Hierarchical Sb2S3/ZnIn2S4 core–shell heterostructure for highly efficient photocatalytic hydrogen production and pollutant degradation

A novel ZnIn2S4 decorated Sb2S3 hierarchical 1D/2D core–shell heterostructure was successfully fabricated by a simple hydrothermal method. It possessed highly efficient photocatalytic activities of hydrogen evolution and pollutant degradation. This work will provide a novel dual-function core–shell...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 623; pp. 109 - 123
Main Authors Xiao, Yan, Wang, Hao, Jiang, Yinhua, Zhang, Wenli, Zhang, Jianming, Wu, Xiangyang, Liu, Zhanchao, Deng, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel ZnIn2S4 decorated Sb2S3 hierarchical 1D/2D core–shell heterostructure was successfully fabricated by a simple hydrothermal method. It possessed highly efficient photocatalytic activities of hydrogen evolution and pollutant degradation. This work will provide a novel dual-function core–shell heterostructure photocatalyst to solve environmental pollution and produce hydrogen energy. [Display omitted] In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn2S4 nanosheets uniformly grew onto Sb2S3 nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H2 generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H2 production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g−1·h−1) was about 12.24 times as large as that of pure ZnIn2S4 (137.63 μmol·g−1·h−1). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h−1) was 20.3 and 2.89 times larger than those of pure Sb2S3 and Znln2S4, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb2S3-based type I core–shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy.
AbstractList A novel ZnIn2S4 decorated Sb2S3 hierarchical 1D/2D core–shell heterostructure was successfully fabricated by a simple hydrothermal method. It possessed highly efficient photocatalytic activities of hydrogen evolution and pollutant degradation. This work will provide a novel dual-function core–shell heterostructure photocatalyst to solve environmental pollution and produce hydrogen energy. [Display omitted] In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn2S4 nanosheets uniformly grew onto Sb2S3 nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H2 generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H2 production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g−1·h−1) was about 12.24 times as large as that of pure ZnIn2S4 (137.63 μmol·g−1·h−1). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h−1) was 20.3 and 2.89 times larger than those of pure Sb2S3 and Znln2S4, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb2S3-based type I core–shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy.
In this work, a novel hierarchical 1D/2D core/shell Sb₂S₃-ZnIn₂S₄ (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn₂S₄ nanosheets uniformly grew onto Sb₂S₃ nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H₂ generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H₂ production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g⁻¹·h⁻¹) was about 12.24 times as large as that of pure ZnIn₂S₄ (137.63 μmol·g⁻¹·h⁻¹). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h⁻¹) was 20.3 and 2.89 times larger than those of pure Sb₂S₃ and Znln₂S₄, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb₂S₃-based type I core–shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy.
In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn2S4 nanosheets uniformly grew onto Sb2S3 nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H2 generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H2 production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g-1·h-1) was about 12.24 times as large as that of pure ZnIn2S4 (137.63 μmol·g-1·h-1). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h-1) was 20.3 and 2.89 times larger than those of pure Sb2S3 and Znln2S4, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb2S3-based type I core-shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy.In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn2S4 nanosheets uniformly grew onto Sb2S3 nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H2 generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H2 production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g-1·h-1) was about 12.24 times as large as that of pure ZnIn2S4 (137.63 μmol·g-1·h-1). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h-1) was 20.3 and 2.89 times larger than those of pure Sb2S3 and Znln2S4, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb2S3-based type I core-shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy.
Author Xiao, Yan
Liu, Zhanchao
Wu, Xiangyang
Jiang, Yinhua
Zhang, Jianming
Zhang, Wenli
Deng, Wei
Wang, Hao
Author_xml – sequence: 1
  givenname: Yan
  surname: Xiao
  fullname: Xiao, Yan
  organization: Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
– sequence: 2
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
– sequence: 3
  givenname: Yinhua
  surname: Jiang
  fullname: Jiang, Yinhua
  email: jyhua@ujs.edu.cn
  organization: School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
– sequence: 4
  givenname: Wenli
  surname: Zhang
  fullname: Zhang, Wenli
  organization: School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
– sequence: 5
  givenname: Jianming
  surname: Zhang
  fullname: Zhang, Jianming
  organization: School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
– sequence: 6
  givenname: Xiangyang
  surname: Wu
  fullname: Wu, Xiangyang
  email: wuxy@ujs.edu.cn
  organization: Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
– sequence: 7
  givenname: Zhanchao
  surname: Liu
  fullname: Liu, Zhanchao
  organization: School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
– sequence: 8
  givenname: Wei
  surname: Deng
  fullname: Deng, Wei
  organization: Foshan (Southern China) Institute for New Materials, Foshan, Guangdong 528200, China
BookMark eNqNkb1uFDEURi0UJDYhL0DlkmYmtmf8MxINioBEikSx0KSxPJ7rHa8m48X2IG2Xlpo35EniyVJRRFQu7neurr9zjs7mMANC7yipKaHial_vrU81I4zVpK1pI1-hDSUdryQlzRnaEMJo1clOvkHnKe0JoZTzboN-3XiIJtrRWzPhbc-2zdX9fDuzbYttiPDn8XcaYZrwCBliSDkuNi8RsAsRj343TkcMznnrYc74MIYcrMlmOmZv8XgcYtjBjA8xDIXzYcZmHvAhTNOSTQEG2EUzmHXyFr12Zkpw-fe9QN8_f_p2fVPdff1ye_3xrrKNELmilopeDYRbZZXkQPrGGCbazknuiFMdNcJQrvreKQOOqU5aOXCgLQFhmqa5QO9Pe8tRPxZIWT_4ZMsXzQxhSZoJybkgRMn_iApOiWpaXqLsFLWlpBTB6UP0DyYeNSV6VaT3elWkV0WatLooKpD6B7I-P5eRo_HTy-iHEwqlqp_FoU6rAguDj2CzHoJ_CX8CzXCy5g
CitedBy_id crossref_primary_10_1016_j_surfin_2023_103200
crossref_primary_10_1039_D4TA08841G
crossref_primary_10_1016_j_mssp_2023_108031
crossref_primary_10_1016_j_cej_2024_148818
crossref_primary_10_1016_j_jallcom_2024_175941
crossref_primary_10_3390_nano13162315
crossref_primary_10_1016_j_cej_2023_147082
crossref_primary_10_1016_j_jechem_2023_11_044
crossref_primary_10_1016_j_jssc_2024_125075
crossref_primary_10_1016_j_cej_2023_146592
crossref_primary_10_1016_j_ces_2023_118936
crossref_primary_10_1021_acsanm_4c04669
crossref_primary_10_3390_nano13101679
crossref_primary_10_1007_s11356_023_27113_y
crossref_primary_10_1016_j_ijhydene_2023_07_050
crossref_primary_10_1016_j_jwpe_2024_106229
crossref_primary_10_1016_j_mssp_2024_108406
crossref_primary_10_1016_j_molstruc_2022_134409
crossref_primary_10_1016_j_jece_2023_111695
crossref_primary_10_1016_j_seppur_2024_130814
crossref_primary_10_1039_D4RA01382D
crossref_primary_10_1016_j_jece_2023_110720
crossref_primary_10_1016_j_cej_2024_156035
crossref_primary_10_1016_j_bios_2023_115926
crossref_primary_10_1016_j_jcis_2024_04_071
crossref_primary_10_1016_j_jwpe_2023_104585
crossref_primary_10_1016_j_mtcomm_2023_107997
crossref_primary_10_1016_j_jmst_2022_12_060
crossref_primary_10_1016_j_jcis_2023_12_087
crossref_primary_10_3390_molecules28010282
crossref_primary_10_1016_j_mtcomm_2023_106741
crossref_primary_10_1016_S1872_2067_24_60072_0
crossref_primary_10_1016_j_colsurfa_2024_135604
crossref_primary_10_1016_j_jcis_2024_07_187
crossref_primary_10_1016_j_cej_2023_144240
crossref_primary_10_1016_j_envres_2024_119504
crossref_primary_10_1016_j_jenvman_2024_122403
crossref_primary_10_1016_j_seppur_2025_132271
crossref_primary_10_1016_j_ijhydene_2022_12_207
crossref_primary_10_1016_j_jcis_2024_11_052
crossref_primary_10_1016_j_inoche_2025_114134
crossref_primary_10_1039_D4QI00942H
crossref_primary_10_1016_j_jtice_2024_105394
crossref_primary_10_1016_j_ijbiomac_2024_139385
crossref_primary_10_1007_s11705_025_2534_5
crossref_primary_10_1016_j_jclepro_2024_144393
crossref_primary_10_1016_j_mtener_2024_101563
crossref_primary_10_3390_catal13050850
crossref_primary_10_1016_j_cej_2024_152586
crossref_primary_10_1016_j_jhazmat_2023_132820
crossref_primary_10_1016_j_seppur_2023_125059
crossref_primary_10_1016_j_jclepro_2022_135742
crossref_primary_10_1021_acs_inorgchem_4c03502
crossref_primary_10_1039_D2SE01142E
crossref_primary_10_1002_asia_202300089
crossref_primary_10_1007_s11356_023_30052_3
crossref_primary_10_1016_j_snb_2024_135744
crossref_primary_10_3390_catal13040731
crossref_primary_10_1016_j_jcis_2024_05_210
crossref_primary_10_1021_acs_energyfuels_2c03588
crossref_primary_10_1016_j_colsurfa_2023_131961
crossref_primary_10_1016_j_jenvman_2023_119424
crossref_primary_10_1021_acsami_4c16630
crossref_primary_10_1016_j_apsusc_2024_161256
crossref_primary_10_1016_j_ijhydene_2022_11_019
crossref_primary_10_1016_j_rser_2023_113348
crossref_primary_10_1016_j_mssp_2024_108384
crossref_primary_10_1016_j_molstruc_2024_139914
crossref_primary_10_1016_j_jcis_2023_10_035
crossref_primary_10_1016_j_jallcom_2023_173235
crossref_primary_10_3390_nano13050830
crossref_primary_10_1016_j_colsurfa_2024_135468
crossref_primary_10_1016_j_cclet_2025_110922
crossref_primary_10_1016_j_jallcom_2024_174503
crossref_primary_10_1016_j_seppur_2023_123243
crossref_primary_10_1016_j_solidstatesciences_2023_107317
crossref_primary_10_1021_acs_langmuir_3c01680
crossref_primary_10_1016_j_ijhydene_2023_01_059
crossref_primary_10_1039_D3RA08905C
crossref_primary_10_1016_j_fuel_2024_131159
crossref_primary_10_1016_j_fuel_2024_134185
crossref_primary_10_1016_j_seppur_2024_126610
crossref_primary_10_1016_j_colsurfa_2024_135705
crossref_primary_10_1021_acs_inorgchem_4c00849
crossref_primary_10_1039_D2TA09255G
crossref_primary_10_1016_j_seppur_2024_127826
crossref_primary_10_1016_j_jcis_2024_05_093
crossref_primary_10_1016_j_optmat_2024_115905
crossref_primary_10_1007_s12598_023_02419_5
Cites_doi 10.1016/j.biortech.2019.121348
10.1016/j.cej.2020.128168
10.1039/C4CS00408F
10.1016/j.seppur.2021.119152
10.1016/j.apcatb.2018.04.038
10.1021/ic101961z
10.1016/j.ijhydene.2020.08.008
10.1021/acsami.0c13060
10.1016/j.watres.2018.02.061
10.1016/j.apcatb.2018.04.037
10.1039/C6TA06373J
10.1002/ente.201800886
10.1002/adfm.201904256
10.1016/j.ceramint.2017.05.175
10.1007/s10853-020-05004-8
10.1002/inf2.12040
10.1016/j.jcis.2021.07.150
10.1016/j.jallcom.2017.11.063
10.1016/j.apcatb.2018.07.049
10.1021/acs.chemrev.1c00197
10.1016/j.seppur.2019.116302
10.1016/j.apsusc.2020.148618
10.1021/jp806496d
10.1039/C5RA09007E
10.1016/j.apcatb.2016.09.023
10.1039/D0NR03196H
10.1021/jp400010z
10.1007/s10853-019-03401-2
10.1039/C8CY02611D
10.1007/s40820-019-0345-2
10.1016/j.jallcom.2017.12.145
10.1021/acsami.6b00429
10.1016/j.ceramint.2019.05.103
10.1021/acssuschemeng.9b03773
10.1016/j.jece.2018.102822
10.1016/j.scitotenv.2019.03.086
10.1016/j.watres.2019.05.025
10.1016/j.cej.2020.126020
10.1016/j.apcatb.2018.03.017
10.1007/s12274-017-1473-y
10.1016/S1872-2067(18)63137-7
10.1016/j.apsusc.2020.146161
10.1061/(ASCE)EE.1943-7870.0001532
10.1016/j.jcis.2021.10.179
10.1002/adfm.201807013
10.1016/j.jallcom.2020.155772
10.1016/j.ijhydene.2020.03.104
10.1007/s10562-018-2562-6
10.1021/acsami.1c02722
10.1016/j.apsusc.2018.01.090
10.1016/j.jcis.2021.03.134
10.1016/j.apcatb.2015.10.035
10.1002/adma.201400288
10.1021/acsami.9b03965
10.1039/D1CS00323B
10.1016/j.ceramint.2018.04.090
10.1016/j.cej.2019.03.013
10.1021/acs.inorgchem.0c03233
10.1021/jz2013193
10.1021/acs.inorgchem.9b03445
10.1016/j.apsusc.2019.07.175
10.1021/ie2025882
10.1016/j.jcis.2020.07.121
10.1016/j.apcatb.2019.118382
10.1039/c3cp51722e
10.1016/j.jhazmat.2020.122205
10.1016/j.ceramint.2017.12.244
10.1016/j.apsusc.2019.05.163
10.1021/acscatal.9b00313
10.1016/j.apcatb.2019.118432
10.1016/j.jcis.2021.05.022
10.1016/j.apcatb.2020.118879
10.1039/C5CC01087J
10.1021/acssuschemeng.8b02710
10.1021/acsami.7b14412
10.1016/j.cej.2018.09.098
10.1016/j.jallcom.2014.11.052
10.1016/j.ijhydene.2020.03.139
10.1016/j.apcatb.2019.05.032
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2022.04.137
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 123
ExternalDocumentID 10_1016_j_jcis_2022_04_137
S0021979722007068
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c366t-1c16b8d05c8c875e0b3aa2649f75f0f891a6a158bbf8aef2897c7d5e140e6a333
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 14:43:21 EDT 2025
Fri Jul 11 01:36:48 EDT 2025
Tue Jul 01 04:18:48 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Fri Feb 23 02:39:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ZnIn2S4 nanosheet
Sb2S3 nanorod
Dual-functional
hierarchical 1D/2D heterostructure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-1c16b8d05c8c875e0b3aa2649f75f0f891a6a158bbf8aef2897c7d5e140e6a333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2665108345
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2675560087
proquest_miscellaneous_2665108345
crossref_primary_10_1016_j_jcis_2022_04_137
crossref_citationtrail_10_1016_j_jcis_2022_04_137
elsevier_sciencedirect_doi_10_1016_j_jcis_2022_04_137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xiao, Peng, Zhang, Jiang, Jing, Yang, Zhang, Ni (b0115) 2019; 54
Zhao, Zhang, Shan, Zhu, Gao, Liu, Liu, You (b0310) 2020; 45
Xu, Liu, Xie, Jing, Xu, Shen, Li, Xie (b0035) 2019; 357
Liu, Tang, Sun, Colmenare, Xu (b0170) 2015; 44
Wang, Chai, Ma, Chen, Zheng, Huang (b0175) 2017; 10
composite with three-dimensional spherical structure, RSC Adv., 5 (2015) 53019–53024.
Mao, Zou, Sun, Zeng, Wang, Ma, Guo, Cheng, Wang, Shi (b0355) 2021; 581
Yang, Ding, Chen, Feng, Hao, Zhu (b0235) 2018; 234
Cl
Iakovides, Michael-Kordatou, Moreira, Ribeiro, Fernandes, Pereira, Nunes, Manaia, Silva, Fatta-Kassinos (b0060) 2019; 159
of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting, ACS Appl. Mater. Inter., (8) 2016 9684–9691.
Liu, Qi, Lu, Lin, An, Liang, Cui (b0135) 2016; 183
Sun, Chen, Zhang, Wei, Ma, Du (b0265) 2012; 51
Xiao, Zhang, Xing, Feng, Jiang, Gao, Xu, Zhang, Ni, Liu (b0290) 2020; 45
Yang, Sha, Wang, Xia, Liu, Cheng, Yang, Li (b0270) 2020; 45
Li, Li, Xu (b0075) 2021; 3
Gao, Sun, Ma, Li, Jiang, Shen, Wang, Huo (b0095) 2021; 60
Shan, Ge, Zhao (b0370) 2019; 7
Wang, Shen, Xia, Wang, Zheng, Xi, Zhan (b0100) 2019; 29
Wang, Zhou, Zhang, Song, Zhang, Luo, Yang, Bai, Wang, Liu (b0250) 2020; 12
Zhu, Liu, Chen, Yin, Ge, Li (b0045) 2017; 9
Ge, Jiang, Zhang, Du (b0360) 2018; 148
Hu, Che, Hu, Jiang, Ruan, Zhang, Liu, Dong (b0030) 2019; 145
Reduction cocatalyst, Adv. Funct. Mater., 29 (2019) 1904256.
Zhang, Chen, Li, Xu, Li, He, Lu (b0285) 2018; 232
Sharma, Mahala, Basu (b0065) 2020; 59
Yang, Xu, Wong, Yang, Lee (b0400) 2013; 15
Li, Chen, Li, Xu, Li, He, Lu (b0280) 2020; 843
Chang, Yang, Gao, Lu (b0125) 2018; 738
Zhou, Yu, Jaroniec (b0150) 2014; 26
Liu, Ding, Shi, Liu, Wu, Jiang, Zhou, Liu, Hu (b0120) 2018; 234
Y.T. Xue, Z.Y. Chen, Z.S, Wu, F. Tian, B. Yu, Hierarchical construction of a new Z-scheme Bi/BiVO
Lai, An, Yi, Huo, Qin, Liu, Li, Zhang, Liu, Li, Fu, Zhou, Wang, An, Shi (b0110) 2021; 600
Peng, Jiang, Xiao, Xu, Zhang, Ni (b0325) 2019; 487
Qi, Conte, Anpo, Tang, Xu (b0025) 2021; 121
Hao, Tang, Shi, Chen, Guo (b0225) 2021; 409
Xiao, Peng, Zhang, Jiang, Ni (b0245) 2019; 494
Xiao, Zhao, Zou, Chen, Tian, Xu, Tang, Liu, Lin, Yang (b0080) 2020; 268
Li, Qi, Tang, Xu (b0070) 2021; 50
Peng, Jiang, Wang, Zhang, Xu, Xiao, Jing, Zhang, Liu, Ni (b0295) 2019; 45
Chen, Tang, Feng, Zhou, Zeng, Lu, Yu, Ren, Peng, Liu (b0390) 2019; 670
Zhang, Jin (b0330) 2019; 9
Dai, Wang, Zhou, Zhao, Han, Wang (b0335) 2020; 517
Xiao, Jiang, Liu, Zhang, Zhu, Gao, Xu, Zhang, Liu, Ni (b0320) 2020; 55
Wang, Jin, Huang, She, Wang (b0105) 2019; 7
Han, Liu, Zhang, Xu, Tang (b0160) 2017; 202
Zhang, Hu, Ding, Lin (b0190) 2015; 625
Jiao, Li, Wang, He, Li (b0345) 2021; 595
Li, Ding, Wu, Zhao, Li, Zheng, Huang, Tao (b0090) 2019; 11
Xu, Yu, Zhang, Zhang, Liu (b0145) 2015; 51
Xu, Zhang, Cheng, Yu (b0275) 2018; 6
Xu, Zhao, An, Wang, Zhang, Li, Wu, Wu (b0040) 2020; 12
J. Zhang, Z.H., Liu, Z.F. Liu, Novel WO
Dadigala, Bandi, Gangapuram, Dasari, Belay, Guttena (b0180) 2019; 7
O
Peng, Wang, Shi, Jiang, Jin, Chen (b0350) 2022; 613
Son, Do, Kang (b0340) 2017; 43
Huang, Wang, Yang, Liu, Han, Li (b0410) 2013; 117
S
Xiong, Dong, Zhang, Zhou, Rittmann (b0050) 2018; 136
Guan, Ma, Sheng-Wei, Chen, Huang (b0130) 2011; 50
Zhang, Yang, Zhou, Bao, Xu, Chaker, Ma (b0010) 2020; 270
Zhang, Li, Cao, Han (b0055) 2019; 285
Li, Yu, Dong, Liu, Wu, Che, Chen (b0385) 2018; 238
Liu, Liu, Li, Li, Li, Gong, Niu, Zhao, Sun (b0230) 2018; 39
Li, Wang, Jin, Zhang, Gao (b0195) 2018; 44
Zhang, Zhang, Jiang, Xiao, Zhang, Xu, Yang, Liu, Zhang (b0140) 2021; 542
Tang, Han, Han, Xu (b0165) 2017; 5
Z.Q. Zheng, T. Wang, F. Han, Q. Y, B.X. Li, Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light, J Colloid Inter. Sci., 606 (2022) 47–56.
Yuan, Qiu, Yue, Shen, Li, Zhu, Liu, Lia (b0255) 2020; 401
F.Y. Xu, K.M., B.C. Zhu, H.B. Liu, J.S. Xu, J.G. Yu, Graphdiyne: A New Photocatalytic CO
Cheng, Chen, Li, Xu, Li, He, Lu (b0315) 2020; 391
Shao, Liu, Liu, Zeng, Liang, Liang, Cheng, Zhang, Liu, Gong (b0005) 2019; 368
Dashairya, Sharma, Basu, Saha (b0220) 2018; 735
Zhu, Ma, Yu, Lu, Liu, Huo, Xu, Yan (b0020) 2020; 268
Sun, Li, Li, Chen, Chen, He, Fu (b0240) 2008; 112
Xu, Liu, Li, Chen, Yang, Huang, Pan (b0015) 2021; 13
Q. Jiang, X.Z. Yuan, H. Wang, X.H. Chen, S.N. Gu, Y.L., Z.B. Wu, G.M. Zeng, A facile hydrothermal method to synthesize Sb
Li, Wang (b0155) 2020; 2
Sb
Xu, Zhao (b0185) 2018; 499–504
Ye, Xu, Chen, Yang, Zhu, Weng (b0205) 2018; 440
CdS heterojunction for enhanced visible-light photocatalytic degradation of tetracycline hydrochloride. Sep. Purif. Technol., 275 (2021) 119152.
Yuan, Wang, Wang, Zeng, Chen, Wu, Jiang, Xiong, Zhang, Wang (b0210) 2018; 8
Humayun, Ullah, Cao, Pi, Yuan, Ali, Tahir, Yue, Khan, Zheng, Fu, Luo (b0365) 2020; 12
Wang, Li, Li, Zhang (b0085) 2020; 263
Heterojunction Photocatalyst Based on WO
Weng, Qi, Han, Tang, Xu (b0380) 2019; 9
Ayappan, Jayaraman, Palanivel, Pandikumar, Mani (b0215) 2020; 236
Jiang, Peng, Zhang, Li, Zhan, Zhang, Liu, Wang (b0260) 2018; 44
Thibert, Frame, Busby, Holmes, Osterloh, Larsen (b0405) 2011; 2
Liu (10.1016/j.jcis.2022.04.137_b0120) 2018; 234
Zhang (10.1016/j.jcis.2022.04.137_b0330) 2019; 9
Zhu (10.1016/j.jcis.2022.04.137_b0020) 2020; 268
Shao (10.1016/j.jcis.2022.04.137_b0005) 2019; 368
Wang (10.1016/j.jcis.2022.04.137_b0100) 2019; 29
Xiao (10.1016/j.jcis.2022.04.137_b0245) 2019; 494
Son (10.1016/j.jcis.2022.04.137_b0340) 2017; 43
Yang (10.1016/j.jcis.2022.04.137_b0270) 2020; 45
Jiao (10.1016/j.jcis.2022.04.137_b0345) 2021; 595
Xu (10.1016/j.jcis.2022.04.137_b0040) 2020; 12
Lai (10.1016/j.jcis.2022.04.137_b0110) 2021; 600
Zhang (10.1016/j.jcis.2022.04.137_b0140) 2021; 542
Gao (10.1016/j.jcis.2022.04.137_b0095) 2021; 60
Peng (10.1016/j.jcis.2022.04.137_b0325) 2019; 487
Weng (10.1016/j.jcis.2022.04.137_b0380) 2019; 9
Xiao (10.1016/j.jcis.2022.04.137_b0290) 2020; 45
10.1016/j.jcis.2022.04.137_b0200
Yang (10.1016/j.jcis.2022.04.137_b0235) 2018; 234
Li (10.1016/j.jcis.2022.04.137_b0280) 2020; 843
Xiao (10.1016/j.jcis.2022.04.137_b0115) 2019; 54
Liu (10.1016/j.jcis.2022.04.137_b0135) 2016; 183
Li (10.1016/j.jcis.2022.04.137_b0195) 2018; 44
Iakovides (10.1016/j.jcis.2022.04.137_b0060) 2019; 159
Xiao (10.1016/j.jcis.2022.04.137_b0320) 2020; 55
Dadigala (10.1016/j.jcis.2022.04.137_b0180) 2019; 7
Xu (10.1016/j.jcis.2022.04.137_b0275) 2018; 6
Ye (10.1016/j.jcis.2022.04.137_b0205) 2018; 440
Liu (10.1016/j.jcis.2022.04.137_b0230) 2018; 39
Ayappan (10.1016/j.jcis.2022.04.137_b0215) 2020; 236
Huang (10.1016/j.jcis.2022.04.137_b0410) 2013; 117
Li (10.1016/j.jcis.2022.04.137_b0090) 2019; 11
Sun (10.1016/j.jcis.2022.04.137_b0265) 2012; 51
Humayun (10.1016/j.jcis.2022.04.137_b0365) 2020; 12
Zhao (10.1016/j.jcis.2022.04.137_b0310) 2020; 45
10.1016/j.jcis.2022.04.137_b0375
Zhang (10.1016/j.jcis.2022.04.137_b0055) 2019; 285
Xiao (10.1016/j.jcis.2022.04.137_b0080) 2020; 268
Zhu (10.1016/j.jcis.2022.04.137_b0045) 2017; 9
Yuan (10.1016/j.jcis.2022.04.137_b0210) 2018; 8
Dai (10.1016/j.jcis.2022.04.137_b0335) 2020; 517
Xu (10.1016/j.jcis.2022.04.137_b0015) 2021; 13
Jiang (10.1016/j.jcis.2022.04.137_b0260) 2018; 44
Sharma (10.1016/j.jcis.2022.04.137_b0065) 2020; 59
Yuan (10.1016/j.jcis.2022.04.137_b0255) 2020; 401
Zhang (10.1016/j.jcis.2022.04.137_b0190) 2015; 625
Zhang (10.1016/j.jcis.2022.04.137_b0285) 2018; 232
Hao (10.1016/j.jcis.2022.04.137_b0225) 2021; 409
Xu (10.1016/j.jcis.2022.04.137_b0185) 2018; 499–504
Shan (10.1016/j.jcis.2022.04.137_b0370) 2019; 7
Thibert (10.1016/j.jcis.2022.04.137_b0405) 2011; 2
Sun (10.1016/j.jcis.2022.04.137_b0240) 2008; 112
Xu (10.1016/j.jcis.2022.04.137_b0035) 2019; 357
10.1016/j.jcis.2022.04.137_b0305
Qi (10.1016/j.jcis.2022.04.137_b0025) 2021; 121
Cheng (10.1016/j.jcis.2022.04.137_b0315) 2020; 391
10.1016/j.jcis.2022.04.137_b0300
Zhou (10.1016/j.jcis.2022.04.137_b0150) 2014; 26
Li (10.1016/j.jcis.2022.04.137_b0070) 2021; 50
Mao (10.1016/j.jcis.2022.04.137_b0355) 2021; 581
Li (10.1016/j.jcis.2022.04.137_b0155) 2020; 2
Wang (10.1016/j.jcis.2022.04.137_b0105) 2019; 7
Xu (10.1016/j.jcis.2022.04.137_b0145) 2015; 51
Peng (10.1016/j.jcis.2022.04.137_b0350) 2022; 613
Liu (10.1016/j.jcis.2022.04.137_b0170) 2015; 44
Wang (10.1016/j.jcis.2022.04.137_b0250) 2020; 12
Chen (10.1016/j.jcis.2022.04.137_b0390) 2019; 670
Guan (10.1016/j.jcis.2022.04.137_b0130) 2011; 50
Peng (10.1016/j.jcis.2022.04.137_b0295) 2019; 45
Zhang (10.1016/j.jcis.2022.04.137_b0010) 2020; 270
Dashairya (10.1016/j.jcis.2022.04.137_b0220) 2018; 735
Ge (10.1016/j.jcis.2022.04.137_b0360) 2018; 148
Li (10.1016/j.jcis.2022.04.137_b0385) 2018; 238
Wang (10.1016/j.jcis.2022.04.137_b0085) 2020; 263
Tang (10.1016/j.jcis.2022.04.137_b0165) 2017; 5
Yang (10.1016/j.jcis.2022.04.137_b0400) 2013; 15
Hu (10.1016/j.jcis.2022.04.137_b0030) 2019; 145
Li (10.1016/j.jcis.2022.04.137_b0075) 2021; 3
Chang (10.1016/j.jcis.2022.04.137_b0125) 2018; 738
Xiong (10.1016/j.jcis.2022.04.137_b0050) 2018; 136
Han (10.1016/j.jcis.2022.04.137_b0160) 2017; 202
10.1016/j.jcis.2022.04.137_b0395
Wang (10.1016/j.jcis.2022.04.137_b0175) 2017; 10
References_xml – volume: 494
  start-page: 519
  year: 2019
  end-page: 531
  ident: b0245
  article-title: Self-assembly of Ag
  publication-title: Appl. Surf. Sci.
– volume: 60
  start-page: 1755
  year: 2021
  end-page: 1766
  ident: b0095
  article-title: Constructed Z-Scheme g-C
  publication-title: Inorg. Chem.
– volume: 670
  start-page: 921
  year: 2019
  end-page: 931
  ident: b0390
  article-title: Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation
  publication-title: Sci. Total. Environ.
– reference: -CdS heterojunction for enhanced visible-light photocatalytic degradation of tetracycline hydrochloride. Sep. Purif. Technol., 275 (2021) 119152.
– reference: Y.T. Xue, Z.Y. Chen, Z.S, Wu, F. Tian, B. Yu, Hierarchical construction of a new Z-scheme Bi/BiVO
– volume: 15
  start-page: 12688
  year: 2013
  ident: b0400
  article-title: Synthesis of In
  publication-title: Phys. Chem. Chem. Phys.
– reference: Reduction cocatalyst, Adv. Funct. Mater., 29 (2019) 1904256.
– volume: 2
  start-page: 3
  year: 2020
  end-page: 32
  ident: b0155
  article-title: One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion
  publication-title: Infomat.
– volume: 542
  year: 2021
  ident: b0140
  article-title: In-situ constructing of one-dimensional SnIn
  publication-title: Appl. Surf. Sci.
– volume: 45
  start-page: 30341
  year: 2020
  end-page: 30356
  ident: b0290
  article-title: Eco-friendly synthesis of core/shell ZnIn
  publication-title: Int. J. Hydrogen Energ.
– volume: 7
  start-page: 15660
  year: 2019
  end-page: 15670
  ident: b0105
  article-title: Integration of Copper (II) -Porphyrin Zirconium Metal-Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 50
  start-page: 800
  year: 2011
  end-page: 805
  ident: b0130
  article-title: From Hollow Olive-Shaped BiVO
  publication-title: Inorg. Chem.
– volume: 600
  start-page: 161
  year: 2021
  end-page: 173
  ident: b0110
  article-title: Enhanced visible-light-driven photocatalytic activity of bismuth oxide via the decoration of titanium carbide quantum dots
  publication-title: J. Colloid. Interf. Sci.
– volume: 735
  start-page: 234
  year: 2018
  end-page: 245
  ident: b0220
  article-title: Enhanced dye degradation using hydrothermally synthesized nanostructured Sb
  publication-title: J. Alloy. Compd.
– volume: 183
  start-page: 133
  year: 2016
  end-page: 141
  ident: b0135
  article-title: A stable Ag
  publication-title: Appl. Catal. B-Environ.
– volume: 401
  year: 2020
  ident: b0255
  article-title: Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 2699
  year: 2017
  end-page: 2711
  ident: b0175
  article-title: Multidimensional CdS nanowire/CdIn
  publication-title: Nano. Res.
– volume: 738
  start-page: 138
  year: 2018
  end-page: 144
  ident: b0125
  article-title: Core/shell p-BiOI/n-b-Bi
  publication-title: J. Alloy. Compd.
– volume: 268
  year: 2020
  ident: b0080
  article-title: In situ fabrication of 1D CdS nanorod/2D Ti
  publication-title: Appl. Catal. B-Environ.
– volume: 43
  start-page: 11250
  year: 2017
  end-page: 11259
  ident: b0340
  article-title: Characterization of core@shell-structured ZnO@Sb
  publication-title: Ceram. Int.
– volume: 8
  start-page: 545
  year: 2018
  end-page: 1554
  ident: b0210
  article-title: Near-infrared-driven Cr (VI) reduction in aqueous solution based on MoS
  publication-title: Sci. Technol.
– volume: 51
  start-page: 2897
  year: 2012
  end-page: 2903
  ident: b0265
  article-title: Efficient Degradation of Azo Dyes over Sb
  publication-title: Ind. Eng. Chem. Res.
– volume: 117
  start-page: 11584
  year: 2013
  end-page: 11591
  ident: b0410
  article-title: Dual Cocatalysts Loaded Type I CdS/ZnS Core/Shell Nanocrystals as Effective and Stable Photocatalysts for H
  publication-title: J. Phys. Chem. C
– volume: 44
  start-page: 5053
  year: 2015
  end-page: 5075
  ident: b0170
  article-title: One-dimension-based spatially ordered architectures for solar energy conversion
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 22297
  year: 2019
  end-page: 22306
  ident: b0090
  article-title: Efficient, Full Spectrum-Driven H
  publication-title: ACS Appl. Mater. Inter.
– reference: composite with three-dimensional spherical structure, RSC Adv., 5 (2015) 53019–53024.
– volume: 581
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0355
  article-title: Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production
  publication-title: J. Colloid Inter. Sci.
– volume: 159
  start-page: 333
  year: 2019
  end-page: 347
  ident: b0060
  article-title: Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity
  publication-title: Water Res.
– volume: 368
  start-page: 730
  year: 2019
  end-page: 745
  ident: b0005
  article-title: A novel double Z-scheme photocatalyst Ag
  publication-title: Chem. Eng. J.
– reference: of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting, ACS Appl. Mater. Inter., (8) 2016 9684–9691.
– volume: 3
  year: 2021
  ident: b0075
  article-title: Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis
  publication-title: Energy Chem.
– reference: O
– volume: 202
  start-page: 298
  year: 2017
  end-page: 304
  ident: b0160
  article-title: One-dimensional CdS@MoS
  publication-title: Appl. Catal. B-Environ.
– volume: 55
  start-page: 14211
  year: 2020
  end-page: 14228
  ident: b0320
  article-title: Construction of the rapid spatial charge migration core/shell heterostructure by ZnIn
  publication-title: J. Mater. Sci.
– volume: 13
  start-page: 20114
  year: 2021
  end-page: 20124
  ident: b0015
  article-title: Coordination of π-Delocalization in g-C
  publication-title: ACS Appl. Mater. Inter.
– volume: 2
  start-page: 2688
  year: 2011
  end-page: 02694
  ident: b0405
  article-title: Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe/CdS Nanocrystals
  publication-title: J. Phys. Chem. Lett.
– volume: 357
  start-page: 487
  year: 2019
  end-page: 497
  ident: b0035
  article-title: Construction of novel CNT/LaVO
  publication-title: Chem. Eng. J.
– volume: 45
  start-page: 13975
  year: 2020
  end-page: 13984
  ident: b0310
  article-title: ZnIn
  publication-title: Int. J. Hydrogen Energ.
– reference: F.Y. Xu, K.M., B.C. Zhu, H.B. Liu, J.S. Xu, J.G. Yu, Graphdiyne: A New Photocatalytic CO
– volume: 268
  year: 2020
  ident: b0020
  article-title: Synthesis Ce-doped biomass carbon-based g-C
  publication-title: Appl. Catal. B-Environ.
– volume: 517
  year: 2020
  ident: b0335
  article-title: ZnIn
  publication-title: Appl. Surf. Sci.
– volume: 29
  start-page: 1807013
  year: 2019
  ident: b0100
  article-title: Atomic insights for optimum and excess doping in photocatalysis: a case study of few-layer Cu-ZnIn
  publication-title: Adv. Funct. Mater.
– volume: 625
  start-page: 90
  year: 2015
  end-page: 94
  ident: b0190
  article-title: Synthesis of 1D Sb
  publication-title: J Alloy. Compd.
– volume: 595
  start-page: 69
  year: 2021
  end-page: 77
  ident: b0345
  article-title: Novel B-N-Co surface bonding states constructed on hollow tubular boron doped g-C
  publication-title: J. Colloid Inter. Sci.
– volume: 234
  start-page: 260
  year: 2018
  end-page: 267
  ident: b0235
  article-title: Construction of urchin-like ZnIn
  publication-title: Appl. Catal. B-Environ.
– volume: 51
  start-page: 7950
  year: 2015
  end-page: 7953
  ident: b0145
  article-title: Cubic anatase TiO
  publication-title: Chem. Commun.
– reference: Q. Jiang, X.Z. Yuan, H. Wang, X.H. Chen, S.N. Gu, Y.L., Z.B. Wu, G.M. Zeng, A facile hydrothermal method to synthesize Sb
– volume: 7
  year: 2019
  ident: b0180
  article-title: Fabrication of novel 1D/2D V
  publication-title: J. Environ. Chem. Eng.
– volume: 270
  year: 2020
  ident: b0010
  article-title: Broadband photocatalysts enabled by 0D/2D heterojunctions of near-infrared quantum dots/graphitic carbon nitride nanosheets
  publication-title: Appl. Catal. B-Environ.
– volume: 50
  start-page: 7539
  year: 2021
  end-page: 7586
  ident: b0070
  article-title: Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis
  publication-title: Chem. Soc. Rev.
– volume: 391
  year: 2020
  ident: b0315
  article-title: ZnIn
  publication-title: J. Hazard. Mater.
– volume: 285
  year: 2019
  ident: b0055
  article-title: Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures
  publication-title: Bioresource Technol.
– volume: 409
  year: 2021
  ident: b0225
  article-title: Facile solvothermal synthesis of a Z-Scheme 0D/3D CeO
  publication-title: Chem. Eng. J.
– volume: 232
  start-page: 164
  year: 2018
  end-page: 174
  ident: b0285
  article-title: Preparation of ZnIn
  publication-title: Appl. Catal. B-Environ.
– volume: 487
  start-page: 1084
  year: 2019
  end-page: 1095
  ident: b0325
  article-title: CdIn
  publication-title: Appl. Surf. Sci.
– reference: J. Zhang, Z.H., Liu, Z.F. Liu, Novel WO
– volume: 121
  start-page: 13051
  year: 2021
  end-page: 13085
  ident: b0025
  article-title: Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts
  publication-title: Chem. Rev.
– volume: 236
  year: 2020
  ident: b0215
  article-title: Facile preparation of novel Sb
  publication-title: Sep. Purif. Technol.
– reference: /Sb
– volume: 54
  start-page: 9573
  year: 2019
  end-page: 9590
  ident: b0115
  article-title: Z-scheme CdIn
  publication-title: J. Mater. Sci.
– reference: Heterojunction Photocatalyst Based on WO
– volume: 44
  start-page: 6115
  year: 2018
  end-page: 6126
  ident: b0260
  article-title: Facile in-situ Solvothermal Method to synthesize double shell ZnIn
  publication-title: Ceram. Int.
– reference: Z.Q. Zheng, T. Wang, F. Han, Q. Y, B.X. Li, Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light, J Colloid Inter. Sci., 606 (2022) 47–56.
– volume: 12
  start-page: 48526
  year: 2020
  end-page: 48532
  ident: b0040
  article-title: Alkali Halide Boost of Carbon Nitride for Photocatalytic H
  publication-title: ACS Appl. Mater. Inter.
– reference: S
– volume: 112
  start-page: 18076
  year: 2008
  end-page: 18081
  ident: b0240
  article-title: New Photocatalyst, Sb
  publication-title: J. Phys. Chem. C
– volume: 843
  year: 2020
  ident: b0280
  article-title: Hollow SnO
  publication-title: J. Alloy. Compd.
– volume: 9
  start-page: 38832
  year: 2017
  end-page: 38841
  ident: b0045
  article-title: Kun Wang, Boosting the Visible-Light Photoactivity of BiOCl/BiVO
  publication-title: ACS Appl. Mater. Inter.
– volume: 12
  start-page: 13791
  year: 2020
  end-page: 13800
  ident: b0250
  article-title: Facile In Situ Formation of Ternary 3D ZnIn
  publication-title: Nanoscale
– reference: Cl
– volume: 148
  start-page: 3741
  year: 2018
  end-page: 3749
  ident: b0360
  article-title: Embedding Noble-Metal-Free Ni
  publication-title: Catal. Lett.
– volume: 9
  start-page: 1944
  year: 2019
  end-page: 1960
  ident: b0330
  article-title: Accelerated charge transfer via a nickel tungstate modulated cadmium sulfide p-n heterojunction for photocatalytic hydrogen evolution
  publication-title: Catal. Sci. Technol.
– volume: 12
  year: 2020
  ident: b0365
  article-title: Experimental and DFT Studies of Au Deposition Over WO
  publication-title: Nano-Micro Lett.
– volume: 45
  start-page: 15942
  year: 2019
  end-page: 15953
  ident: b0295
  article-title: Novel CdIn
  publication-title: Ceram. Int.
– volume: 7
  start-page: 1800886
  year: 2019
  ident: b0370
  article-title: Facile and Scalable Fabrication of Porous g-C
  publication-title: Energy Technol.
– volume: 263
  year: 2020
  ident: b0085
  article-title: Boosting interfacial charge separation of Ba
  publication-title: Appl. Catal. B-Environ.
– volume: 5
  start-page: 2387
  year: 2017
  end-page: 2410
  ident: b0165
  article-title: One dimensional CdS based materials for artificial photoredox reactions
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 4920
  year: 2014
  end-page: 4935
  ident: b0150
  article-title: All-solid-state Z-scheme photocatalytic systems
  publication-title: Adv. Mater.
– volume: 44
  start-page: 12825
  year: 2018
  end-page: 12830
  ident: b0195
  article-title: Construction of TiO
  publication-title: Ceram. Int.
– volume: 9
  start-page: 4642
  year: 2019
  end-page: 4687
  ident: b0380
  article-title: Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle Current Development, and Future Perspective
  publication-title: ACS Catal.
– volume: 499–504
  year: 2018
  ident: b0185
  article-title: Facile Synthesis of 1D/2D Core-Shell Structured Sb
  publication-title: Electron. Mater. Lett.
– volume: 39
  start-page: 1901
  year: 2018
  end-page: 1909
  ident: b0230
  article-title: ZnIn
  publication-title: Chinese. J. Catal.
– volume: 613
  start-page: 194
  year: 2022
  end-page: 206
  ident: b0350
  article-title: Fabrication of novel Cu
  publication-title: J. Colloid Inter. Sci.
– volume: 440
  start-page: 294
  year: 2018
  end-page: 299
  ident: b0205
  article-title: Enhanced photovoltaic performance of Sb
  publication-title: Appl. Surf. Sci.
– volume: 234
  start-page: 109
  year: 2018
  end-page: 116
  ident: b0120
  article-title: Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H
  publication-title: Appl. Catal. B-Environ.
– volume: 136
  start-page: 75
  year: 2018
  end-page: 83
  ident: b0050
  article-title: Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor
  publication-title: Water Res.
– volume: 6
  start-page: 12291
  year: 2018
  end-page: 12298
  ident: b0275
  article-title: Direct Z-Scheme TiO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 238
  start-page: 284
  year: 2018
  end-page: 293
  ident: b0385
  article-title: Z scheme mesoporous photocatalyst constructed by modification of Sn
  publication-title: Appl. Catal. B-Environ.
– volume: 145
  start-page: 04019031
  year: 2019
  ident: b0030
  article-title: Construction of mesoporous NCQDs-BiOCl composites for photocatalytic-degrading organic pollutants in water under visible and near-infrared light
  publication-title: J. Environ. Eng.
– volume: 59
  start-page: 4377
  year: 2020
  end-page: 4388
  ident: b0065
  article-title: 2D Thin Sheet Heterostructures of MoS
  publication-title: Inorg. Chem.
– volume: 45
  start-page: 14334
  year: 2020
  end-page: 14346
  ident: b0270
  article-title: Boosted photogenerated carriers separation in Zscheme Cu
  publication-title: Int. J. Hydrogen Energ.
– volume: 285
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0055
  article-title: Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2019.121348
– volume: 409
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0225
  article-title: Facile solvothermal synthesis of a Z-Scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128168
– volume: 44
  start-page: 5053
  year: 2015
  ident: 10.1016/j.jcis.2022.04.137_b0170
  article-title: One-dimension-based spatially ordered architectures for solar energy conversion
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00408F
– ident: 10.1016/j.jcis.2022.04.137_b0395
  doi: 10.1016/j.seppur.2021.119152
– volume: 234
  start-page: 260
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0235
  article-title: Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.04.038
– volume: 50
  start-page: 800
  year: 2011
  ident: 10.1016/j.jcis.2022.04.137_b0130
  article-title: From Hollow Olive-Shaped BiVO4 to n-p Core-Shell BiVO4@Bi2O3 Microspheres: Controlled Synthesis and Enhanced Visible-Light-Responsive Photocatalytic Properties
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101961z
– volume: 45
  start-page: 30341
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0290
  article-title: Eco-friendly synthesis of core/shell ZnIn2S4/Ta3N5 heterojunction for strengthened dual-functional photocatalytic performance
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2020.08.008
– volume: 12
  start-page: 48526
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0040
  article-title: Alkali Halide Boost of Carbon Nitride for Photocatalytic H2 Evolution in Seawater
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.0c13060
– volume: 136
  start-page: 75
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0050
  article-title: Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.02.061
– volume: 3
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0075
  article-title: Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis
  publication-title: Energy Chem.
– volume: 499–504
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0185
  article-title: Facile Synthesis of 1D/2D Core-Shell Structured Sb2S3@MoS2 Nanorods with Enhanced Photocatalytic Performance
  publication-title: Electron. Mater. Lett.
– volume: 234
  start-page: 109
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0120
  article-title: Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H2 evolution
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.04.037
– volume: 5
  start-page: 2387
  year: 2017
  ident: 10.1016/j.jcis.2022.04.137_b0165
  article-title: One dimensional CdS based materials for artificial photoredox reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06373J
– volume: 7
  start-page: 1800886
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0370
  article-title: Facile and Scalable Fabrication of Porous g-C3N4 Nanosheets with Nitrogen Defects and Oxygen-Doping for Synergistically Promoted Visible Light Photocatalytic H2 Evolution
  publication-title: Energy Technol.
  doi: 10.1002/ente.201800886
– ident: 10.1016/j.jcis.2022.04.137_b0305
  doi: 10.1002/adfm.201904256
– volume: 43
  start-page: 11250
  year: 2017
  ident: 10.1016/j.jcis.2022.04.137_b0340
  article-title: Characterization of core@shell-structured ZnO@Sb2S3 particles for effective hydrogen production from water photo spitting
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.05.175
– volume: 55
  start-page: 14211
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0320
  article-title: Construction of the rapid spatial charge migration core/shell heterostructure by ZnIn2S4 nanosheet-surfaceloaded β-Bi2O3 for improved photooxidative performance
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05004-8
– volume: 2
  start-page: 3
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0155
  article-title: One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion
  publication-title: Infomat.
  doi: 10.1002/inf2.12040
– ident: 10.1016/j.jcis.2022.04.137_b0375
  doi: 10.1016/j.jcis.2021.07.150
– volume: 735
  start-page: 234
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0220
  article-title: Enhanced dye degradation using hydrothermally synthesized nanostructured Sb2S3/rGO under visible light irradiation
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.11.063
– volume: 238
  start-page: 284
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0385
  article-title: Z scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.07.049
– volume: 121
  start-page: 13051
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0025
  article-title: Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00197
– volume: 236
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0215
  article-title: Facile preparation of novel Sb2S3 nanoparticles/rod-like α-Ag2WO4 heterojunction photocatalysts: Continuous modulation of band structure towards the efficient removal of organic contaminants
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116302
– volume: 542
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0140
  article-title: In-situ constructing of one-dimensional SnIn4S8-CdS core-shell heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic oxidation and reduction capabilities
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148618
– volume: 112
  start-page: 18076
  year: 2008
  ident: 10.1016/j.jcis.2022.04.137_b0240
  article-title: New Photocatalyst, Sb2S3, for Degradation of Methyl Orange under Visible-Light Irradiation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806496d
– ident: 10.1016/j.jcis.2022.04.137_b0300
  doi: 10.1039/C5RA09007E
– volume: 202
  start-page: 298
  year: 2017
  ident: 10.1016/j.jcis.2022.04.137_b0160
  article-title: One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.09.023
– volume: 12
  start-page: 13791
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0250
  article-title: Facile In Situ Formation of Ternary 3D ZnIn2S4-MoS2 Microsphere/1D CdS Nanorod Heterostructure for the Hight efficiency Visible-light Photocatalytic H2 Production
  publication-title: Nanoscale
  doi: 10.1039/D0NR03196H
– volume: 117
  start-page: 11584
  year: 2013
  ident: 10.1016/j.jcis.2022.04.137_b0410
  article-title: Dual Cocatalysts Loaded Type I CdS/ZnS Core/Shell Nanocrystals as Effective and Stable Photocatalysts for H2 Evolution
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp400010z
– volume: 54
  start-page: 9573
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0115
  article-title: Z-scheme CdIn2S4/BiOCl nanosheet face-to-face heterostructure: in-situ synthesis and enhanced interfacial charge transfer for high-efficient photocatalytic performance
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03401-2
– volume: 9
  start-page: 1944
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0330
  article-title: Accelerated charge transfer via a nickel tungstate modulated cadmium sulfide p-n heterojunction for photocatalytic hydrogen evolution
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY02611D
– volume: 12
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0365
  article-title: Experimental and DFT Studies of Au Deposition Over WO3/g-C3N4 Z-Scheme Heterojunction
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0345-2
– volume: 738
  start-page: 138
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0125
  article-title: Core/shell p-BiOI/n-b-Bi2O3 heterojunction array with significantly enhanced photoelectrochemical water splitting efficiency
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.12.145
– ident: 10.1016/j.jcis.2022.04.137_b0200
  doi: 10.1021/acsami.6b00429
– volume: 45
  start-page: 15942
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0295
  article-title: Novel CdIn2S4 nano-octahedra/TiO2 hollow hybrid heterostructure: In-situ synthesis, synergistic effect and enhance dual-functionalphotocatalytic activities
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.05.103
– volume: 7
  start-page: 15660
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0105
  article-title: Integration of Copper (II) -Porphyrin Zirconium Metal-Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO2 Reduction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03773
– volume: 7
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0180
  article-title: Fabrication of novel 1D/2D V2O5/g-C3N4 composites as Z-scheme photocatalysts for CR degradation and Cr (VI) reduction under sunlight irradiation
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.102822
– volume: 670
  start-page: 921
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0390
  article-title: Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.03.086
– volume: 159
  start-page: 333
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0060
  article-title: Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.05.025
– volume: 401
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0255
  article-title: Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126020
– volume: 232
  start-page: 164
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0285
  article-title: Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr (VI)
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.03.017
– volume: 10
  start-page: 2699
  year: 2017
  ident: 10.1016/j.jcis.2022.04.137_b0175
  article-title: Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications
  publication-title: Nano. Res.
  doi: 10.1007/s12274-017-1473-y
– volume: 39
  start-page: 1901
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0230
  article-title: ZnIn2S4 flowerlike microspheres embedded with carbon quantum dots for efficient photocatalytic reduction of Cr (VI)
  publication-title: Chinese. J. Catal.
  doi: 10.1016/S1872-2067(18)63137-7
– volume: 517
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0335
  article-title: ZnIn2S4 decorated Co-doped NH2-MIL-53(Fe) nanocomposites for efficient photocatalytic hydrogen production
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146161
– volume: 145
  start-page: 04019031
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0030
  article-title: Construction of mesoporous NCQDs-BiOCl composites for photocatalytic-degrading organic pollutants in water under visible and near-infrared light
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0001532
– volume: 613
  start-page: 194
  year: 2022
  ident: 10.1016/j.jcis.2022.04.137_b0350
  article-title: Fabrication of novel Cu2WS4/NiTiO3 heterostructures for efficient visible-light photocatalytic hydrogen evolution and pollutant degradation
  publication-title: J. Colloid Inter. Sci.
  doi: 10.1016/j.jcis.2021.10.179
– volume: 29
  start-page: 1807013
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0100
  article-title: Atomic insights for optimum and excess doping in photocatalysis: a case study of few-layer Cu-ZnIn2S4
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807013
– volume: 843
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0280
  article-title: Hollow SnO2 nanotubes decorated with ZnIn2S4 nanosheets for enhanced visible-light photocatalytic activity
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.155772
– volume: 45
  start-page: 13975
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0310
  article-title: ZnIn2S4/In(OH)3 hollow microspheres fabricated by one-step L-cysteine-mediated hydrothermal growth for enhanced hydrogen production and MB degradation
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2020.03.104
– volume: 148
  start-page: 3741
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0360
  article-title: Embedding Noble-Metal-Free Ni2P Cocatalyst on g-C3N4 for Enhanced Photocatalytic H2 Evolution in Water Under Visible Light
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-018-2562-6
– volume: 13
  start-page: 20114
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0015
  article-title: Coordination of π-Delocalization in g-C3N4 for Efficient Photocatalytic Hydrogen Evolution under Visible Light
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.1c02722
– volume: 440
  start-page: 294
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0205
  article-title: Enhanced photovoltaic performance of Sb2S3-sensitized solar cells through surface treatments
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.01.090
– volume: 595
  start-page: 69
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0345
  article-title: Novel B-N-Co surface bonding states constructed on hollow tubular boron doped g-C3N4/CoP for enhanced photocatalytic H2 evolution
  publication-title: J. Colloid Inter. Sci.
  doi: 10.1016/j.jcis.2021.03.134
– volume: 183
  start-page: 133
  year: 2016
  ident: 10.1016/j.jcis.2022.04.137_b0135
  article-title: A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.10.035
– volume: 26
  start-page: 4920
  year: 2014
  ident: 10.1016/j.jcis.2022.04.137_b0150
  article-title: All-solid-state Z-scheme photocatalytic systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400288
– volume: 11
  start-page: 22297
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0090
  article-title: Efficient, Full Spectrum-Driven H2 Evolution Z-Scheme Co2P/CdS Photocatalysts with Co-S Bonds
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.9b03965
– volume: 50
  start-page: 7539
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0070
  article-title: Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00323B
– volume: 8
  start-page: 545
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0210
  article-title: Near-infrared-driven Cr (VI) reduction in aqueous solution based on MoS2/Sb2S3 photocatalyst Catal
  publication-title: Sci. Technol.
– volume: 44
  start-page: 12825
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0195
  article-title: Construction of TiO2 nanotube arrays co-sensitized by Sb2S3-Bi2S3 microspheres by UV-assisted photodeposition for the enhanced photoelectrochemical performance
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.04.090
– volume: 368
  start-page: 730
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0005
  article-title: A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.013
– volume: 60
  start-page: 1755
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0095
  article-title: Constructed Z-Scheme g-C3N4/Ag3VO4/rGO Photocatalysts with Multi-interfacial Electron-Transfer Paths for High Photoreduction of CO2
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c03233
– volume: 2
  start-page: 2688
  year: 2011
  ident: 10.1016/j.jcis.2022.04.137_b0405
  article-title: Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe/CdS Nanocrystals
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2013193
– volume: 59
  start-page: 4377
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0065
  article-title: 2D Thin Sheet Heterostructures of MoS2 on MoSe2 as Efficient Electrocatalyst for Hydrogen Evolution Reaction in Wide pH Range
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b03445
– volume: 494
  start-page: 519
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0245
  article-title: Self-assembly of Ag2O quantum dots on the surface of ZnIn2S4 nanosheets to fabricate p-n heterojunctions with wonderful bifunctional photocatalytic performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.175
– volume: 51
  start-page: 2897
  issue: 51
  year: 2012
  ident: 10.1016/j.jcis.2022.04.137_b0265
  article-title: Efficient Degradation of Azo Dyes over Sb2S3/TiO2 Heterojunction under Visible Light Irradiation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie2025882
– volume: 581
  start-page: 1
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0355
  article-title: Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production
  publication-title: J. Colloid Inter. Sci.
  doi: 10.1016/j.jcis.2020.07.121
– volume: 268
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0080
  article-title: In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.118382
– volume: 15
  start-page: 12688
  year: 2013
  ident: 10.1016/j.jcis.2022.04.137_b0400
  article-title: Synthesis of In2O3-In2S3 core-shell nanorods with inverted type-I structure for photocatalytic H2 generation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51722e
– volume: 391
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0315
  article-title: ZnIn2S4 grown on nitrogen-doped hollow carbon spheres: An advanced catalyst for Cr (VI) reduction
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122205
– volume: 44
  start-page: 6115
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0260
  article-title: Facile in-situ Solvothermal Method to synthesize double shell ZnIn2S4 nanosheets/TiO2 hollow nanosphere with enhanced photocatalytic activities
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.12.244
– volume: 487
  start-page: 1084
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0325
  article-title: CdIn2S4 surface-decorated Ta3N5 core-shell heterostructure for improved spatial charge transfer: In-situ growth, synergistic effect and efficient dual-functional photocatalytic performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.163
– volume: 9
  start-page: 4642
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0380
  article-title: Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle Current Development, and Future Perspective
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00313
– volume: 268
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0020
  article-title: Synthesis Ce-doped biomass carbon-based g-C3N4 via plant growing guide and temperature-programmed technique for degrading 2-Mercaptobenzothiazole
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.118432
– volume: 600
  start-page: 161
  year: 2021
  ident: 10.1016/j.jcis.2022.04.137_b0110
  article-title: Enhanced visible-light-driven photocatalytic activity of bismuth oxide via the decoration of titanium carbide quantum dots
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1016/j.jcis.2021.05.022
– volume: 270
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0010
  article-title: Broadband photocatalysts enabled by 0D/2D heterojunctions of near-infrared quantum dots/graphitic carbon nitride nanosheets
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2020.118879
– volume: 51
  start-page: 7950
  year: 2015
  ident: 10.1016/j.jcis.2022.04.137_b0145
  article-title: Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01087J
– volume: 6
  start-page: 12291
  year: 2018
  ident: 10.1016/j.jcis.2022.04.137_b0275
  article-title: Direct Z-Scheme TiO2/NiS Core-Shell Hybrid Nanofibers with Enhanced Photocatalytic H2-Production Activity
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02710
– volume: 9
  start-page: 38832
  year: 2017
  ident: 10.1016/j.jcis.2022.04.137_b0045
  article-title: Kun Wang, Boosting the Visible-Light Photoactivity of BiOCl/BiVO4/N-GQD Ternary Heterojunctions Based on Internal Z-Scheme Charge Transfer of N-GQDs: Simultaneous Band Gap Narrowing and Carrier Lifetime Prolonging
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b14412
– volume: 357
  start-page: 487
  year: 2019
  ident: 10.1016/j.jcis.2022.04.137_b0035
  article-title: Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.098
– volume: 625
  start-page: 90
  year: 2015
  ident: 10.1016/j.jcis.2022.04.137_b0190
  article-title: Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO
  publication-title: J Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.11.052
– volume: 45
  start-page: 14334
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0270
  article-title: Boosted photogenerated carriers separation in Zscheme Cu3P/ZnIn2S4 heterojunction photocatalyst for highly efficient H2 evolution under visible light
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2020.03.139
– volume: 263
  year: 2020
  ident: 10.1016/j.jcis.2022.04.137_b0085
  article-title: Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.05.032
SSID ssj0011559
Score 2.6457574
Snippet A novel ZnIn2S4 decorated Sb2S3 hierarchical 1D/2D core–shell heterostructure was successfully fabricated by a simple hydrothermal method. It possessed highly...
In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen...
In this work, a novel hierarchical 1D/2D core/shell Sb₂S₃-ZnIn₂S₄ (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms absorption
Dual-functional
energy
hierarchical 1D/2D heterostructure
hot water treatment
hydrogen
hydrogen production
nanorods
nanosheets
photocatalysis
photolysis
pollutants
pollution
reaction mechanisms
Sb2S3 nanorod
surface area
tetracycline
ZnIn2S4 nanosheet
Title Hierarchical Sb2S3/ZnIn2S4 core–shell heterostructure for highly efficient photocatalytic hydrogen production and pollutant degradation
URI https://dx.doi.org/10.1016/j.jcis.2022.04.137
https://www.proquest.com/docview/2665108345
https://www.proquest.com/docview/2675560087
Volume 623
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9RAEF5FSQEUKAQQARItEh0yZ3vfZXRKdAGR5ogU0VjrfeguOtlWcimuQbTU_EN-CTNeOwKErqBwYWtWtnbGM7O733xDyFsXtdBeu4wxHzJe1DyzpjaZ5NpDOh5N7nBr4NOFnF3yD1fiaodMx1oYhFUOvj_59N5bD08mw2xOuuUSa3zhb1NGlbjdlkss-OVcoZW__3oP8yjw2C3BPIoMpYfCmYTxunZLpOwuS6Q7LbAX-r-D019uuo89Z_vk8ZA00pP0XU_ITmgOyIPp2KvtgDz6jVbwKfk-W2JZcd_lZEXndTlnky_NeVPOOUXWyp_fftwi_pMuEAvTJgrZu5tAIYGlyF-82tDQU0tARKLdol23_S7PBl5PFxt_04LV0S5xxYJeqW087bBnMrYkph75J1Krpmfk8uz083SWDS0XMsekXGeFK2StfS6cdrCSCXnNrIWcyUQlYh61Kay0hdB1HbUNEVZryikvAizTgrSMsedkt2mb8IJQxayJ3ORwGe4Y1yZEpkz0ngfF6_KQFONcV27gI8e2GKtqBJ5dV6ifCvVT5bwC_RySd_djusTGsVVajCqs_rCpCsLF1nFvRn1XoEc8QbFNaO9ASErwYZpxsU1GCUwjtXr5n-9_RR7iXYIMvia7YAXhCFKfdX3c2_Yx2Ts5_zi7-AW3Jwcd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigcEBQQLQWMBCcUNokdPw4cUKHapY_LtlLFxTh-aLdaJat2q2oviCtnfgr_iF_CTB4VILQHpB5ySRwl8oxnxvbn7yPkpYuqUF65hDEfEp6VPLG61IngykM5HnXqcGng8EgMT_jH0-J0jfzoz8IgrLKL_W1Mb6J1d2fQ9eZgPp3iGV8YbVLLHJfbUqE6ZOV-WF7BvO3i7eg9GPlVnu99ON4dJp20QOKYEIskc5kolU8LpxxU7CEtmbVQG-goi5hGpTMrbFaosozKhgizEumkLwJMR4KwDFdBIe7f4hAuUDbhzZdrXEmG-3wtriRL8Pe6kzotqOzMTZEjPM-RXzVD8fV_Z8O_8kKT7PbukbtdlUrftR1xn6yFapNs7PbicJvkzm88hg_It-EUzzE3siozOi7zMRt8qkZVPuYUaTJ_fv1-gYBTOkHwTd1y1l6eBwoVM0XC5NmShobLAlIgnU_qRd0sKy3h83Sy9Oc1uDmdt-S04EjUVp7OUaQZNZCpR8KLVhvqITm5EUM8IutVXYXHhEpmdeQ6hUtzx7jSITKpo_c8SF7mWyTr-9q4jgAddThmpke6nRm0j0H7mJQbsM8WeX39zryl_1jZuuhNaP5wYgP5aeV7L3p7G7AjbtnYKtSX0EgICJqK8WJVG1lg3ark9n9-_znZGB4fHpiD0dH-E3Ibn7R4xR2yDh4RnkLdtSifNX5OyeebHli_ABxnQvs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Sb2S3%2FZnIn2S4+core%E2%80%93shell+heterostructure+for+highly+efficient+photocatalytic+hydrogen+production+and+pollutant+degradation&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Xiao%2C+Yan&rft.au=Wang%2C+Hao&rft.au=Jiang%2C+Yinhua%2C+1971-&rft.au=Zhang%2C+Wenli&rft.date=2022-10-01&rft.issn=0021-9797&rft.volume=623+p.109-123&rft.spage=109&rft.epage=123&rft_id=info:doi/10.1016%2Fj.jcis.2022.04.137&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon