Prognostic modelling options for remaining useful life estimation by industry
Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approx...
Saved in:
Published in | Mechanical systems and signal processing Vol. 25; no. 5; pp. 1803 - 1836 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.07.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0888-3270 1096-1216 |
DOI | 10.1016/j.ymssp.2010.11.018 |
Cover
Loading…
Abstract | Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs.
This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models. |
---|---|
AbstractList | Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models. Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models. |
Author | Hodkiewicz, M. Ma, L. Sikorska, J.Z. |
Author_xml | – sequence: 1 givenname: J.Z. surname: Sikorska fullname: Sikorska, J.Z. email: jo@caswa.com organization: CASWA Pty Ltd., 24 Le Souef Drive, Perth, Kardinya, WA 6163, Australia – sequence: 2 givenname: M. surname: Hodkiewicz fullname: Hodkiewicz, M. organization: Department of Mechanical Engineering, University of Western Australia, Australia – sequence: 3 givenname: L. surname: Ma fullname: Ma, L. organization: School of Engineering Systems, CRC for Integrated Engineering Asset Management (CIEAM), Queensland University of Technology, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24105440$$DView record in Pascal Francis |
BookMark | eNp9kE1r3DAQhkVJoZs0vyAXXwq9eDsj2ZZ9yKGEfBRSWkLuQpZHQYstbSU7sP--cja55JDTwPA-wzvPKTvxwRNjFwhbBGx-7LaHKaX9lsO6wS1g-4ltELqmRI7NCdtA27al4BK-sNOUdgDQVdBs2O-_MTz5kGZniikMNI7OPxVhP7vgU2FDLCJN2vl1uySyy1iMzlJBmZj0mir6Q-H8sKQ5Hr6yz1aPic5f5xl7uLl-vLor7__c_rr6eV8a0TRziRKtqKXpOcJQQQsdl1g3grQ2EmrSwhhhZdejqYSpepScd_VAhJXtxRn7fjy6j-HfkouoySWTm2tPYUkKG4m86yRgjn57jepk9Gij9sYltY-5ezwoXiHUVQU51x1zJoaUIlll3Pzy3Ry1GxWCWj2rnXrxrFbPClFlz5kV79i38x9Tl0eKsqZnR1El48gbGlwkM6shuA_5_5A6m3Y |
CitedBy_id | crossref_primary_10_1016_j_inffus_2018_10_005 crossref_primary_10_3390_batteries9030177 crossref_primary_10_1016_j_neucom_2017_02_045 crossref_primary_10_1371_journal_pone_0246102 crossref_primary_10_1109_TR_2018_2822702 crossref_primary_10_3390_s20092568 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1177_1475921713520029 crossref_primary_10_1007_s10845_018_1445_4 crossref_primary_10_1016_j_asoc_2022_108507 crossref_primary_10_3390_electronics12071744 crossref_primary_10_1016_j_ress_2017_11_021 crossref_primary_10_1016_j_ress_2017_11_020 crossref_primary_10_1016_j_eswa_2022_119345 crossref_primary_10_1016_j_conengprac_2021_104748 crossref_primary_10_1007_s12652_018_0997_7 crossref_primary_10_1016_j_ress_2018_04_005 crossref_primary_10_1109_JSEN_2023_3235585 crossref_primary_10_21595_jve_2016_16868 crossref_primary_10_1007_s11082_023_06133_5 crossref_primary_10_1007_s10845_013_0774_6 crossref_primary_10_1080_0951192X_2023_2209857 crossref_primary_10_1016_j_conengprac_2017_11_003 crossref_primary_10_1016_j_ifacol_2018_09_576 crossref_primary_10_1177_0954408912458868 crossref_primary_10_3390_a16020061 crossref_primary_10_1016_j_compind_2022_103640 crossref_primary_10_1080_0951192X_2014_900866 crossref_primary_10_3390_app10051616 crossref_primary_10_1016_j_eswa_2024_124169 crossref_primary_10_1016_j_microrel_2023_115216 crossref_primary_10_1007_s10845_015_1077_x crossref_primary_10_1007_s40430_021_03121_2 crossref_primary_10_1155_2021_6626024 crossref_primary_10_1080_09617353_2022_2051140 crossref_primary_10_1016_j_advengsoft_2017_07_001 crossref_primary_10_1016_j_compind_2014_10_004 crossref_primary_10_1016_j_ress_2021_107808 crossref_primary_10_3390_math11133008 crossref_primary_10_1002_aisy_202400414 crossref_primary_10_1007_s10845_017_1377_4 crossref_primary_10_1016_j_engappai_2012_09_013 crossref_primary_10_1016_j_jmsy_2021_05_019 crossref_primary_10_1016_j_jmsy_2023_10_010 crossref_primary_10_1017_aer_2023_84 crossref_primary_10_1109_ACCESS_2016_2611649 crossref_primary_10_1109_JMEMS_2016_2564499 crossref_primary_10_1109_ACCESS_2024_3406262 crossref_primary_10_1109_TSM_2022_3164578 crossref_primary_10_1016_j_ress_2014_12_005 crossref_primary_10_1007_s13198_013_0195_0 crossref_primary_10_1016_j_jcomc_2023_100366 crossref_primary_10_1016_j_jfranklin_2016_06_039 crossref_primary_10_1016_j_neucom_2021_12_035 crossref_primary_10_1016_j_procir_2021_11_262 crossref_primary_10_21595_vp_2017_19036 crossref_primary_10_1109_TR_2012_2209251 crossref_primary_10_1016_j_neucom_2020_01_127 crossref_primary_10_1016_j_compstruct_2024_118727 crossref_primary_10_1080_0740817X_2014_959672 crossref_primary_10_1016_j_ifacol_2020_12_853 crossref_primary_10_1017_pds_2021_20 crossref_primary_10_1016_j_matpr_2020_06_306 crossref_primary_10_1109_ACCESS_2019_2941566 crossref_primary_10_1016_j_ins_2020_12_032 crossref_primary_10_1007_s10845_016_1244_8 crossref_primary_10_1007_s10845_016_1221_2 crossref_primary_10_1088_1757_899X_435_1_012057 crossref_primary_10_1177_14759217211038881 crossref_primary_10_1016_j_rser_2024_114647 crossref_primary_10_1109_TR_2015_2462353 crossref_primary_10_1109_ACCESS_2020_2989410 crossref_primary_10_1017_aer_2024_40 crossref_primary_10_1109_ACCESS_2020_2998003 crossref_primary_10_3390_aerospace9060309 crossref_primary_10_1016_j_ymssp_2017_04_010 crossref_primary_10_1016_j_ress_2016_10_032 crossref_primary_10_3390_electronics12204267 crossref_primary_10_1016_j_rser_2015_08_061 crossref_primary_10_1016_j_engappai_2021_104552 crossref_primary_10_1109_TR_2014_2299152 crossref_primary_10_1109_TR_2015_2500681 crossref_primary_10_3390_en17225538 crossref_primary_10_3390_s20216028 crossref_primary_10_1016_j_ymssp_2019_106266 crossref_primary_10_3390_vehicles2040037 crossref_primary_10_1109_TIE_2014_2327917 crossref_primary_10_1109_ACCESS_2016_2587754 crossref_primary_10_1016_j_ymssp_2014_08_006 crossref_primary_10_1109_ACCESS_2023_3235619 crossref_primary_10_48175_IJARSCT_3040 crossref_primary_10_1016_j_ress_2015_07_013 crossref_primary_10_1145_3623378 crossref_primary_10_1109_TPEL_2016_2618422 crossref_primary_10_1016_j_energy_2023_130153 crossref_primary_10_1016_j_ifacol_2018_09_409 crossref_primary_10_1016_j_ifacol_2018_09_645 crossref_primary_10_1016_j_measurement_2022_111572 crossref_primary_10_3390_s23010012 crossref_primary_10_1016_j_procir_2021_10_029 crossref_primary_10_21595_jve_2021_22100 crossref_primary_10_1016_j_jsv_2018_05_007 crossref_primary_10_1145_3486252 crossref_primary_10_1177_1748006X17742779 crossref_primary_10_3390_s22187070 crossref_primary_10_1109_TPWRD_2017_2710482 crossref_primary_10_3390_app122211691 crossref_primary_10_17531_ein_2016_4_20 crossref_primary_10_1016_j_ymssp_2015_09_014 crossref_primary_10_1080_24725854_2024_2360619 crossref_primary_10_1007_s00170_018_2874_0 crossref_primary_10_1109_TMECH_2020_2971503 crossref_primary_10_1016_j_ymssp_2025_112449 crossref_primary_10_1016_j_eswa_2015_07_003 crossref_primary_10_1007_s42452_022_05114_9 crossref_primary_10_1088_1757_899X_1259_1_012038 crossref_primary_10_18287_2409_4579_2021_7_3_13_21 crossref_primary_10_1016_j_ifacol_2022_10_102 crossref_primary_10_1109_TIM_2023_3273676 crossref_primary_10_21595_marc_2024_24232 crossref_primary_10_1016_j_ejor_2013_09_002 crossref_primary_10_1016_j_procs_2022_01_203 crossref_primary_10_1016_j_procir_2012_07_039 crossref_primary_10_1016_j_compstruct_2020_112386 crossref_primary_10_1109_TMECH_2020_2978136 crossref_primary_10_1155_2021_4914372 crossref_primary_10_1016_j_apenergy_2023_121043 crossref_primary_10_1016_j_arcontrol_2020_08_002 crossref_primary_10_1109_ACCESS_2021_3089032 crossref_primary_10_1016_j_isatra_2018_07_010 crossref_primary_10_1016_j_ymssp_2023_110910 crossref_primary_10_1016_j_ifacol_2020_12_819 crossref_primary_10_3390_machines10020072 crossref_primary_10_1016_j_ymssp_2024_112156 crossref_primary_10_1016_j_ifacol_2022_10_133 crossref_primary_10_1088_1742_6596_1754_1_012237 crossref_primary_10_1016_j_microrel_2016_02_015 crossref_primary_10_1049_iet_smt_2017_0005 crossref_primary_10_1007_s10845_018_1453_4 crossref_primary_10_1002_qre_2001 crossref_primary_10_1016_j_marstruc_2020_102718 crossref_primary_10_1016_j_ymssp_2019_106607 crossref_primary_10_1016_j_ymssp_2015_11_008 crossref_primary_10_3390_s22249738 crossref_primary_10_1016_j_eswa_2023_120588 crossref_primary_10_1016_j_renene_2018_04_033 crossref_primary_10_1109_ACCESS_2023_3241942 crossref_primary_10_1108_JQME_05_2020_0029 crossref_primary_10_3390_electronics11071125 crossref_primary_10_1007_s00170_022_09280_3 crossref_primary_10_1016_j_ymssp_2020_106617 crossref_primary_10_3390_electronics12020312 crossref_primary_10_1007_s00158_022_03437_0 crossref_primary_10_1007_s00170_021_08047_6 crossref_primary_10_1016_j_asej_2021_06_021 crossref_primary_10_1007_s42979_021_00905_0 crossref_primary_10_1109_TR_2015_2440531 crossref_primary_10_1177_1748006X18766125 crossref_primary_10_1007_s10845_024_02398_z crossref_primary_10_1016_j_ymssp_2014_05_029 crossref_primary_10_1109_TR_2019_2930195 crossref_primary_10_1016_j_conengprac_2024_105938 crossref_primary_10_1016_j_psep_2016_11_019 crossref_primary_10_1016_j_ress_2014_10_003 crossref_primary_10_1016_j_rser_2017_06_002 crossref_primary_10_1002_qre_2142 crossref_primary_10_1007_s10845_013_0778_2 crossref_primary_10_1088_1757_899X_236_1_012105 crossref_primary_10_3390_en14082135 crossref_primary_10_1109_ACCESS_2024_3524032 crossref_primary_10_1016_j_ymssp_2025_112493 crossref_primary_10_1016_j_procir_2016_11_054 crossref_primary_10_1088_1755_1315_585_1_012154 crossref_primary_10_1109_JIOT_2019_2957029 crossref_primary_10_1016_j_ymssp_2016_01_010 crossref_primary_10_1016_j_neunet_2019_04_016 crossref_primary_10_1016_j_compstruct_2022_116579 crossref_primary_10_1016_j_ymssp_2014_10_010 crossref_primary_10_1007_s11668_016_0189_8 crossref_primary_10_1016_j_ymssp_2017_01_050 crossref_primary_10_1088_1742_6596_936_1_012080 crossref_primary_10_1016_j_ymssp_2022_109677 crossref_primary_10_1109_TR_2018_2825470 crossref_primary_10_3390_app14198686 crossref_primary_10_1007_s10836_017_5697_2 crossref_primary_10_1016_j_ymssp_2018_02_027 crossref_primary_10_1016_j_ress_2015_05_012 crossref_primary_10_1016_j_psep_2018_08_033 crossref_primary_10_1007_s10845_015_1107_8 crossref_primary_10_1016_j_ress_2016_11_022 crossref_primary_10_1080_00207543_2017_1287971 crossref_primary_10_1177_1350650111424818 crossref_primary_10_1007_s11465_017_0449_7 crossref_primary_10_1016_j_trc_2018_02_010 crossref_primary_10_1016_j_measurement_2020_108052 crossref_primary_10_1177_0954410020940882 crossref_primary_10_1007_s00500_019_04311_w crossref_primary_10_3390_app12136766 crossref_primary_10_1109_ACCESS_2017_2773665 crossref_primary_10_1016_j_ress_2016_07_019 crossref_primary_10_1007_s11340_019_00547_7 crossref_primary_10_1109_JSYST_2021_3080125 crossref_primary_10_1109_TEM_2023_3293948 crossref_primary_10_1016_j_compchemeng_2016_08_018 crossref_primary_10_1109_ACCESS_2020_3032445 crossref_primary_10_1108_IJICC_09_2020_0131 crossref_primary_10_1186_s10033_019_0317_y crossref_primary_10_1109_TIM_2017_2735661 crossref_primary_10_3390_s21030932 crossref_primary_10_31796_ogummf_873963 crossref_primary_10_1016_j_ymssp_2017_03_046 crossref_primary_10_1177_0954405416654184 crossref_primary_10_1109_TR_2018_2829771 crossref_primary_10_1109_TII_2020_2993074 crossref_primary_10_1177_1748006X13481926 crossref_primary_10_1049_iet_rpg_2018_5909 crossref_primary_10_1080_21693277_2025_2469037 crossref_primary_10_1016_j_neucom_2018_09_076 crossref_primary_10_1016_j_engappai_2015_02_009 crossref_primary_10_1109_ACCESS_2020_2966827 crossref_primary_10_1016_j_ress_2024_110451 crossref_primary_10_1049_iet_est_2020_0045 crossref_primary_10_1002_qre_2573 crossref_primary_10_1108_IJSI_01_2016_0003 crossref_primary_10_1109_ACCESS_2019_2948291 crossref_primary_10_1016_j_ejor_2018_02_033 crossref_primary_10_1177_1687814016685004 crossref_primary_10_1007_s00034_019_01031_2 crossref_primary_10_1016_j_isatra_2024_06_015 crossref_primary_10_3390_e21090861 crossref_primary_10_1016_j_ress_2016_05_006 crossref_primary_10_1177_1464419316660930 crossref_primary_10_1051_e3sconf_202235101041 crossref_primary_10_1088_1361_6501_ac8891 crossref_primary_10_1109_TII_2023_3333933 crossref_primary_10_1016_j_ymssp_2014_12_020 crossref_primary_10_1016_j_ijpe_2020_107837 crossref_primary_10_1016_j_engappai_2023_105859 crossref_primary_10_1016_j_eswa_2020_114391 crossref_primary_10_1016_j_ress_2015_04_018 crossref_primary_10_3233_SW_200406 crossref_primary_10_3390_polym13060943 crossref_primary_10_1007_s10470_018_1377_0 crossref_primary_10_3390_en10050664 crossref_primary_10_3389_fmats_2019_00110 crossref_primary_10_3390_app11083380 crossref_primary_10_1049_iet_gtd_2013_0063 crossref_primary_10_1002_qre_2792 crossref_primary_10_1016_j_compind_2016_12_008 crossref_primary_10_1016_j_ymssp_2020_106832 crossref_primary_10_1016_j_measurement_2022_111728 crossref_primary_10_1109_ACCESS_2021_3101284 crossref_primary_10_1016_j_jmapro_2017_04_012 crossref_primary_10_3390_aerospace10080715 crossref_primary_10_17531_ein_2019_4_10 crossref_primary_10_1007_s00500_022_07129_1 crossref_primary_10_1016_j_energy_2021_121269 crossref_primary_10_1177_1687814016664660 crossref_primary_10_1016_j_engfailanal_2022_106791 crossref_primary_10_1016_j_ifacol_2022_07_353 crossref_primary_10_1016_j_ifacol_2022_07_112 crossref_primary_10_1016_j_cirp_2015_05_011 crossref_primary_10_1016_j_jclepro_2016_10_185 crossref_primary_10_1016_j_ress_2022_108717 crossref_primary_10_1007_s11831_019_09339_7 crossref_primary_10_1016_j_jmsy_2020_07_008 crossref_primary_10_1007_s10033_017_0150_0 crossref_primary_10_1016_j_ijhydene_2023_08_098 crossref_primary_10_1109_TR_2019_2957965 crossref_primary_10_1016_j_measurement_2021_109706 crossref_primary_10_1016_j_asoc_2020_106344 crossref_primary_10_1007_s12053_013_9238_2 crossref_primary_10_17531_ein_2021_2_16 crossref_primary_10_1155_2020_8810047 crossref_primary_10_1108_JQME_08_2016_0032 crossref_primary_10_3390_s150307062 crossref_primary_10_1109_TR_2016_2591504 crossref_primary_10_1016_j_oceaneng_2017_05_001 crossref_primary_10_1016_j_energy_2018_02_016 crossref_primary_10_17531_ein_2021_1_16 crossref_primary_10_1016_j_ress_2024_110223 crossref_primary_10_1109_TR_2015_2494682 crossref_primary_10_1088_1361_6501_aaa33a crossref_primary_10_1002_aic_17329 crossref_primary_10_1016_j_microrel_2013_09_013 crossref_primary_10_1016_j_ijhydene_2013_09_051 crossref_primary_10_1088_1755_1315_93_1_012040 crossref_primary_10_1007_s12206_018_0201_1 crossref_primary_10_1021_acs_iecr_9b03182 crossref_primary_10_1016_j_ress_2016_05_012 crossref_primary_10_1155_2020_6639171 crossref_primary_10_1016_j_jmsy_2017_07_002 crossref_primary_10_1016_j_renene_2016_06_056 crossref_primary_10_1155_2017_6754968 crossref_primary_10_1155_2022_8455629 crossref_primary_10_1007_s11831_022_09727_6 crossref_primary_10_3233_SW_233299 crossref_primary_10_1016_j_jmsy_2021_02_006 crossref_primary_10_3390_e20120944 crossref_primary_10_1016_j_microrel_2017_03_026 crossref_primary_10_1016_j_promfg_2020_06_015 crossref_primary_10_1007_s13198_019_00813_w crossref_primary_10_1016_j_energy_2014_10_067 crossref_primary_10_2478_fas_2023_0012 crossref_primary_10_1016_j_ymssp_2018_11_032 crossref_primary_10_1115_1_4044105 crossref_primary_10_1109_TASE_2018_2844204 crossref_primary_10_1109_TIM_2019_2905307 crossref_primary_10_1109_TR_2017_2717488 crossref_primary_10_1177_1748006X221118448 crossref_primary_10_3390_e25081160 crossref_primary_10_21595_jve_2016_18046 crossref_primary_10_1016_j_est_2022_106193 crossref_primary_10_1016_j_rcim_2021_102281 crossref_primary_10_1115_1_4062731 crossref_primary_10_3390_s23135970 crossref_primary_10_1016_j_jclepro_2013_09_014 crossref_primary_10_1016_j_ress_2020_107028 crossref_primary_10_1016_j_ejor_2012_10_025 crossref_primary_10_1016_j_ymssp_2012_08_016 crossref_primary_10_1016_j_ress_2018_07_006 crossref_primary_10_1109_TIE_2021_3057030 crossref_primary_10_1186_s41072_020_00071_1 crossref_primary_10_1155_2022_1419671 crossref_primary_10_3390_s24010231 crossref_primary_10_1016_j_jpowsour_2012_11_146 crossref_primary_10_1016_j_procir_2015_08_028 crossref_primary_10_1088_1361_6501_ad0e3a crossref_primary_10_1007_s00170_016_8909_5 crossref_primary_10_3390_en11020300 crossref_primary_10_1155_2020_8871981 crossref_primary_10_3390_app10010346 crossref_primary_10_1177_1475921714522844 crossref_primary_10_1109_ACCESS_2020_3020375 crossref_primary_10_1155_2022_6937616 crossref_primary_10_20964_2020_09_30 crossref_primary_10_1016_j_jprocont_2016_10_003 crossref_primary_10_1016_j_energy_2020_119198 crossref_primary_10_1109_TSMC_2013_2290772 crossref_primary_10_1016_j_promfg_2021_07_026 crossref_primary_10_1016_j_ymssp_2013_01_010 crossref_primary_10_3390_app10124120 crossref_primary_10_1177_1748006X17693519 crossref_primary_10_1061__ASCE_PS_1949_1204_0000242 crossref_primary_10_1002_qre_2947 crossref_primary_10_1109_JSEN_2023_3298349 crossref_primary_10_3390_s19030532 crossref_primary_10_1016_j_ress_2021_107683 crossref_primary_10_1007_s10462_022_10260_y crossref_primary_10_1108_JQME_12_2015_0062 crossref_primary_10_3390_s20236975 crossref_primary_10_4028_www_scientific_net_AMM_794_507 crossref_primary_10_3390_s21196325 crossref_primary_10_3390_su12166421 crossref_primary_10_3390_s24061814 crossref_primary_10_1109_TIM_2023_3308251 crossref_primary_10_1177_1687814020971890 crossref_primary_10_1007_s00170_017_0025_7 crossref_primary_10_1088_1361_6501_ac77d9 crossref_primary_10_1016_j_cie_2021_107792 crossref_primary_10_1007_s11432_017_9347_5 crossref_primary_10_1016_j_ymssp_2017_08_016 crossref_primary_10_15675_gepros_3007 crossref_primary_10_18775_jibrm_1849_8558_2015_54_3004 crossref_primary_10_1080_14484846_2015_1093251 crossref_primary_10_1177_0954406220976154 crossref_primary_10_1016_j_measurement_2021_109756 crossref_primary_10_1109_TIE_2019_2931489 crossref_primary_10_1016_j_ijfatigue_2023_107504 crossref_primary_10_3390_en17061430 crossref_primary_10_1002_lpor_202000254 crossref_primary_10_1016_j_ymssp_2023_110239 crossref_primary_10_1177_1475921720971551 crossref_primary_10_1016_j_asoc_2020_106474 crossref_primary_10_37394_23207_2024_21_69 crossref_primary_10_1088_1757_899X_1043_3_032011 crossref_primary_10_1002_int_22395 crossref_primary_10_1080_13287982_2020_1758375 crossref_primary_10_1109_TIE_2012_2224074 crossref_primary_10_1016_j_ress_2017_05_047 crossref_primary_10_1177_0954408919862720 crossref_primary_10_1016_j_microrel_2014_07_072 crossref_primary_10_1007_s00170_013_5064_0 crossref_primary_10_1016_j_asoc_2022_108912 crossref_primary_10_1177_1748006X17706654 crossref_primary_10_1155_2016_8623530 crossref_primary_10_5937_tehnika1905687S crossref_primary_10_1016_j_ymssp_2016_05_019 crossref_primary_10_1177_14759217211030605 crossref_primary_10_3390_machines12070474 crossref_primary_10_1016_j_ymssp_2018_09_033 crossref_primary_10_1109_TR_2015_2499960 crossref_primary_10_1016_j_ress_2022_108671 crossref_primary_10_1007_s13042_023_01807_8 crossref_primary_10_1016_j_ymssp_2024_111654 crossref_primary_10_1016_j_engfailanal_2017_04_015 crossref_primary_10_1108_JQME_04_2020_0021 crossref_primary_10_1016_j_ymssp_2022_108917 crossref_primary_10_1016_j_anucene_2017_10_010 crossref_primary_10_1017_dce_2023_11 crossref_primary_10_1177_1687814016671445 crossref_primary_10_1016_j_procir_2016_09_033 crossref_primary_10_3182_20120829_3_MX_2028_00144 crossref_primary_10_1109_ACCESS_2021_3130157 crossref_primary_10_1109_TAES_2024_3402199 crossref_primary_10_1002_qre_1609 crossref_primary_10_1109_TIE_2019_2926048 crossref_primary_10_1016_j_datak_2023_102240 crossref_primary_10_3390_en10010032 crossref_primary_10_3233_JIFS_169547 crossref_primary_10_1109_ACCESS_2019_2947843 crossref_primary_10_1016_j_apacoust_2017_12_003 crossref_primary_10_1155_2013_983595 crossref_primary_10_1016_j_trc_2022_103679 crossref_primary_10_1002_qre_1935 crossref_primary_10_1016_j_promfg_2020_01_247 crossref_primary_10_1016_j_ifacol_2023_10_1761 crossref_primary_10_1016_j_ymssp_2024_111435 crossref_primary_10_1016_j_ress_2022_108775 crossref_primary_10_1109_ACCESS_2019_2911307 crossref_primary_10_1016_j_ress_2016_03_020 crossref_primary_10_1142_S0218126621500481 crossref_primary_10_1016_j_rser_2024_115281 crossref_primary_10_1109_TNNLS_2021_3119510 crossref_primary_10_1177_1748006X15573046 crossref_primary_10_3390_machines12010069 crossref_primary_10_1016_j_microrel_2022_114684 crossref_primary_10_1016_j_ymssp_2024_111551 crossref_primary_10_1016_j_apenergy_2024_124829 crossref_primary_10_3390_en15020504 crossref_primary_10_1016_j_ymssp_2017_11_016 crossref_primary_10_1016_j_cie_2024_110342 crossref_primary_10_1051_matecconf_202338501010 crossref_primary_10_1016_j_ijfatigue_2020_105943 crossref_primary_10_1016_j_engappai_2022_105802 crossref_primary_10_1016_j_ress_2018_06_021 crossref_primary_10_1002_joom_1295 crossref_primary_10_1016_j_procir_2018_03_280 crossref_primary_10_1016_j_ress_2016_09_005 crossref_primary_10_1016_j_ymssp_2013_07_010 crossref_primary_10_1016_j_ymssp_2020_107050 crossref_primary_10_1109_TII_2019_2900295 crossref_primary_10_1109_TR_2014_2337791 crossref_primary_10_1109_ACCESS_2020_2978301 crossref_primary_10_1007_s11771_015_3013_9 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_3390_s22145174 crossref_primary_10_1109_TIM_2020_3030165 crossref_primary_10_1115_1_4048787 crossref_primary_10_1016_j_conengprac_2018_02_011 crossref_primary_10_1007_s11071_020_05847_5 crossref_primary_10_1155_2015_793161 crossref_primary_10_17531_ein_2015_2_16 crossref_primary_10_1109_JSEN_2018_2890687 crossref_primary_10_1080_1573062X_2016_1236135 crossref_primary_10_1016_j_compind_2019_07_004 crossref_primary_10_3390_min14020174 crossref_primary_10_1109_TR_2013_2241203 crossref_primary_10_1007_s11668_022_01532_4 crossref_primary_10_1088_1361_6501_ad5610 crossref_primary_10_1016_j_promfg_2020_10_033 crossref_primary_10_3390_en17051010 crossref_primary_10_1016_j_amc_2025_129340 crossref_primary_10_1109_TR_2019_2907402 crossref_primary_10_3182_20120829_3_MX_2028_00189 crossref_primary_10_61927_igmin204 crossref_primary_10_1016_j_autcon_2013_12_006 crossref_primary_10_1007_s12206_021_1105_z crossref_primary_10_1016_j_ifacol_2022_07_162 crossref_primary_10_1016_j_ymssp_2015_02_016 crossref_primary_10_1007_s12206_014_1222_z crossref_primary_10_1016_j_ress_2018_11_011 crossref_primary_10_1088_1757_899X_242_1_012117 crossref_primary_10_1177_1748006X211044343 crossref_primary_10_1109_TDMR_2017_2694227 crossref_primary_10_1016_j_autcon_2024_105648 crossref_primary_10_1016_j_neucom_2020_06_052 crossref_primary_10_1016_j_aei_2021_101404 crossref_primary_10_1016_j_eswa_2014_08_007 crossref_primary_10_1016_j_ymssp_2020_107378 crossref_primary_10_1016_j_cie_2017_08_028 crossref_primary_10_1080_0951192X_2021_1885062 crossref_primary_10_1016_j_measurement_2020_107787 crossref_primary_10_1016_j_engappai_2023_107365 crossref_primary_10_1016_j_promfg_2020_10_169 crossref_primary_10_1109_TR_2015_2419220 crossref_primary_10_1115_1_4056149 crossref_primary_10_1016_j_asoc_2016_03_013 crossref_primary_10_1016_j_cie_2023_109033 crossref_primary_10_1016_j_measurement_2015_11_047 crossref_primary_10_1016_j_ymssp_2016_05_041 crossref_primary_10_1007_s10489_017_1013_1 crossref_primary_10_3390_app13032021 crossref_primary_10_3390_f12111495 crossref_primary_10_1016_j_engfailanal_2022_107034 crossref_primary_10_1016_j_ymssp_2018_08_039 crossref_primary_10_1016_j_ress_2018_11_027 crossref_primary_10_1088_1742_6596_2265_3_032111 crossref_primary_10_1016_j_jmsy_2019_11_008 crossref_primary_10_1108_IJQRM_06_2012_0084 crossref_primary_10_1177_1475921720972926 crossref_primary_10_23939_cds2022_01_049 crossref_primary_10_4018_ijeis_2013100104 crossref_primary_10_1016_j_ijhydene_2013_10_054 crossref_primary_10_3390_axioms12020168 crossref_primary_10_1016_j_ress_2021_108140 crossref_primary_10_1109_ACCESS_2019_2943029 crossref_primary_10_1007_s11668_022_01357_1 crossref_primary_10_3390_en15196909 crossref_primary_10_1109_TR_2013_2285318 crossref_primary_10_3390_app7050497 |
Cites_doi | 10.1016/j.ijfatigue.2006.05.001 10.1016/j.ymssp.2005.11.008 10.1109/24.44186 10.1109/78.978389 10.1109/TIE.2004.824875 10.1016/0951-8320(91)90098-R 10.1080/00207540412331327727 10.1080/00401706.1980.10486134 10.1007/BF00992695 10.1016/j.ijmachtools.2004.06.018 10.1016/j.ress.2007.03.011 10.1016/S0951-8320(96)00092-0 10.1016/j.ress.2007.12.006 10.1111/j.2517-6161.1972.tb00899.x 10.1002/qre.4680050305 10.1111/j.2517-6161.1995.tb02042.x 10.1002/qre.859 10.1109/72.478409 10.1109/72.963764 10.1016/j.compchemeng.2005.05.005 10.1016/j.jsv.2003.08.021 10.1109/87.508893 10.1109/ICPR.2004.1334061 10.1093/biomet/77.2.409 10.1239/aap/999187904 10.1108/13552510610654529 10.1016/0951-8320(91)90101-C 10.1016/S0888-3270(03)00079-7 10.1109/ICIT.2000.854201 10.1002/1520-6750(199510)42:7<1063::AID-NAV3220420706>3.0.CO;2-3 10.1109/AERO.2000.877920 10.1016/j.ymssp.2006.10.001 10.1016/S0952-1976(99)00011-1 10.1016/S0377-2217(96)00318-9 10.1109/5.18626 10.1093/imaman/dpi029 10.1016/0951-8320(88)90121-4 10.1016/j.ress.2005.11.037 10.1109/MASSP.1986.1165342 10.1016/j.ijpvp.2006.02.007 10.1016/j.ress.2008.05.008 10.1016/j.ijfatigue.2006.06.013 10.1109/24.106769 10.1016/S0377-2217(96)00316-5 10.1016/j.ymssp.2004.01.001 10.1214/aoms/1177699147 10.1109/TSP.2006.873585 10.1016/j.ress.2004.10.004 10.1016/0951-8320(88)90051-8 10.1016/S0951-8320(97)00026-4 10.1002/for.814 10.1080/10789669.2005.10391123 10.1016/j.ymssp.2008.06.009 10.1109/NAFIPS.2005.1548498 10.1016/j.ijfatigue.2006.03.004 10.1016/j.ress.2006.05.001 10.1109/INDIN.2006.275836 10.1016/0951-8320(94)90010-8 10.1016/j.ress.2005.09.003 10.1016/j.commatsci.2008.02.028 10.1109/AERO.1999.789761 10.1016/j.jsv.2007.01.001 10.1016/0143-8174(85)90038-1 10.1109/6.158640 10.1243/0954408001530146 10.1016/j.compind.2006.02.014 10.1016/0026-2714(91)90225-V 10.1016/S0377-2217(96)00317-7 10.1111/j.2517-6161.1994.tb01994.x 10.1108/13552519910282647 10.1007/s005210050009 10.1109/21.52551 10.1108/EUM0000000006007 10.1109/AERO.2006.1656122 10.1109/AERO.2005.1559666 10.1090/S0002-9904-1967-11751-8 10.1109/ICEMI.2007.4350749 10.1080/09537280412331309208 10.1002/1520-6750(198912)36:6<765::AID-NAV3220360603>3.0.CO;2-C 10.1109/24.210287 10.1007/s00170-004-2131-6 10.1016/j.ress.2007.03.019 10.1016/S0378-3758(02)00091-5 10.1016/S0957-4174(98)00053-0 10.1109/72.329697 10.1016/0143-8174(85)90070-8 10.1017/S0890060401154089 10.1023/A:1018513006083 10.1214/aoms/1177697196 10.2307/2348057 10.1109/TSMCA.2007.902621 10.1016/S0890-6955(00)00112-7 10.1109/NAFIPS.2006.365465 10.1504/IJMPT.2004.003920 10.1057/palgrave.jors.2601261 10.1287/moor.28.2.382.14484 10.1016/S0951-8320(00)00092-2 10.1016/S0952-1976(03)00063-0 10.1109/TA.1964.4319640 10.1016/j.ymssp.2007.12.004 10.21236/ADA448747 10.1006/mssp.2000.1324 10.1016/j.ymssp.2008.12.006 10.1016/j.ndteint.2005.04.003 10.1080/01621459.1992.10475231 10.1016/j.ress.2008.07.002 10.1115/2000-GT-0030 10.1080/01621459.1991.10475148 10.1006/mssp.2000.1309 10.1080/01621459.2000.10474241 10.1016/j.ymssp.2005.09.012 10.1016/j.energy.2004.03.031 10.2140/pjm.1968.27.211 10.1016/j.ymssp.2008.08.004 10.1016/j.ress.2008.08.003 10.1109/AERO.2001.931317 10.1016/0925-5273(95)00061-5 10.1109/9.855552 10.1016/j.ymssp.2006.01.009 10.1016/j.ress.2006.04.016 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/j.ymssp.2010.11.018 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Business |
EISSN | 1096-1216 |
EndPage | 1836 |
ExternalDocumentID | 24105440 10_1016_j_ymssp_2010_11_018 S0888327010004218 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c366t-171f357cb210d40809271563eaac705ea3cc3f79b1c43c4b172295dee14fb3 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Fri Jul 11 01:23:20 EDT 2025 Mon Jul 21 09:13:27 EDT 2025 Thu Apr 24 23:06:18 EDT 2025 Tue Jul 01 05:20:43 EDT 2025 Fri Feb 23 02:25:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Remaining useful life (RUL) Maintenance Reliability Prognostics Production system Statistical analysis Probabilistic approach Model selection Durability Knowledge base Neural network Modeling Fuzzy logic Physical model Classification Strength |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-171f357cb210d40809271563eaac705ea3cc3f79b1c43c4b172295dee14fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671299701 |
PQPubID | 23500 |
PageCount | 34 |
ParticipantIDs | proquest_miscellaneous_1671299701 pascalfrancis_primary_24105440 crossref_citationtrail_10_1016_j_ymssp_2010_11_018 crossref_primary_10_1016_j_ymssp_2010_11_018 elsevier_sciencedirect_doi_10_1016_j_ymssp_2010_11_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-01 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | N.K. Sinha, M.M. Gupta, D.H. Rao, Dynamic neural networks: an overview, in: IEEE International Conference on Industrial Technology, 2000, pp. 491–496. Wang (bib80) 1997; 99 Jardine, Joseph, Banjevic (bib117) 1999; 5 Franco, Souza (bib90) 2002; 21 Makis, Jardine (bib134) 1992; 3 Vassilopoulos, Bedi (bib154) 2008; 43 Lowe, Zapart (bib151) 1999; 8 A. Hess, G. Calvello, P. Frith, Challenges, issues, and lessons learned chasing the "Big P", Real predictive prognostics, Part 1, Aerospace, in: 2005 IEEE Conference, 2005, pp. 3610–3619. Baxter, Bendell, Manning, Ryan (bib129) 1988; 21 Lewis (bib98) 1992 Lee, Kim, Hwang, Song (bib58) 2004; 276 Baum, Petrie (bib65) 1966; 37 Jardine, Buck, Banjevic, Joseph, Wiseman (bib118) 2001; 7 Rabiner (bib67) 1989; 77 Noortwijk (bib36) 2009; 94 Crevecoeur (bib39) 1993; 42 G. Weidl, A.L. Madsen, E. Dahlquist, Object oriented Bayesian networks for industrial process operation, in: Bayesian Modelling Applications Workshop Associated with the 19th Conference on Uncertainties in Artificial Intelligence, Acapulco Mexico, 2003, pp. 1–9, available online. Duane (bib37) 1964; 2 G.J. Kacprzynski, Sensor/Model Fusion for Adaptive Prognosis of Structural Corrosion Damage, United States, 2006, 6 pp. Burke, Ignizio (bib146) 1997; 8 T. Brotherton, A testbed for data fusion for engine diagnostics and prognostics, in: IEEE Aerospace Conference, Big Sky MT, 2000, pp. 163–171. Ertunc, Loparo, Ocak (bib74) 2001; 41 Ocak, Loparo, Discenzo (bib76) 2007; 302 Kallen, van Noortwijk (bib53) 2005; 90 Ray, Tangirala (bib85) 1996; 4 Phelps, Willett, Kirubarajan, Brideau (bib87) 2007; 37 Baum, Egon (bib64) 1967; 73 Lloyd, Hasselman, Paez (bib160) 2005 Maguluri, Zhang (bib41) 1994; 56 Kumar, Klefsjö (bib106) 1994; 44 Garga, McClintic, Campbell, Chih-Chung, Lebold, Hay, Byington (bib13) 2001 Lewis (bib45) 1986 Vlok, Coetzee, Banjevic, Jardine, Makis (bib120) 2002; 53 Cox (bib14) 1992 J. Luo, A. Bixby, K. Pattipati, L. Qiao, M. Kawamoto, S. Chigusa, An interacting multiple model approach to model-based prognostics, in: IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, United States, Institute of Electrical and Electronics Engineers Inc., 2003, pp. 189–194. Lee, Ni, Djurdjanovic, Qiu, Liao (bib102) 2006; 57 Dale (bib112) 1985; 10 Drury, Walker, Wightman, Bendell (bib128) 1988; 21 Hagan, Menhaj (bib147) 1994; 5 Papadopoulos, Edwards, Murray (bib149) 2001; 12 Yan, Koc, Lee (bib101) 2004; 76 Kumar, Westberg (bib121) 1997; 97 Isermann (bib162) 2006 Carlin, Chib (bib51) 1995; 57 Jiang, Makis, Jardine (bib125) 2001; 33 Bendell (bib7) 1985; 11 Swanson, Spencer, Arzoumanian (bib86) 2000; 14 Wu, Hu, Zhang (bib100) 2007 Cadini, Zio, Avram (bib96) 2009; 94 Makis, Jardine (bib115) 1991 Prentice, Williams, Peterson (bib132) 1981 M.J. Roemer, G.J. Kacprzynski, Advanced diagnostics and prognostics for gas turbine engine risk assessment, in: Aerospace Conference, Big Sky, MT, USA, IEEE, 2000, pp. 345–353. Baum, Petrie, Soules, Weiss (bib62) 1970; 41 Baruah, Chinnam (bib73) 2005; 43 Zemouri, Racoceanu, Zerhouni (bib143) 2003; 16 Liu, Makis, Jardine (bib124) 1995; 42 Miao, Makis (bib70) 2007; 21 Mazzuchi, Linzey, Bruning (bib130) 2008; 93 Pierce, Worden, Bezazi (bib141) 2008; 22 Z. Lei, L. ZXingshan, Y. Jinsong, G. ZhanBao, A genetic training algorithm of wavelet neural networks for fault prognostics in condition based maintenance, in: Proceedings of the Eighth International Conference on Electronic Measurement and Instruments, IEEE, 2007, pp. 584–589. Kwon, Kim (bib75) 1999; 12 Liu, Makis, Jardine (bib116) 1997 Tsui, Sun, Li, Sclabassi. (bib157) 1995 Tsang, Yeung, Jardine, Leung (bib131) 2006; 12 Reinertsen (bib42) 1996; 54 Smith, Coit, Liang (bib171) 2003 Chryssoloiuris, Lee, Ramsey (bib150) 1996; 7 Ansell, Philipps (bib109) 1997; 58 L.M. Maillart, E.A. Pohl, Introduction to Markov–Chain modeling, analysis and optimization, in: 2006 Annual Reliability and Maintainability Symposium, 2006. Ghahramani (bib50) 1997 Feng, Yang, Rao (bib23) 1998; 15 Bendell, Wightman, Walker (bib8) 1991; 34 Box, Jenkins (bib97) 1976 Niu, Yang (bib103) 2009; 23 Goode, Moore, Roylance (bib35) 2000; 214 Kalbfleisch, Prentice (bib108) 1980 Montgomery, Jefferis (bib60) 2007 Tsay (bib99) 2000; 95 Carnero (bib11) 2006; 91 Heckerman (bib49) 1995 Lugtigheid, Jardine, Jiang (bib10) 2007; 23 Makis, Jardine (bib123) 1991; 31 K. Dmitry, V. Dmitry, An algorithm for rule generation in fuzzy expert systems, in: Proceedings of the 17th International Conference on Pattern Recognition, IEEE Computer Society, 2004. S.A. Lewis, T.G. Edwards, Smart sensors and system health management tools for avionics and mechanical systems, in: Digital Avionics Systems Conference, 1997. Stoffer, Wall (bib93) 1991; 86 Romeu (bib29) 2001 Ansell, Philipps (bib9) 1989; 38 Makis, Jiang (bib111) 2003; 28 D.C. Swanson, A general prognostic tracking algorithm for predictive maintenance, in: IEEE Aerospace Conference, IEEE, 2001, pp. 2971–2977. Banjevic, Jardine (bib43) 2006; 17 E. Bechhoefer, A. Bernhard, D. He, P. Banerjee, Use of hidden semi-Markov models in the prognostics of shaft failure, Phoenix, AZ, United States, American Helicopter Society, Alexandria, VA, United States, 2006, pp. 1330–1335. Guo, Wang (bib84) 2006; 54 Wang, Golnaraghi, Ismail (bib155) 2004; 18 Rabiner, Juang (bib66) 1986; 3 Li, Wu, He, Fulei (bib77) 2005; 19 Krivtsov (bib127) 2007; 92 Djuric, Huang, Ghirmai (bib94) 2002; 50 Huang, Xi, Li, Richard Liu, Qiu, Lee (bib138) 2007; 21 Kothamasu, Huang, VerDuin (bib173) 2006; 28 Rausand, Hoyland (bib30) 2004 Bezazi, Pierce, Worden, Harkati (bib153) 2007; 29 Biagetti, Sciubba (bib12) 2004; 29 AKS (bib119) 2002 Kallen, van Noortwijk (bib57) 2006; 83 Mazzuchi, Soyer (bib110) 1989; 36 Cox, Oakes (bib105) 1984 Vassilopoulos, Georgopoulos, Dionysopoulos (bib140) 2007; 29 Elsayed, Zhang (bib107) 2007; 92 Montgomery, Lindquist, Garnero, Chevalier, Jardine (bib59) 2006 Dasgupta, Pecht (bib164) 1991; 40 Welch, Bishop (bib81) 2006 Clarotti, Spizzichino (bib46) 1989; 38 K.M. Goh, B. Tjahjono, T. Bainers, S.A. Subramaniam, Review of research in manufacturing prognostics, in: 2006 IEEE International Conference on Industrial Informatics, IEEE, 2006, pp. 1–6. ISO 13381-1, Condition Monitoring and Diagnostics of Machines – Prognostics – Part 1: General Guidelines: International Standards Organization, 2004. Jardine, Ralston, Reid, Stafford (bib114) 1989; 5 Jardine, Tsang (bib33) 2006 Dale (bib126) 1991; 34 Katipamula, Brambley (bib169) 2005; 11 Jardine, AHC (bib24) 2006 Blischke, Murthy (bib27) 2000 Samrout, Châtelet, Kouta, Chebbo (bib122) 2009; 94 Baum, Sell (bib63) 1968; 27 Yuen, Zhu, Tang (bib44) 2003; 113 Todinov (bib31) 2005 Dong, He (bib79) 2007; 21 Dey, Stori (bib47) 2005; 45 Luo, Namburu, Pattipati, Qiao, Kawamoto, Chigusa (bib5) 2003 Jardine, Lin, Banjevic (bib172) 2006; 20 Herzog, Marwala, Heyns (bib148) 2009; 94 Satish, Sarma (bib137) 2005 Gordon, Salmond, Smith (bib92) 1993; 140 A. Heng, A.C.C. Tan, J. Mathew, N. Montgomery, D. Banjevic, A.K.S. Jardine, Intelligent condition-based prediction of machinery reliability, Mechanical Systems and Signal Processing 23 (5) (2009) 1600–1614. Finkelstein, Esaulova (bib28) 2001; 71 Carlin, Polson, Stoffer (bib89) 1992; 87 O'Connor (bib34) 2004 Majidian, Saidi (bib21) 2007; 29 Oakes, Dasu (bib40) 1990; 77 S.J. Engel, B.J. Gilmartin, K. Bongort, A. Hess, Prognostics, the real issues involved with predicting life remaining, in: Aerospace Conference Proceedings, vol. 6, IEEE, 2000, pp. 457–469. Langseth, Portinale (bib48) 2007; 92 Makis, Jardine (bib133) 1992; 30 Sutton (bib145) 1992; 8 T. Khawaja, G. Vachtsevanos, B. Wu, Reasoning about uncertainty in prognosis: a confidence prediction neural network approach, in: Annual Meeting of the North American Fuzzy Information Processing Society, IEEE, 2005, pp. 7–12. Wang, Vachtsevanos (bib158) 2001; 15 L.C. Jaw, Neural networks for model-based prognostics, in: IEEE Aerospace Conference, IEEE, Aspen, USA, 1999, pp. 21–28. Kwan, Zhang, Xu, Haynes (bib71) 2003 Cox (bib104) 1972; 34 A. Hess, G. Calvello, P. Frith, S.J. Engel, D. Hoitsma, Challenges, issues, and lessons learned chasing the"Big P": real predictive prognostics, Part 2, in: Aerospace Conference, IEEE, 2006, pp. 1–19. Chinnam, Baruah (bib18) 2004; 20 T. Brotherton, A testbed for data fusion for engine diagnostics and prognostics, in: IEEE Aerospace Conference, Big Sky MT, 2002, pp. 8–15. Lee (bib16) 1990; 20 Scarf (bib1) 1997; 99 Vachtsevanos, Lewis, Roemer, Hess, Wu (bib4) 2006 Heng, Zhang, Tan, Mathew (bib166) 2009; 23 Gebraeel, Lawley, Liu, Parmeshwaran (bib136) 2004; 51 Line, Clements (bib20) 2005 Kelly, Smith (bib52) 2009; 94 D.P. Filev, T. Finn, Real time novelty detection modeling for machine health prognostics, IEEE, Montreal, Quebec, Canada, 2006, 6 pp. Orchard, Wu, Vachtsevanos (bib95) 2005 Banjevic, Jardine, Makis, Ennis (bib135) 2001; 39 Makis (bib113) 1995; 41 D. He, W. Shenliang, P. Banerjee, E. Bechhoefer, Probabilistic model based algorithms for prognostics, in: IEEE Aerospace Conference Proceedings, Big Sky, MT, United States, IEEE Computer Society, Piscataway, NJ, United States, 2006, pp. 1–10. Flanagan, Andersson, Surland (bib142) 1997 ADS (bib26) 1986 Baum (bib61) 1972; 3 A. Rodriguez, E. Ruiz, Bootstrap Prediction Intervals in State Space models, Statistics and Econometrics Working Papers, Universidad Carlos III, Departamento de Estadística y Econometría, 2008. Shimanek (bib22) 2003 Smith (bib32) 2005 Lee (bib38) 1980; 22 Bunks, McCarthy, Al-Ani (bib72) 2000; 14 Purushotham, Narayanan, Prasad (bib78) 2005; 38 Ito, Xiong (bib82) 2000; 45 Haug (bib83) 2005 Institute AP (bib165) 2000 Weidl, Madsen, Israelson (bib54) 2005; 29 Vachtsevanos (10.1016/j.ymssp.2010.11.018_bib4) 2006 10.1016/j.ymssp.2010.11.018_bib69 Lee (10.1016/j.ymssp.2010.11.018_bib102) 2006; 57 10.1016/j.ymssp.2010.11.018_bib167 10.1016/j.ymssp.2010.11.018_bib68 10.1016/j.ymssp.2010.11.018_bib168 10.1016/j.ymssp.2010.11.018_bib163 10.1016/j.ymssp.2010.11.018_bib161 Montgomery (10.1016/j.ymssp.2010.11.018_bib60) 2007 Romeu (10.1016/j.ymssp.2010.11.018_bib29) 2001 Dasgupta (10.1016/j.ymssp.2010.11.018_bib164) 1991; 40 Duane (10.1016/j.ymssp.2010.11.018_bib37) 1964; 2 Smith (10.1016/j.ymssp.2010.11.018_bib171) 2003 Blischke (10.1016/j.ymssp.2010.11.018_bib27) 2000 Lee (10.1016/j.ymssp.2010.11.018_bib16) 1990; 20 Cadini (10.1016/j.ymssp.2010.11.018_bib96) 2009; 94 Purushotham (10.1016/j.ymssp.2010.11.018_bib78) 2005; 38 Ghahramani (10.1016/j.ymssp.2010.11.018_bib50) 1997 Wu (10.1016/j.ymssp.2010.11.018_bib100) 2007 10.1016/j.ymssp.2010.11.018_bib56 10.1016/j.ymssp.2010.11.018_bib55 Luo (10.1016/j.ymssp.2010.11.018_bib5) 2003 10.1016/j.ymssp.2010.11.018_bib174 Ito (10.1016/j.ymssp.2010.11.018_bib82) 2000; 45 10.1016/j.ymssp.2010.11.018_bib170 Li (10.1016/j.ymssp.2010.11.018_bib77) 2005; 19 Huang (10.1016/j.ymssp.2010.11.018_bib138) 2007; 21 Montgomery (10.1016/j.ymssp.2010.11.018_bib59) 2006 Lugtigheid (10.1016/j.ymssp.2010.11.018_bib10) 2007; 23 Yuen (10.1016/j.ymssp.2010.11.018_bib44) 2003; 113 Flanagan (10.1016/j.ymssp.2010.11.018_bib142) 1997 Bendell (10.1016/j.ymssp.2010.11.018_bib7) 1985; 11 Baum (10.1016/j.ymssp.2010.11.018_bib63) 1968; 27 Reinertsen (10.1016/j.ymssp.2010.11.018_bib42) 1996; 54 Vassilopoulos (10.1016/j.ymssp.2010.11.018_bib140) 2007; 29 Dong (10.1016/j.ymssp.2010.11.018_bib79) 2007; 21 Baruah (10.1016/j.ymssp.2010.11.018_bib73) 2005; 43 Sutton (10.1016/j.ymssp.2010.11.018_bib145) 1992; 8 Wang (10.1016/j.ymssp.2010.11.018_bib158) 2001; 15 10.1016/j.ymssp.2010.11.018_bib88 Elsayed (10.1016/j.ymssp.2010.11.018_bib107) 2007; 92 10.1016/j.ymssp.2010.11.018_bib144 Tsay (10.1016/j.ymssp.2010.11.018_bib99) 2000; 95 Todinov (10.1016/j.ymssp.2010.11.018_bib31) 2005 Finkelstein (10.1016/j.ymssp.2010.11.018_bib28) 2001; 71 Smith (10.1016/j.ymssp.2010.11.018_bib32) 2005 Kwon (10.1016/j.ymssp.2010.11.018_bib75) 1999; 12 Baxter (10.1016/j.ymssp.2010.11.018_bib129) 1988; 21 Jardine (10.1016/j.ymssp.2010.11.018_bib117) 1999; 5 Carlin (10.1016/j.ymssp.2010.11.018_bib89) 1992; 87 Garga (10.1016/j.ymssp.2010.11.018_bib13) 2001 Jiang (10.1016/j.ymssp.2010.11.018_bib125) 2001; 33 Guo (10.1016/j.ymssp.2010.11.018_bib84) 2006; 54 Orchard (10.1016/j.ymssp.2010.11.018_bib95) 2005 Makis (10.1016/j.ymssp.2010.11.018_bib115) 1991 Kelly (10.1016/j.ymssp.2010.11.018_bib52) 2009; 94 10.1016/j.ymssp.2010.11.018_bib91 Kalbfleisch (10.1016/j.ymssp.2010.11.018_bib108) 1980 Institute AP (10.1016/j.ymssp.2010.11.018_bib165) 2000 Franco (10.1016/j.ymssp.2010.11.018_bib90) 2002; 21 10.1016/j.ymssp.2010.11.018_bib156 Tsang (10.1016/j.ymssp.2010.11.018_bib131) 2006; 12 Carlin (10.1016/j.ymssp.2010.11.018_bib51) 1995; 57 Djuric (10.1016/j.ymssp.2010.11.018_bib94) 2002; 50 Carnero (10.1016/j.ymssp.2010.11.018_bib11) 2006; 91 10.1016/j.ymssp.2010.11.018_bib152 Kwan (10.1016/j.ymssp.2010.11.018_bib71) 2003 Baum (10.1016/j.ymssp.2010.11.018_bib64) 1967; 73 Majidian (10.1016/j.ymssp.2010.11.018_bib21) 2007; 29 Lloyd (10.1016/j.ymssp.2010.11.018_bib160) 2005 Clarotti (10.1016/j.ymssp.2010.11.018_bib46) 1989; 38 Cox (10.1016/j.ymssp.2010.11.018_bib105) 1984 Miao (10.1016/j.ymssp.2010.11.018_bib70) 2007; 21 Ansell (10.1016/j.ymssp.2010.11.018_bib109) 1997; 58 Drury (10.1016/j.ymssp.2010.11.018_bib128) 1988; 21 Ray (10.1016/j.ymssp.2010.11.018_bib85) 1996; 4 Makis (10.1016/j.ymssp.2010.11.018_bib111) 2003; 28 Feng (10.1016/j.ymssp.2010.11.018_bib23) 1998; 15 Scarf (10.1016/j.ymssp.2010.11.018_bib1) 1997; 99 O'Connor (10.1016/j.ymssp.2010.11.018_bib34) 2004 Swanson (10.1016/j.ymssp.2010.11.018_bib86) 2000; 14 Prentice (10.1016/j.ymssp.2010.11.018_bib132) 1981 Jardine (10.1016/j.ymssp.2010.11.018_bib33) 2006 10.1016/j.ymssp.2010.11.018_bib159 10.1016/j.ymssp.2010.11.018_bib25 Haug (10.1016/j.ymssp.2010.11.018_bib83) 2005 Niu (10.1016/j.ymssp.2010.11.018_bib103) 2009; 23 Noortwijk (10.1016/j.ymssp.2010.11.018_bib36) 2009; 94 Bunks (10.1016/j.ymssp.2010.11.018_bib72) 2000; 14 Wang (10.1016/j.ymssp.2010.11.018_bib155) 2004; 18 Makis (10.1016/j.ymssp.2010.11.018_bib123) 1991; 31 Biagetti (10.1016/j.ymssp.2010.11.018_bib12) 2004; 29 Baum (10.1016/j.ymssp.2010.11.018_bib62) 1970; 41 Kumar (10.1016/j.ymssp.2010.11.018_bib106) 1994; 44 Zemouri (10.1016/j.ymssp.2010.11.018_bib143) 2003; 16 Dey (10.1016/j.ymssp.2010.11.018_bib47) 2005; 45 Chinnam (10.1016/j.ymssp.2010.11.018_bib18) 2004; 20 Papadopoulos (10.1016/j.ymssp.2010.11.018_bib149) 2001; 12 Ertunc (10.1016/j.ymssp.2010.11.018_bib74) 2001; 41 Lewis (10.1016/j.ymssp.2010.11.018_bib98) 1992 Kumar (10.1016/j.ymssp.2010.11.018_bib121) 1997; 97 Lowe (10.1016/j.ymssp.2010.11.018_bib151) 1999; 8 Phelps (10.1016/j.ymssp.2010.11.018_bib87) 2007; 37 Vlok (10.1016/j.ymssp.2010.11.018_bib120) 2002; 53 Jardine (10.1016/j.ymssp.2010.11.018_bib114) 1989; 5 Banjevic (10.1016/j.ymssp.2010.11.018_bib135) 2001; 39 Burke (10.1016/j.ymssp.2010.11.018_bib146) 1997; 8 Heng (10.1016/j.ymssp.2010.11.018_bib166) 2009; 23 Baum (10.1016/j.ymssp.2010.11.018_bib61) 1972; 3 10.1016/j.ymssp.2010.11.018_bib19 10.1016/j.ymssp.2010.11.018_bib17 Stoffer (10.1016/j.ymssp.2010.11.018_bib93) 1991; 86 Liu (10.1016/j.ymssp.2010.11.018_bib124) 1995; 42 10.1016/j.ymssp.2010.11.018_bib15 Rausand (10.1016/j.ymssp.2010.11.018_bib30) 2004 Vassilopoulos (10.1016/j.ymssp.2010.11.018_bib154) 2008; 43 Maguluri (10.1016/j.ymssp.2010.11.018_bib41) 1994; 56 Ocak (10.1016/j.ymssp.2010.11.018_bib76) 2007; 302 Bendell (10.1016/j.ymssp.2010.11.018_bib8) 1991; 34 Makis (10.1016/j.ymssp.2010.11.018_bib113) 1995; 41 Katipamula (10.1016/j.ymssp.2010.11.018_bib169) 2005; 11 Banjevic (10.1016/j.ymssp.2010.11.018_bib43) 2006; 17 10.1016/j.ymssp.2010.11.018_bib139 Crevecoeur (10.1016/j.ymssp.2010.11.018_bib39) 1993; 42 Gordon (10.1016/j.ymssp.2010.11.018_bib92) 1993; 140 Makis (10.1016/j.ymssp.2010.11.018_bib134) 1992; 3 Bezazi (10.1016/j.ymssp.2010.11.018_bib153) 2007; 29 10.1016/j.ymssp.2010.11.018_bib3 Chryssoloiuris (10.1016/j.ymssp.2010.11.018_bib150) 1996; 7 10.1016/j.ymssp.2010.11.018_bib2 Rabiner (10.1016/j.ymssp.2010.11.018_bib66) 1986; 3 Langseth (10.1016/j.ymssp.2010.11.018_bib48) 2007; 92 Dale (10.1016/j.ymssp.2010.11.018_bib112) 1985; 10 Kothamasu (10.1016/j.ymssp.2010.11.018_bib173) 2006; 28 Dale (10.1016/j.ymssp.2010.11.018_bib126) 1991; 34 Lee (10.1016/j.ymssp.2010.11.018_bib38) 1980; 22 AKS (10.1016/j.ymssp.2010.11.018_bib119) 2002 Satish (10.1016/j.ymssp.2010.11.018_bib137) 2005 Cox (10.1016/j.ymssp.2010.11.018_bib14) 1992 Gebraeel (10.1016/j.ymssp.2010.11.018_bib136) 2004; 51 Welch (10.1016/j.ymssp.2010.11.018_bib81) 2006 Baum (10.1016/j.ymssp.2010.11.018_bib65) 1966; 37 ADS (10.1016/j.ymssp.2010.11.018_bib26) 1986 Herzog (10.1016/j.ymssp.2010.11.018_bib148) 2009; 94 Shimanek (10.1016/j.ymssp.2010.11.018_bib22) 2003 Mazzuchi (10.1016/j.ymssp.2010.11.018_bib130) 2008; 93 Pierce (10.1016/j.ymssp.2010.11.018_bib141) 2008; 22 Lee (10.1016/j.ymssp.2010.11.018_bib58) 2004; 276 Line (10.1016/j.ymssp.2010.11.018_bib20) 2005 Krivtsov (10.1016/j.ymssp.2010.11.018_bib127) 2007; 92 Jardine (10.1016/j.ymssp.2010.11.018_bib172) 2006; 20 Liu (10.1016/j.ymssp.2010.11.018_bib116) 1997 10.1016/j.ymssp.2010.11.018_bib6 Ansell (10.1016/j.ymssp.2010.11.018_bib9) 1989; 38 Rabiner (10.1016/j.ymssp.2010.11.018_bib67) 1989; 77 Jardine (10.1016/j.ymssp.2010.11.018_bib24) 2006 Heckerman (10.1016/j.ymssp.2010.11.018_bib49) 1995 Cox (10.1016/j.ymssp.2010.11.018_bib104) 1972; 34 Isermann (10.1016/j.ymssp.2010.11.018_bib162) 2006 Oakes (10.1016/j.ymssp.2010.11.018_bib40) 1990; 77 Makis (10.1016/j.ymssp.2010.11.018_bib133) 1992; 30 Lewis (10.1016/j.ymssp.2010.11.018_bib45) 1986 Goode (10.1016/j.ymssp.2010.11.018_bib35) 2000; 214 Wang (10.1016/j.ymssp.2010.11.018_bib80) 1997; 99 Mazzuchi (10.1016/j.ymssp.2010.11.018_bib110) 1989; 36 Jardine (10.1016/j.ymssp.2010.11.018_bib118) 2001; 7 Kallen (10.1016/j.ymssp.2010.11.018_bib57) 2006; 83 Samrout (10.1016/j.ymssp.2010.11.018_bib122) 2009; 94 Box (10.1016/j.ymssp.2010.11.018_bib97) 1976 Yan (10.1016/j.ymssp.2010.11.018_bib101) 2004; 76 Kallen (10.1016/j.ymssp.2010.11.018_bib53) 2005; 90 Hagan (10.1016/j.ymssp.2010.11.018_bib147) 1994; 5 Weidl (10.1016/j.ymssp.2010.11.018_bib54) 2005; 29 Tsui (10.1016/j.ymssp.2010.11.018_bib157) 1995 |
References_xml | – year: 2000 ident: bib27 article-title: Reliability: Modelling publication-title: Prediction and Optimization – volume: 57 year: 1995 ident: bib51 article-title: Bayesian model choice via Markov chain Monte Carlo methods publication-title: Journal of the Royal Statistical Society B – volume: 20 start-page: 404 year: 1990 end-page: 435 ident: bib16 article-title: Fuzzy logic in control systems, Parts I and II publication-title: IEEE Transactions on Systems, Man and Cybernetics – reference: T. Brotherton, A testbed for data fusion for engine diagnostics and prognostics, in: IEEE Aerospace Conference, Big Sky MT, 2002, pp. 8–15. – year: 2004 ident: bib34 article-title: Practical Reliability Engineering – volume: 27 start-page: 211 year: 1968 end-page: 277 ident: bib63 article-title: Growth functions for transformations on manifolds publication-title: Pacific Journal of Mathematics – volume: 87 start-page: 418 year: 1992 ident: bib89 article-title: A Monte-Carlo approach to nonnormal and nonlinear state-space modeling publication-title: Journal of the American Statistical Association – volume: 7 start-page: 286 year: 2001 end-page: 301 ident: bib118 article-title: Optimizing a mine haul truck wheel motors' condition monitoring program: use of proportional hazards modeling publication-title: Journal of Quality in Maintenance Engineering – year: 2005 ident: bib95 article-title: A particle filtering framework for failure prognosis, World Tribology Congress III, Washington, DC, United States – volume: 23 start-page: 724 year: 2009 end-page: 739 ident: bib166 article-title: Rotating machinery prognostics: state of the art, challenges and opportunities publication-title: Mechanical Systems and Signal Processing – reference: A. Heng, A.C.C. Tan, J. Mathew, N. Montgomery, D. Banjevic, A.K.S. Jardine, Intelligent condition-based prediction of machinery reliability, Mechanical Systems and Signal Processing 23 (5) (2009) 1600–1614. – volume: 54 start-page: 23 year: 1996 end-page: 34 ident: bib42 article-title: Residual life of technical systems; diagnosis, prediction and life extension publication-title: Reliability Engineering and System Safety – volume: 214 start-page: 109 year: 2000 end-page: 122 ident: bib35 article-title: Plant machinery working life prediction method utilizing reliability and condition-monitoring data publication-title: Proceedings of the IMechE, Part E: Journal of Process Mechanical Engineering – year: 2007 ident: bib60 article-title: The Effect of Minor Maintenance on Condition-Based Maintenance Models – year: 1997 ident: bib142 article-title: Effective automatic expert systems for dynamic predictive maintenance applications publication-title: International Gas Turbine and Aerospace Congress – reference: D.C. Swanson, A general prognostic tracking algorithm for predictive maintenance, in: IEEE Aerospace Conference, IEEE, 2001, pp. 2971–2977. – volume: 73 start-page: 360 year: 1967 end-page: 363 ident: bib64 article-title: An inequality with applications to statistical estimation for probabilitic functions of a Markov process and to a model for ecology publication-title: Bulletin of the American Meteorological Society – volume: 12 start-page: 491 year: 1999 end-page: 501 ident: bib75 article-title: Accident identification in nuclear power plants using hidden Markov models publication-title: Engineering Applications of Artificial Intelligence – volume: 99 start-page: 493 year: 1997 end-page: 506 ident: bib1 article-title: On the application of mathematical models in maintenance publication-title: European Journal of Operational Research – volume: 20 start-page: 166 year: 2004 end-page: 179 ident: bib18 article-title: A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems publication-title: International Journal of Materials and Product Technology – volume: 3 start-page: 169 year: 1992 end-page: 175 ident: bib134 article-title: Computation of optimal policies in replacement models publication-title: IMA Journal of Mathematics Applied in Business and Industry – volume: 53 start-page: 193 year: 2002 end-page: 202 ident: bib120 article-title: Optimal component replacement decisions using vibration monitoring and the proportional-hazards model publication-title: Journal of the Operational Research Society – volume: 12 start-page: 37 year: 2006 end-page: 51 ident: bib131 article-title: Data management for CBM optimization publication-title: Journal of Quality in Maintenance Engineering – volume: 11 start-page: 175 year: 1985 end-page: 183 ident: bib7 article-title: Proportional hazards modelling in reliability assessment publication-title: Reliability Engineering – volume: 94 start-page: 44 year: 2009 end-page: 52 ident: bib122 article-title: Optimization of maintenance policy using the proportional hazard model publication-title: Reliability Engineering and System Safety – volume: 28 start-page: 1012 year: 2006 end-page: 1024 ident: bib173 article-title: System health monitoring and prognostics—a review of current paradigms and practices publication-title: International Journal of Advanced Manufacturing Technology – volume: 22 start-page: 1395 year: 2008 end-page: 1411 ident: bib141 article-title: Uncertainty analysis of a neural network used for fatigue lifetime prediction publication-title: Mechanical Systems and Signal Processing – volume: 12 start-page: 1278 year: 2001 end-page: 1287 ident: bib149 article-title: Confidence estimation methods for neural networks: a practical comparison publication-title: IEEE Transactions on Neural Networks – reference: S.A. Lewis, T.G. Edwards, Smart sensors and system health management tools for avionics and mechanical systems, in: Digital Avionics Systems Conference, 1997. – year: 2005 ident: bib137 article-title: A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors publication-title: IEEE Power Engineering Society General Meeting – year: 2002 ident: bib119 article-title: Optimizing Condition Based Maintenance Decisions – reference: Z. Lei, L. ZXingshan, Y. Jinsong, G. ZhanBao, A genetic training algorithm of wavelet neural networks for fault prognostics in condition based maintenance, in: Proceedings of the Eighth International Conference on Electronic Measurement and Instruments, IEEE, 2007, pp. 584–589. – year: 1986 ident: bib45 publication-title: Optimal Estimation: With an Introduction to Stochastic Control Theory – volume: 45 start-page: 75 year: 2005 end-page: 91 ident: bib47 article-title: A Bayesian network approach to root cause diagnosis of process variations publication-title: International Journal of Machine Tools and Manufacture – volume: 3 start-page: 4 year: 1986 end-page: 16 ident: bib66 article-title: An introduction to hidden Markov models publication-title: ASSP Magazine – volume: 14 start-page: 597 year: 2000 end-page: 612 ident: bib72 article-title: Condition based maintenance of machines using hidden Markov models publication-title: Mechanical Systems and Signal Processing – volume: 92 start-page: 92 year: 2007 end-page: 108 ident: bib48 article-title: Bayesian networks in reliability publication-title: Reliability Engineering and System Safety – volume: 94 start-page: 2 year: 2009 end-page: 21 ident: bib36 article-title: A survey of the application of gamma processes in maintenance publication-title: Reliability Engineering and System Safety – volume: 17 start-page: 115 year: 2006 end-page: 130 ident: bib43 article-title: Calculation of reliability function and remaining useful life for a Markov failure time process publication-title: IMA Journal Management Mathematics – volume: 94 start-page: 479 year: 2009 end-page: 789 ident: bib148 article-title: Machine and component residual life estimation through the application of neural networks publication-title: Reliability Engineering and System Safety – volume: 15 start-page: 383 year: 1998 end-page: 390 ident: bib23 article-title: Fuzzy expert system for real-time process condition monitoring and incident prevention publication-title: Expert Systems with Applications – volume: 21 start-page: 197 year: 1988 end-page: 214 ident: bib128 article-title: Proportional hazards modelling in the analysis of computer systems reliability publication-title: Reliability Engineering and System Safety – volume: 34 start-page: 35 year: 1991 end-page: 53 ident: bib8 article-title: Applying proportional hazards modelling in reliability publication-title: Reliability Engineering and System Safety – year: 2003 ident: bib171 article-title: A neural network approach to condition based maintenance: case study of airport ground transportation vehicles publication-title: IMA Journal Management Mathematics on Maintenance, Reliability and Replacement – year: 1997 ident: bib50 article-title: Learning Dynamic Bayesian Networks – volume: 45 start-page: 910 year: 2000 end-page: 927 ident: bib82 article-title: Gaussian filters for nonlinear filtering problems publication-title: IEEE Transactions on Automatic Control – volume: 91 start-page: 945 year: 2006 end-page: 963 ident: bib11 article-title: An evaluation system of the setting up of predictive maintenance programmes publication-title: Reliability Engineering and System Safety – volume: 8 start-page: 157 year: 1997 end-page: 165 ident: bib146 article-title: A practical overview of neural networks publication-title: Journal of Intelligent Manufacturing – volume: 15 start-page: 349 year: 2001 end-page: 365 ident: bib158 article-title: Fault prognostics using dynamic wavelet neural networks publication-title: Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM – reference: G.J. Kacprzynski, Sensor/Model Fusion for Adaptive Prognosis of Structural Corrosion Damage, United States, 2006, 6 pp. – volume: 86 start-page: 1024 year: 1991 end-page: 1033 ident: bib93 article-title: Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter publication-title: Journal of the American Statistical Association – volume: 5 start-page: 192 year: 1999 end-page: 202 ident: bib117 article-title: Optimizing condition-based maintenance decisions for equipment subject to vibration monitoring publication-title: Journal of Quality in Maintenance Engineering – volume: 76 start-page: 796 year: 2004 end-page: 801 ident: bib101 article-title: A prognostic algorithm for machine performance assessment and its application publication-title: Production Planning and Control – start-page: 58 year: 1992 end-page: 61 ident: bib14 article-title: Fuzzy fundamentals publication-title: IEEE Spectrum – volume: 83 start-page: 249 year: 2006 end-page: 255 ident: bib57 article-title: Optimal periodic inspection of a deterioration process with sequential condition states publication-title: International Journal of Pressure Vessels and Piping – volume: 29 start-page: 738 year: 2007 end-page: 747 ident: bib153 article-title: Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network publication-title: International Journal of Fatigue – volume: 34 start-page: 91 year: 1991 end-page: 103 ident: bib126 article-title: The assessment of software reliability publication-title: Reliability Engineering and System Safety – year: 2003 ident: bib5 article-title: Model-Based Prognostic Techniques, Anaheim, CA, United States: 2003 – volume: 28 start-page: 382 year: 2003 ident: bib111 article-title: Optimal replacement under partial observations publication-title: Mathematics of Operations Research – volume: 21 start-page: 193 year: 2007 end-page: 207 ident: bib138 article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods publication-title: Mechanical Systems and Signal Processing – volume: 5 start-page: 989 year: 1994 end-page: 993 ident: bib147 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Transactions on Neural Networks – year: 1997 ident: bib116 article-title: Joint scheduling of the optimal tool replacement times and optimal operation sequencing in a flexible manufacturing system – year: 2004 ident: bib30 publication-title: System Reliability Theory: Models, Statistical Methods and Applications – year: 2007 ident: bib100 article-title: Prognostics of machine health condition using an improved ARIMA-based prediction method – volume: 93 start-page: 722 year: 2008 end-page: 731 ident: bib130 article-title: A paired comparison experiment for gathering expert judgment for an aircraft wiring risk assessment publication-title: Reliability Engineering and System Safety – volume: 41 start-page: 1363 year: 2001 end-page: 1384 ident: bib74 article-title: Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs) publication-title: International Journal of Machine Tools and Manufacture – volume: 14 start-page: 789 year: 2000 end-page: 803 ident: bib86 article-title: Prognostic modelling of crack growth in a tensioned steel band publication-title: Mechanical Systems and Signal Processing – volume: 90 start-page: 177 year: 2005 end-page: 185 ident: bib53 article-title: Optimal maintenance decisions under imperfect inspection publication-title: Reliability Engineering and System Safety – volume: 94 start-page: 752 year: 2009 end-page: 758 ident: bib96 article-title: Model-based Monte Carlo state estimation for condition-based component replacement publication-title: Reliability Engineering and System Safety – reference: L.C. Jaw, Neural networks for model-based prognostics, in: IEEE Aerospace Conference, IEEE, Aspen, USA, 1999, pp. 21–28. – start-page: 718 year: 1991 ident: bib115 article-title: Optimal replacement of a production system. A proportional hazards model publication-title: Proceedings of the Transformation of Science and Technology into Productive Power – year: 2001 ident: bib13 article-title: Hybrid Reasoning for Prognostic Learning in CBM Systems – year: 2005 ident: bib83 article-title: A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes – volume: 50 start-page: 345 year: 2002 end-page: 356 ident: bib94 article-title: Perfect sampling: a review and applications to signal processing publication-title: IEEE Transactions on Signal Processing – volume: 51 start-page: 694 year: 2004 end-page: 700 ident: bib136 article-title: Residual life predictions from vibration-based degradation signals: a neural network approach publication-title: IEEE Transactions on Industrial Electronics – volume: 97 start-page: 507 year: 1997 end-page: 515 ident: bib121 article-title: Maintenance scheduling under age replacement policy using proportional hazards model and TTT-plotting publication-title: European Journal of Operational Research – volume: 113 start-page: 685 year: 2003 end-page: 698 ident: bib44 article-title: On the mean residual life regression model publication-title: Journal of Statistical Planning and Inference – year: 1995 ident: bib157 article-title: wavelet based neural network for prediction of ICP signal publication-title: IEEE Engineering in Medicine and Biology – volume: 42 start-page: 148 year: 1993 end-page: 155 ident: bib39 article-title: A model for the integrity assessment of ageing repairable systems publication-title: IEEE Transactions on Reliability – year: 2006 ident: bib24 article-title: Maintenance, Replacement, and Reliability Theory and Applications – year: 2000 ident: bib165 article-title: API581. Risk Based Inspection—Base Resource Document – volume: 4 start-page: 443 year: 1996 end-page: 451 ident: bib85 article-title: Stochastic modeling of fatigue crack dynamics for on-line failure prognostics publication-title: IEEE Transactions on Control Systems Technology – volume: 30 start-page: 172 year: 1992 end-page: 183 ident: bib133 article-title: Optimal replacement in the proportional hazards model publication-title: INFOR – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib67 article-title: Tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE – volume: 41 start-page: 249 year: 1995 end-page: 256 ident: bib113 article-title: Optimal replacement of a tool subject to random failure publication-title: International Journal of Production Economics – volume: 92 start-page: 549 year: 2007 end-page: 551 ident: bib127 article-title: Recent advances in theory and applications of stochastic point process models in reliability engineering publication-title: Reliability Engineering and System Safety – volume: 38 start-page: 379 year: 1989 end-page: 382 ident: bib46 article-title: The Bayes predictive approach in reliability theory publication-title: IEEE Transactions on Reliability – volume: 94 start-page: 628 year: 2009 end-page: 643 ident: bib52 article-title: Bayesian inference in probabilistic risk assessment—the current state of the art publication-title: Reliability Engineering and System Safety – volume: 42 start-page: 1063 year: 1995 ident: bib124 article-title: Replacement model with overhauls and repairs publication-title: Naval Research Logistics – volume: 18 start-page: 813 year: 2004 end-page: 831 ident: bib155 article-title: Prognosis of machine health conditions using neuro-fuzzy systems publication-title: Mechanical Systems and Signal Processing – volume: 8 start-page: 77 year: 1999 end-page: 85 ident: bib151 article-title: Point-wise confidence interval estimation by neural networks: a comparative study based on automotive engine calibration publication-title: Neural Computing and Applications – reference: G. Weidl, A.L. Madsen, E. Dahlquist, Object oriented Bayesian networks for industrial process operation, in: Bayesian Modelling Applications Workshop Associated with the 19th Conference on Uncertainties in Artificial Intelligence, Acapulco Mexico, 2003, pp. 1–9, available online. – year: 2006 ident: bib59 article-title: Reliability Functions and Optimal Decisions Using Condition Data for EDF Primary Pumps – year: 2005 ident: bib20 article-title: A systematic approach for developing prognostic algorithms on large complex systems – volume: 57 start-page: 476 year: 2006 end-page: 489 ident: bib102 article-title: Intelligent prognostics tools and e-maintenance publication-title: Computers in Industry – volume: 43 start-page: 1086 year: 2008 end-page: 1093 ident: bib154 article-title: Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates publication-title: Computational Materials Science – volume: 41 start-page: 164 year: 1970 end-page: 171 ident: bib62 article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Annals of Mathematical Statistics – reference: E. Bechhoefer, A. Bernhard, D. He, P. Banerjee, Use of hidden semi-Markov models in the prognostics of shaft failure, Phoenix, AZ, United States, American Helicopter Society, Alexandria, VA, United States, 2006, pp. 1330–1335. – volume: 29 start-page: 20 year: 2007 end-page: 29 ident: bib140 article-title: Artificial neural networks in spectrum fatigue life prediction of composite materials publication-title: International Journal of Fatigue – volume: 54 start-page: 2087 year: 2006 end-page: 2098 ident: bib84 article-title: Quasi-Monte Carlo Filtering in Nonlinear Dynamic Systems publication-title: IEEE Transactions on Signal Processing – year: 2006 ident: bib81 article-title: An Introduction to the Kalman Filter – year: 2005 ident: bib31 publication-title: Reliability and Risk Models—Setting Reliability Requirements – volume: 95 start-page: 638 year: 2000 end-page: 643 ident: bib99 article-title: Time series and forecasting: brief history and future research publication-title: Journal of the American Statistical Association – volume: 20 start-page: 1483 year: 2006 end-page: 1510 ident: bib172 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mechanical Systems and Signal Processing – reference: D.P. Filev, T. Finn, Real time novelty detection modeling for machine health prognostics, IEEE, Montreal, Quebec, Canada, 2006, 6 pp. – volume: 71 start-page: 173 year: 2001 end-page: 177 ident: bib28 article-title: Why the mixture failure rate decreases publication-title: Reliability Engineering and System Safety – start-page: 9 year: 2001 end-page: 14 ident: bib29 article-title: Statistical analysis of reliability data, Part 1: random variables, distribution parameters, and data publication-title: Journal of the Reliability Analysis Centre – reference: A. Hess, G. Calvello, P. Frith, S.J. Engel, D. Hoitsma, Challenges, issues, and lessons learned chasing the"Big P": real predictive prognostics, Part 2, in: Aerospace Conference, IEEE, 2006, pp. 1–19. – volume: 38 start-page: 654 year: 2005 end-page: 664 ident: bib78 article-title: Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition publication-title: NDT&E International – volume: 2 start-page: 563 year: 1964 end-page: 566 ident: bib37 article-title: Learning curve approach to reliability monitoring publication-title: IEEE Transactions on Aerospace – year: 2005 ident: bib160 article-title: A proportional hazards neural network for performing reliability estimates and risk prognostics for mobile systems subject to stochastic covariates, Orlando, FL, United States – year: 2006 ident: bib162 article-title: Fault-Diagnosis Systems: An Introduction from fault Detection to Fault Tolerance – reference: K.M. Goh, B. Tjahjono, T. Bainers, S.A. Subramaniam, Review of research in manufacturing prognostics, in: 2006 IEEE International Conference on Industrial Informatics, IEEE, 2006, pp. 1–6. – volume: 36 start-page: 765 year: 1989 end-page: 777 ident: bib110 article-title: Assessment of machine tool reliability using a proportional hazards model publication-title: Naval Research Logistics – year: 2003 ident: bib22 publication-title: Battery prognostics. EMPFasis, V12 – volume: 19 start-page: 329 year: 2005 end-page: 339 ident: bib77 article-title: Hidden Markov model-based fault diangostics method in speed-up and speed-down process for rotating machinery publication-title: Mechanical Systems and Signal Processing – volume: 10 start-page: 1 year: 1985 end-page: 14 ident: bib112 article-title: Application of the proportional hazards model in the reliability field publication-title: Reliability Engineering – reference: L.M. Maillart, E.A. Pohl, Introduction to Markov–Chain modeling, analysis and optimization, in: 2006 Annual Reliability and Maintainability Symposium, 2006. – reference: K. Dmitry, V. Dmitry, An algorithm for rule generation in fuzzy expert systems, in: Proceedings of the 17th International Conference on Pattern Recognition, IEEE Computer Society, 2004. – volume: 302 start-page: 951 year: 2007 end-page: 961 ident: bib76 article-title: Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: a method for bearing prognostics publication-title: Journal of Sound and Vibration – volume: 33 start-page: 206 year: 2001 end-page: 222 ident: bib125 article-title: Optimal repair/replacement policy for a general repair model publication-title: Advances in Applied Probability – volume: 29 start-page: 2553 year: 2004 end-page: 2572 ident: bib12 article-title: Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems publication-title: Energy – reference: A. Rodriguez, E. Ruiz, Bootstrap Prediction Intervals in State Space models, Statistics and Econometrics Working Papers, Universidad Carlos III, Departamento de Estadística y Econometría, 2008. – year: 1992 ident: bib98 article-title: Applied Optimal Control and Estimation: Digital Design and Implementation – year: 1976 ident: bib97 article-title: Time Series Analysis: Forecasting and Control – year: 1995 ident: bib49 article-title: A Tutorial on Learning with Bayesian Networks – year: 2006 ident: bib4 publication-title: Intelligent Fault Diagnosis and Prognosis for Engineering Systems – year: 1986 ident: bib26 article-title: Mechanical Reliability – volume: 77 start-page: 409 year: 1990 end-page: 410 ident: bib40 article-title: A note on residual life publication-title: Biometrika – volume: 276 start-page: 1065 year: 2004 end-page: 1080 ident: bib58 article-title: Diagnosis of mechanical fault signals using continuous hidden Markov model publication-title: Journal of Sound and Vibration – volume: 21 start-page: 840 year: 2007 end-page: 855 ident: bib70 article-title: Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models publication-title: Mechanical Systems and Signal Processing – volume: 58 start-page: 165 year: 1997 end-page: 171 ident: bib109 article-title: Practical aspects of modelling of repairable systems data using proportional hazards models publication-title: Reliability Engineering and System Safety – reference: M.J. Roemer, G.J. Kacprzynski, Advanced diagnostics and prognostics for gas turbine engine risk assessment, in: Aerospace Conference, Big Sky, MT, USA, IEEE, 2000, pp. 345–353. – volume: 39 start-page: 32 year: 2001 end-page: 50 ident: bib135 article-title: A control-limit policy and software for condition-based maintenance optimization publication-title: INFOR – reference: J. Luo, A. Bixby, K. Pattipati, L. Qiao, M. Kawamoto, S. Chigusa, An interacting multiple model approach to model-based prognostics, in: IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, United States, Institute of Electrical and Electronics Engineers Inc., 2003, pp. 189–194. – reference: A. Hess, G. Calvello, P. Frith, Challenges, issues, and lessons learned chasing the "Big P", Real predictive prognostics, Part 1, Aerospace, in: 2005 IEEE Conference, 2005, pp. 3610–3619. – volume: 8 start-page: 225 year: 1992 end-page: 227 ident: bib145 article-title: Introduction: the challenge of reinforcement learning publication-title: Machine Learning – volume: 34 start-page: 187 year: 1972 end-page: 220 ident: bib104 article-title: Regression models and life-tables publication-title: Journal of the Royal Statistical Society – volume: 44 start-page: 177 year: 1994 end-page: 188 ident: bib106 article-title: Proportional hazards model: a review publication-title: Reliability Engineering and System Safety – reference: N.K. Sinha, M.M. Gupta, D.H. Rao, Dynamic neural networks: an overview, in: IEEE International Conference on Industrial Technology, 2000, pp. 491–496. – volume: 31 start-page: 381 year: 1991 end-page: 388 ident: bib123 article-title: Optimal replacement of a system with imperfect repair publication-title: Microelectronics and Reliability – volume: 56 start-page: 477 year: 1994 end-page: 489 ident: bib41 article-title: Estimation in the mean residual life regression model publication-title: Journal of the Royal Statistical Society, Series B – year: 2006 ident: bib33 article-title: Maintenance, Replacement and Reliability—Theory and Applications – volume: 22 start-page: 195 year: 1980 end-page: 199 ident: bib38 article-title: Testing adequacy of the Weibull and log linear rate models for a Poisson process publication-title: Technometrics – volume: 40 start-page: 531 year: 1991 end-page: 536 ident: bib164 article-title: Material failure mechanisms and damage models publication-title: IEEE Transactions on Reliability – volume: 21 start-page: 129 year: 1988 end-page: 144 ident: bib129 article-title: Proportional hazards modelling of transmission equipment failures publication-title: Reliability Engineering and System Safety – volume: 43 start-page: 1275 year: 2005 end-page: 1293 ident: bib73 article-title: HMMs for diagnostics and prognostics in machining processes publication-title: International Journal of Production Research – volume: 99 start-page: 516 year: 1997 end-page: 529 ident: bib80 article-title: Subjective estimation of the delay time distribution in maintenance modelling publication-title: European Journal of Operational Research – volume: 16 start-page: 453 year: 2003 end-page: 463 ident: bib143 article-title: Recurrent radial basis function network for time-series prediction publication-title: Engineering Applications of Artificial Intelligence – reference: D. He, W. Shenliang, P. Banerjee, E. Bechhoefer, Probabilistic model based algorithms for prognostics, in: IEEE Aerospace Conference Proceedings, Big Sky, MT, United States, IEEE Computer Society, Piscataway, NJ, United States, 2006, pp. 1–10. – reference: T. Khawaja, G. Vachtsevanos, B. Wu, Reasoning about uncertainty in prognosis: a confidence prediction neural network approach, in: Annual Meeting of the North American Fuzzy Information Processing Society, IEEE, 2005, pp. 7–12. – volume: 37 start-page: 630 year: 2007 end-page: 642 ident: bib87 article-title: Predicting time to failure using the IMM and excitable tests publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans – volume: 3 start-page: 1 year: 1972 end-page: 8 ident: bib61 article-title: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes publication-title: Inequalities – volume: 140 year: 1993 ident: bib92 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: IEE Proceedings —F – volume: 11 start-page: 3 year: 2005 end-page: 25 ident: bib169 article-title: Methods for fault detection, diagnostics, and prognostics for building systems—a review, Part I publication-title: HVAC and R Research – start-page: 68 year: 1981 ident: bib132 article-title: On the regression analysis of multivariate failure time data publication-title: Biometrika – reference: T. Brotherton, A testbed for data fusion for engine diagnostics and prognostics, in: IEEE Aerospace Conference, Big Sky MT, 2000, pp. 163–171. – year: 2003 ident: bib71 article-title: A Novel Approach to Fault Diagnostics and Prognostics – volume: 92 start-page: 286 year: 2007 ident: bib107 article-title: Design of PH-based accelerated life testing plans under multiple-stress-type publication-title: Reliability Engineering and system Safety – volume: 5 start-page: 207 year: 1989 end-page: 216 ident: bib114 article-title: Proportional hazards analysis of diesel engine failure data publication-title: Quality and Reliability Engineering International – volume: 23 start-page: 943 year: 2007 end-page: 960 ident: bib10 article-title: Optimizing the performance of a repairable system under a maintenance and repair contract publication-title: Quality and Reliability Engineering International – year: 1980 ident: bib108 publication-title: The Statistical Analysis of Failure Time Data – volume: 7 start-page: 229 year: 1996 end-page: 232 ident: bib150 article-title: Confidence interval prediction for neural network models publication-title: IEEE Transactions on Neural Networks – reference: ISO 13381-1, Condition Monitoring and Diagnostics of Machines – Prognostics – Part 1: General Guidelines: International Standards Organization, 2004. – volume: 23 start-page: 740 year: 2009 end-page: 751 ident: bib103 article-title: Dempster–Shafer regression for multi-step-ahead time-series prediction towards data-driven machinery prognosis publication-title: Mechanical Systems and Signal Processing – year: 1984 ident: bib105 publication-title: Analysis of Survival Data – volume: 29 start-page: 1996 year: 2005 end-page: 2009 ident: bib54 article-title: Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes publication-title: Computers and Chemical Engineering – year: 2005 ident: bib32 publication-title: Reliability, Maintainability and Risk – reference: S.J. Engel, B.J. Gilmartin, K. Bongort, A. Hess, Prognostics, the real issues involved with predicting life remaining, in: Aerospace Conference Proceedings, vol. 6, IEEE, 2000, pp. 457–469. – volume: 21 start-page: 27 year: 2002 end-page: 38 ident: bib90 article-title: A comparison of methods for bootstrapping in the local level model publication-title: Journal of Forecasting – volume: 29 start-page: 489 year: 2007 end-page: 498 ident: bib21 article-title: Comparison of fuzzy logic and neural network in life prediction of boiler tubes publication-title: International Journal of Fatigue – volume: 37 start-page: 1554 year: 1966 end-page: 1563 ident: bib65 article-title: Statistical inference for probabilistic functions of finite state Markov chains publication-title: Annals of Mathematical Statistics – volume: 21 start-page: 2248 year: 2007 end-page: 2266 ident: bib79 article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology publication-title: Mechanical Systems and Signal Processing – volume: 38 start-page: 205 year: 1989 end-page: 247 ident: bib9 article-title: Practical problems in the statistical analysis of reliability data (with discussion) publication-title: Applied Statistics – year: 1997 ident: 10.1016/j.ymssp.2010.11.018_bib142 article-title: Effective automatic expert systems for dynamic predictive maintenance applications – volume: 3 start-page: 169 year: 1992 ident: 10.1016/j.ymssp.2010.11.018_bib134 article-title: Computation of optimal policies in replacement models publication-title: IMA Journal of Mathematics Applied in Business and Industry – volume: 29 start-page: 489 issue: 3 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib21 article-title: Comparison of fuzzy logic and neural network in life prediction of boiler tubes publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2006.05.001 – volume: 21 start-page: 193 issue: 1 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib138 article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.11.008 – year: 2004 ident: 10.1016/j.ymssp.2010.11.018_bib34 – volume: 38 start-page: 379 issue: 3 year: 1989 ident: 10.1016/j.ymssp.2010.11.018_bib46 article-title: The Bayes predictive approach in reliability theory publication-title: IEEE Transactions on Reliability doi: 10.1109/24.44186 – year: 1976 ident: 10.1016/j.ymssp.2010.11.018_bib97 – volume: 50 start-page: 345 issue: 2 year: 2002 ident: 10.1016/j.ymssp.2010.11.018_bib94 article-title: Perfect sampling: a review and applications to signal processing publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.978389 – volume: 51 start-page: 694 issue: 3 year: 2004 ident: 10.1016/j.ymssp.2010.11.018_bib136 article-title: Residual life predictions from vibration-based degradation signals: a neural network approach publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2004.824875 – volume: 34 start-page: 35 issue: 1 year: 1991 ident: 10.1016/j.ymssp.2010.11.018_bib8 article-title: Applying proportional hazards modelling in reliability publication-title: Reliability Engineering and System Safety doi: 10.1016/0951-8320(91)90098-R – volume: 43 start-page: 1275 issue: 6 year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib73 article-title: HMMs for diagnostics and prognostics in machining processes publication-title: International Journal of Production Research doi: 10.1080/00207540412331327727 – volume: 22 start-page: 195 issue: 2 year: 1980 ident: 10.1016/j.ymssp.2010.11.018_bib38 article-title: Testing adequacy of the Weibull and log linear rate models for a Poisson process publication-title: Technometrics doi: 10.1080/00401706.1980.10486134 – volume: 8 start-page: 225 year: 1992 ident: 10.1016/j.ymssp.2010.11.018_bib145 article-title: Introduction: the challenge of reinforcement learning publication-title: Machine Learning doi: 10.1007/BF00992695 – year: 1997 ident: 10.1016/j.ymssp.2010.11.018_bib50 – year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib160 – volume: 45 start-page: 75 year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib47 article-title: A Bayesian network approach to root cause diagnosis of process variations publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2004.06.018 – volume: 93 start-page: 722 issue: 5 year: 2008 ident: 10.1016/j.ymssp.2010.11.018_bib130 article-title: A paired comparison experiment for gathering expert judgment for an aircraft wiring risk assessment publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2007.03.011 – volume: 54 start-page: 23 issue: 1 year: 1996 ident: 10.1016/j.ymssp.2010.11.018_bib42 article-title: Residual life of technical systems; diagnosis, prediction and life extension publication-title: Reliability Engineering and System Safety doi: 10.1016/S0951-8320(96)00092-0 – volume: 94 start-page: 44 issue: 1 year: 2009 ident: 10.1016/j.ymssp.2010.11.018_bib122 article-title: Optimization of maintenance policy using the proportional hazard model publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2007.12.006 – volume: 34 start-page: 187 issue: 2 year: 1972 ident: 10.1016/j.ymssp.2010.11.018_bib104 article-title: Regression models and life-tables publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 5 start-page: 207 issue: 3 year: 1989 ident: 10.1016/j.ymssp.2010.11.018_bib114 article-title: Proportional hazards analysis of diesel engine failure data publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.4680050305 – volume: 57 issue: 3 year: 1995 ident: 10.1016/j.ymssp.2010.11.018_bib51 article-title: Bayesian model choice via Markov chain Monte Carlo methods publication-title: Journal of the Royal Statistical Society B doi: 10.1111/j.2517-6161.1995.tb02042.x – volume: 23 start-page: 943 issue: 8 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib10 article-title: Optimizing the performance of a repairable system under a maintenance and repair contract publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.859 – volume: 7 start-page: 229 issue: 1 year: 1996 ident: 10.1016/j.ymssp.2010.11.018_bib150 article-title: Confidence interval prediction for neural network models publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.478409 – volume: 12 start-page: 1278 issue: 6 year: 2001 ident: 10.1016/j.ymssp.2010.11.018_bib149 article-title: Confidence estimation methods for neural networks: a practical comparison publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.963764 – volume: 29 start-page: 1996 year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib54 article-title: Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2005.05.005 – volume: 276 start-page: 1065 year: 2004 ident: 10.1016/j.ymssp.2010.11.018_bib58 article-title: Diagnosis of mechanical fault signals using continuous hidden Markov model publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2003.08.021 – volume: 4 start-page: 443 issue: 4 year: 1996 ident: 10.1016/j.ymssp.2010.11.018_bib85 article-title: Stochastic modeling of fatigue crack dynamics for on-line failure prognostics publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/87.508893 – year: 1992 ident: 10.1016/j.ymssp.2010.11.018_bib98 – ident: 10.1016/j.ymssp.2010.11.018_bib15 doi: 10.1109/ICPR.2004.1334061 – volume: 77 start-page: 409 year: 1990 ident: 10.1016/j.ymssp.2010.11.018_bib40 article-title: A note on residual life publication-title: Biometrika doi: 10.1093/biomet/77.2.409 – volume: 140 issue: 2 year: 1993 ident: 10.1016/j.ymssp.2010.11.018_bib92 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: IEE Proceedings —F – volume: 33 start-page: 206 issue: 1 year: 2001 ident: 10.1016/j.ymssp.2010.11.018_bib125 article-title: Optimal repair/replacement policy for a general repair model publication-title: Advances in Applied Probability doi: 10.1239/aap/999187904 – volume: 12 start-page: 37 issue: 1 year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib131 article-title: Data management for CBM optimization publication-title: Journal of Quality in Maintenance Engineering doi: 10.1108/13552510610654529 – volume: 34 start-page: 91 issue: 1 year: 1991 ident: 10.1016/j.ymssp.2010.11.018_bib126 article-title: The assessment of software reliability publication-title: Reliability Engineering and System Safety doi: 10.1016/0951-8320(91)90101-C – ident: 10.1016/j.ymssp.2010.11.018_bib56 – volume: 18 start-page: 813 year: 2004 ident: 10.1016/j.ymssp.2010.11.018_bib155 article-title: Prognosis of machine health conditions using neuro-fuzzy systems publication-title: Mechanical Systems and Signal Processing doi: 10.1016/S0888-3270(03)00079-7 – ident: 10.1016/j.ymssp.2010.11.018_bib144 doi: 10.1109/ICIT.2000.854201 – ident: 10.1016/j.ymssp.2010.11.018_bib163 – volume: 42 start-page: 1063 issue: 7 year: 1995 ident: 10.1016/j.ymssp.2010.11.018_bib124 article-title: Replacement model with overhauls and repairs publication-title: Naval Research Logistics doi: 10.1002/1520-6750(199510)42:7<1063::AID-NAV3220420706>3.0.CO;2-3 – year: 2003 ident: 10.1016/j.ymssp.2010.11.018_bib22 publication-title: Battery prognostics. EMPFasis, V12 – ident: 10.1016/j.ymssp.2010.11.018_bib3 doi: 10.1109/AERO.2000.877920 – volume: 21 start-page: 2248 issue: 5 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib79 article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2006.10.001 – volume: 12 start-page: 491 year: 1999 ident: 10.1016/j.ymssp.2010.11.018_bib75 article-title: Accident identification in nuclear power plants using hidden Markov models publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/S0952-1976(99)00011-1 – volume: 99 start-page: 516 issue: 3 year: 1997 ident: 10.1016/j.ymssp.2010.11.018_bib80 article-title: Subjective estimation of the delay time distribution in maintenance modelling publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(96)00318-9 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.ymssp.2010.11.018_bib67 article-title: Tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.18626 – volume: 17 start-page: 115 issue: 2 year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib43 article-title: Calculation of reliability function and remaining useful life for a Markov failure time process publication-title: IMA Journal Management Mathematics doi: 10.1093/imaman/dpi029 – volume: 21 start-page: 197 issue: 3 year: 1988 ident: 10.1016/j.ymssp.2010.11.018_bib128 article-title: Proportional hazards modelling in the analysis of computer systems reliability publication-title: Reliability Engineering and System Safety doi: 10.1016/0951-8320(88)90121-4 – volume: 92 start-page: 92 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib48 article-title: Bayesian networks in reliability publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2005.11.037 – year: 2003 ident: 10.1016/j.ymssp.2010.11.018_bib71 – volume: 3 start-page: 4 year: 1986 ident: 10.1016/j.ymssp.2010.11.018_bib66 article-title: An introduction to hidden Markov models publication-title: ASSP Magazine doi: 10.1109/MASSP.1986.1165342 – start-page: 9 year: 2001 ident: 10.1016/j.ymssp.2010.11.018_bib29 article-title: Statistical analysis of reliability data, Part 1: random variables, distribution parameters, and data publication-title: Journal of the Reliability Analysis Centre – volume: 83 start-page: 249 issue: 4 year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib57 article-title: Optimal periodic inspection of a deterioration process with sequential condition states publication-title: International Journal of Pressure Vessels and Piping doi: 10.1016/j.ijpvp.2006.02.007 – volume: 94 start-page: 479 issue: 2 year: 2009 ident: 10.1016/j.ymssp.2010.11.018_bib148 article-title: Machine and component residual life estimation through the application of neural networks publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2008.05.008 – volume: 29 start-page: 738 issue: 4 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib153 article-title: Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2006.06.013 – volume: 40 start-page: 531 issue: 5 year: 1991 ident: 10.1016/j.ymssp.2010.11.018_bib164 article-title: Material failure mechanisms and damage models publication-title: IEEE Transactions on Reliability doi: 10.1109/24.106769 – volume: 99 start-page: 493 issue: 3 year: 1997 ident: 10.1016/j.ymssp.2010.11.018_bib1 article-title: On the application of mathematical models in maintenance publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(96)00316-5 – volume: 19 start-page: 329 year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib77 article-title: Hidden Markov model-based fault diangostics method in speed-up and speed-down process for rotating machinery publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.01.001 – volume: 37 start-page: 1554 year: 1966 ident: 10.1016/j.ymssp.2010.11.018_bib65 article-title: Statistical inference for probabilistic functions of finite state Markov chains publication-title: Annals of Mathematical Statistics doi: 10.1214/aoms/1177699147 – volume: 54 start-page: 2087 issue: 6 year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib84 article-title: Quasi-Monte Carlo Filtering in Nonlinear Dynamic Systems publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2006.873585 – volume: 30 start-page: 172 issue: 2 year: 1992 ident: 10.1016/j.ymssp.2010.11.018_bib133 article-title: Optimal replacement in the proportional hazards model publication-title: INFOR – volume: 90 start-page: 177 year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib53 article-title: Optimal maintenance decisions under imperfect inspection publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2004.10.004 – ident: 10.1016/j.ymssp.2010.11.018_bib2 – year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib95 – year: 2002 ident: 10.1016/j.ymssp.2010.11.018_bib119 – volume: 21 start-page: 129 issue: 2 year: 1988 ident: 10.1016/j.ymssp.2010.11.018_bib129 article-title: Proportional hazards modelling of transmission equipment failures publication-title: Reliability Engineering and System Safety doi: 10.1016/0951-8320(88)90051-8 – volume: 3 start-page: 1 year: 1972 ident: 10.1016/j.ymssp.2010.11.018_bib61 article-title: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes publication-title: Inequalities – volume: 58 start-page: 165 issue: 2 year: 1997 ident: 10.1016/j.ymssp.2010.11.018_bib109 article-title: Practical aspects of modelling of repairable systems data using proportional hazards models publication-title: Reliability Engineering and System Safety doi: 10.1016/S0951-8320(97)00026-4 – volume: 21 start-page: 27 year: 2002 ident: 10.1016/j.ymssp.2010.11.018_bib90 article-title: A comparison of methods for bootstrapping in the local level model publication-title: Journal of Forecasting doi: 10.1002/for.814 – year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib32 – volume: 11 start-page: 3 issue: 1 year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib169 article-title: Methods for fault detection, diagnostics, and prognostics for building systems—a review, Part I publication-title: HVAC and R Research doi: 10.1080/10789669.2005.10391123 – volume: 23 start-page: 724 issue: 3 year: 2009 ident: 10.1016/j.ymssp.2010.11.018_bib166 article-title: Rotating machinery prognostics: state of the art, challenges and opportunities publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2008.06.009 – year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib83 – ident: 10.1016/j.ymssp.2010.11.018_bib152 doi: 10.1109/NAFIPS.2005.1548498 – volume: 29 start-page: 20 issue: 1 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib140 article-title: Artificial neural networks in spectrum fatigue life prediction of composite materials publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2006.03.004 – volume: 92 start-page: 549 issue: 5 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib127 article-title: Recent advances in theory and applications of stochastic point process models in reliability engineering publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2006.05.001 – year: 1995 ident: 10.1016/j.ymssp.2010.11.018_bib157 article-title: wavelet based neural network for prediction of ICP signal – ident: 10.1016/j.ymssp.2010.11.018_bib174 doi: 10.1109/INDIN.2006.275836 – volume: 44 start-page: 177 issue: 2 year: 1994 ident: 10.1016/j.ymssp.2010.11.018_bib106 article-title: Proportional hazards model: a review publication-title: Reliability Engineering and System Safety doi: 10.1016/0951-8320(94)90010-8 – volume: 91 start-page: 945 issue: 8 year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib11 article-title: An evaluation system of the setting up of predictive maintenance programmes publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2005.09.003 – year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib24 – volume: 43 start-page: 1086 issue: 4 year: 2008 ident: 10.1016/j.ymssp.2010.11.018_bib154 article-title: Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2008.02.028 – ident: 10.1016/j.ymssp.2010.11.018_bib159 doi: 10.1109/AERO.1999.789761 – volume: 302 start-page: 951 issue: 4–5 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib76 article-title: Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: a method for bearing prognostics publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2007.01.001 – volume: 10 start-page: 1 year: 1985 ident: 10.1016/j.ymssp.2010.11.018_bib112 article-title: Application of the proportional hazards model in the reliability field publication-title: Reliability Engineering doi: 10.1016/0143-8174(85)90038-1 – start-page: 58 year: 1992 ident: 10.1016/j.ymssp.2010.11.018_bib14 article-title: Fuzzy fundamentals publication-title: IEEE Spectrum doi: 10.1109/6.158640 – volume: 214 start-page: 109 issue: E2 year: 2000 ident: 10.1016/j.ymssp.2010.11.018_bib35 article-title: Plant machinery working life prediction method utilizing reliability and condition-monitoring data publication-title: Proceedings of the IMechE, Part E: Journal of Process Mechanical Engineering doi: 10.1243/0954408001530146 – year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib20 – volume: 57 start-page: 476 issue: 6 year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib102 article-title: Intelligent prognostics tools and e-maintenance publication-title: Computers in Industry doi: 10.1016/j.compind.2006.02.014 – volume: 31 start-page: 381 issue: 2–3 year: 1991 ident: 10.1016/j.ymssp.2010.11.018_bib123 article-title: Optimal replacement of a system with imperfect repair publication-title: Microelectronics and Reliability doi: 10.1016/0026-2714(91)90225-V – year: 2001 ident: 10.1016/j.ymssp.2010.11.018_bib13 – volume: 97 start-page: 507 year: 1997 ident: 10.1016/j.ymssp.2010.11.018_bib121 article-title: Maintenance scheduling under age replacement policy using proportional hazards model and TTT-plotting publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(96)00317-7 – volume: 56 start-page: 477 issue: 3 year: 1994 ident: 10.1016/j.ymssp.2010.11.018_bib41 article-title: Estimation in the mean residual life regression model publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1994.tb01994.x – ident: 10.1016/j.ymssp.2010.11.018_bib69 – volume: 5 start-page: 192 issue: 3 year: 1999 ident: 10.1016/j.ymssp.2010.11.018_bib117 article-title: Optimizing condition-based maintenance decisions for equipment subject to vibration monitoring publication-title: Journal of Quality in Maintenance Engineering doi: 10.1108/13552519910282647 – volume: 8 start-page: 77 issue: 1 year: 1999 ident: 10.1016/j.ymssp.2010.11.018_bib151 article-title: Point-wise confidence interval estimation by neural networks: a comparative study based on automotive engine calibration publication-title: Neural Computing and Applications doi: 10.1007/s005210050009 – year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib60 – year: 1997 ident: 10.1016/j.ymssp.2010.11.018_bib116 – ident: 10.1016/j.ymssp.2010.11.018_bib55 – volume: 20 start-page: 404 issue: 2 year: 1990 ident: 10.1016/j.ymssp.2010.11.018_bib16 article-title: Fuzzy logic in control systems, Parts I and II publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/21.52551 – volume: 7 start-page: 286 issue: 4 year: 2001 ident: 10.1016/j.ymssp.2010.11.018_bib118 article-title: Optimizing a mine haul truck wheel motors' condition monitoring program: use of proportional hazards modeling publication-title: Journal of Quality in Maintenance Engineering doi: 10.1108/EUM0000000006007 – ident: 10.1016/j.ymssp.2010.11.018_bib68 doi: 10.1109/AERO.2006.1656122 – year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib4 – ident: 10.1016/j.ymssp.2010.11.018_bib167 doi: 10.1109/AERO.2005.1559666 – volume: 73 start-page: 360 year: 1967 ident: 10.1016/j.ymssp.2010.11.018_bib64 article-title: An inequality with applications to statistical estimation for probabilitic functions of a Markov process and to a model for ecology publication-title: Bulletin of the American Meteorological Society doi: 10.1090/S0002-9904-1967-11751-8 – ident: 10.1016/j.ymssp.2010.11.018_bib139 doi: 10.1109/ICEMI.2007.4350749 – volume: 76 start-page: 796 year: 2004 ident: 10.1016/j.ymssp.2010.11.018_bib101 article-title: A prognostic algorithm for machine performance assessment and its application publication-title: Production Planning and Control doi: 10.1080/09537280412331309208 – year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib162 – ident: 10.1016/j.ymssp.2010.11.018_bib170 – year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib81 – ident: 10.1016/j.ymssp.2010.11.018_bib156 – volume: 36 start-page: 765 year: 1989 ident: 10.1016/j.ymssp.2010.11.018_bib110 article-title: Assessment of machine tool reliability using a proportional hazards model publication-title: Naval Research Logistics doi: 10.1002/1520-6750(198912)36:6<765::AID-NAV3220360603>3.0.CO;2-C – volume: 42 start-page: 148 issue: 1 year: 1993 ident: 10.1016/j.ymssp.2010.11.018_bib39 article-title: A model for the integrity assessment of ageing repairable systems publication-title: IEEE Transactions on Reliability doi: 10.1109/24.210287 – ident: 10.1016/j.ymssp.2010.11.018_bib6 doi: 10.1109/AERO.2005.1559666 – volume: 28 start-page: 1012 issue: 9–10 year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib173 article-title: System health monitoring and prognostics—a review of current paradigms and practices publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-004-2131-6 – volume: 94 start-page: 2 issue: 1 year: 2009 ident: 10.1016/j.ymssp.2010.11.018_bib36 article-title: A survey of the application of gamma processes in maintenance publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2007.03.019 – volume: 113 start-page: 685 issue: 2 year: 2003 ident: 10.1016/j.ymssp.2010.11.018_bib44 article-title: On the mean residual life regression model publication-title: Journal of Statistical Planning and Inference doi: 10.1016/S0378-3758(02)00091-5 – year: 1995 ident: 10.1016/j.ymssp.2010.11.018_bib49 – volume: 15 start-page: 383 year: 1998 ident: 10.1016/j.ymssp.2010.11.018_bib23 article-title: Fuzzy expert system for real-time process condition monitoring and incident prevention publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(98)00053-0 – year: 1980 ident: 10.1016/j.ymssp.2010.11.018_bib108 – volume: 5 start-page: 989 issue: 6 year: 1994 ident: 10.1016/j.ymssp.2010.11.018_bib147 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.329697 – volume: 11 start-page: 175 issue: 3 year: 1985 ident: 10.1016/j.ymssp.2010.11.018_bib7 article-title: Proportional hazards modelling in reliability assessment publication-title: Reliability Engineering doi: 10.1016/0143-8174(85)90070-8 – volume: 39 start-page: 32 issue: 1 year: 2001 ident: 10.1016/j.ymssp.2010.11.018_bib135 article-title: A control-limit policy and software for condition-based maintenance optimization publication-title: INFOR – volume: 15 start-page: 349 issue: 4 year: 2001 ident: 10.1016/j.ymssp.2010.11.018_bib158 article-title: Fault prognostics using dynamic wavelet neural networks publication-title: Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM doi: 10.1017/S0890060401154089 – year: 1986 ident: 10.1016/j.ymssp.2010.11.018_bib26 – year: 2004 ident: 10.1016/j.ymssp.2010.11.018_bib30 – year: 2000 ident: 10.1016/j.ymssp.2010.11.018_bib165 – volume: 8 start-page: 157 year: 1997 ident: 10.1016/j.ymssp.2010.11.018_bib146 article-title: A practical overview of neural networks publication-title: Journal of Intelligent Manufacturing doi: 10.1023/A:1018513006083 – volume: 41 start-page: 164 issue: 1 year: 1970 ident: 10.1016/j.ymssp.2010.11.018_bib62 article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Annals of Mathematical Statistics doi: 10.1214/aoms/1177697196 – volume: 38 start-page: 205 issue: 2 year: 1989 ident: 10.1016/j.ymssp.2010.11.018_bib9 article-title: Practical problems in the statistical analysis of reliability data (with discussion) publication-title: Applied Statistics doi: 10.2307/2348057 – year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib31 – volume: 37 start-page: 630 issue: 5 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib87 article-title: Predicting time to failure using the IMM and excitable tests publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans doi: 10.1109/TSMCA.2007.902621 – volume: 41 start-page: 1363 issue: 9 year: 2001 ident: 10.1016/j.ymssp.2010.11.018_bib74 article-title: Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs) publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/S0890-6955(00)00112-7 – ident: 10.1016/j.ymssp.2010.11.018_bib19 doi: 10.1109/NAFIPS.2006.365465 – year: 1986 ident: 10.1016/j.ymssp.2010.11.018_bib45 – volume: 20 start-page: 166 issue: 1–3 year: 2004 ident: 10.1016/j.ymssp.2010.11.018_bib18 article-title: A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems publication-title: International Journal of Materials and Product Technology doi: 10.1504/IJMPT.2004.003920 – year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib33 – year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib59 – year: 2003 ident: 10.1016/j.ymssp.2010.11.018_bib5 – volume: 53 start-page: 193 issue: 2 year: 2002 ident: 10.1016/j.ymssp.2010.11.018_bib120 article-title: Optimal component replacement decisions using vibration monitoring and the proportional-hazards model publication-title: Journal of the Operational Research Society doi: 10.1057/palgrave.jors.2601261 – volume: 28 start-page: 382 issue: 2 year: 2003 ident: 10.1016/j.ymssp.2010.11.018_bib111 article-title: Optimal replacement under partial observations publication-title: Mathematics of Operations Research doi: 10.1287/moor.28.2.382.14484 – volume: 71 start-page: 173 issue: 2 year: 2001 ident: 10.1016/j.ymssp.2010.11.018_bib28 article-title: Why the mixture failure rate decreases publication-title: Reliability Engineering and System Safety doi: 10.1016/S0951-8320(00)00092-2 – ident: 10.1016/j.ymssp.2010.11.018_bib91 – volume: 16 start-page: 453 issue: 5–6 year: 2003 ident: 10.1016/j.ymssp.2010.11.018_bib143 article-title: Recurrent radial basis function network for time-series prediction publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/S0952-1976(03)00063-0 – year: 2000 ident: 10.1016/j.ymssp.2010.11.018_bib27 article-title: Reliability: Modelling – volume: 2 start-page: 563 issue: 2 year: 1964 ident: 10.1016/j.ymssp.2010.11.018_bib37 article-title: Learning curve approach to reliability monitoring publication-title: IEEE Transactions on Aerospace doi: 10.1109/TA.1964.4319640 – volume: 22 start-page: 1395 issue: 6 year: 2008 ident: 10.1016/j.ymssp.2010.11.018_bib141 article-title: Uncertainty analysis of a neural network used for fatigue lifetime prediction publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2007.12.004 – ident: 10.1016/j.ymssp.2010.11.018_bib88 doi: 10.21236/ADA448747 – ident: 10.1016/j.ymssp.2010.11.018_bib168 – volume: 14 start-page: 789 issue: 5 year: 2000 ident: 10.1016/j.ymssp.2010.11.018_bib86 article-title: Prognostic modelling of crack growth in a tensioned steel band publication-title: Mechanical Systems and Signal Processing doi: 10.1006/mssp.2000.1324 – ident: 10.1016/j.ymssp.2010.11.018_bib25 doi: 10.1016/j.ymssp.2008.12.006 – volume: 38 start-page: 654 year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib78 article-title: Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition publication-title: NDT&E International doi: 10.1016/j.ndteint.2005.04.003 – volume: 87 start-page: 418 year: 1992 ident: 10.1016/j.ymssp.2010.11.018_bib89 article-title: A Monte-Carlo approach to nonnormal and nonlinear state-space modeling publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1992.10475231 – volume: 94 start-page: 628 issue: 2 year: 2009 ident: 10.1016/j.ymssp.2010.11.018_bib52 article-title: Bayesian inference in probabilistic risk assessment—the current state of the art publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2008.07.002 – ident: 10.1016/j.ymssp.2010.11.018_bib161 doi: 10.1115/2000-GT-0030 – volume: 86 start-page: 1024 issue: 416 year: 1991 ident: 10.1016/j.ymssp.2010.11.018_bib93 article-title: Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1991.10475148 – volume: 14 start-page: 597 issue: 4 year: 2000 ident: 10.1016/j.ymssp.2010.11.018_bib72 article-title: Condition based maintenance of machines using hidden Markov models publication-title: Mechanical Systems and Signal Processing doi: 10.1006/mssp.2000.1309 – start-page: 718 year: 1991 ident: 10.1016/j.ymssp.2010.11.018_bib115 article-title: Optimal replacement of a production system. A proportional hazards model publication-title: Proceedings of the Transformation of Science and Technology into Productive Power – volume: 95 start-page: 638 issue: 450 year: 2000 ident: 10.1016/j.ymssp.2010.11.018_bib99 article-title: Time series and forecasting: brief history and future research publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2000.10474241 – volume: 20 start-page: 1483 issue: 7 year: 2006 ident: 10.1016/j.ymssp.2010.11.018_bib172 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.09.012 – volume: 29 start-page: 2553 issue: 12–15 year: 2004 ident: 10.1016/j.ymssp.2010.11.018_bib12 article-title: Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems publication-title: Energy doi: 10.1016/j.energy.2004.03.031 – volume: 27 start-page: 211 issue: 2 year: 1968 ident: 10.1016/j.ymssp.2010.11.018_bib63 article-title: Growth functions for transformations on manifolds publication-title: Pacific Journal of Mathematics doi: 10.2140/pjm.1968.27.211 – volume: 23 start-page: 740 year: 2009 ident: 10.1016/j.ymssp.2010.11.018_bib103 article-title: Dempster–Shafer regression for multi-step-ahead time-series prediction towards data-driven machinery prognosis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2008.08.004 – volume: 94 start-page: 752 issue: 3 year: 2009 ident: 10.1016/j.ymssp.2010.11.018_bib96 article-title: Model-based Monte Carlo state estimation for condition-based component replacement publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2008.08.003 – year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib100 – ident: 10.1016/j.ymssp.2010.11.018_bib17 doi: 10.1109/AERO.2001.931317 – volume: 41 start-page: 249 year: 1995 ident: 10.1016/j.ymssp.2010.11.018_bib113 article-title: Optimal replacement of a tool subject to random failure publication-title: International Journal of Production Economics doi: 10.1016/0925-5273(95)00061-5 – year: 1984 ident: 10.1016/j.ymssp.2010.11.018_bib105 – year: 2005 ident: 10.1016/j.ymssp.2010.11.018_bib137 article-title: A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors – year: 2003 ident: 10.1016/j.ymssp.2010.11.018_bib171 article-title: A neural network approach to condition based maintenance: case study of airport ground transportation vehicles publication-title: IMA Journal Management Mathematics on Maintenance, Reliability and Replacement – volume: 45 start-page: 910 issue: 5 year: 2000 ident: 10.1016/j.ymssp.2010.11.018_bib82 article-title: Gaussian filters for nonlinear filtering problems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.855552 – volume: 21 start-page: 840 issue: 2 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib70 article-title: Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2006.01.009 – volume: 92 start-page: 286 issue: 3 year: 2007 ident: 10.1016/j.ymssp.2010.11.018_bib107 article-title: Design of PH-based accelerated life testing plans under multiple-stress-type publication-title: Reliability Engineering and system Safety doi: 10.1016/j.ress.2006.04.016 – start-page: 68 year: 1981 ident: 10.1016/j.ymssp.2010.11.018_bib132 article-title: On the regression analysis of multivariate failure time data publication-title: Biometrika |
SSID | ssj0009406 |
Score | 2.545894 |
Snippet | Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1803 |
SubjectTerms | Applied sciences Business Exact sciences and technology Fuzzy Industrial metrology. Testing Life prediction Maintenance Mathematical models Mechanical engineering. Machine design Mechanical systems Modelling Operational research and scientific management Operational research. Management science Prognostics Reliability Reliability theory. Replacement problems Remaining useful life (RUL) Tables |
Title | Prognostic modelling options for remaining useful life estimation by industry |
URI | https://dx.doi.org/10.1016/j.ymssp.2010.11.018 https://www.proquest.com/docview/1671299701 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvigifuL8GBF8tG5t02Z9HMMxFYf4AXsLTZbAZGvHuj3sxb_du6adDmUPPhXKhZS7y-WS_u5-hFyHRmrtR8xBeiuHGU85UgbSiY0XMSZxkeZoi37Ye2cPg2BQIZ2yFgZhlUXstzE9j9bFm0ahzcZ0NGq8wvoAd-RNvKFmsFNhBTvj2D__9vMb5hGxnF8ThR2ULjsP5Riv5STLphbfha08kfnj791pdxpnoDNjyS5-xe18M-ruk70ii6Rt-6EHpKKTQ7Lzo7fgEXl6nqUIogMJmtPdYN05TS2GhUKqSmd6Yukh6CLTZjGm45HRFLtu2HJGKpd0ZJk9lsfkpXv31uk5BXeCo_wwnDsud40fcCXhSDdkkBZGHoejmq_jWPFmoGNfKd_wSLqK-QqMwpHXe6i1y4z0T0g1SRN9SqhWGnK0ViRlK2S6KSGdhAQzUvAYeq70asQrFSZU0VUcyS3GooSPfYhcywK1DOcNAVqukZvVoKltqrFZPCwtIdZ8Q0DY3zywvma31WQeglsZa9bIVWlIAcsK_5XEiU4XmXBDDplQBN519t_Zz8m2vYBGbO8Fqc5nC30JGcxc1nMXrZOt9v1jr_8F9WDxRQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9qAi4hXnZUbw0bK1zVr7KEOZ7oJ4gb2FJkugshvr9rB_7zlN6wVlDz4VSkLKOScnX9Iv5wO4CozU2o-4Q_JWDjeecqRsSCc2XsS5pEmasS16QeuNP_Yb_TVoFndhiFaZ536b07Nsnb-p5dasTZOk9oLzA8MxrNMJNceVah3KVJ0Kg718-9Bu9b5q7_JMYpPaO9ShKD6U0byWozSdWooXVfMk8Y-_F6jtaZyi2YzVu_iVurP16H4XdnIgyW7tt-7Bmh7vw9a38oIH0H2aTYhHhy1YpnhDV8_ZxNJYGKJVNtMjqxDBFqk2iyEbJkYzKrxhbzQyuWSJFfdYHsLz_d1rs-Xk8gmO8oNg7riha_xGqCTu6gYckWHkhbhb83Ucq7De0LGvlG_CSLqK-wr9EpK090BrlxvpH0FpPBnrY2BaaYRpN5GUNwHXdYmIEjFmpPAx8FzpVcArDCZUXlic9C2GomCQvYvMyoKsjFsOgVauwPVnp6mtq7G6eVB4QvwID4GZf3XH6g-_fQ7mEb-V83oFLgtHCpxZ9LskHuvJIhVuECIYijDATv47-gVstF67HdF56LVPYdOeRxPV9wxK89lCnyOgmctqHrAfOOXz9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+modelling+options+for+remaining+useful+life+estimation+by+industry&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Sikorska%2C+J+Z&rft.au=Hodkiewicz%2C+M&rft.au=Ma%2C+L&rft.date=2011-07-01&rft.issn=0888-3270&rft.volume=25&rft.issue=5&rft.spage=1803&rft.epage=1836&rft_id=info:doi/10.1016%2Fj.ymssp.2010.11.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |