Hierarchical Sb2S3/ZnIn2S4 core–shell heterostructure for highly efficient photocatalytic hydrogen production and pollutant degradation
A novel ZnIn2S4 decorated Sb2S3 hierarchical 1D/2D core–shell heterostructure was successfully fabricated by a simple hydrothermal method. It possessed highly efficient photocatalytic activities of hydrogen evolution and pollutant degradation. This work will provide a novel dual-function core–shell...
Saved in:
Published in | Journal of colloid and interface science Vol. 623; pp. 109 - 123 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel ZnIn2S4 decorated Sb2S3 hierarchical 1D/2D core–shell heterostructure was successfully fabricated by a simple hydrothermal method. It possessed highly efficient photocatalytic activities of hydrogen evolution and pollutant degradation. This work will provide a novel dual-function core–shell heterostructure photocatalyst to solve environmental pollution and produce hydrogen energy.
[Display omitted]
In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn2S4 nanosheets uniformly grew onto Sb2S3 nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H2 generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H2 production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g−1·h−1) was about 12.24 times as large as that of pure ZnIn2S4 (137.63 μmol·g−1·h−1). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h−1) was 20.3 and 2.89 times larger than those of pure Sb2S3 and Znln2S4, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb2S3-based type I core–shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy. |
---|---|
AbstractList | A novel ZnIn2S4 decorated Sb2S3 hierarchical 1D/2D core–shell heterostructure was successfully fabricated by a simple hydrothermal method. It possessed highly efficient photocatalytic activities of hydrogen evolution and pollutant degradation. This work will provide a novel dual-function core–shell heterostructure photocatalyst to solve environmental pollution and produce hydrogen energy.
[Display omitted]
In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn2S4 nanosheets uniformly grew onto Sb2S3 nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H2 generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H2 production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g−1·h−1) was about 12.24 times as large as that of pure ZnIn2S4 (137.63 μmol·g−1·h−1). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h−1) was 20.3 and 2.89 times larger than those of pure Sb2S3 and Znln2S4, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb2S3-based type I core–shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy. In this work, a novel hierarchical 1D/2D core/shell Sb₂S₃-ZnIn₂S₄ (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn₂S₄ nanosheets uniformly grew onto Sb₂S₃ nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H₂ generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H₂ production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g⁻¹·h⁻¹) was about 12.24 times as large as that of pure ZnIn₂S₄ (137.63 μmol·g⁻¹·h⁻¹). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h⁻¹) was 20.3 and 2.89 times larger than those of pure Sb₂S₃ and Znln₂S₄, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb₂S₃-based type I core–shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy. In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn2S4 nanosheets uniformly grew onto Sb2S3 nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H2 generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H2 production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g-1·h-1) was about 12.24 times as large as that of pure ZnIn2S4 (137.63 μmol·g-1·h-1). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h-1) was 20.3 and 2.89 times larger than those of pure Sb2S3 and Znln2S4, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb2S3-based type I core-shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy.In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnIn2S4 nanosheets uniformly grew onto Sb2S3 nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H2 generation and Tetracycline Hydrochloride (TCH) photodegradation. The photocatalytic H2 production rate of optimal SB-ZIS-2 sample (1685.14 μmol·g-1·h-1) was about 12.24 times as large as that of pure ZnIn2S4 (137.63 μmol·g-1·h-1). The apparent quantum efficiency (AQE) at 420 nm was up to 3.8%. In addition, the highest rate constant for TCH removal (0.514 h-1) was 20.3 and 2.89 times larger than those of pure Sb2S3 and Znln2S4, respectively. The possible reaction routes of TCH and the photocatalytic reaction mechanism of SB-ZIS sample were also discussed in detail. This work will provide some useful information for the development of dual-functional Sb2S3-based type I core-shell heterostructure with an efficient photocatalytic activity for solving environmental pollution and producing clean hydrogen energy. |
Author | Xiao, Yan Liu, Zhanchao Wu, Xiangyang Jiang, Yinhua Zhang, Jianming Zhang, Wenli Deng, Wei Wang, Hao |
Author_xml | – sequence: 1 givenname: Yan surname: Xiao fullname: Xiao, Yan organization: Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China – sequence: 2 givenname: Hao surname: Wang fullname: Wang, Hao organization: School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China – sequence: 3 givenname: Yinhua surname: Jiang fullname: Jiang, Yinhua email: jyhua@ujs.edu.cn organization: School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China – sequence: 4 givenname: Wenli surname: Zhang fullname: Zhang, Wenli organization: School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China – sequence: 5 givenname: Jianming surname: Zhang fullname: Zhang, Jianming organization: School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China – sequence: 6 givenname: Xiangyang surname: Wu fullname: Wu, Xiangyang email: wuxy@ujs.edu.cn organization: Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China – sequence: 7 givenname: Zhanchao surname: Liu fullname: Liu, Zhanchao organization: School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China – sequence: 8 givenname: Wei surname: Deng fullname: Deng, Wei organization: Foshan (Southern China) Institute for New Materials, Foshan, Guangdong 528200, China |
BookMark | eNqNkb1uFDEURi0UJDYhL0DlkmYmtmf8MxINioBEikSx0KSxPJ7rHa8m48X2IG2Xlpo35EniyVJRRFQu7neurr9zjs7mMANC7yipKaHial_vrU81I4zVpK1pI1-hDSUdryQlzRnaEMJo1clOvkHnKe0JoZTzboN-3XiIJtrRWzPhbc-2zdX9fDuzbYttiPDn8XcaYZrwCBliSDkuNi8RsAsRj343TkcMznnrYc74MIYcrMlmOmZv8XgcYtjBjA8xDIXzYcZmHvAhTNOSTQEG2EUzmHXyFr12Zkpw-fe9QN8_f_p2fVPdff1ye_3xrrKNELmilopeDYRbZZXkQPrGGCbazknuiFMdNcJQrvreKQOOqU5aOXCgLQFhmqa5QO9Pe8tRPxZIWT_4ZMsXzQxhSZoJybkgRMn_iApOiWpaXqLsFLWlpBTB6UP0DyYeNSV6VaT3elWkV0WatLooKpD6B7I-P5eRo_HTy-iHEwqlqp_FoU6rAguDj2CzHoJ_CX8CzXCy5g |
CitedBy_id | crossref_primary_10_1016_j_surfin_2023_103200 crossref_primary_10_1039_D4TA08841G crossref_primary_10_1016_j_mssp_2023_108031 crossref_primary_10_1016_j_cej_2024_148818 crossref_primary_10_1016_j_jallcom_2024_175941 crossref_primary_10_3390_nano13162315 crossref_primary_10_1016_j_cej_2023_147082 crossref_primary_10_1016_j_jechem_2023_11_044 crossref_primary_10_1016_j_jssc_2024_125075 crossref_primary_10_1016_j_cej_2023_146592 crossref_primary_10_1016_j_ces_2023_118936 crossref_primary_10_1021_acsanm_4c04669 crossref_primary_10_3390_nano13101679 crossref_primary_10_1007_s11356_023_27113_y crossref_primary_10_1016_j_ijhydene_2023_07_050 crossref_primary_10_1016_j_jwpe_2024_106229 crossref_primary_10_1016_j_mssp_2024_108406 crossref_primary_10_1016_j_molstruc_2022_134409 crossref_primary_10_1016_j_jece_2023_111695 crossref_primary_10_1016_j_seppur_2024_130814 crossref_primary_10_1039_D4RA01382D crossref_primary_10_1016_j_jece_2023_110720 crossref_primary_10_1016_j_cej_2024_156035 crossref_primary_10_1016_j_bios_2023_115926 crossref_primary_10_1016_j_jcis_2024_04_071 crossref_primary_10_1016_j_jwpe_2023_104585 crossref_primary_10_1016_j_mtcomm_2023_107997 crossref_primary_10_1016_j_jmst_2022_12_060 crossref_primary_10_1016_j_jcis_2023_12_087 crossref_primary_10_3390_molecules28010282 crossref_primary_10_1016_j_mtcomm_2023_106741 crossref_primary_10_1016_S1872_2067_24_60072_0 crossref_primary_10_1016_j_colsurfa_2024_135604 crossref_primary_10_1016_j_jcis_2024_07_187 crossref_primary_10_1016_j_cej_2023_144240 crossref_primary_10_1016_j_envres_2024_119504 crossref_primary_10_1016_j_jenvman_2024_122403 crossref_primary_10_1016_j_seppur_2025_132271 crossref_primary_10_1016_j_ijhydene_2022_12_207 crossref_primary_10_1016_j_jcis_2024_11_052 crossref_primary_10_1016_j_inoche_2025_114134 crossref_primary_10_1039_D4QI00942H crossref_primary_10_1016_j_jtice_2024_105394 crossref_primary_10_1016_j_ijbiomac_2024_139385 crossref_primary_10_1007_s11705_025_2534_5 crossref_primary_10_1016_j_jclepro_2024_144393 crossref_primary_10_1016_j_mtener_2024_101563 crossref_primary_10_3390_catal13050850 crossref_primary_10_1016_j_cej_2024_152586 crossref_primary_10_1016_j_jhazmat_2023_132820 crossref_primary_10_1016_j_seppur_2023_125059 crossref_primary_10_1016_j_jclepro_2022_135742 crossref_primary_10_1021_acs_inorgchem_4c03502 crossref_primary_10_1039_D2SE01142E crossref_primary_10_1002_asia_202300089 crossref_primary_10_1007_s11356_023_30052_3 crossref_primary_10_1016_j_snb_2024_135744 crossref_primary_10_3390_catal13040731 crossref_primary_10_1016_j_jcis_2024_05_210 crossref_primary_10_1021_acs_energyfuels_2c03588 crossref_primary_10_1016_j_colsurfa_2023_131961 crossref_primary_10_1016_j_jenvman_2023_119424 crossref_primary_10_1021_acsami_4c16630 crossref_primary_10_1016_j_apsusc_2024_161256 crossref_primary_10_1016_j_ijhydene_2022_11_019 crossref_primary_10_1016_j_rser_2023_113348 crossref_primary_10_1016_j_mssp_2024_108384 crossref_primary_10_1016_j_molstruc_2024_139914 crossref_primary_10_1016_j_jcis_2023_10_035 crossref_primary_10_1016_j_jallcom_2023_173235 crossref_primary_10_3390_nano13050830 crossref_primary_10_1016_j_colsurfa_2024_135468 crossref_primary_10_1016_j_cclet_2025_110922 crossref_primary_10_1016_j_jallcom_2024_174503 crossref_primary_10_1016_j_seppur_2023_123243 crossref_primary_10_1016_j_solidstatesciences_2023_107317 crossref_primary_10_1021_acs_langmuir_3c01680 crossref_primary_10_1016_j_ijhydene_2023_01_059 crossref_primary_10_1039_D3RA08905C crossref_primary_10_1016_j_fuel_2024_131159 crossref_primary_10_1016_j_fuel_2024_134185 crossref_primary_10_1016_j_seppur_2024_126610 crossref_primary_10_1016_j_colsurfa_2024_135705 crossref_primary_10_1021_acs_inorgchem_4c00849 crossref_primary_10_1039_D2TA09255G crossref_primary_10_1016_j_seppur_2024_127826 crossref_primary_10_1016_j_jcis_2024_05_093 crossref_primary_10_1016_j_optmat_2024_115905 crossref_primary_10_1007_s12598_023_02419_5 |
Cites_doi | 10.1016/j.biortech.2019.121348 10.1016/j.cej.2020.128168 10.1039/C4CS00408F 10.1016/j.seppur.2021.119152 10.1016/j.apcatb.2018.04.038 10.1021/ic101961z 10.1016/j.ijhydene.2020.08.008 10.1021/acsami.0c13060 10.1016/j.watres.2018.02.061 10.1016/j.apcatb.2018.04.037 10.1039/C6TA06373J 10.1002/ente.201800886 10.1002/adfm.201904256 10.1016/j.ceramint.2017.05.175 10.1007/s10853-020-05004-8 10.1002/inf2.12040 10.1016/j.jcis.2021.07.150 10.1016/j.jallcom.2017.11.063 10.1016/j.apcatb.2018.07.049 10.1021/acs.chemrev.1c00197 10.1016/j.seppur.2019.116302 10.1016/j.apsusc.2020.148618 10.1021/jp806496d 10.1039/C5RA09007E 10.1016/j.apcatb.2016.09.023 10.1039/D0NR03196H 10.1021/jp400010z 10.1007/s10853-019-03401-2 10.1039/C8CY02611D 10.1007/s40820-019-0345-2 10.1016/j.jallcom.2017.12.145 10.1021/acsami.6b00429 10.1016/j.ceramint.2019.05.103 10.1021/acssuschemeng.9b03773 10.1016/j.jece.2018.102822 10.1016/j.scitotenv.2019.03.086 10.1016/j.watres.2019.05.025 10.1016/j.cej.2020.126020 10.1016/j.apcatb.2018.03.017 10.1007/s12274-017-1473-y 10.1016/S1872-2067(18)63137-7 10.1016/j.apsusc.2020.146161 10.1061/(ASCE)EE.1943-7870.0001532 10.1016/j.jcis.2021.10.179 10.1002/adfm.201807013 10.1016/j.jallcom.2020.155772 10.1016/j.ijhydene.2020.03.104 10.1007/s10562-018-2562-6 10.1021/acsami.1c02722 10.1016/j.apsusc.2018.01.090 10.1016/j.jcis.2021.03.134 10.1016/j.apcatb.2015.10.035 10.1002/adma.201400288 10.1021/acsami.9b03965 10.1039/D1CS00323B 10.1016/j.ceramint.2018.04.090 10.1016/j.cej.2019.03.013 10.1021/acs.inorgchem.0c03233 10.1021/jz2013193 10.1021/acs.inorgchem.9b03445 10.1016/j.apsusc.2019.07.175 10.1021/ie2025882 10.1016/j.jcis.2020.07.121 10.1016/j.apcatb.2019.118382 10.1039/c3cp51722e 10.1016/j.jhazmat.2020.122205 10.1016/j.ceramint.2017.12.244 10.1016/j.apsusc.2019.05.163 10.1021/acscatal.9b00313 10.1016/j.apcatb.2019.118432 10.1016/j.jcis.2021.05.022 10.1016/j.apcatb.2020.118879 10.1039/C5CC01087J 10.1021/acssuschemeng.8b02710 10.1021/acsami.7b14412 10.1016/j.cej.2018.09.098 10.1016/j.jallcom.2014.11.052 10.1016/j.ijhydene.2020.03.139 10.1016/j.apcatb.2019.05.032 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2022.04.137 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 123 |
ExternalDocumentID | 10_1016_j_jcis_2022_04_137 S0021979722007068 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-1c16b8d05c8c875e0b3aa2649f75f0f891a6a158bbf8aef2897c7d5e140e6a333 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 14:43:21 EDT 2025 Fri Jul 11 01:36:48 EDT 2025 Tue Jul 01 04:18:48 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Fri Feb 23 02:39:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ZnIn2S4 nanosheet Sb2S3 nanorod Dual-functional hierarchical 1D/2D heterostructure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-1c16b8d05c8c875e0b3aa2649f75f0f891a6a158bbf8aef2897c7d5e140e6a333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2665108345 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2675560087 proquest_miscellaneous_2665108345 crossref_primary_10_1016_j_jcis_2022_04_137 crossref_citationtrail_10_1016_j_jcis_2022_04_137 elsevier_sciencedirect_doi_10_1016_j_jcis_2022_04_137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Xiao, Peng, Zhang, Jiang, Jing, Yang, Zhang, Ni (b0115) 2019; 54 Zhao, Zhang, Shan, Zhu, Gao, Liu, Liu, You (b0310) 2020; 45 Xu, Liu, Xie, Jing, Xu, Shen, Li, Xie (b0035) 2019; 357 Liu, Tang, Sun, Colmenare, Xu (b0170) 2015; 44 Wang, Chai, Ma, Chen, Zheng, Huang (b0175) 2017; 10 composite with three-dimensional spherical structure, RSC Adv., 5 (2015) 53019–53024. Mao, Zou, Sun, Zeng, Wang, Ma, Guo, Cheng, Wang, Shi (b0355) 2021; 581 Yang, Ding, Chen, Feng, Hao, Zhu (b0235) 2018; 234 Cl Iakovides, Michael-Kordatou, Moreira, Ribeiro, Fernandes, Pereira, Nunes, Manaia, Silva, Fatta-Kassinos (b0060) 2019; 159 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting, ACS Appl. Mater. Inter., (8) 2016 9684–9691. Liu, Qi, Lu, Lin, An, Liang, Cui (b0135) 2016; 183 Sun, Chen, Zhang, Wei, Ma, Du (b0265) 2012; 51 Xiao, Zhang, Xing, Feng, Jiang, Gao, Xu, Zhang, Ni, Liu (b0290) 2020; 45 Yang, Sha, Wang, Xia, Liu, Cheng, Yang, Li (b0270) 2020; 45 Li, Li, Xu (b0075) 2021; 3 Gao, Sun, Ma, Li, Jiang, Shen, Wang, Huo (b0095) 2021; 60 Shan, Ge, Zhao (b0370) 2019; 7 Wang, Shen, Xia, Wang, Zheng, Xi, Zhan (b0100) 2019; 29 Wang, Zhou, Zhang, Song, Zhang, Luo, Yang, Bai, Wang, Liu (b0250) 2020; 12 Zhu, Liu, Chen, Yin, Ge, Li (b0045) 2017; 9 Ge, Jiang, Zhang, Du (b0360) 2018; 148 Hu, Che, Hu, Jiang, Ruan, Zhang, Liu, Dong (b0030) 2019; 145 Reduction cocatalyst, Adv. Funct. Mater., 29 (2019) 1904256. Zhang, Chen, Li, Xu, Li, He, Lu (b0285) 2018; 232 Sharma, Mahala, Basu (b0065) 2020; 59 Yang, Xu, Wong, Yang, Lee (b0400) 2013; 15 Li, Chen, Li, Xu, Li, He, Lu (b0280) 2020; 843 Chang, Yang, Gao, Lu (b0125) 2018; 738 Zhou, Yu, Jaroniec (b0150) 2014; 26 Liu, Ding, Shi, Liu, Wu, Jiang, Zhou, Liu, Hu (b0120) 2018; 234 Y.T. Xue, Z.Y. Chen, Z.S, Wu, F. Tian, B. Yu, Hierarchical construction of a new Z-scheme Bi/BiVO Lai, An, Yi, Huo, Qin, Liu, Li, Zhang, Liu, Li, Fu, Zhou, Wang, An, Shi (b0110) 2021; 600 Peng, Jiang, Xiao, Xu, Zhang, Ni (b0325) 2019; 487 Qi, Conte, Anpo, Tang, Xu (b0025) 2021; 121 Hao, Tang, Shi, Chen, Guo (b0225) 2021; 409 Xiao, Peng, Zhang, Jiang, Ni (b0245) 2019; 494 Xiao, Zhao, Zou, Chen, Tian, Xu, Tang, Liu, Lin, Yang (b0080) 2020; 268 Li, Qi, Tang, Xu (b0070) 2021; 50 Peng, Jiang, Wang, Zhang, Xu, Xiao, Jing, Zhang, Liu, Ni (b0295) 2019; 45 Chen, Tang, Feng, Zhou, Zeng, Lu, Yu, Ren, Peng, Liu (b0390) 2019; 670 Zhang, Jin (b0330) 2019; 9 Dai, Wang, Zhou, Zhao, Han, Wang (b0335) 2020; 517 Xiao, Jiang, Liu, Zhang, Zhu, Gao, Xu, Zhang, Liu, Ni (b0320) 2020; 55 Wang, Jin, Huang, She, Wang (b0105) 2019; 7 Han, Liu, Zhang, Xu, Tang (b0160) 2017; 202 Zhang, Hu, Ding, Lin (b0190) 2015; 625 Jiao, Li, Wang, He, Li (b0345) 2021; 595 Li, Ding, Wu, Zhao, Li, Zheng, Huang, Tao (b0090) 2019; 11 Xu, Yu, Zhang, Zhang, Liu (b0145) 2015; 51 Xu, Zhang, Cheng, Yu (b0275) 2018; 6 Xu, Zhao, An, Wang, Zhang, Li, Wu, Wu (b0040) 2020; 12 J. Zhang, Z.H., Liu, Z.F. Liu, Novel WO Dadigala, Bandi, Gangapuram, Dasari, Belay, Guttena (b0180) 2019; 7 O Peng, Wang, Shi, Jiang, Jin, Chen (b0350) 2022; 613 Son, Do, Kang (b0340) 2017; 43 Huang, Wang, Yang, Liu, Han, Li (b0410) 2013; 117 S Xiong, Dong, Zhang, Zhou, Rittmann (b0050) 2018; 136 Guan, Ma, Sheng-Wei, Chen, Huang (b0130) 2011; 50 Zhang, Yang, Zhou, Bao, Xu, Chaker, Ma (b0010) 2020; 270 Zhang, Li, Cao, Han (b0055) 2019; 285 Li, Yu, Dong, Liu, Wu, Che, Chen (b0385) 2018; 238 Liu, Liu, Li, Li, Li, Gong, Niu, Zhao, Sun (b0230) 2018; 39 Li, Wang, Jin, Zhang, Gao (b0195) 2018; 44 Zhang, Zhang, Jiang, Xiao, Zhang, Xu, Yang, Liu, Zhang (b0140) 2021; 542 Tang, Han, Han, Xu (b0165) 2017; 5 Z.Q. Zheng, T. Wang, F. Han, Q. Y, B.X. Li, Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light, J Colloid Inter. Sci., 606 (2022) 47–56. Yuan, Qiu, Yue, Shen, Li, Zhu, Liu, Lia (b0255) 2020; 401 F.Y. Xu, K.M., B.C. Zhu, H.B. Liu, J.S. Xu, J.G. Yu, Graphdiyne: A New Photocatalytic CO Cheng, Chen, Li, Xu, Li, He, Lu (b0315) 2020; 391 Shao, Liu, Liu, Zeng, Liang, Liang, Cheng, Zhang, Liu, Gong (b0005) 2019; 368 Dashairya, Sharma, Basu, Saha (b0220) 2018; 735 Zhu, Ma, Yu, Lu, Liu, Huo, Xu, Yan (b0020) 2020; 268 Sun, Li, Li, Chen, Chen, He, Fu (b0240) 2008; 112 Xu, Liu, Li, Chen, Yang, Huang, Pan (b0015) 2021; 13 Q. Jiang, X.Z. Yuan, H. Wang, X.H. Chen, S.N. Gu, Y.L., Z.B. Wu, G.M. Zeng, A facile hydrothermal method to synthesize Sb Li, Wang (b0155) 2020; 2 Sb Xu, Zhao (b0185) 2018; 499–504 Ye, Xu, Chen, Yang, Zhu, Weng (b0205) 2018; 440 CdS heterojunction for enhanced visible-light photocatalytic degradation of tetracycline hydrochloride. Sep. Purif. Technol., 275 (2021) 119152. Yuan, Wang, Wang, Zeng, Chen, Wu, Jiang, Xiong, Zhang, Wang (b0210) 2018; 8 Humayun, Ullah, Cao, Pi, Yuan, Ali, Tahir, Yue, Khan, Zheng, Fu, Luo (b0365) 2020; 12 Wang, Li, Li, Zhang (b0085) 2020; 263 Heterojunction Photocatalyst Based on WO Weng, Qi, Han, Tang, Xu (b0380) 2019; 9 Ayappan, Jayaraman, Palanivel, Pandikumar, Mani (b0215) 2020; 236 Jiang, Peng, Zhang, Li, Zhan, Zhang, Liu, Wang (b0260) 2018; 44 Thibert, Frame, Busby, Holmes, Osterloh, Larsen (b0405) 2011; 2 Liu (10.1016/j.jcis.2022.04.137_b0120) 2018; 234 Zhang (10.1016/j.jcis.2022.04.137_b0330) 2019; 9 Zhu (10.1016/j.jcis.2022.04.137_b0020) 2020; 268 Shao (10.1016/j.jcis.2022.04.137_b0005) 2019; 368 Wang (10.1016/j.jcis.2022.04.137_b0100) 2019; 29 Xiao (10.1016/j.jcis.2022.04.137_b0245) 2019; 494 Son (10.1016/j.jcis.2022.04.137_b0340) 2017; 43 Yang (10.1016/j.jcis.2022.04.137_b0270) 2020; 45 Jiao (10.1016/j.jcis.2022.04.137_b0345) 2021; 595 Xu (10.1016/j.jcis.2022.04.137_b0040) 2020; 12 Lai (10.1016/j.jcis.2022.04.137_b0110) 2021; 600 Zhang (10.1016/j.jcis.2022.04.137_b0140) 2021; 542 Gao (10.1016/j.jcis.2022.04.137_b0095) 2021; 60 Peng (10.1016/j.jcis.2022.04.137_b0325) 2019; 487 Weng (10.1016/j.jcis.2022.04.137_b0380) 2019; 9 Xiao (10.1016/j.jcis.2022.04.137_b0290) 2020; 45 10.1016/j.jcis.2022.04.137_b0200 Yang (10.1016/j.jcis.2022.04.137_b0235) 2018; 234 Li (10.1016/j.jcis.2022.04.137_b0280) 2020; 843 Xiao (10.1016/j.jcis.2022.04.137_b0115) 2019; 54 Liu (10.1016/j.jcis.2022.04.137_b0135) 2016; 183 Li (10.1016/j.jcis.2022.04.137_b0195) 2018; 44 Iakovides (10.1016/j.jcis.2022.04.137_b0060) 2019; 159 Xiao (10.1016/j.jcis.2022.04.137_b0320) 2020; 55 Dadigala (10.1016/j.jcis.2022.04.137_b0180) 2019; 7 Xu (10.1016/j.jcis.2022.04.137_b0275) 2018; 6 Ye (10.1016/j.jcis.2022.04.137_b0205) 2018; 440 Liu (10.1016/j.jcis.2022.04.137_b0230) 2018; 39 Ayappan (10.1016/j.jcis.2022.04.137_b0215) 2020; 236 Huang (10.1016/j.jcis.2022.04.137_b0410) 2013; 117 Li (10.1016/j.jcis.2022.04.137_b0090) 2019; 11 Sun (10.1016/j.jcis.2022.04.137_b0265) 2012; 51 Humayun (10.1016/j.jcis.2022.04.137_b0365) 2020; 12 Zhao (10.1016/j.jcis.2022.04.137_b0310) 2020; 45 10.1016/j.jcis.2022.04.137_b0375 Zhang (10.1016/j.jcis.2022.04.137_b0055) 2019; 285 Xiao (10.1016/j.jcis.2022.04.137_b0080) 2020; 268 Zhu (10.1016/j.jcis.2022.04.137_b0045) 2017; 9 Yuan (10.1016/j.jcis.2022.04.137_b0210) 2018; 8 Dai (10.1016/j.jcis.2022.04.137_b0335) 2020; 517 Xu (10.1016/j.jcis.2022.04.137_b0015) 2021; 13 Jiang (10.1016/j.jcis.2022.04.137_b0260) 2018; 44 Sharma (10.1016/j.jcis.2022.04.137_b0065) 2020; 59 Yuan (10.1016/j.jcis.2022.04.137_b0255) 2020; 401 Zhang (10.1016/j.jcis.2022.04.137_b0190) 2015; 625 Zhang (10.1016/j.jcis.2022.04.137_b0285) 2018; 232 Hao (10.1016/j.jcis.2022.04.137_b0225) 2021; 409 Xu (10.1016/j.jcis.2022.04.137_b0185) 2018; 499–504 Shan (10.1016/j.jcis.2022.04.137_b0370) 2019; 7 Thibert (10.1016/j.jcis.2022.04.137_b0405) 2011; 2 Sun (10.1016/j.jcis.2022.04.137_b0240) 2008; 112 Xu (10.1016/j.jcis.2022.04.137_b0035) 2019; 357 10.1016/j.jcis.2022.04.137_b0305 Qi (10.1016/j.jcis.2022.04.137_b0025) 2021; 121 Cheng (10.1016/j.jcis.2022.04.137_b0315) 2020; 391 10.1016/j.jcis.2022.04.137_b0300 Zhou (10.1016/j.jcis.2022.04.137_b0150) 2014; 26 Li (10.1016/j.jcis.2022.04.137_b0070) 2021; 50 Mao (10.1016/j.jcis.2022.04.137_b0355) 2021; 581 Li (10.1016/j.jcis.2022.04.137_b0155) 2020; 2 Wang (10.1016/j.jcis.2022.04.137_b0105) 2019; 7 Xu (10.1016/j.jcis.2022.04.137_b0145) 2015; 51 Peng (10.1016/j.jcis.2022.04.137_b0350) 2022; 613 Liu (10.1016/j.jcis.2022.04.137_b0170) 2015; 44 Wang (10.1016/j.jcis.2022.04.137_b0250) 2020; 12 Chen (10.1016/j.jcis.2022.04.137_b0390) 2019; 670 Guan (10.1016/j.jcis.2022.04.137_b0130) 2011; 50 Peng (10.1016/j.jcis.2022.04.137_b0295) 2019; 45 Zhang (10.1016/j.jcis.2022.04.137_b0010) 2020; 270 Dashairya (10.1016/j.jcis.2022.04.137_b0220) 2018; 735 Ge (10.1016/j.jcis.2022.04.137_b0360) 2018; 148 Li (10.1016/j.jcis.2022.04.137_b0385) 2018; 238 Wang (10.1016/j.jcis.2022.04.137_b0085) 2020; 263 Tang (10.1016/j.jcis.2022.04.137_b0165) 2017; 5 Yang (10.1016/j.jcis.2022.04.137_b0400) 2013; 15 Hu (10.1016/j.jcis.2022.04.137_b0030) 2019; 145 Li (10.1016/j.jcis.2022.04.137_b0075) 2021; 3 Chang (10.1016/j.jcis.2022.04.137_b0125) 2018; 738 Xiong (10.1016/j.jcis.2022.04.137_b0050) 2018; 136 Han (10.1016/j.jcis.2022.04.137_b0160) 2017; 202 10.1016/j.jcis.2022.04.137_b0395 Wang (10.1016/j.jcis.2022.04.137_b0175) 2017; 10 |
References_xml | – volume: 494 start-page: 519 year: 2019 end-page: 531 ident: b0245 article-title: Self-assembly of Ag publication-title: Appl. Surf. Sci. – volume: 60 start-page: 1755 year: 2021 end-page: 1766 ident: b0095 article-title: Constructed Z-Scheme g-C publication-title: Inorg. Chem. – volume: 670 start-page: 921 year: 2019 end-page: 931 ident: b0390 article-title: Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation publication-title: Sci. Total. Environ. – reference: -CdS heterojunction for enhanced visible-light photocatalytic degradation of tetracycline hydrochloride. Sep. Purif. Technol., 275 (2021) 119152. – reference: Y.T. Xue, Z.Y. Chen, Z.S, Wu, F. Tian, B. Yu, Hierarchical construction of a new Z-scheme Bi/BiVO – volume: 15 start-page: 12688 year: 2013 ident: b0400 article-title: Synthesis of In publication-title: Phys. Chem. Chem. Phys. – reference: Reduction cocatalyst, Adv. Funct. Mater., 29 (2019) 1904256. – volume: 2 start-page: 3 year: 2020 end-page: 32 ident: b0155 article-title: One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion publication-title: Infomat. – volume: 542 year: 2021 ident: b0140 article-title: In-situ constructing of one-dimensional SnIn publication-title: Appl. Surf. Sci. – volume: 45 start-page: 30341 year: 2020 end-page: 30356 ident: b0290 article-title: Eco-friendly synthesis of core/shell ZnIn publication-title: Int. J. Hydrogen Energ. – volume: 7 start-page: 15660 year: 2019 end-page: 15670 ident: b0105 article-title: Integration of Copper (II) -Porphyrin Zirconium Metal-Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO publication-title: ACS Sustain. Chem. Eng. – volume: 50 start-page: 800 year: 2011 end-page: 805 ident: b0130 article-title: From Hollow Olive-Shaped BiVO publication-title: Inorg. Chem. – volume: 600 start-page: 161 year: 2021 end-page: 173 ident: b0110 article-title: Enhanced visible-light-driven photocatalytic activity of bismuth oxide via the decoration of titanium carbide quantum dots publication-title: J. Colloid. Interf. Sci. – volume: 735 start-page: 234 year: 2018 end-page: 245 ident: b0220 article-title: Enhanced dye degradation using hydrothermally synthesized nanostructured Sb publication-title: J. Alloy. Compd. – volume: 183 start-page: 133 year: 2016 end-page: 141 ident: b0135 article-title: A stable Ag publication-title: Appl. Catal. B-Environ. – volume: 401 year: 2020 ident: b0255 article-title: Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn publication-title: Chem. Eng. J. – volume: 10 start-page: 2699 year: 2017 end-page: 2711 ident: b0175 article-title: Multidimensional CdS nanowire/CdIn publication-title: Nano. Res. – volume: 738 start-page: 138 year: 2018 end-page: 144 ident: b0125 article-title: Core/shell p-BiOI/n-b-Bi publication-title: J. Alloy. Compd. – volume: 268 year: 2020 ident: b0080 article-title: In situ fabrication of 1D CdS nanorod/2D Ti publication-title: Appl. Catal. B-Environ. – volume: 43 start-page: 11250 year: 2017 end-page: 11259 ident: b0340 article-title: Characterization of core@shell-structured ZnO@Sb publication-title: Ceram. Int. – volume: 8 start-page: 545 year: 2018 end-page: 1554 ident: b0210 article-title: Near-infrared-driven Cr (VI) reduction in aqueous solution based on MoS publication-title: Sci. Technol. – volume: 51 start-page: 2897 year: 2012 end-page: 2903 ident: b0265 article-title: Efficient Degradation of Azo Dyes over Sb publication-title: Ind. Eng. Chem. Res. – volume: 117 start-page: 11584 year: 2013 end-page: 11591 ident: b0410 article-title: Dual Cocatalysts Loaded Type I CdS/ZnS Core/Shell Nanocrystals as Effective and Stable Photocatalysts for H publication-title: J. Phys. Chem. C – volume: 44 start-page: 5053 year: 2015 end-page: 5075 ident: b0170 article-title: One-dimension-based spatially ordered architectures for solar energy conversion publication-title: Chem. Soc. Rev. – volume: 11 start-page: 22297 year: 2019 end-page: 22306 ident: b0090 article-title: Efficient, Full Spectrum-Driven H publication-title: ACS Appl. Mater. Inter. – reference: composite with three-dimensional spherical structure, RSC Adv., 5 (2015) 53019–53024. – volume: 581 start-page: 1 year: 2021 end-page: 10 ident: b0355 article-title: Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production publication-title: J. Colloid Inter. Sci. – volume: 159 start-page: 333 year: 2019 end-page: 347 ident: b0060 article-title: Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity publication-title: Water Res. – volume: 368 start-page: 730 year: 2019 end-page: 745 ident: b0005 article-title: A novel double Z-scheme photocatalyst Ag publication-title: Chem. Eng. J. – reference: of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting, ACS Appl. Mater. Inter., (8) 2016 9684–9691. – volume: 3 year: 2021 ident: b0075 article-title: Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis publication-title: Energy Chem. – reference: O – volume: 202 start-page: 298 year: 2017 end-page: 304 ident: b0160 article-title: One-dimensional CdS@MoS publication-title: Appl. Catal. B-Environ. – volume: 55 start-page: 14211 year: 2020 end-page: 14228 ident: b0320 article-title: Construction of the rapid spatial charge migration core/shell heterostructure by ZnIn publication-title: J. Mater. Sci. – volume: 13 start-page: 20114 year: 2021 end-page: 20124 ident: b0015 article-title: Coordination of π-Delocalization in g-C publication-title: ACS Appl. Mater. Inter. – volume: 2 start-page: 2688 year: 2011 end-page: 02694 ident: b0405 article-title: Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe/CdS Nanocrystals publication-title: J. Phys. Chem. Lett. – volume: 357 start-page: 487 year: 2019 end-page: 497 ident: b0035 article-title: Construction of novel CNT/LaVO publication-title: Chem. Eng. J. – volume: 45 start-page: 13975 year: 2020 end-page: 13984 ident: b0310 article-title: ZnIn publication-title: Int. J. Hydrogen Energ. – reference: F.Y. Xu, K.M., B.C. Zhu, H.B. Liu, J.S. Xu, J.G. Yu, Graphdiyne: A New Photocatalytic CO – volume: 268 year: 2020 ident: b0020 article-title: Synthesis Ce-doped biomass carbon-based g-C publication-title: Appl. Catal. B-Environ. – volume: 517 year: 2020 ident: b0335 article-title: ZnIn publication-title: Appl. Surf. Sci. – volume: 29 start-page: 1807013 year: 2019 ident: b0100 article-title: Atomic insights for optimum and excess doping in photocatalysis: a case study of few-layer Cu-ZnIn publication-title: Adv. Funct. Mater. – volume: 625 start-page: 90 year: 2015 end-page: 94 ident: b0190 article-title: Synthesis of 1D Sb publication-title: J Alloy. Compd. – volume: 595 start-page: 69 year: 2021 end-page: 77 ident: b0345 article-title: Novel B-N-Co surface bonding states constructed on hollow tubular boron doped g-C publication-title: J. Colloid Inter. Sci. – volume: 234 start-page: 260 year: 2018 end-page: 267 ident: b0235 article-title: Construction of urchin-like ZnIn publication-title: Appl. Catal. B-Environ. – volume: 51 start-page: 7950 year: 2015 end-page: 7953 ident: b0145 article-title: Cubic anatase TiO publication-title: Chem. Commun. – reference: Q. Jiang, X.Z. Yuan, H. Wang, X.H. Chen, S.N. Gu, Y.L., Z.B. Wu, G.M. Zeng, A facile hydrothermal method to synthesize Sb – volume: 7 year: 2019 ident: b0180 article-title: Fabrication of novel 1D/2D V publication-title: J. Environ. Chem. Eng. – volume: 270 year: 2020 ident: b0010 article-title: Broadband photocatalysts enabled by 0D/2D heterojunctions of near-infrared quantum dots/graphitic carbon nitride nanosheets publication-title: Appl. Catal. B-Environ. – volume: 50 start-page: 7539 year: 2021 end-page: 7586 ident: b0070 article-title: Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis publication-title: Chem. Soc. Rev. – volume: 391 year: 2020 ident: b0315 article-title: ZnIn publication-title: J. Hazard. Mater. – volume: 285 year: 2019 ident: b0055 article-title: Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures publication-title: Bioresource Technol. – volume: 409 year: 2021 ident: b0225 article-title: Facile solvothermal synthesis of a Z-Scheme 0D/3D CeO publication-title: Chem. Eng. J. – volume: 232 start-page: 164 year: 2018 end-page: 174 ident: b0285 article-title: Preparation of ZnIn publication-title: Appl. Catal. B-Environ. – volume: 487 start-page: 1084 year: 2019 end-page: 1095 ident: b0325 article-title: CdIn publication-title: Appl. Surf. Sci. – reference: J. Zhang, Z.H., Liu, Z.F. Liu, Novel WO – volume: 121 start-page: 13051 year: 2021 end-page: 13085 ident: b0025 article-title: Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts publication-title: Chem. Rev. – volume: 236 year: 2020 ident: b0215 article-title: Facile preparation of novel Sb publication-title: Sep. Purif. Technol. – reference: /Sb – volume: 54 start-page: 9573 year: 2019 end-page: 9590 ident: b0115 article-title: Z-scheme CdIn publication-title: J. Mater. Sci. – reference: Heterojunction Photocatalyst Based on WO – volume: 44 start-page: 6115 year: 2018 end-page: 6126 ident: b0260 article-title: Facile in-situ Solvothermal Method to synthesize double shell ZnIn publication-title: Ceram. Int. – reference: Z.Q. Zheng, T. Wang, F. Han, Q. Y, B.X. Li, Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light, J Colloid Inter. Sci., 606 (2022) 47–56. – volume: 12 start-page: 48526 year: 2020 end-page: 48532 ident: b0040 article-title: Alkali Halide Boost of Carbon Nitride for Photocatalytic H publication-title: ACS Appl. Mater. Inter. – reference: S – volume: 112 start-page: 18076 year: 2008 end-page: 18081 ident: b0240 article-title: New Photocatalyst, Sb publication-title: J. Phys. Chem. C – volume: 843 year: 2020 ident: b0280 article-title: Hollow SnO publication-title: J. Alloy. Compd. – volume: 9 start-page: 38832 year: 2017 end-page: 38841 ident: b0045 article-title: Kun Wang, Boosting the Visible-Light Photoactivity of BiOCl/BiVO publication-title: ACS Appl. Mater. Inter. – volume: 12 start-page: 13791 year: 2020 end-page: 13800 ident: b0250 article-title: Facile In Situ Formation of Ternary 3D ZnIn publication-title: Nanoscale – reference: Cl – volume: 148 start-page: 3741 year: 2018 end-page: 3749 ident: b0360 article-title: Embedding Noble-Metal-Free Ni publication-title: Catal. Lett. – volume: 9 start-page: 1944 year: 2019 end-page: 1960 ident: b0330 article-title: Accelerated charge transfer via a nickel tungstate modulated cadmium sulfide p-n heterojunction for photocatalytic hydrogen evolution publication-title: Catal. Sci. Technol. – volume: 12 year: 2020 ident: b0365 article-title: Experimental and DFT Studies of Au Deposition Over WO publication-title: Nano-Micro Lett. – volume: 45 start-page: 15942 year: 2019 end-page: 15953 ident: b0295 article-title: Novel CdIn publication-title: Ceram. Int. – volume: 7 start-page: 1800886 year: 2019 ident: b0370 article-title: Facile and Scalable Fabrication of Porous g-C publication-title: Energy Technol. – volume: 263 year: 2020 ident: b0085 article-title: Boosting interfacial charge separation of Ba publication-title: Appl. Catal. B-Environ. – volume: 5 start-page: 2387 year: 2017 end-page: 2410 ident: b0165 article-title: One dimensional CdS based materials for artificial photoredox reactions publication-title: J. Mater. Chem. A – volume: 26 start-page: 4920 year: 2014 end-page: 4935 ident: b0150 article-title: All-solid-state Z-scheme photocatalytic systems publication-title: Adv. Mater. – volume: 44 start-page: 12825 year: 2018 end-page: 12830 ident: b0195 article-title: Construction of TiO publication-title: Ceram. Int. – volume: 9 start-page: 4642 year: 2019 end-page: 4687 ident: b0380 article-title: Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle Current Development, and Future Perspective publication-title: ACS Catal. – volume: 499–504 year: 2018 ident: b0185 article-title: Facile Synthesis of 1D/2D Core-Shell Structured Sb publication-title: Electron. Mater. Lett. – volume: 39 start-page: 1901 year: 2018 end-page: 1909 ident: b0230 article-title: ZnIn publication-title: Chinese. J. Catal. – volume: 613 start-page: 194 year: 2022 end-page: 206 ident: b0350 article-title: Fabrication of novel Cu publication-title: J. Colloid Inter. Sci. – volume: 440 start-page: 294 year: 2018 end-page: 299 ident: b0205 article-title: Enhanced photovoltaic performance of Sb publication-title: Appl. Surf. Sci. – volume: 234 start-page: 109 year: 2018 end-page: 116 ident: b0120 article-title: Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H publication-title: Appl. Catal. B-Environ. – volume: 136 start-page: 75 year: 2018 end-page: 83 ident: b0050 article-title: Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor publication-title: Water Res. – volume: 6 start-page: 12291 year: 2018 end-page: 12298 ident: b0275 article-title: Direct Z-Scheme TiO publication-title: ACS Sustain. Chem. Eng. – volume: 238 start-page: 284 year: 2018 end-page: 293 ident: b0385 article-title: Z scheme mesoporous photocatalyst constructed by modification of Sn publication-title: Appl. Catal. B-Environ. – volume: 145 start-page: 04019031 year: 2019 ident: b0030 article-title: Construction of mesoporous NCQDs-BiOCl composites for photocatalytic-degrading organic pollutants in water under visible and near-infrared light publication-title: J. Environ. Eng. – volume: 59 start-page: 4377 year: 2020 end-page: 4388 ident: b0065 article-title: 2D Thin Sheet Heterostructures of MoS publication-title: Inorg. Chem. – volume: 45 start-page: 14334 year: 2020 end-page: 14346 ident: b0270 article-title: Boosted photogenerated carriers separation in Zscheme Cu publication-title: Int. J. Hydrogen Energ. – volume: 285 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0055 article-title: Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2019.121348 – volume: 409 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0225 article-title: Facile solvothermal synthesis of a Z-Scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128168 – volume: 44 start-page: 5053 year: 2015 ident: 10.1016/j.jcis.2022.04.137_b0170 article-title: One-dimension-based spatially ordered architectures for solar energy conversion publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00408F – ident: 10.1016/j.jcis.2022.04.137_b0395 doi: 10.1016/j.seppur.2021.119152 – volume: 234 start-page: 260 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0235 article-title: Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.04.038 – volume: 50 start-page: 800 year: 2011 ident: 10.1016/j.jcis.2022.04.137_b0130 article-title: From Hollow Olive-Shaped BiVO4 to n-p Core-Shell BiVO4@Bi2O3 Microspheres: Controlled Synthesis and Enhanced Visible-Light-Responsive Photocatalytic Properties publication-title: Inorg. Chem. doi: 10.1021/ic101961z – volume: 45 start-page: 30341 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0290 article-title: Eco-friendly synthesis of core/shell ZnIn2S4/Ta3N5 heterojunction for strengthened dual-functional photocatalytic performance publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2020.08.008 – volume: 12 start-page: 48526 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0040 article-title: Alkali Halide Boost of Carbon Nitride for Photocatalytic H2 Evolution in Seawater publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.0c13060 – volume: 136 start-page: 75 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0050 article-title: Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor publication-title: Water Res. doi: 10.1016/j.watres.2018.02.061 – volume: 3 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0075 article-title: Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis publication-title: Energy Chem. – volume: 499–504 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0185 article-title: Facile Synthesis of 1D/2D Core-Shell Structured Sb2S3@MoS2 Nanorods with Enhanced Photocatalytic Performance publication-title: Electron. Mater. Lett. – volume: 234 start-page: 109 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0120 article-title: Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H2 evolution publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.04.037 – volume: 5 start-page: 2387 year: 2017 ident: 10.1016/j.jcis.2022.04.137_b0165 article-title: One dimensional CdS based materials for artificial photoredox reactions publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06373J – volume: 7 start-page: 1800886 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0370 article-title: Facile and Scalable Fabrication of Porous g-C3N4 Nanosheets with Nitrogen Defects and Oxygen-Doping for Synergistically Promoted Visible Light Photocatalytic H2 Evolution publication-title: Energy Technol. doi: 10.1002/ente.201800886 – ident: 10.1016/j.jcis.2022.04.137_b0305 doi: 10.1002/adfm.201904256 – volume: 43 start-page: 11250 year: 2017 ident: 10.1016/j.jcis.2022.04.137_b0340 article-title: Characterization of core@shell-structured ZnO@Sb2S3 particles for effective hydrogen production from water photo spitting publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.05.175 – volume: 55 start-page: 14211 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0320 article-title: Construction of the rapid spatial charge migration core/shell heterostructure by ZnIn2S4 nanosheet-surfaceloaded β-Bi2O3 for improved photooxidative performance publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05004-8 – volume: 2 start-page: 3 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0155 article-title: One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion publication-title: Infomat. doi: 10.1002/inf2.12040 – ident: 10.1016/j.jcis.2022.04.137_b0375 doi: 10.1016/j.jcis.2021.07.150 – volume: 735 start-page: 234 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0220 article-title: Enhanced dye degradation using hydrothermally synthesized nanostructured Sb2S3/rGO under visible light irradiation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.11.063 – volume: 238 start-page: 284 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0385 article-title: Z scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.07.049 – volume: 121 start-page: 13051 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0025 article-title: Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00197 – volume: 236 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0215 article-title: Facile preparation of novel Sb2S3 nanoparticles/rod-like α-Ag2WO4 heterojunction photocatalysts: Continuous modulation of band structure towards the efficient removal of organic contaminants publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116302 – volume: 542 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0140 article-title: In-situ constructing of one-dimensional SnIn4S8-CdS core-shell heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic oxidation and reduction capabilities publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148618 – volume: 112 start-page: 18076 year: 2008 ident: 10.1016/j.jcis.2022.04.137_b0240 article-title: New Photocatalyst, Sb2S3, for Degradation of Methyl Orange under Visible-Light Irradiation publication-title: J. Phys. Chem. C doi: 10.1021/jp806496d – ident: 10.1016/j.jcis.2022.04.137_b0300 doi: 10.1039/C5RA09007E – volume: 202 start-page: 298 year: 2017 ident: 10.1016/j.jcis.2022.04.137_b0160 article-title: One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.09.023 – volume: 12 start-page: 13791 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0250 article-title: Facile In Situ Formation of Ternary 3D ZnIn2S4-MoS2 Microsphere/1D CdS Nanorod Heterostructure for the Hight efficiency Visible-light Photocatalytic H2 Production publication-title: Nanoscale doi: 10.1039/D0NR03196H – volume: 117 start-page: 11584 year: 2013 ident: 10.1016/j.jcis.2022.04.137_b0410 article-title: Dual Cocatalysts Loaded Type I CdS/ZnS Core/Shell Nanocrystals as Effective and Stable Photocatalysts for H2 Evolution publication-title: J. Phys. Chem. C doi: 10.1021/jp400010z – volume: 54 start-page: 9573 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0115 article-title: Z-scheme CdIn2S4/BiOCl nanosheet face-to-face heterostructure: in-situ synthesis and enhanced interfacial charge transfer for high-efficient photocatalytic performance publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03401-2 – volume: 9 start-page: 1944 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0330 article-title: Accelerated charge transfer via a nickel tungstate modulated cadmium sulfide p-n heterojunction for photocatalytic hydrogen evolution publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY02611D – volume: 12 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0365 article-title: Experimental and DFT Studies of Au Deposition Over WO3/g-C3N4 Z-Scheme Heterojunction publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0345-2 – volume: 738 start-page: 138 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0125 article-title: Core/shell p-BiOI/n-b-Bi2O3 heterojunction array with significantly enhanced photoelectrochemical water splitting efficiency publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.12.145 – ident: 10.1016/j.jcis.2022.04.137_b0200 doi: 10.1021/acsami.6b00429 – volume: 45 start-page: 15942 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0295 article-title: Novel CdIn2S4 nano-octahedra/TiO2 hollow hybrid heterostructure: In-situ synthesis, synergistic effect and enhance dual-functionalphotocatalytic activities publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.103 – volume: 7 start-page: 15660 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0105 article-title: Integration of Copper (II) -Porphyrin Zirconium Metal-Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO2 Reduction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b03773 – volume: 7 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0180 article-title: Fabrication of novel 1D/2D V2O5/g-C3N4 composites as Z-scheme photocatalysts for CR degradation and Cr (VI) reduction under sunlight irradiation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.102822 – volume: 670 start-page: 921 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0390 article-title: Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.03.086 – volume: 159 start-page: 333 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0060 article-title: Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity publication-title: Water Res. doi: 10.1016/j.watres.2019.05.025 – volume: 401 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0255 article-title: Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126020 – volume: 232 start-page: 164 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0285 article-title: Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr (VI) publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.03.017 – volume: 10 start-page: 2699 year: 2017 ident: 10.1016/j.jcis.2022.04.137_b0175 article-title: Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications publication-title: Nano. Res. doi: 10.1007/s12274-017-1473-y – volume: 39 start-page: 1901 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0230 article-title: ZnIn2S4 flowerlike microspheres embedded with carbon quantum dots for efficient photocatalytic reduction of Cr (VI) publication-title: Chinese. J. Catal. doi: 10.1016/S1872-2067(18)63137-7 – volume: 517 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0335 article-title: ZnIn2S4 decorated Co-doped NH2-MIL-53(Fe) nanocomposites for efficient photocatalytic hydrogen production publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146161 – volume: 145 start-page: 04019031 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0030 article-title: Construction of mesoporous NCQDs-BiOCl composites for photocatalytic-degrading organic pollutants in water under visible and near-infrared light publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0001532 – volume: 613 start-page: 194 year: 2022 ident: 10.1016/j.jcis.2022.04.137_b0350 article-title: Fabrication of novel Cu2WS4/NiTiO3 heterostructures for efficient visible-light photocatalytic hydrogen evolution and pollutant degradation publication-title: J. Colloid Inter. Sci. doi: 10.1016/j.jcis.2021.10.179 – volume: 29 start-page: 1807013 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0100 article-title: Atomic insights for optimum and excess doping in photocatalysis: a case study of few-layer Cu-ZnIn2S4 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807013 – volume: 843 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0280 article-title: Hollow SnO2 nanotubes decorated with ZnIn2S4 nanosheets for enhanced visible-light photocatalytic activity publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.155772 – volume: 45 start-page: 13975 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0310 article-title: ZnIn2S4/In(OH)3 hollow microspheres fabricated by one-step L-cysteine-mediated hydrothermal growth for enhanced hydrogen production and MB degradation publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2020.03.104 – volume: 148 start-page: 3741 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0360 article-title: Embedding Noble-Metal-Free Ni2P Cocatalyst on g-C3N4 for Enhanced Photocatalytic H2 Evolution in Water Under Visible Light publication-title: Catal. Lett. doi: 10.1007/s10562-018-2562-6 – volume: 13 start-page: 20114 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0015 article-title: Coordination of π-Delocalization in g-C3N4 for Efficient Photocatalytic Hydrogen Evolution under Visible Light publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.1c02722 – volume: 440 start-page: 294 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0205 article-title: Enhanced photovoltaic performance of Sb2S3-sensitized solar cells through surface treatments publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.01.090 – volume: 595 start-page: 69 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0345 article-title: Novel B-N-Co surface bonding states constructed on hollow tubular boron doped g-C3N4/CoP for enhanced photocatalytic H2 evolution publication-title: J. Colloid Inter. Sci. doi: 10.1016/j.jcis.2021.03.134 – volume: 183 start-page: 133 year: 2016 ident: 10.1016/j.jcis.2022.04.137_b0135 article-title: A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.10.035 – volume: 26 start-page: 4920 year: 2014 ident: 10.1016/j.jcis.2022.04.137_b0150 article-title: All-solid-state Z-scheme photocatalytic systems publication-title: Adv. Mater. doi: 10.1002/adma.201400288 – volume: 11 start-page: 22297 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0090 article-title: Efficient, Full Spectrum-Driven H2 Evolution Z-Scheme Co2P/CdS Photocatalysts with Co-S Bonds publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.9b03965 – volume: 50 start-page: 7539 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0070 article-title: Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00323B – volume: 8 start-page: 545 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0210 article-title: Near-infrared-driven Cr (VI) reduction in aqueous solution based on MoS2/Sb2S3 photocatalyst Catal publication-title: Sci. Technol. – volume: 44 start-page: 12825 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0195 article-title: Construction of TiO2 nanotube arrays co-sensitized by Sb2S3-Bi2S3 microspheres by UV-assisted photodeposition for the enhanced photoelectrochemical performance publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.04.090 – volume: 368 start-page: 730 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0005 article-title: A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.013 – volume: 60 start-page: 1755 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0095 article-title: Constructed Z-Scheme g-C3N4/Ag3VO4/rGO Photocatalysts with Multi-interfacial Electron-Transfer Paths for High Photoreduction of CO2 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c03233 – volume: 2 start-page: 2688 year: 2011 ident: 10.1016/j.jcis.2022.04.137_b0405 article-title: Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe/CdS Nanocrystals publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2013193 – volume: 59 start-page: 4377 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0065 article-title: 2D Thin Sheet Heterostructures of MoS2 on MoSe2 as Efficient Electrocatalyst for Hydrogen Evolution Reaction in Wide pH Range publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b03445 – volume: 494 start-page: 519 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0245 article-title: Self-assembly of Ag2O quantum dots on the surface of ZnIn2S4 nanosheets to fabricate p-n heterojunctions with wonderful bifunctional photocatalytic performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.175 – volume: 51 start-page: 2897 issue: 51 year: 2012 ident: 10.1016/j.jcis.2022.04.137_b0265 article-title: Efficient Degradation of Azo Dyes over Sb2S3/TiO2 Heterojunction under Visible Light Irradiation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2025882 – volume: 581 start-page: 1 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0355 article-title: Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production publication-title: J. Colloid Inter. Sci. doi: 10.1016/j.jcis.2020.07.121 – volume: 268 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0080 article-title: In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.118382 – volume: 15 start-page: 12688 year: 2013 ident: 10.1016/j.jcis.2022.04.137_b0400 article-title: Synthesis of In2O3-In2S3 core-shell nanorods with inverted type-I structure for photocatalytic H2 generation publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51722e – volume: 391 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0315 article-title: ZnIn2S4 grown on nitrogen-doped hollow carbon spheres: An advanced catalyst for Cr (VI) reduction publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122205 – volume: 44 start-page: 6115 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0260 article-title: Facile in-situ Solvothermal Method to synthesize double shell ZnIn2S4 nanosheets/TiO2 hollow nanosphere with enhanced photocatalytic activities publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.12.244 – volume: 487 start-page: 1084 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0325 article-title: CdIn2S4 surface-decorated Ta3N5 core-shell heterostructure for improved spatial charge transfer: In-situ growth, synergistic effect and efficient dual-functional photocatalytic performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.163 – volume: 9 start-page: 4642 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0380 article-title: Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle Current Development, and Future Perspective publication-title: ACS Catal. doi: 10.1021/acscatal.9b00313 – volume: 268 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0020 article-title: Synthesis Ce-doped biomass carbon-based g-C3N4 via plant growing guide and temperature-programmed technique for degrading 2-Mercaptobenzothiazole publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.118432 – volume: 600 start-page: 161 year: 2021 ident: 10.1016/j.jcis.2022.04.137_b0110 article-title: Enhanced visible-light-driven photocatalytic activity of bismuth oxide via the decoration of titanium carbide quantum dots publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2021.05.022 – volume: 270 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0010 article-title: Broadband photocatalysts enabled by 0D/2D heterojunctions of near-infrared quantum dots/graphitic carbon nitride nanosheets publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.118879 – volume: 51 start-page: 7950 year: 2015 ident: 10.1016/j.jcis.2022.04.137_b0145 article-title: Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity publication-title: Chem. Commun. doi: 10.1039/C5CC01087J – volume: 6 start-page: 12291 year: 2018 ident: 10.1016/j.jcis.2022.04.137_b0275 article-title: Direct Z-Scheme TiO2/NiS Core-Shell Hybrid Nanofibers with Enhanced Photocatalytic H2-Production Activity publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02710 – volume: 9 start-page: 38832 year: 2017 ident: 10.1016/j.jcis.2022.04.137_b0045 article-title: Kun Wang, Boosting the Visible-Light Photoactivity of BiOCl/BiVO4/N-GQD Ternary Heterojunctions Based on Internal Z-Scheme Charge Transfer of N-GQDs: Simultaneous Band Gap Narrowing and Carrier Lifetime Prolonging publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b14412 – volume: 357 start-page: 487 year: 2019 ident: 10.1016/j.jcis.2022.04.137_b0035 article-title: Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.098 – volume: 625 start-page: 90 year: 2015 ident: 10.1016/j.jcis.2022.04.137_b0190 article-title: Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO publication-title: J Alloy. Compd. doi: 10.1016/j.jallcom.2014.11.052 – volume: 45 start-page: 14334 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0270 article-title: Boosted photogenerated carriers separation in Zscheme Cu3P/ZnIn2S4 heterojunction photocatalyst for highly efficient H2 evolution under visible light publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2020.03.139 – volume: 263 year: 2020 ident: 10.1016/j.jcis.2022.04.137_b0085 article-title: Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.05.032 |
SSID | ssj0011559 |
Score | 2.6457574 |
Snippet | A novel ZnIn2S4 decorated Sb2S3 hierarchical 1D/2D core–shell heterostructure was successfully fabricated by a simple hydrothermal method. It possessed highly... In this work, a novel hierarchical 1D/2D core/shell Sb2S3-ZnIn2S4 (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen... In this work, a novel hierarchical 1D/2D core/shell Sb₂S₃-ZnIn₂S₄ (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109 |
SubjectTerms | absorption Dual-functional energy hierarchical 1D/2D heterostructure hot water treatment hydrogen hydrogen production nanorods nanosheets photocatalysis photolysis pollutants pollution reaction mechanisms Sb2S3 nanorod surface area tetracycline ZnIn2S4 nanosheet |
Title | Hierarchical Sb2S3/ZnIn2S4 core–shell heterostructure for highly efficient photocatalytic hydrogen production and pollutant degradation |
URI | https://dx.doi.org/10.1016/j.jcis.2022.04.137 https://www.proquest.com/docview/2665108345 https://www.proquest.com/docview/2675560087 |
Volume | 623 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9RAEF5FSQEUKAQQARItEh0yZ3vfZXRKdAGR5ogU0VjrfeguOtlWcimuQbTU_EN-CTNeOwKErqBwYWtWtnbGM7O733xDyFsXtdBeu4wxHzJe1DyzpjaZ5NpDOh5N7nBr4NOFnF3yD1fiaodMx1oYhFUOvj_59N5bD08mw2xOuuUSa3zhb1NGlbjdlkss-OVcoZW__3oP8yjw2C3BPIoMpYfCmYTxunZLpOwuS6Q7LbAX-r-D019uuo89Z_vk8ZA00pP0XU_ITmgOyIPp2KvtgDz6jVbwKfk-W2JZcd_lZEXndTlnky_NeVPOOUXWyp_fftwi_pMuEAvTJgrZu5tAIYGlyF-82tDQU0tARKLdol23_S7PBl5PFxt_04LV0S5xxYJeqW087bBnMrYkph75J1Krpmfk8uz083SWDS0XMsekXGeFK2StfS6cdrCSCXnNrIWcyUQlYh61Kay0hdB1HbUNEVZryikvAizTgrSMsedkt2mb8IJQxayJ3ORwGe4Y1yZEpkz0ngfF6_KQFONcV27gI8e2GKtqBJ5dV6ifCvVT5bwC_RySd_djusTGsVVajCqs_rCpCsLF1nFvRn1XoEc8QbFNaO9ASErwYZpxsU1GCUwjtXr5n-9_RR7iXYIMvia7YAXhCFKfdX3c2_Yx2Ts5_zi7-AW3Jwcd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigcEBQQLQWMBCcUNokdPw4cUKHapY_LtlLFxTh-aLdaJat2q2oviCtnfgr_iF_CTB4VILQHpB5ySRwl8oxnxvbn7yPkpYuqUF65hDEfEp6VPLG61IngykM5HnXqcGng8EgMT_jH0-J0jfzoz8IgrLKL_W1Mb6J1d2fQ9eZgPp3iGV8YbVLLHJfbUqE6ZOV-WF7BvO3i7eg9GPlVnu99ON4dJp20QOKYEIskc5kolU8LpxxU7CEtmbVQG-goi5hGpTMrbFaosozKhgizEumkLwJMR4KwDFdBIe7f4hAuUDbhzZdrXEmG-3wtriRL8Pe6kzotqOzMTZEjPM-RXzVD8fV_Z8O_8kKT7PbukbtdlUrftR1xn6yFapNs7PbicJvkzm88hg_It-EUzzE3siozOi7zMRt8qkZVPuYUaTJ_fv1-gYBTOkHwTd1y1l6eBwoVM0XC5NmShobLAlIgnU_qRd0sKy3h83Sy9Oc1uDmdt-S04EjUVp7OUaQZNZCpR8KLVhvqITm5EUM8IutVXYXHhEpmdeQ6hUtzx7jSITKpo_c8SF7mWyTr-9q4jgAddThmpke6nRm0j0H7mJQbsM8WeX39zryl_1jZuuhNaP5wYgP5aeV7L3p7G7AjbtnYKtSX0EgICJqK8WJVG1lg3ark9n9-_znZGB4fHpiD0dH-E3Ibn7R4xR2yDh4RnkLdtSifNX5OyeebHli_ABxnQvs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Sb2S3%2FZnIn2S4+core%E2%80%93shell+heterostructure+for+highly+efficient+photocatalytic+hydrogen+production+and+pollutant+degradation&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Xiao%2C+Yan&rft.au=Wang%2C+Hao&rft.au=Jiang%2C+Yinhua%2C+1971-&rft.au=Zhang%2C+Wenli&rft.date=2022-10-01&rft.issn=0021-9797&rft.volume=623+p.109-123&rft.spage=109&rft.epage=123&rft_id=info:doi/10.1016%2Fj.jcis.2022.04.137&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |