024_5782_5
crossref_primary_10_1016_j_asoc_2019_106041
crossref_primary_10_1016_j_ins_2020_05_130
crossref_primary_10_1016_j_upstre_2023_100089
crossref_primary_10_1016_j_asoc_2024_111650
crossref_primary_10_1016_j_actamat_2021_116917
crossref_primary_10_1016_j_engappai_2023_106648
crossref_primary_10_1155_2022_7111034
crossref_primary_10_1007_s11356_023_30123_5
crossref_primary_10_1007_s10796_024_10559_x
crossref_primary_10_1016_j_compeleceng_2024_109631
crossref_primary_10_1016_j_knosys_2023_111191
crossref_primary_10_1007_s11227_019_02985_5
crossref_primary_10_3390_s21010046
crossref_primary_10_1016_j_bbe_2022_09_001
crossref_primary_10_1016_j_conbuildmat_2021_125778
crossref_primary_10_1142_S0218001423510096
crossref_primary_10_1016_j_knosys_2025_113252
crossref_primary_10_1016_j_asoc_2021_107794
crossref_primary_10_4018_IJDWM_319966
crossref_primary_10_1016_j_jcis_2023_05_052
crossref_primary_10_1109_ACCESS_2023_3275967
crossref_primary_10_1038_s41598_021_82796_y
crossref_primary_10_1016_j_molliq_2023_122251
crossref_primary_10_1016_j_neucom_2022_04_083
crossref_primary_10_3233_JIFS_179134
crossref_primary_10_1016_j_eswa_2021_115895
crossref_primary_10_1371_journal_pone_0269195
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_3390_s22114235
crossref_primary_10_1007_s00170_020_05890_x
crossref_primary_10_1007_s13198_022_01714_1
crossref_primary_10_1007_s00521_021_06881_z
crossref_primary_10_1007_s11042_024_19769_6
crossref_primary_10_1016_j_jmsy_2021_03_014
crossref_primary_10_1016_j_asoc_2020_106299
crossref_primary_10_3233_JIFS_189612
crossref_primary_10_4018_IJSI_292028
crossref_primary_10_1007_s00170_024_14647_9
crossref_primary_10_5812_jjnpp_142058
crossref_primary_10_1016_j_corsci_2025_112875
crossref_primary_10_1109_ACCESS_2020_3033784
crossref_primary_10_3233_JIFS_179142
crossref_primary_10_1002_advs_202307173
crossref_primary_10_1016_j_corsci_2023_111222
crossref_primary_10_1016_j_knosys_2023_110635
crossref_primary_10_3233_JIFS_179140
crossref_primary_10_3233_JIFS_231569
crossref_primary_10_1002_jnm_2787
crossref_primary_10_1016_j_impact_2022_100429
crossref_primary_10_1016_j_imed_2023_06_002
crossref_primary_10_1109_JSTARS_2020_3044250
crossref_primary_10_1016_j_heliyon_2023_e20133
crossref_primary_10_1016_j_molliq_2022_120103
crossref_primary_10_1016_j_heliyon_2024_e26799
crossref_primary_10_1016_j_energy_2021_122561
crossref_primary_10_1007_s11042_023_18034_6
crossref_primary_10_1007_s00477_024_02896_9
crossref_primary_10_1016_j_compag_2023_108388
crossref_primary_10_1021_acs_cgd_1c01519
crossref_primary_10_1007_s11042_023_17044_8
crossref_primary_10_3233_JIFS_222979
crossref_primary_10_1155_2022_1676697
crossref_primary_10_4018_IJDST_307957
crossref_primary_10_1016_j_compbiomed_2025_110034
crossref_primary_10_1115_1_4066923
crossref_primary_10_1016_j_asoc_2020_106946
crossref_primary_10_1016_j_ijrefrig_2023_01_016
crossref_primary_10_1016_j_asoc_2021_107538
crossref_primary_10_3390_machines12010060
crossref_primary_10_1016_j_saa_2020_118918
crossref_primary_10_1016_j_compbiomed_2021_104968
crossref_primary_10_3233_JIFS_179159
crossref_primary_10_1016_j_dajour_2023_100175
crossref_primary_10_1186_s12864_021_07620_3
crossref_primary_10_4108_eetsis_vi_1998
crossref_primary_10_1016_j_cor_2021_105334
crossref_primary_10_1038_s43246_024_00545_w
crossref_primary_10_1016_j_petrol_2021_109244
crossref_primary_10_1109_ACCESS_2024_3362228
crossref_primary_10_1615_InterJFluidMechRes_2024051796
crossref_primary_10_3390_rs13214476
crossref_primary_10_1142_S0219877022500043
crossref_primary_10_1007_s12065_023_00819_1
crossref_primary_10_1016_j_scs_2023_104898
crossref_primary_10_1109_ACCESS_2020_2966017
crossref_primary_10_1016_j_eswa_2020_113842
crossref_primary_10_1002_qub2_40
crossref_primary_10_32604_csse_2023_031582
crossref_primary_10_1007_s12665_024_11696_x
crossref_primary_10_1016_j_energy_2025_134738
crossref_primary_10_1007_s11600_023_01089_2
crossref_primary_10_1155_2022_2733965
crossref_primary_10_1007_s11416_022_00443_0
crossref_primary_10_3233_JIFS_231263
crossref_primary_10_3390_a16010051
crossref_primary_10_1007_s10462_021_10095_z
crossref_primary_10_1016_j_scitotenv_2019_135533
crossref_primary_10_3390_ijms241210348
crossref_primary_10_1080_15481603_2022_2118345
crossref_primary_10_32604_cmc_2023_036894
crossref_primary_10_1016_j_eswa_2023_121478
crossref_primary_10_1038_s43246_020_0012_7
crossref_primary_10_1016_j_asoc_2021_107351
crossref_primary_10_3390_rs11070790
crossref_primary_10_1016_j_geoen_2025_213853
crossref_primary_10_1016_j_scitotenv_2021_150018
crossref_primary_10_1016_j_engappai_2021_104279
crossref_primary_10_3390_jimaging9070138
crossref_primary_10_1002_dac_4434
crossref_primary_10_1002_ldr_4614
crossref_primary_10_1016_j_jag_2025_104365
crossref_primary_10_3390_a14040120
crossref_primary_10_3390_genes12050683
crossref_primary_10_1016_j_solener_2023_112006
crossref_primary_10_1109_ACCESS_2020_3024575
crossref_primary_10_1007_s10660_020_09409_0
crossref_primary_10_1109_TITS_2024_3509868
crossref_primary_10_1002_widm_1564
crossref_primary_10_1186_s40537_021_00465_3
crossref_primary_10_1007_s11227_024_06631_7
crossref_primary_10_1016_j_eswa_2023_121128
crossref_primary_10_1016_j_istruc_2023_105280
crossref_primary_10_1016_j_knosys_2023_110697
crossref_primary_10_2339_politeknik_972844
crossref_primary_10_3233_JIFS_179061
crossref_primary_10_1109_TNSRE_2020_3019063
crossref_primary_10_1007_s13042_022_01562_2
crossref_primary_10_3233_JIFS_179066
crossref_primary_10_3390_app14010356
crossref_primary_10_3390_s23125675
crossref_primary_10_3233_JIFS_179064
crossref_primary_10_1002_cnr2_1293
crossref_primary_10_1016_j_cmpb_2021_106432
crossref_primary_10_3233_JIFS_179068
crossref_primary_10_1007_s10462_021_10009_z
crossref_primary_10_3389_fgene_2021_655284
crossref_primary_10_1007_s12273_024_1142_5
crossref_primary_10_3390_en16020643
crossref_primary_10_1016_j_jnlssr_2021_10_003
crossref_primary_10_1109_ACCESS_2024_3445591
crossref_primary_10_1016_j_egyr_2024_01_081
crossref_primary_10_1016_j_comtox_2023_100266
crossref_primary_10_1016_j_resourpol_2023_103548
crossref_primary_10_1007_s11053_024_10402_9
crossref_primary_10_1142_S0219265921470071
crossref_primary_10_1186_s12874_022_01827_y
crossref_primary_10_1186_s40854_024_00745_w
crossref_primary_10_3390_agriculture12010093
crossref_primary_10_1016_j_chemolab_2021_104445
crossref_primary_10_1093_comjnl_bxaa109
crossref_primary_10_26599_IJCS_2023_9100035
crossref_primary_10_1016_j_measurement_2023_113525
crossref_primary_10_3233_JIFS_179078
crossref_primary_10_1002_smtd_202300285
crossref_primary_10_1016_j_eswa_2020_114288
crossref_primary_10_1016_j_future_2020_05_020
crossref_primary_10_1109_ACCESS_2021_3100638
crossref_primary_10_1016_j_conbuildmat_2023_134154
crossref_primary_10_1108_AJIM_03_2021_0080
crossref_primary_10_1109_ACCESS_2020_3028039
crossref_primary_10_1016_j_procs_2022_09_362
crossref_primary_10_1016_j_engstruct_2023_116378
crossref_primary_10_1080_0952813X_2023_2217813
crossref_primary_10_1109_ACCESS_2020_2992752
crossref_primary_10_1007_s00521_022_07398_9
crossref_primary_10_1007_s11036_019_01385_6
crossref_primary_10_1080_08839514_2021_2014190
crossref_primary_10_46604_ijeti_2020_4646
crossref_primary_10_1016_j_asoc_2021_107346
crossref_primary_10_1016_j_asoc_2021_107101
crossref_primary_10_1142_S012906572450014X
Cites_doi 10.1109/TPAMI.2005.159
10.1186/1687-5281-2013-47
10.1016/j.ejor.2004.09.010
10.1007/s00500-016-2385-6
10.1007/s00521-015-2103-9
10.1109/ICRTIT.2013.6844180
10.1145/3136625
10.1016/S0004-3702(03)00079-1
10.1109/JSTARS.2016.2645880
10.1016/j.asoc.2017.11.006
10.1016/j.patcog.2017.12.017
10.1016/j.compbiomed.2017.05.010
10.1109/ICPR.2004.1334169
10.1155/2013/419187
10.1109/TKDE.2017.2763618
10.1007/s10898-007-9149-x
10.1214/aos/1013203451
10.1016/j.eswa.2008.08.022
10.1007/s10462-017-9541-y
10.1016/j.clinbiochem.2004.05.011
10.1007/s10115-012-0487-8
10.1016/j.ejor.2006.02.040
10.1145/2939672.2939785
10.1109/TCYB.2014.2347372
10.1145/2623330.2623635
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.10.036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 642
ExternalDocumentID 10_1016_j_asoc_2018_10_036
S1568494618305933
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-20ca33e01bc641d110b4f80958f2a959e35beb50d5f4a3bb7ddf6dd3041842003
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:55:23 EDT 2025
Tue Jul 01 01:50:02 EDT 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Feature selection
Bee colony algorithm
Decision tree
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-20ca33e01bc641d110b4f80958f2a959e35beb50d5f4a3bb7ddf6dd3041842003
ORCID 0000-0001-6347-8368
0000-0001-6897-4563
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_10_036
crossref_primary_10_1016_j_asoc_2018_10_036
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_10_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gu, Han, Wang, Chen, Jiao, Yuan (b2) 2018
Sikora, Piramuthu (b20) 2007; 180
Peng, Long, Ding (b18) 2005; 27
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (b17) 2013; 34
Shen, Liu, Yuan (b5) 2017; 10
Gu, Cheng, Jin (b26) 2018; 22
M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004.
Zhu, Zhang, Hu, Zhu, Song (b12) 2018; 30
Yuan, Abouelenien (b28) 2015; 4
Cheng, NIZW (b34) 2014; 27
Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b10) 2017; 50
Meiri, Zahavi (b22) 2006; 171
Schiezaro, Pedrini (b11) 2013; 2013
Wu, Qian (b33) 2011; 6
Karaboga, Basturk (b32) 2007; 39
Alsaffar, Omar (b7) 2014
Schiezaro, Pedrini (b23) 2013; 2013
Z. Xu, G. Huang, K.Q. Weinberger, A.X. Zheng, Gradient boosted feature selection, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, 2014, pp. 522–531.
Uzer, Yilmaz, Inan (b27) 2013; 2013
Friedman (b15) 2001
Wan, Freitas (b4) 2018; 50
Guyon, Elisseeff (b9) 2003; 3
Mafarja, Mirjalili (b13) 2017; 62
Aghdam, Ghasem-Aghaee, Basiri (b19) 2009; 36
Liu, Tang, Zeng (b8) 2015; 45
Bi, Bennett, Embrechts, Breneman, Song (b24) 2003; 3
Aličković, Subasi (b3) 2017; 28
T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, 2016, pp. 785–794.
Dash, Liu (b16) 2003; 151
Tuv, Borisov, Runger, Torkkola (b30) 2009; 10
Yuan, Xie, Abouelenien (b1) 2018; 77
H. Wang, Y. Meng, P. Yin, J. Hua, A model-driven method for quality reviews detection: an ensemble model of feature selection, in: Wuhan International Conference On E-Business, 2016, p. 2.
P. Shunmugapriya, S. Kanmani, R. Supraja, K. Saranya, et al. Feature selection optimization through enhanced artificial bee colony algorithm, in: International Conference on Recent Trends in Information Technology, Chennai, India, 2013, pp. 56–61.
Ramos-González, López-Sánchez, Castellanos-Garzón, d. Paz, Corchado (b31) 2017; 86
Suthaharan (b35) 2016
Rodland (b6) 2004; 37
Shen (10.1016/j.asoc.2018.10.036_b5) 2017; 10
Mafarja (10.1016/j.asoc.2018.10.036_b13) 2017; 62
Wan (10.1016/j.asoc.2018.10.036_b4) 2018; 50
Rodland (10.1016/j.asoc.2018.10.036_b6) 2004; 37
Uzer (10.1016/j.asoc.2018.10.036_b27) 2013; 2013
Yuan (10.1016/j.asoc.2018.10.036_b28) 2015; 4
Guyon (10.1016/j.asoc.2018.10.036_b9) 2003; 3
Tuv (10.1016/j.asoc.2018.10.036_b30) 2009; 10
Peng (10.1016/j.asoc.2018.10.036_b18) 2005; 27
Bi (10.1016/j.asoc.2018.10.036_b24) 2003; 3
10.1016/j.asoc.2018.10.036_b21
Meiri (10.1016/j.asoc.2018.10.036_b22) 2006; 171
Gu (10.1016/j.asoc.2018.10.036_b2) 2018
Bolón-Canedo (10.1016/j.asoc.2018.10.036_b17) 2013; 34
10.1016/j.asoc.2018.10.036_b25
Aličković (10.1016/j.asoc.2018.10.036_b3) 2017; 28
Wu (10.1016/j.asoc.2018.10.036_b33) 2011; 6
Yuan (10.1016/j.asoc.2018.10.036_b1) 2018; 77
Li (10.1016/j.asoc.2018.10.036_b10) 2017; 50
10.1016/j.asoc.2018.10.036_b29
Dash (10.1016/j.asoc.2018.10.036_b16) 2003; 151
Aghdam (10.1016/j.asoc.2018.10.036_b19) 2009; 36
Alsaffar (10.1016/j.asoc.2018.10.036_b7) 2014
Liu (10.1016/j.asoc.2018.10.036_b8) 2015; 45
Karaboga (10.1016/j.asoc.2018.10.036_b32) 2007; 39
Gu (10.1016/j.asoc.2018.10.036_b26) 2018; 22
Suthaharan (10.1016/j.asoc.2018.10.036_b35) 2016
Ramos-González (10.1016/j.asoc.2018.10.036_b31) 2017; 86
Schiezaro (10.1016/j.asoc.2018.10.036_b23) 2013; 2013
Cheng (10.1016/j.asoc.2018.10.036_b34) 2014; 27
Zhu (10.1016/j.asoc.2018.10.036_b12) 2018; 30
Friedman (10.1016/j.asoc.2018.10.036_b15) 2001
Schiezaro (10.1016/j.asoc.2018.10.036_b11) 2013; 2013
10.1016/j.asoc.2018.10.036_b14
10.1016/j.asoc.2018.10.036_b36
Sikora (10.1016/j.asoc.2018.10.036_b20) 2007; 180
References_xml – volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b9
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b18
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 34
  start-page: 483
  year: 2013
  end-page: 519
  ident: b17
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl. Inf. Syst.
– volume: 22
  start-page: 811
  year: 2018
  end-page: 822
  ident: b26
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Comput.
– volume: 86
  start-page: 98
  year: 2017
  end-page: 106
  ident: b31
  article-title: A cbr framework with gradient boosting based feature selection for lung cancer subtype classification
  publication-title: Comput. Biol. Med.
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b32
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm
  publication-title: J. Global Optim.
– volume: 45
  start-page: 1209
  year: 2015
  end-page: 1221
  ident: b8
  article-title: Feature selection based on dependency margin
  publication-title: IEEE Trans. Cybern.
– volume: 27
  start-page: 1005
  year: 2014
  end-page: 1014
  ident: b34
  article-title: Lifecycle-based binary ant colony optimization algorithm
  publication-title: Pattern Recognit. Artif. Intell.
– volume: 2013
  start-page: 47
  year: 2013
  ident: b11
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP J. Image Video Process.
– reference: P. Shunmugapriya, S. Kanmani, R. Supraja, K. Saranya, et al. Feature selection optimization through enhanced artificial bee colony algorithm, in: International Conference on Recent Trends in Information Technology, Chennai, India, 2013, pp. 56–61.
– volume: 4
  start-page: 13
  year: 2015
  end-page: 29
  ident: b28
  article-title: A multi-class boosting method for learning from imbalanced data
  publication-title: Int. J. Granul. Comput. Rough Sets Intell. Syst.
– volume: 30
  start-page: 517
  year: 2018
  end-page: 529
  ident: b12
  article-title: Local and global structure preservation for robust unsupervised spectral feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 171
  start-page: 842
  year: 2006
  end-page: 858
  ident: b22
  article-title: Using simulated annealing to optimize the feature selection problem in marketing applications
  publication-title: European J. Oper. Res.
– volume: 62
  start-page: 441
  year: 2017
  end-page: 453
  ident: b13
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Applied Soft Computing
– volume: 50
  start-page: 201
  year: 2018
  end-page: 240
  ident: b4
  article-title: An empirical evaluation of hierarchical feature selection methods for classification in bioinformatics datasets with gene ontology-based features
  publication-title: Artif. Intell. Rev.
– start-page: 270
  year: 2014
  end-page: 275
  ident: b7
  article-title: Study on feature selection and machine learning algorithms for malay sentiment classification
  publication-title: International Conference on Information Technology and Multimedia
– volume: 77
  start-page: 160
  year: 2018
  end-page: 172
  ident: b1
  article-title: A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data
  publication-title: Pattern Recognit.
– reference: H. Wang, Y. Meng, P. Yin, J. Hua, A model-driven method for quality reviews detection: an ensemble model of feature selection, in: Wuhan International Conference On E-Business, 2016, p. 2.
– volume: 28
  start-page: 753
  year: 2017
  end-page: 763
  ident: b3
  article-title: Breast cancer diagnosis using ga feature selection and rotation forest
  publication-title: Neural Comput. Appl.
– volume: 3
  start-page: 1229
  year: 2003
  end-page: 1243
  ident: b24
  article-title: Dimensionality reduction via sparse support vector machines
  publication-title: J. Mach. Learn. Res.
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b15
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. statist.
– volume: 180
  start-page: 723
  year: 2007
  end-page: 737
  ident: b20
  article-title: Framework for efficient feature selection in genetic algorithm based data mining
  publication-title: European J. Oper. Res.
– volume: 2013
  year: 2013
  ident: b27
  article-title: Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification
  publication-title: Sci. World J.
– year: 2016
  ident: b35
  article-title: Machine Learning Models and Algorithms for Big Data Classification
– reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, 2016, pp. 785–794.
– volume: 2013
  start-page: 47
  year: 2013
  ident: b23
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP J. Image Video Process.
– volume: 50
  start-page: 94
  year: 2017
  ident: b10
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv.
– volume: 151
  start-page: 155
  year: 2003
  end-page: 176
  ident: b16
  article-title: Consistency-based search in feature selection
  publication-title: Artif. Intell.
– reference: M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004.
– start-page: 1
  year: 2018
  end-page: 10
  ident: b2
  article-title: Module overlapping structure detection in ppi using an improved link similarity-based markov clustering algorithms
  publication-title: Neural Comput. Appl.
– volume: 36
  start-page: 6843
  year: 2009
  end-page: 6853
  ident: b19
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 579
  year: 2004
  end-page: 583
  ident: b6
  article-title: Proteomics and cancer diagnosis: the potential of mass spectrometry
  publication-title: Clin. Biochem.
– volume: 10
  start-page: 1402
  year: 2017
  end-page: 1412
  ident: b5
  article-title: Fractal dimension of irregular region of interest application to corn phenology characterization
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 6
  start-page: 841
  year: 2011
  end-page: 848
  ident: b33
  article-title: Differential artificial bee colony algorithm for global numerical optimization
  publication-title: J. Comput.
– volume: 10
  start-page: 1341
  year: 2009
  end-page: 1366
  ident: b30
  article-title: Feature selection with ensembles, artificial variables, and redundancy elimination
  publication-title: J. Mach. Learn. Res.
– reference: Z. Xu, G. Huang, K.Q. Weinberger, A.X. Zheng, Gradient boosted feature selection, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, 2014, pp. 522–531.
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.asoc.2018.10.036_b18
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 6
  start-page: 841
  issue: 5
  year: 2011
  ident: 10.1016/j.asoc.2018.10.036_b33
  article-title: Differential artificial bee colony algorithm for global numerical optimization
  publication-title: J. Comput.
– year: 2016
  ident: 10.1016/j.asoc.2018.10.036_b35
– volume: 2013
  start-page: 47
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2018.10.036_b23
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/1687-5281-2013-47
– volume: 171
  start-page: 842
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2018.10.036_b22
  article-title: Using simulated annealing to optimize the feature selection problem in marketing applications
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2004.09.010
– volume: 22
  start-page: 811
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2018.10.036_b26
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2385-6
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2018.10.036_b3
  article-title: Breast cancer diagnosis using ga feature selection and rotation forest
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2103-9
– volume: 27
  start-page: 1005
  issue: 11
  year: 2014
  ident: 10.1016/j.asoc.2018.10.036_b34
  article-title: Lifecycle-based binary ant colony optimization algorithm
  publication-title: Pattern Recognit. Artif. Intell.
– ident: 10.1016/j.asoc.2018.10.036_b25
  doi: 10.1109/ICRTIT.2013.6844180
– volume: 50
  start-page: 94
  issue: 6
  year: 2017
  ident: 10.1016/j.asoc.2018.10.036_b10
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3136625
– volume: 151
  start-page: 155
  issue: 1–2
  year: 2003
  ident: 10.1016/j.asoc.2018.10.036_b16
  article-title: Consistency-based search in feature selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(03)00079-1
– volume: 10
  start-page: 1402
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2018.10.036_b5
  article-title: Fractal dimension of irregular region of interest application to corn phenology characterization
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2645880
– volume: 62
  start-page: 441
  year: 2017
  ident: 10.1016/j.asoc.2018.10.036_b13
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.11.006
– start-page: 270
  year: 2014
  ident: 10.1016/j.asoc.2018.10.036_b7
  article-title: Study on feature selection and machine learning algorithms for malay sentiment classification
– volume: 77
  start-page: 160
  year: 2018
  ident: 10.1016/j.asoc.2018.10.036_b1
  article-title: A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.12.017
– volume: 86
  start-page: 98
  year: 2017
  ident: 10.1016/j.asoc.2018.10.036_b31
  article-title: A cbr framework with gradient boosting based feature selection for lung cancer subtype classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.05.010
– volume: 2013
  start-page: 47
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2018.10.036_b11
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/1687-5281-2013-47
– ident: 10.1016/j.asoc.2018.10.036_b21
  doi: 10.1109/ICPR.2004.1334169
– volume: 2013
  year: 2013
  ident: 10.1016/j.asoc.2018.10.036_b27
  article-title: Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification
  publication-title: Sci. World J.
  doi: 10.1155/2013/419187
– volume: 10
  start-page: 1341
  issue: Jul
  year: 2009
  ident: 10.1016/j.asoc.2018.10.036_b30
  article-title: Feature selection with ensembles, artificial variables, and redundancy elimination
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 517
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2018.10.036_b12
  article-title: Local and global structure preservation for robust unsupervised spectral feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2763618
– volume: 3
  start-page: 1229
  issue: Mar
  year: 2003
  ident: 10.1016/j.asoc.2018.10.036_b24
  article-title: Dimensionality reduction via sparse support vector machines
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2018.10.036_b2
  article-title: Module overlapping structure detection in ppi using an improved link similarity-based markov clustering algorithms
  publication-title: Neural Comput. Appl.
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 10.1016/j.asoc.2018.10.036_b9
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2018.10.036_b32
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 4
  start-page: 13
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2018.10.036_b28
  article-title: A multi-class boosting method for learning from imbalanced data
  publication-title: Int. J. Granul. Comput. Rough Sets Intell. Syst.
– ident: 10.1016/j.asoc.2018.10.036_b14
– start-page: 1189
  year: 2001
  ident: 10.1016/j.asoc.2018.10.036_b15
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. statist.
  doi: 10.1214/aos/1013203451
– volume: 36
  start-page: 6843
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2018.10.036_b19
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.08.022
– volume: 50
  start-page: 201
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2018.10.036_b4
  article-title: An empirical evaluation of hierarchical feature selection methods for classification in bioinformatics datasets with gene ontology-based features
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9541-y
– volume: 37
  start-page: 579
  issue: 7
  year: 2004
  ident: 10.1016/j.asoc.2018.10.036_b6
  article-title: Proteomics and cancer diagnosis: the potential of mass spectrometry
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2004.05.011
– volume: 34
  start-page: 483
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2018.10.036_b17
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-012-0487-8
– volume: 180
  start-page: 723
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2018.10.036_b20
  article-title: Framework for efficient feature selection in genetic algorithm based data mining
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.02.040
– ident: 10.1016/j.asoc.2018.10.036_b36
  doi: 10.1145/2939672.2939785
– volume: 45
  start-page: 1209
  issue: 6
  year: 2015
  ident: 10.1016/j.asoc.2018.10.036_b8
  article-title: Feature selection based on dependency margin
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2347372
– ident: 10.1016/j.asoc.2018.10.036_b29
  doi: 10.1145/2623330.2623635
SSID ssj0016928
Score 2.6689236
Snippet Data from many real-world applications can be high dimensional and features of such data are usually highly redundant. Identifying informative features has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 634
SubjectTerms Bee colony algorithm
Decision tree
Dimensionality reduction
Feature selection
Title Feature selection based on artificial bee colony and gradient boosting decision tree
URI https://dx.doi.org/10.1016/j.asoc.2018.10.036
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHrxJ2jw2afZYiqW-imgLvYV9SkViadODF3-7M8mmKEgPnpIsuyH5mMzMbr6dj5ArngoVGss9A7mqx7QvPWmM8GwYWimM4izFvcOPo2Q4YXfTeNog_XovDNIqne-vfHrprV1Lx6HZmc9mnReYeaSMswSMEnXpsOInY1208vbXmuYRJLzUV8XOHvZ2G2cqjpcABJDelbaR4VWWaf4jOP0IOIM9suMyRdqrHmafNEx-QHZrFQbqPspDMsYsbrUwdFlK2gDOFEOTpnCCb1KViKCADcUK1fknFbmmr4uS61VQyLKXSH2m2qntUPxPfUQmg5txf-g5rQRPRUlSgLErEUXGD6RKWKAhqEtmU8ifUhsKHnMTxdLI2NexZSKSsqu1TbSOfAZTPCSoHZNm_pGbE0LhFpDjyUBhJXfdtVKKWIXMGhHIrm_0KQlqkDLlComjnsV7VjPG3jIENkNgsQ2APSXX6zHzqozGxt5xjX32yxgy8PMbxp39c9w52YYrXq2sXJBmsViZS8g1CtkqjalFtnr954cnPN7eD0ffnn3W-g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ5oPejFt7E-9-DNYHksFI6NsWnV9mJNvJF9mhqDTUsP_ntnYGk0MR68kWWHwJdhZmC_nQ_gKkuFCo3NPIO1qse1Lz1pjPBsGFopjMp4SnuHR-Nk8MzvX-KXNbht9sIQrdLF_jqmV9HajXQcmp3ZdNp5wi-PlGc8QackXbpoHTaoO1Xcgo3e8GEwXi0mJFklsUrzPTJwe2dqmpdAEIjhld4Qyavq1PxLfvqWc_q7sO2KRdar72cP1kyxDzuNEANz7-UBTKiQW84NW1SqNgg1o-ykGR7Qw9RdIhjCw6hJdfHJRKHZ67yie5UMC-0FsZ-ZdoI7jJaqD-G5fze5HXhOLsFTUZKU6O9KRJHxA6kSHmjM65LbFEuo1IYiizMTxdLI2Nex5SKSsqu1TbSOfI5fecRRO4JW8VGYY2B4CSzzZKCombvuWilFrEJujQhk1ze6DUEDUq5cL3GStHjPG9LYW07A5gQsjSGwbbhe2czqThp_zo4b7PMf_pBjqP_D7uSfdpewOZiMHvPH4fjhFLbwTFb_aDmDVjlfmnMsPUp54VzrC0tY2BY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+based+on+artificial+bee+colony+and+gradient+boosting+decision+tree&rft.jtitle=Applied+soft+computing&rft.au=Rao%2C+Haidi&rft.au=Shi%2C+Xianzhang&rft.au=Rodrigue%2C+Ahoussou+Kouassi&rft.au=Feng%2C+Juanjuan&rft.date=2019-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=74&rft.spage=634&rft.epage=642&rft_id=info:doi/10.1016%2Fj.asoc.2018.10.036&rft.externalDocID=S1568494618305933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon