Prognostic modelling options for remaining useful life estimation by industry

Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approx...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 25; no. 5; pp. 1803 - 1836
Main Authors Sikorska, J.Z., Hodkiewicz, M., Ma, L.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
DOI10.1016/j.ymssp.2010.11.018

Cover

Loading…
Abstract Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models.
AbstractList Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models.
Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models.
Author Hodkiewicz, M.
Ma, L.
Sikorska, J.Z.
Author_xml – sequence: 1
  givenname: J.Z.
  surname: Sikorska
  fullname: Sikorska, J.Z.
  email: jo@caswa.com
  organization: CASWA Pty Ltd., 24 Le Souef Drive, Perth, Kardinya, WA 6163, Australia
– sequence: 2
  givenname: M.
  surname: Hodkiewicz
  fullname: Hodkiewicz, M.
  organization: Department of Mechanical Engineering, University of Western Australia, Australia
– sequence: 3
  givenname: L.
  surname: Ma
  fullname: Ma, L.
  organization: School of Engineering Systems, CRC for Integrated Engineering Asset Management (CIEAM), Queensland University of Technology, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24105440$$DView record in Pascal Francis
BookMark eNp9kE1r3DAQhkVJoZs0vyAXXwq9eDsj2ZZ9yKGEfBRSWkLuQpZHQYstbSU7sP--cja55JDTwPA-wzvPKTvxwRNjFwhbBGx-7LaHKaX9lsO6wS1g-4ltELqmRI7NCdtA27al4BK-sNOUdgDQVdBs2O-_MTz5kGZniikMNI7OPxVhP7vgU2FDLCJN2vl1uySyy1iMzlJBmZj0mir6Q-H8sKQ5Hr6yz1aPic5f5xl7uLl-vLor7__c_rr6eV8a0TRziRKtqKXpOcJQQQsdl1g3grQ2EmrSwhhhZdejqYSpepScd_VAhJXtxRn7fjy6j-HfkouoySWTm2tPYUkKG4m86yRgjn57jepk9Gij9sYltY-5ezwoXiHUVQU51x1zJoaUIlll3Pzy3Ry1GxWCWj2rnXrxrFbPClFlz5kV79i38x9Tl0eKsqZnR1El48gbGlwkM6shuA_5_5A6m3Y
CitedBy_id crossref_primary_10_1016_j_inffus_2018_10_005
crossref_primary_10_3390_batteries9030177
crossref_primary_10_1016_j_neucom_2017_02_045
crossref_primary_10_1371_journal_pone_0246102
crossref_primary_10_1109_TR_2018_2822702
crossref_primary_10_3390_s20092568
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1177_1475921713520029
crossref_primary_10_1007_s10845_018_1445_4
crossref_primary_10_1016_j_asoc_2022_108507
crossref_primary_10_3390_electronics12071744
crossref_primary_10_1016_j_ress_2017_11_021
crossref_primary_10_1016_j_ress_2017_11_020
crossref_primary_10_1016_j_eswa_2022_119345
crossref_primary_10_1016_j_conengprac_2021_104748
crossref_primary_10_1007_s12652_018_0997_7
crossref_primary_10_1016_j_ress_2018_04_005
crossref_primary_10_1109_JSEN_2023_3235585
crossref_primary_10_21595_jve_2016_16868
crossref_primary_10_1007_s11082_023_06133_5
crossref_primary_10_1007_s10845_013_0774_6
crossref_primary_10_1080_0951192X_2023_2209857
crossref_primary_10_1016_j_conengprac_2017_11_003
crossref_primary_10_1016_j_ifacol_2018_09_576
crossref_primary_10_1177_0954408912458868
crossref_primary_10_3390_a16020061
crossref_primary_10_1016_j_compind_2022_103640
crossref_primary_10_1080_0951192X_2014_900866
crossref_primary_10_3390_app10051616
crossref_primary_10_1016_j_eswa_2024_124169
crossref_primary_10_1016_j_microrel_2023_115216
crossref_primary_10_1007_s10845_015_1077_x
crossref_primary_10_1007_s40430_021_03121_2
crossref_primary_10_1155_2021_6626024
crossref_primary_10_1080_09617353_2022_2051140
crossref_primary_10_1016_j_advengsoft_2017_07_001
crossref_primary_10_1016_j_compind_2014_10_004
crossref_primary_10_1016_j_ress_2021_107808
crossref_primary_10_3390_math11133008
crossref_primary_10_1002_aisy_202400414
crossref_primary_10_1007_s10845_017_1377_4
crossref_primary_10_1016_j_engappai_2012_09_013
crossref_primary_10_1016_j_jmsy_2021_05_019
crossref_primary_10_1016_j_jmsy_2023_10_010
crossref_primary_10_1017_aer_2023_84
crossref_primary_10_1109_ACCESS_2016_2611649
crossref_primary_10_1109_JMEMS_2016_2564499
crossref_primary_10_1109_ACCESS_2024_3406262
crossref_primary_10_1109_TSM_2022_3164578
crossref_primary_10_1016_j_ress_2014_12_005
crossref_primary_10_1007_s13198_013_0195_0
crossref_primary_10_1016_j_jcomc_2023_100366
crossref_primary_10_1016_j_jfranklin_2016_06_039
crossref_primary_10_1016_j_neucom_2021_12_035
crossref_primary_10_1016_j_procir_2021_11_262
crossref_primary_10_21595_vp_2017_19036
crossref_primary_10_1109_TR_2012_2209251
crossref_primary_10_1016_j_neucom_2020_01_127
crossref_primary_10_1016_j_compstruct_2024_118727
crossref_primary_10_1080_0740817X_2014_959672
crossref_primary_10_1016_j_ifacol_2020_12_853
crossref_primary_10_1017_pds_2021_20
crossref_primary_10_1016_j_matpr_2020_06_306
crossref_primary_10_1109_ACCESS_2019_2941566
crossref_primary_10_1016_j_ins_2020_12_032
crossref_primary_10_1007_s10845_016_1244_8
crossref_primary_10_1007_s10845_016_1221_2
crossref_primary_10_1088_1757_899X_435_1_012057
crossref_primary_10_1177_14759217211038881
crossref_primary_10_1016_j_rser_2024_114647
crossref_primary_10_1109_TR_2015_2462353
crossref_primary_10_1109_ACCESS_2020_2989410
crossref_primary_10_1017_aer_2024_40
crossref_primary_10_1109_ACCESS_2020_2998003
crossref_primary_10_3390_aerospace9060309
crossref_primary_10_1016_j_ymssp_2017_04_010
crossref_primary_10_1016_j_ress_2016_10_032
crossref_primary_10_3390_electronics12204267
crossref_primary_10_1016_j_rser_2015_08_061
crossref_primary_10_1016_j_engappai_2021_104552
crossref_primary_10_1109_TR_2014_2299152
crossref_primary_10_1109_TR_2015_2500681
crossref_primary_10_3390_en17225538
crossref_primary_10_3390_s20216028
crossref_primary_10_1016_j_ymssp_2019_106266
crossref_primary_10_3390_vehicles2040037
crossref_primary_10_1109_TIE_2014_2327917
crossref_primary_10_1109_ACCESS_2016_2587754
crossref_primary_10_1016_j_ymssp_2014_08_006
crossref_primary_10_1109_ACCESS_2023_3235619
crossref_primary_10_48175_IJARSCT_3040
crossref_primary_10_1016_j_ress_2015_07_013
crossref_primary_10_1145_3623378
crossref_primary_10_1109_TPEL_2016_2618422
crossref_primary_10_1016_j_energy_2023_130153
crossref_primary_10_1016_j_ifacol_2018_09_409
crossref_primary_10_1016_j_ifacol_2018_09_645
crossref_primary_10_1016_j_measurement_2022_111572
crossref_primary_10_3390_s23010012
crossref_primary_10_1016_j_procir_2021_10_029
crossref_primary_10_21595_jve_2021_22100
crossref_primary_10_1016_j_jsv_2018_05_007
crossref_primary_10_1145_3486252
crossref_primary_10_1177_1748006X17742779
crossref_primary_10_3390_s22187070
crossref_primary_10_1109_TPWRD_2017_2710482
crossref_primary_10_3390_app122211691
crossref_primary_10_17531_ein_2016_4_20
crossref_primary_10_1016_j_ymssp_2015_09_014
crossref_primary_10_1080_24725854_2024_2360619
crossref_primary_10_1007_s00170_018_2874_0
crossref_primary_10_1109_TMECH_2020_2971503
crossref_primary_10_1016_j_ymssp_2025_112449
crossref_primary_10_1016_j_eswa_2015_07_003
crossref_primary_10_1007_s42452_022_05114_9
crossref_primary_10_1088_1757_899X_1259_1_012038
crossref_primary_10_18287_2409_4579_2021_7_3_13_21
crossref_primary_10_1016_j_ifacol_2022_10_102
crossref_primary_10_1109_TIM_2023_3273676
crossref_primary_10_21595_marc_2024_24232
crossref_primary_10_1016_j_ejor_2013_09_002
crossref_primary_10_1016_j_procs_2022_01_203
crossref_primary_10_1016_j_procir_2012_07_039
crossref_primary_10_1016_j_compstruct_2020_112386
crossref_primary_10_1109_TMECH_2020_2978136
crossref_primary_10_1155_2021_4914372
crossref_primary_10_1016_j_apenergy_2023_121043
crossref_primary_10_1016_j_arcontrol_2020_08_002
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_1016_j_isatra_2018_07_010
crossref_primary_10_1016_j_ymssp_2023_110910
crossref_primary_10_1016_j_ifacol_2020_12_819
crossref_primary_10_3390_machines10020072
crossref_primary_10_1016_j_ymssp_2024_112156
crossref_primary_10_1016_j_ifacol_2022_10_133
crossref_primary_10_1088_1742_6596_1754_1_012237
crossref_primary_10_1016_j_microrel_2016_02_015
crossref_primary_10_1049_iet_smt_2017_0005
crossref_primary_10_1007_s10845_018_1453_4
crossref_primary_10_1002_qre_2001
crossref_primary_10_1016_j_marstruc_2020_102718
crossref_primary_10_1016_j_ymssp_2019_106607
crossref_primary_10_1016_j_ymssp_2015_11_008
crossref_primary_10_3390_s22249738
crossref_primary_10_1016_j_eswa_2023_120588
crossref_primary_10_1016_j_renene_2018_04_033
crossref_primary_10_1109_ACCESS_2023_3241942
crossref_primary_10_1108_JQME_05_2020_0029
crossref_primary_10_3390_electronics11071125
crossref_primary_10_1007_s00170_022_09280_3
crossref_primary_10_1016_j_ymssp_2020_106617
crossref_primary_10_3390_electronics12020312
crossref_primary_10_1007_s00158_022_03437_0
crossref_primary_10_1007_s00170_021_08047_6
crossref_primary_10_1016_j_asej_2021_06_021
crossref_primary_10_1007_s42979_021_00905_0
crossref_primary_10_1109_TR_2015_2440531
crossref_primary_10_1177_1748006X18766125
crossref_primary_10_1007_s10845_024_02398_z
crossref_primary_10_1016_j_ymssp_2014_05_029
crossref_primary_10_1109_TR_2019_2930195
crossref_primary_10_1016_j_conengprac_2024_105938
crossref_primary_10_1016_j_psep_2016_11_019
crossref_primary_10_1016_j_ress_2014_10_003
crossref_primary_10_1016_j_rser_2017_06_002
crossref_primary_10_1002_qre_2142
crossref_primary_10_1007_s10845_013_0778_2
crossref_primary_10_1088_1757_899X_236_1_012105
crossref_primary_10_3390_en14082135
crossref_primary_10_1109_ACCESS_2024_3524032
crossref_primary_10_1016_j_ymssp_2025_112493
crossref_primary_10_1016_j_procir_2016_11_054
crossref_primary_10_1088_1755_1315_585_1_012154
crossref_primary_10_1109_JIOT_2019_2957029
crossref_primary_10_1016_j_ymssp_2016_01_010
crossref_primary_10_1016_j_neunet_2019_04_016
crossref_primary_10_1016_j_compstruct_2022_116579
crossref_primary_10_1016_j_ymssp_2014_10_010
crossref_primary_10_1007_s11668_016_0189_8
crossref_primary_10_1016_j_ymssp_2017_01_050
crossref_primary_10_1088_1742_6596_936_1_012080
crossref_primary_10_1016_j_ymssp_2022_109677
crossref_primary_10_1109_TR_2018_2825470
crossref_primary_10_3390_app14198686
crossref_primary_10_1007_s10836_017_5697_2
crossref_primary_10_1016_j_ymssp_2018_02_027
crossref_primary_10_1016_j_ress_2015_05_012
crossref_primary_10_1016_j_psep_2018_08_033
crossref_primary_10_1007_s10845_015_1107_8
crossref_primary_10_1016_j_ress_2016_11_022
crossref_primary_10_1080_00207543_2017_1287971
crossref_primary_10_1177_1350650111424818
crossref_primary_10_1007_s11465_017_0449_7
crossref_primary_10_1016_j_trc_2018_02_010
crossref_primary_10_1016_j_measurement_2020_108052
crossref_primary_10_1177_0954410020940882
crossref_primary_10_1007_s00500_019_04311_w
crossref_primary_10_3390_app12136766
crossref_primary_10_1109_ACCESS_2017_2773665
crossref_primary_10_1016_j_ress_2016_07_019
crossref_primary_10_1007_s11340_019_00547_7
crossref_primary_10_1109_JSYST_2021_3080125
crossref_primary_10_1109_TEM_2023_3293948
crossref_primary_10_1016_j_compchemeng_2016_08_018
crossref_primary_10_1109_ACCESS_2020_3032445
crossref_primary_10_1108_IJICC_09_2020_0131
crossref_primary_10_1186_s10033_019_0317_y
crossref_primary_10_1109_TIM_2017_2735661
crossref_primary_10_3390_s21030932
crossref_primary_10_31796_ogummf_873963
crossref_primary_10_1016_j_ymssp_2017_03_046
crossref_primary_10_1177_0954405416654184
crossref_primary_10_1109_TR_2018_2829771
crossref_primary_10_1109_TII_2020_2993074
crossref_primary_10_1177_1748006X13481926
crossref_primary_10_1049_iet_rpg_2018_5909
crossref_primary_10_1080_21693277_2025_2469037
crossref_primary_10_1016_j_neucom_2018_09_076
crossref_primary_10_1016_j_engappai_2015_02_009
crossref_primary_10_1109_ACCESS_2020_2966827
crossref_primary_10_1016_j_ress_2024_110451
crossref_primary_10_1049_iet_est_2020_0045
crossref_primary_10_1002_qre_2573
crossref_primary_10_1108_IJSI_01_2016_0003
crossref_primary_10_1109_ACCESS_2019_2948291
crossref_primary_10_1016_j_ejor_2018_02_033
crossref_primary_10_1177_1687814016685004
crossref_primary_10_1007_s00034_019_01031_2
crossref_primary_10_1016_j_isatra_2024_06_015
crossref_primary_10_3390_e21090861
crossref_primary_10_1016_j_ress_2016_05_006
crossref_primary_10_1177_1464419316660930
crossref_primary_10_1051_e3sconf_202235101041
crossref_primary_10_1088_1361_6501_ac8891
crossref_primary_10_1109_TII_2023_3333933
crossref_primary_10_1016_j_ymssp_2014_12_020
crossref_primary_10_1016_j_ijpe_2020_107837
crossref_primary_10_1016_j_engappai_2023_105859
crossref_primary_10_1016_j_eswa_2020_114391
crossref_primary_10_1016_j_ress_2015_04_018
crossref_primary_10_3233_SW_200406
crossref_primary_10_3390_polym13060943
crossref_primary_10_1007_s10470_018_1377_0
crossref_primary_10_3390_en10050664
crossref_primary_10_3389_fmats_2019_00110
crossref_primary_10_3390_app11083380
crossref_primary_10_1049_iet_gtd_2013_0063
crossref_primary_10_1002_qre_2792
crossref_primary_10_1016_j_compind_2016_12_008
crossref_primary_10_1016_j_ymssp_2020_106832
crossref_primary_10_1016_j_measurement_2022_111728
crossref_primary_10_1109_ACCESS_2021_3101284
crossref_primary_10_1016_j_jmapro_2017_04_012
crossref_primary_10_3390_aerospace10080715
crossref_primary_10_17531_ein_2019_4_10
crossref_primary_10_1007_s00500_022_07129_1
crossref_primary_10_1016_j_energy_2021_121269
crossref_primary_10_1177_1687814016664660
crossref_primary_10_1016_j_engfailanal_2022_106791
crossref_primary_10_1016_j_ifacol_2022_07_353
crossref_primary_10_1016_j_ifacol_2022_07_112
crossref_primary_10_1016_j_cirp_2015_05_011
crossref_primary_10_1016_j_jclepro_2016_10_185
crossref_primary_10_1016_j_ress_2022_108717
crossref_primary_10_1007_s11831_019_09339_7
crossref_primary_10_1016_j_jmsy_2020_07_008
crossref_primary_10_1007_s10033_017_0150_0
crossref_primary_10_1016_j_ijhydene_2023_08_098
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1016_j_measurement_2021_109706
crossref_primary_10_1016_j_asoc_2020_106344
crossref_primary_10_1007_s12053_013_9238_2
crossref_primary_10_17531_ein_2021_2_16
crossref_primary_10_1155_2020_8810047
crossref_primary_10_1108_JQME_08_2016_0032
crossref_primary_10_3390_s150307062
crossref_primary_10_1109_TR_2016_2591504
crossref_primary_10_1016_j_oceaneng_2017_05_001
crossref_primary_10_1016_j_energy_2018_02_016
crossref_primary_10_17531_ein_2021_1_16
crossref_primary_10_1016_j_ress_2024_110223
crossref_primary_10_1109_TR_2015_2494682
crossref_primary_10_1088_1361_6501_aaa33a
crossref_primary_10_1002_aic_17329
crossref_primary_10_1016_j_microrel_2013_09_013
crossref_primary_10_1016_j_ijhydene_2013_09_051
crossref_primary_10_1088_1755_1315_93_1_012040
crossref_primary_10_1007_s12206_018_0201_1
crossref_primary_10_1021_acs_iecr_9b03182
crossref_primary_10_1016_j_ress_2016_05_012
crossref_primary_10_1155_2020_6639171
crossref_primary_10_1016_j_jmsy_2017_07_002
crossref_primary_10_1016_j_renene_2016_06_056
crossref_primary_10_1155_2017_6754968
crossref_primary_10_1155_2022_8455629
crossref_primary_10_1007_s11831_022_09727_6
crossref_primary_10_3233_SW_233299
crossref_primary_10_1016_j_jmsy_2021_02_006
crossref_primary_10_3390_e20120944
crossref_primary_10_1016_j_microrel_2017_03_026
crossref_primary_10_1016_j_promfg_2020_06_015
crossref_primary_10_1007_s13198_019_00813_w
crossref_primary_10_1016_j_energy_2014_10_067
crossref_primary_10_2478_fas_2023_0012
crossref_primary_10_1016_j_ymssp_2018_11_032
crossref_primary_10_1115_1_4044105
crossref_primary_10_1109_TASE_2018_2844204
crossref_primary_10_1109_TIM_2019_2905307
crossref_primary_10_1109_TR_2017_2717488
crossref_primary_10_1177_1748006X221118448
crossref_primary_10_3390_e25081160
crossref_primary_10_21595_jve_2016_18046
crossref_primary_10_1016_j_est_2022_106193
crossref_primary_10_1016_j_rcim_2021_102281
crossref_primary_10_1115_1_4062731
crossref_primary_10_3390_s23135970
crossref_primary_10_1016_j_jclepro_2013_09_014
crossref_primary_10_1016_j_ress_2020_107028
crossref_primary_10_1016_j_ejor_2012_10_025
crossref_primary_10_1016_j_ymssp_2012_08_016
crossref_primary_10_1016_j_ress_2018_07_006
crossref_primary_10_1109_TIE_2021_3057030
crossref_primary_10_1186_s41072_020_00071_1
crossref_primary_10_1155_2022_1419671
crossref_primary_10_3390_s24010231
crossref_primary_10_1016_j_jpowsour_2012_11_146
crossref_primary_10_1016_j_procir_2015_08_028
crossref_primary_10_1088_1361_6501_ad0e3a
crossref_primary_10_1007_s00170_016_8909_5
crossref_primary_10_3390_en11020300
crossref_primary_10_1155_2020_8871981
crossref_primary_10_3390_app10010346
crossref_primary_10_1177_1475921714522844
crossref_primary_10_1109_ACCESS_2020_3020375
crossref_primary_10_1155_2022_6937616
crossref_primary_10_20964_2020_09_30
crossref_primary_10_1016_j_jprocont_2016_10_003
crossref_primary_10_1016_j_energy_2020_119198
crossref_primary_10_1109_TSMC_2013_2290772
crossref_primary_10_1016_j_promfg_2021_07_026
crossref_primary_10_1016_j_ymssp_2013_01_010
crossref_primary_10_3390_app10124120
crossref_primary_10_1177_1748006X17693519
crossref_primary_10_1061__ASCE_PS_1949_1204_0000242
crossref_primary_10_1002_qre_2947
crossref_primary_10_1109_JSEN_2023_3298349
crossref_primary_10_3390_s19030532
crossref_primary_10_1016_j_ress_2021_107683
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_1108_JQME_12_2015_0062
crossref_primary_10_3390_s20236975
crossref_primary_10_4028_www_scientific_net_AMM_794_507
crossref_primary_10_3390_s21196325
crossref_primary_10_3390_su12166421
crossref_primary_10_3390_s24061814
crossref_primary_10_1109_TIM_2023_3308251
crossref_primary_10_1177_1687814020971890
crossref_primary_10_1007_s00170_017_0025_7
crossref_primary_10_1088_1361_6501_ac77d9
crossref_primary_10_1016_j_cie_2021_107792
crossref_primary_10_1007_s11432_017_9347_5
crossref_primary_10_1016_j_ymssp_2017_08_016
crossref_primary_10_15675_gepros_3007
crossref_primary_10_18775_jibrm_1849_8558_2015_54_3004
crossref_primary_10_1080_14484846_2015_1093251
crossref_primary_10_1177_0954406220976154
crossref_primary_10_1016_j_measurement_2021_109756
crossref_primary_10_1109_TIE_2019_2931489
crossref_primary_10_1016_j_ijfatigue_2023_107504
crossref_primary_10_3390_en17061430
crossref_primary_10_1002_lpor_202000254
crossref_primary_10_1016_j_ymssp_2023_110239
crossref_primary_10_1177_1475921720971551
crossref_primary_10_1016_j_asoc_2020_106474
crossref_primary_10_37394_23207_2024_21_69
crossref_primary_10_1088_1757_899X_1043_3_032011
crossref_primary_10_1002_int_22395
crossref_primary_10_1080_13287982_2020_1758375
crossref_primary_10_1109_TIE_2012_2224074
crossref_primary_10_1016_j_ress_2017_05_047
crossref_primary_10_1177_0954408919862720
crossref_primary_10_1016_j_microrel_2014_07_072
crossref_primary_10_1007_s00170_013_5064_0
crossref_primary_10_1016_j_asoc_2022_108912
crossref_primary_10_1177_1748006X17706654
crossref_primary_10_1155_2016_8623530
crossref_primary_10_5937_tehnika1905687S
crossref_primary_10_1016_j_ymssp_2016_05_019
crossref_primary_10_1177_14759217211030605
crossref_primary_10_3390_machines12070474
crossref_primary_10_1016_j_ymssp_2018_09_033
crossref_primary_10_1109_TR_2015_2499960
crossref_primary_10_1016_j_ress_2022_108671
crossref_primary_10_1007_s13042_023_01807_8
crossref_primary_10_1016_j_ymssp_2024_111654
crossref_primary_10_1016_j_engfailanal_2017_04_015
crossref_primary_10_1108_JQME_04_2020_0021
crossref_primary_10_1016_j_ymssp_2022_108917
crossref_primary_10_1016_j_anucene_2017_10_010
crossref_primary_10_1017_dce_2023_11
crossref_primary_10_1177_1687814016671445
crossref_primary_10_1016_j_procir_2016_09_033
crossref_primary_10_3182_20120829_3_MX_2028_00144
crossref_primary_10_1109_ACCESS_2021_3130157
crossref_primary_10_1109_TAES_2024_3402199
crossref_primary_10_1002_qre_1609
crossref_primary_10_1109_TIE_2019_2926048
crossref_primary_10_1016_j_datak_2023_102240
crossref_primary_10_3390_en10010032
crossref_primary_10_3233_JIFS_169547
crossref_primary_10_1109_ACCESS_2019_2947843
crossref_primary_10_1016_j_apacoust_2017_12_003
crossref_primary_10_1155_2013_983595
crossref_primary_10_1016_j_trc_2022_103679
crossref_primary_10_1002_qre_1935
crossref_primary_10_1016_j_promfg_2020_01_247
crossref_primary_10_1016_j_ifacol_2023_10_1761
crossref_primary_10_1016_j_ymssp_2024_111435
crossref_primary_10_1016_j_ress_2022_108775
crossref_primary_10_1109_ACCESS_2019_2911307
crossref_primary_10_1016_j_ress_2016_03_020
crossref_primary_10_1142_S0218126621500481
crossref_primary_10_1016_j_rser_2024_115281
crossref_primary_10_1109_TNNLS_2021_3119510
crossref_primary_10_1177_1748006X15573046
crossref_primary_10_3390_machines12010069
crossref_primary_10_1016_j_microrel_2022_114684
crossref_primary_10_1016_j_ymssp_2024_111551
crossref_primary_10_1016_j_apenergy_2024_124829
crossref_primary_10_3390_en15020504
crossref_primary_10_1016_j_ymssp_2017_11_016
crossref_primary_10_1016_j_cie_2024_110342
crossref_primary_10_1051_matecconf_202338501010
crossref_primary_10_1016_j_ijfatigue_2020_105943
crossref_primary_10_1016_j_engappai_2022_105802
crossref_primary_10_1016_j_ress_2018_06_021
crossref_primary_10_1002_joom_1295
crossref_primary_10_1016_j_procir_2018_03_280
crossref_primary_10_1016_j_ress_2016_09_005
crossref_primary_10_1016_j_ymssp_2013_07_010
crossref_primary_10_1016_j_ymssp_2020_107050
crossref_primary_10_1109_TII_2019_2900295
crossref_primary_10_1109_TR_2014_2337791
crossref_primary_10_1109_ACCESS_2020_2978301
crossref_primary_10_1007_s11771_015_3013_9
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_3390_s22145174
crossref_primary_10_1109_TIM_2020_3030165
crossref_primary_10_1115_1_4048787
crossref_primary_10_1016_j_conengprac_2018_02_011
crossref_primary_10_1007_s11071_020_05847_5
crossref_primary_10_1155_2015_793161
crossref_primary_10_17531_ein_2015_2_16
crossref_primary_10_1109_JSEN_2018_2890687
crossref_primary_10_1080_1573062X_2016_1236135
crossref_primary_10_1016_j_compind_2019_07_004
crossref_primary_10_3390_min14020174
crossref_primary_10_1109_TR_2013_2241203
crossref_primary_10_1007_s11668_022_01532_4
crossref_primary_10_1088_1361_6501_ad5610
crossref_primary_10_1016_j_promfg_2020_10_033
crossref_primary_10_3390_en17051010
crossref_primary_10_1016_j_amc_2025_129340
crossref_primary_10_1109_TR_2019_2907402
crossref_primary_10_3182_20120829_3_MX_2028_00189
crossref_primary_10_61927_igmin204
crossref_primary_10_1016_j_autcon_2013_12_006
crossref_primary_10_1007_s12206_021_1105_z
crossref_primary_10_1016_j_ifacol_2022_07_162
crossref_primary_10_1016_j_ymssp_2015_02_016
crossref_primary_10_1007_s12206_014_1222_z
crossref_primary_10_1016_j_ress_2018_11_011
crossref_primary_10_1088_1757_899X_242_1_012117
crossref_primary_10_1177_1748006X211044343
crossref_primary_10_1109_TDMR_2017_2694227
crossref_primary_10_1016_j_autcon_2024_105648
crossref_primary_10_1016_j_neucom_2020_06_052
crossref_primary_10_1016_j_aei_2021_101404
crossref_primary_10_1016_j_eswa_2014_08_007
crossref_primary_10_1016_j_ymssp_2020_107378
crossref_primary_10_1016_j_cie_2017_08_028
crossref_primary_10_1080_0951192X_2021_1885062
crossref_primary_10_1016_j_measurement_2020_107787
crossref_primary_10_1016_j_engappai_2023_107365
crossref_primary_10_1016_j_promfg_2020_10_169
crossref_primary_10_1109_TR_2015_2419220
crossref_primary_10_1115_1_4056149
crossref_primary_10_1016_j_asoc_2016_03_013
crossref_primary_10_1016_j_cie_2023_109033
crossref_primary_10_1016_j_measurement_2015_11_047
crossref_primary_10_1016_j_ymssp_2016_05_041
crossref_primary_10_1007_s10489_017_1013_1
crossref_primary_10_3390_app13032021
crossref_primary_10_3390_f12111495
crossref_primary_10_1016_j_engfailanal_2022_107034
crossref_primary_10_1016_j_ymssp_2018_08_039
crossref_primary_10_1016_j_ress_2018_11_027
crossref_primary_10_1088_1742_6596_2265_3_032111
crossref_primary_10_1016_j_jmsy_2019_11_008
crossref_primary_10_1108_IJQRM_06_2012_0084
crossref_primary_10_1177_1475921720972926
crossref_primary_10_23939_cds2022_01_049
crossref_primary_10_4018_ijeis_2013100104
crossref_primary_10_1016_j_ijhydene_2013_10_054
crossref_primary_10_3390_axioms12020168
crossref_primary_10_1016_j_ress_2021_108140
crossref_primary_10_1109_ACCESS_2019_2943029
crossref_primary_10_1007_s11668_022_01357_1
crossref_primary_10_3390_en15196909
crossref_primary_10_1109_TR_2013_2285318
crossref_primary_10_3390_app7050497
Cites_doi 10.1016/j.ijfatigue.2006.05.001
10.1016/j.ymssp.2005.11.008
10.1109/24.44186
10.1109/78.978389
10.1109/TIE.2004.824875
10.1016/0951-8320(91)90098-R
10.1080/00207540412331327727
10.1080/00401706.1980.10486134
10.1007/BF00992695
10.1016/j.ijmachtools.2004.06.018
10.1016/j.ress.2007.03.011
10.1016/S0951-8320(96)00092-0
10.1016/j.ress.2007.12.006
10.1111/j.2517-6161.1972.tb00899.x
10.1002/qre.4680050305
10.1111/j.2517-6161.1995.tb02042.x
10.1002/qre.859
10.1109/72.478409
10.1109/72.963764
10.1016/j.compchemeng.2005.05.005
10.1016/j.jsv.2003.08.021
10.1109/87.508893
10.1109/ICPR.2004.1334061
10.1093/biomet/77.2.409
10.1239/aap/999187904
10.1108/13552510610654529
10.1016/0951-8320(91)90101-C
10.1016/S0888-3270(03)00079-7
10.1109/ICIT.2000.854201
10.1002/1520-6750(199510)42:7<1063::AID-NAV3220420706>3.0.CO;2-3
10.1109/AERO.2000.877920
10.1016/j.ymssp.2006.10.001
10.1016/S0952-1976(99)00011-1
10.1016/S0377-2217(96)00318-9
10.1109/5.18626
10.1093/imaman/dpi029
10.1016/0951-8320(88)90121-4
10.1016/j.ress.2005.11.037
10.1109/MASSP.1986.1165342
10.1016/j.ijpvp.2006.02.007
10.1016/j.ress.2008.05.008
10.1016/j.ijfatigue.2006.06.013
10.1109/24.106769
10.1016/S0377-2217(96)00316-5
10.1016/j.ymssp.2004.01.001
10.1214/aoms/1177699147
10.1109/TSP.2006.873585
10.1016/j.ress.2004.10.004
10.1016/0951-8320(88)90051-8
10.1016/S0951-8320(97)00026-4
10.1002/for.814
10.1080/10789669.2005.10391123
10.1016/j.ymssp.2008.06.009
10.1109/NAFIPS.2005.1548498
10.1016/j.ijfatigue.2006.03.004
10.1016/j.ress.2006.05.001
10.1109/INDIN.2006.275836
10.1016/0951-8320(94)90010-8
10.1016/j.ress.2005.09.003
10.1016/j.commatsci.2008.02.028
10.1109/AERO.1999.789761
10.1016/j.jsv.2007.01.001
10.1016/0143-8174(85)90038-1
10.1109/6.158640
10.1243/0954408001530146
10.1016/j.compind.2006.02.014
10.1016/0026-2714(91)90225-V
10.1016/S0377-2217(96)00317-7
10.1111/j.2517-6161.1994.tb01994.x
10.1108/13552519910282647
10.1007/s005210050009
10.1109/21.52551
10.1108/EUM0000000006007
10.1109/AERO.2006.1656122
10.1109/AERO.2005.1559666
10.1090/S0002-9904-1967-11751-8
10.1109/ICEMI.2007.4350749
10.1080/09537280412331309208
10.1002/1520-6750(198912)36:6<765::AID-NAV3220360603>3.0.CO;2-C
10.1109/24.210287
10.1007/s00170-004-2131-6
10.1016/j.ress.2007.03.019
10.1016/S0378-3758(02)00091-5
10.1016/S0957-4174(98)00053-0
10.1109/72.329697
10.1016/0143-8174(85)90070-8
10.1017/S0890060401154089
10.1023/A:1018513006083
10.1214/aoms/1177697196
10.2307/2348057
10.1109/TSMCA.2007.902621
10.1016/S0890-6955(00)00112-7
10.1109/NAFIPS.2006.365465
10.1504/IJMPT.2004.003920
10.1057/palgrave.jors.2601261
10.1287/moor.28.2.382.14484
10.1016/S0951-8320(00)00092-2
10.1016/S0952-1976(03)00063-0
10.1109/TA.1964.4319640
10.1016/j.ymssp.2007.12.004
10.21236/ADA448747
10.1006/mssp.2000.1324
10.1016/j.ymssp.2008.12.006
10.1016/j.ndteint.2005.04.003
10.1080/01621459.1992.10475231
10.1016/j.ress.2008.07.002
10.1115/2000-GT-0030
10.1080/01621459.1991.10475148
10.1006/mssp.2000.1309
10.1080/01621459.2000.10474241
10.1016/j.ymssp.2005.09.012
10.1016/j.energy.2004.03.031
10.2140/pjm.1968.27.211
10.1016/j.ymssp.2008.08.004
10.1016/j.ress.2008.08.003
10.1109/AERO.2001.931317
10.1016/0925-5273(95)00061-5
10.1109/9.855552
10.1016/j.ymssp.2006.01.009
10.1016/j.ress.2006.04.016
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2010.11.018
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Business
EISSN 1096-1216
EndPage 1836
ExternalDocumentID 24105440
10_1016_j_ymssp_2010_11_018
S0888327010004218
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c366t-171f357cb210d40809271563eaac705ea3cc3f79b1c43c4b172295dee14fb3
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Fri Jul 11 01:23:20 EDT 2025
Mon Jul 21 09:13:27 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Tue Jul 01 05:20:43 EDT 2025
Fri Feb 23 02:25:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Remaining useful life (RUL)
Maintenance
Reliability
Prognostics
Production system
Statistical analysis
Probabilistic approach
Model selection
Durability
Knowledge base
Neural network
Modeling
Fuzzy logic
Physical model
Classification
Strength
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-171f357cb210d40809271563eaac705ea3cc3f79b1c43c4b172295dee14fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671299701
PQPubID 23500
PageCount 34
ParticipantIDs proquest_miscellaneous_1671299701
pascalfrancis_primary_24105440
crossref_citationtrail_10_1016_j_ymssp_2010_11_018
crossref_primary_10_1016_j_ymssp_2010_11_018
elsevier_sciencedirect_doi_10_1016_j_ymssp_2010_11_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-01
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Mechanical systems and signal processing
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References N.K. Sinha, M.M. Gupta, D.H. Rao, Dynamic neural networks: an overview, in: IEEE International Conference on Industrial Technology, 2000, pp. 491–496.
Wang (bib80) 1997; 99
Jardine, Joseph, Banjevic (bib117) 1999; 5
Franco, Souza (bib90) 2002; 21
Makis, Jardine (bib134) 1992; 3
Vassilopoulos, Bedi (bib154) 2008; 43
Lowe, Zapart (bib151) 1999; 8
A. Hess, G. Calvello, P. Frith, Challenges, issues, and lessons learned chasing the "Big P", Real predictive prognostics, Part 1, Aerospace, in: 2005 IEEE Conference, 2005, pp. 3610–3619.
Baxter, Bendell, Manning, Ryan (bib129) 1988; 21
Lewis (bib98) 1992
Lee, Kim, Hwang, Song (bib58) 2004; 276
Baum, Petrie (bib65) 1966; 37
Jardine, Buck, Banjevic, Joseph, Wiseman (bib118) 2001; 7
Rabiner (bib67) 1989; 77
Noortwijk (bib36) 2009; 94
Crevecoeur (bib39) 1993; 42
G. Weidl, A.L. Madsen, E. Dahlquist, Object oriented Bayesian networks for industrial process operation, in: Bayesian Modelling Applications Workshop Associated with the 19th Conference on Uncertainties in Artificial Intelligence, Acapulco Mexico, 2003, pp. 1–9, available online.
Duane (bib37) 1964; 2
G.J. Kacprzynski, Sensor/Model Fusion for Adaptive Prognosis of Structural Corrosion Damage, United States, 2006, 6 pp.
Burke, Ignizio (bib146) 1997; 8
T. Brotherton, A testbed for data fusion for engine diagnostics and prognostics, in: IEEE Aerospace Conference, Big Sky MT, 2000, pp. 163–171.
Ertunc, Loparo, Ocak (bib74) 2001; 41
Ocak, Loparo, Discenzo (bib76) 2007; 302
Kallen, van Noortwijk (bib53) 2005; 90
Ray, Tangirala (bib85) 1996; 4
Phelps, Willett, Kirubarajan, Brideau (bib87) 2007; 37
Baum, Egon (bib64) 1967; 73
Lloyd, Hasselman, Paez (bib160) 2005
Maguluri, Zhang (bib41) 1994; 56
Kumar, Klefsjö (bib106) 1994; 44
Garga, McClintic, Campbell, Chih-Chung, Lebold, Hay, Byington (bib13) 2001
Lewis (bib45) 1986
Vlok, Coetzee, Banjevic, Jardine, Makis (bib120) 2002; 53
Cox (bib14) 1992
J. Luo, A. Bixby, K. Pattipati, L. Qiao, M. Kawamoto, S. Chigusa, An interacting multiple model approach to model-based prognostics, in: IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, United States, Institute of Electrical and Electronics Engineers Inc., 2003, pp. 189–194.
Lee, Ni, Djurdjanovic, Qiu, Liao (bib102) 2006; 57
Dale (bib112) 1985; 10
Drury, Walker, Wightman, Bendell (bib128) 1988; 21
Hagan, Menhaj (bib147) 1994; 5
Papadopoulos, Edwards, Murray (bib149) 2001; 12
Yan, Koc, Lee (bib101) 2004; 76
Kumar, Westberg (bib121) 1997; 97
Isermann (bib162) 2006
Carlin, Chib (bib51) 1995; 57
Jiang, Makis, Jardine (bib125) 2001; 33
Bendell (bib7) 1985; 11
Swanson, Spencer, Arzoumanian (bib86) 2000; 14
Wu, Hu, Zhang (bib100) 2007
Cadini, Zio, Avram (bib96) 2009; 94
Makis, Jardine (bib115) 1991
Prentice, Williams, Peterson (bib132) 1981
M.J. Roemer, G.J. Kacprzynski, Advanced diagnostics and prognostics for gas turbine engine risk assessment, in: Aerospace Conference, Big Sky, MT, USA, IEEE, 2000, pp. 345–353.
Baum, Petrie, Soules, Weiss (bib62) 1970; 41
Baruah, Chinnam (bib73) 2005; 43
Zemouri, Racoceanu, Zerhouni (bib143) 2003; 16
Liu, Makis, Jardine (bib124) 1995; 42
Miao, Makis (bib70) 2007; 21
Mazzuchi, Linzey, Bruning (bib130) 2008; 93
Pierce, Worden, Bezazi (bib141) 2008; 22
Z. Lei, L. ZXingshan, Y. Jinsong, G. ZhanBao, A genetic training algorithm of wavelet neural networks for fault prognostics in condition based maintenance, in: Proceedings of the Eighth International Conference on Electronic Measurement and Instruments, IEEE, 2007, pp. 584–589.
Kwon, Kim (bib75) 1999; 12
Liu, Makis, Jardine (bib116) 1997
Tsui, Sun, Li, Sclabassi. (bib157) 1995
Tsang, Yeung, Jardine, Leung (bib131) 2006; 12
Reinertsen (bib42) 1996; 54
Smith, Coit, Liang (bib171) 2003
Chryssoloiuris, Lee, Ramsey (bib150) 1996; 7
Ansell, Philipps (bib109) 1997; 58
L.M. Maillart, E.A. Pohl, Introduction to Markov–Chain modeling, analysis and optimization, in: 2006 Annual Reliability and Maintainability Symposium, 2006.
Ghahramani (bib50) 1997
Feng, Yang, Rao (bib23) 1998; 15
Bendell, Wightman, Walker (bib8) 1991; 34
Box, Jenkins (bib97) 1976
Niu, Yang (bib103) 2009; 23
Goode, Moore, Roylance (bib35) 2000; 214
Kalbfleisch, Prentice (bib108) 1980
Montgomery, Jefferis (bib60) 2007
Tsay (bib99) 2000; 95
Carnero (bib11) 2006; 91
Heckerman (bib49) 1995
Lugtigheid, Jardine, Jiang (bib10) 2007; 23
Makis, Jardine (bib123) 1991; 31
K. Dmitry, V. Dmitry, An algorithm for rule generation in fuzzy expert systems, in: Proceedings of the 17th International Conference on Pattern Recognition, IEEE Computer Society, 2004.
S.A. Lewis, T.G. Edwards, Smart sensors and system health management tools for avionics and mechanical systems, in: Digital Avionics Systems Conference, 1997.
Stoffer, Wall (bib93) 1991; 86
Romeu (bib29) 2001
Ansell, Philipps (bib9) 1989; 38
Makis, Jiang (bib111) 2003; 28
D.C. Swanson, A general prognostic tracking algorithm for predictive maintenance, in: IEEE Aerospace Conference, IEEE, 2001, pp. 2971–2977.
Banjevic, Jardine (bib43) 2006; 17
E. Bechhoefer, A. Bernhard, D. He, P. Banerjee, Use of hidden semi-Markov models in the prognostics of shaft failure, Phoenix, AZ, United States, American Helicopter Society, Alexandria, VA, United States, 2006, pp. 1330–1335.
Guo, Wang (bib84) 2006; 54
Wang, Golnaraghi, Ismail (bib155) 2004; 18
Rabiner, Juang (bib66) 1986; 3
Li, Wu, He, Fulei (bib77) 2005; 19
Krivtsov (bib127) 2007; 92
Djuric, Huang, Ghirmai (bib94) 2002; 50
Huang, Xi, Li, Richard Liu, Qiu, Lee (bib138) 2007; 21
Kothamasu, Huang, VerDuin (bib173) 2006; 28
Rausand, Hoyland (bib30) 2004
Bezazi, Pierce, Worden, Harkati (bib153) 2007; 29
Biagetti, Sciubba (bib12) 2004; 29
AKS (bib119) 2002
Kallen, van Noortwijk (bib57) 2006; 83
Mazzuchi, Soyer (bib110) 1989; 36
Cox, Oakes (bib105) 1984
Vassilopoulos, Georgopoulos, Dionysopoulos (bib140) 2007; 29
Elsayed, Zhang (bib107) 2007; 92
Montgomery, Lindquist, Garnero, Chevalier, Jardine (bib59) 2006
Dasgupta, Pecht (bib164) 1991; 40
Welch, Bishop (bib81) 2006
Clarotti, Spizzichino (bib46) 1989; 38
K.M. Goh, B. Tjahjono, T. Bainers, S.A. Subramaniam, Review of research in manufacturing prognostics, in: 2006 IEEE International Conference on Industrial Informatics, IEEE, 2006, pp. 1–6.
ISO 13381-1, Condition Monitoring and Diagnostics of Machines – Prognostics – Part 1: General Guidelines: International Standards Organization, 2004.
Jardine, Ralston, Reid, Stafford (bib114) 1989; 5
Jardine, Tsang (bib33) 2006
Dale (bib126) 1991; 34
Katipamula, Brambley (bib169) 2005; 11
Jardine, AHC (bib24) 2006
Blischke, Murthy (bib27) 2000
Samrout, Châtelet, Kouta, Chebbo (bib122) 2009; 94
Baum, Sell (bib63) 1968; 27
Yuen, Zhu, Tang (bib44) 2003; 113
Todinov (bib31) 2005
Dong, He (bib79) 2007; 21
Dey, Stori (bib47) 2005; 45
Luo, Namburu, Pattipati, Qiao, Kawamoto, Chigusa (bib5) 2003
Jardine, Lin, Banjevic (bib172) 2006; 20
Herzog, Marwala, Heyns (bib148) 2009; 94
Satish, Sarma (bib137) 2005
Gordon, Salmond, Smith (bib92) 1993; 140
A. Heng, A.C.C. Tan, J. Mathew, N. Montgomery, D. Banjevic, A.K.S. Jardine, Intelligent condition-based prediction of machinery reliability, Mechanical Systems and Signal Processing 23 (5) (2009) 1600–1614.
Finkelstein, Esaulova (bib28) 2001; 71
Carlin, Polson, Stoffer (bib89) 1992; 87
O'Connor (bib34) 2004
Majidian, Saidi (bib21) 2007; 29
Oakes, Dasu (bib40) 1990; 77
S.J. Engel, B.J. Gilmartin, K. Bongort, A. Hess, Prognostics, the real issues involved with predicting life remaining, in: Aerospace Conference Proceedings, vol. 6, IEEE, 2000, pp. 457–469.
Langseth, Portinale (bib48) 2007; 92
Makis, Jardine (bib133) 1992; 30
Sutton (bib145) 1992; 8
T. Khawaja, G. Vachtsevanos, B. Wu, Reasoning about uncertainty in prognosis: a confidence prediction neural network approach, in: Annual Meeting of the North American Fuzzy Information Processing Society, IEEE, 2005, pp. 7–12.
Wang, Vachtsevanos (bib158) 2001; 15
L.C. Jaw, Neural networks for model-based prognostics, in: IEEE Aerospace Conference, IEEE, Aspen, USA, 1999, pp. 21–28.
Kwan, Zhang, Xu, Haynes (bib71) 2003
Cox (bib104) 1972; 34
A. Hess, G. Calvello, P. Frith, S.J. Engel, D. Hoitsma, Challenges, issues, and lessons learned chasing the"Big P": real predictive prognostics, Part 2, in: Aerospace Conference, IEEE, 2006, pp. 1–19.
Chinnam, Baruah (bib18) 2004; 20
T. Brotherton, A testbed for data fusion for engine diagnostics and prognostics, in: IEEE Aerospace Conference, Big Sky MT, 2002, pp. 8–15.
Lee (bib16) 1990; 20
Scarf (bib1) 1997; 99
Vachtsevanos, Lewis, Roemer, Hess, Wu (bib4) 2006
Heng, Zhang, Tan, Mathew (bib166) 2009; 23
Gebraeel, Lawley, Liu, Parmeshwaran (bib136) 2004; 51
Line, Clements (bib20) 2005
Kelly, Smith (bib52) 2009; 94
D.P. Filev, T. Finn, Real time novelty detection modeling for machine health prognostics, IEEE, Montreal, Quebec, Canada, 2006, 6 pp.
Orchard, Wu, Vachtsevanos (bib95) 2005
Banjevic, Jardine, Makis, Ennis (bib135) 2001; 39
Makis (bib113) 1995; 41
D. He, W. Shenliang, P. Banerjee, E. Bechhoefer, Probabilistic model based algorithms for prognostics, in: IEEE Aerospace Conference Proceedings, Big Sky, MT, United States, IEEE Computer Society, Piscataway, NJ, United States, 2006, pp. 1–10.
Flanagan, Andersson, Surland (bib142) 1997
ADS (bib26) 1986
Baum (bib61) 1972; 3
A. Rodriguez, E. Ruiz, Bootstrap Prediction Intervals in State Space models, Statistics and Econometrics Working Papers, Universidad Carlos III, Departamento de Estadística y Econometría, 2008.
Shimanek (bib22) 2003
Smith (bib32) 2005
Lee (bib38) 1980; 22
Bunks, McCarthy, Al-Ani (bib72) 2000; 14
Purushotham, Narayanan, Prasad (bib78) 2005; 38
Ito, Xiong (bib82) 2000; 45
Haug (bib83) 2005
Institute AP (bib165) 2000
Weidl, Madsen, Israelson (bib54) 2005; 29
Vachtsevanos (10.1016/j.ymssp.2010.11.018_bib4) 2006
10.1016/j.ymssp.2010.11.018_bib69
Lee (10.1016/j.ymssp.2010.11.018_bib102) 2006; 57
10.1016/j.ymssp.2010.11.018_bib167
10.1016/j.ymssp.2010.11.018_bib68
10.1016/j.ymssp.2010.11.018_bib168
10.1016/j.ymssp.2010.11.018_bib163
10.1016/j.ymssp.2010.11.018_bib161
Montgomery (10.1016/j.ymssp.2010.11.018_bib60) 2007
Romeu (10.1016/j.ymssp.2010.11.018_bib29) 2001
Dasgupta (10.1016/j.ymssp.2010.11.018_bib164) 1991; 40
Duane (10.1016/j.ymssp.2010.11.018_bib37) 1964; 2
Smith (10.1016/j.ymssp.2010.11.018_bib171) 2003
Blischke (10.1016/j.ymssp.2010.11.018_bib27) 2000
Lee (10.1016/j.ymssp.2010.11.018_bib16) 1990; 20
Cadini (10.1016/j.ymssp.2010.11.018_bib96) 2009; 94
Purushotham (10.1016/j.ymssp.2010.11.018_bib78) 2005; 38
Ghahramani (10.1016/j.ymssp.2010.11.018_bib50) 1997
Wu (10.1016/j.ymssp.2010.11.018_bib100) 2007
10.1016/j.ymssp.2010.11.018_bib56
10.1016/j.ymssp.2010.11.018_bib55
Luo (10.1016/j.ymssp.2010.11.018_bib5) 2003
10.1016/j.ymssp.2010.11.018_bib174
Ito (10.1016/j.ymssp.2010.11.018_bib82) 2000; 45
10.1016/j.ymssp.2010.11.018_bib170
Li (10.1016/j.ymssp.2010.11.018_bib77) 2005; 19
Huang (10.1016/j.ymssp.2010.11.018_bib138) 2007; 21
Montgomery (10.1016/j.ymssp.2010.11.018_bib59) 2006
Lugtigheid (10.1016/j.ymssp.2010.11.018_bib10) 2007; 23
Yuen (10.1016/j.ymssp.2010.11.018_bib44) 2003; 113
Flanagan (10.1016/j.ymssp.2010.11.018_bib142) 1997
Bendell (10.1016/j.ymssp.2010.11.018_bib7) 1985; 11
Baum (10.1016/j.ymssp.2010.11.018_bib63) 1968; 27
Reinertsen (10.1016/j.ymssp.2010.11.018_bib42) 1996; 54
Vassilopoulos (10.1016/j.ymssp.2010.11.018_bib140) 2007; 29
Dong (10.1016/j.ymssp.2010.11.018_bib79) 2007; 21
Baruah (10.1016/j.ymssp.2010.11.018_bib73) 2005; 43
Sutton (10.1016/j.ymssp.2010.11.018_bib145) 1992; 8
Wang (10.1016/j.ymssp.2010.11.018_bib158) 2001; 15
10.1016/j.ymssp.2010.11.018_bib88
Elsayed (10.1016/j.ymssp.2010.11.018_bib107) 2007; 92
10.1016/j.ymssp.2010.11.018_bib144
Tsay (10.1016/j.ymssp.2010.11.018_bib99) 2000; 95
Todinov (10.1016/j.ymssp.2010.11.018_bib31) 2005
Finkelstein (10.1016/j.ymssp.2010.11.018_bib28) 2001; 71
Smith (10.1016/j.ymssp.2010.11.018_bib32) 2005
Kwon (10.1016/j.ymssp.2010.11.018_bib75) 1999; 12
Baxter (10.1016/j.ymssp.2010.11.018_bib129) 1988; 21
Jardine (10.1016/j.ymssp.2010.11.018_bib117) 1999; 5
Carlin (10.1016/j.ymssp.2010.11.018_bib89) 1992; 87
Garga (10.1016/j.ymssp.2010.11.018_bib13) 2001
Jiang (10.1016/j.ymssp.2010.11.018_bib125) 2001; 33
Guo (10.1016/j.ymssp.2010.11.018_bib84) 2006; 54
Orchard (10.1016/j.ymssp.2010.11.018_bib95) 2005
Makis (10.1016/j.ymssp.2010.11.018_bib115) 1991
Kelly (10.1016/j.ymssp.2010.11.018_bib52) 2009; 94
10.1016/j.ymssp.2010.11.018_bib91
Kalbfleisch (10.1016/j.ymssp.2010.11.018_bib108) 1980
Institute AP (10.1016/j.ymssp.2010.11.018_bib165) 2000
Franco (10.1016/j.ymssp.2010.11.018_bib90) 2002; 21
10.1016/j.ymssp.2010.11.018_bib156
Tsang (10.1016/j.ymssp.2010.11.018_bib131) 2006; 12
Carlin (10.1016/j.ymssp.2010.11.018_bib51) 1995; 57
Djuric (10.1016/j.ymssp.2010.11.018_bib94) 2002; 50
Carnero (10.1016/j.ymssp.2010.11.018_bib11) 2006; 91
10.1016/j.ymssp.2010.11.018_bib152
Kwan (10.1016/j.ymssp.2010.11.018_bib71) 2003
Baum (10.1016/j.ymssp.2010.11.018_bib64) 1967; 73
Majidian (10.1016/j.ymssp.2010.11.018_bib21) 2007; 29
Lloyd (10.1016/j.ymssp.2010.11.018_bib160) 2005
Clarotti (10.1016/j.ymssp.2010.11.018_bib46) 1989; 38
Cox (10.1016/j.ymssp.2010.11.018_bib105) 1984
Miao (10.1016/j.ymssp.2010.11.018_bib70) 2007; 21
Ansell (10.1016/j.ymssp.2010.11.018_bib109) 1997; 58
Drury (10.1016/j.ymssp.2010.11.018_bib128) 1988; 21
Ray (10.1016/j.ymssp.2010.11.018_bib85) 1996; 4
Makis (10.1016/j.ymssp.2010.11.018_bib111) 2003; 28
Feng (10.1016/j.ymssp.2010.11.018_bib23) 1998; 15
Scarf (10.1016/j.ymssp.2010.11.018_bib1) 1997; 99
O'Connor (10.1016/j.ymssp.2010.11.018_bib34) 2004
Swanson (10.1016/j.ymssp.2010.11.018_bib86) 2000; 14
Prentice (10.1016/j.ymssp.2010.11.018_bib132) 1981
Jardine (10.1016/j.ymssp.2010.11.018_bib33) 2006
10.1016/j.ymssp.2010.11.018_bib159
10.1016/j.ymssp.2010.11.018_bib25
Haug (10.1016/j.ymssp.2010.11.018_bib83) 2005
Niu (10.1016/j.ymssp.2010.11.018_bib103) 2009; 23
Noortwijk (10.1016/j.ymssp.2010.11.018_bib36) 2009; 94
Bunks (10.1016/j.ymssp.2010.11.018_bib72) 2000; 14
Wang (10.1016/j.ymssp.2010.11.018_bib155) 2004; 18
Makis (10.1016/j.ymssp.2010.11.018_bib123) 1991; 31
Biagetti (10.1016/j.ymssp.2010.11.018_bib12) 2004; 29
Baum (10.1016/j.ymssp.2010.11.018_bib62) 1970; 41
Kumar (10.1016/j.ymssp.2010.11.018_bib106) 1994; 44
Zemouri (10.1016/j.ymssp.2010.11.018_bib143) 2003; 16
Dey (10.1016/j.ymssp.2010.11.018_bib47) 2005; 45
Chinnam (10.1016/j.ymssp.2010.11.018_bib18) 2004; 20
Papadopoulos (10.1016/j.ymssp.2010.11.018_bib149) 2001; 12
Ertunc (10.1016/j.ymssp.2010.11.018_bib74) 2001; 41
Lewis (10.1016/j.ymssp.2010.11.018_bib98) 1992
Kumar (10.1016/j.ymssp.2010.11.018_bib121) 1997; 97
Lowe (10.1016/j.ymssp.2010.11.018_bib151) 1999; 8
Phelps (10.1016/j.ymssp.2010.11.018_bib87) 2007; 37
Vlok (10.1016/j.ymssp.2010.11.018_bib120) 2002; 53
Jardine (10.1016/j.ymssp.2010.11.018_bib114) 1989; 5
Banjevic (10.1016/j.ymssp.2010.11.018_bib135) 2001; 39
Burke (10.1016/j.ymssp.2010.11.018_bib146) 1997; 8
Heng (10.1016/j.ymssp.2010.11.018_bib166) 2009; 23
Baum (10.1016/j.ymssp.2010.11.018_bib61) 1972; 3
10.1016/j.ymssp.2010.11.018_bib19
10.1016/j.ymssp.2010.11.018_bib17
Stoffer (10.1016/j.ymssp.2010.11.018_bib93) 1991; 86
Liu (10.1016/j.ymssp.2010.11.018_bib124) 1995; 42
10.1016/j.ymssp.2010.11.018_bib15
Rausand (10.1016/j.ymssp.2010.11.018_bib30) 2004
Vassilopoulos (10.1016/j.ymssp.2010.11.018_bib154) 2008; 43
Maguluri (10.1016/j.ymssp.2010.11.018_bib41) 1994; 56
Ocak (10.1016/j.ymssp.2010.11.018_bib76) 2007; 302
Bendell (10.1016/j.ymssp.2010.11.018_bib8) 1991; 34
Makis (10.1016/j.ymssp.2010.11.018_bib113) 1995; 41
Katipamula (10.1016/j.ymssp.2010.11.018_bib169) 2005; 11
Banjevic (10.1016/j.ymssp.2010.11.018_bib43) 2006; 17
10.1016/j.ymssp.2010.11.018_bib139
Crevecoeur (10.1016/j.ymssp.2010.11.018_bib39) 1993; 42
Gordon (10.1016/j.ymssp.2010.11.018_bib92) 1993; 140
Makis (10.1016/j.ymssp.2010.11.018_bib134) 1992; 3
Bezazi (10.1016/j.ymssp.2010.11.018_bib153) 2007; 29
10.1016/j.ymssp.2010.11.018_bib3
Chryssoloiuris (10.1016/j.ymssp.2010.11.018_bib150) 1996; 7
10.1016/j.ymssp.2010.11.018_bib2
Rabiner (10.1016/j.ymssp.2010.11.018_bib66) 1986; 3
Langseth (10.1016/j.ymssp.2010.11.018_bib48) 2007; 92
Dale (10.1016/j.ymssp.2010.11.018_bib112) 1985; 10
Kothamasu (10.1016/j.ymssp.2010.11.018_bib173) 2006; 28
Dale (10.1016/j.ymssp.2010.11.018_bib126) 1991; 34
Lee (10.1016/j.ymssp.2010.11.018_bib38) 1980; 22
AKS (10.1016/j.ymssp.2010.11.018_bib119) 2002
Satish (10.1016/j.ymssp.2010.11.018_bib137) 2005
Cox (10.1016/j.ymssp.2010.11.018_bib14) 1992
Gebraeel (10.1016/j.ymssp.2010.11.018_bib136) 2004; 51
Welch (10.1016/j.ymssp.2010.11.018_bib81) 2006
Baum (10.1016/j.ymssp.2010.11.018_bib65) 1966; 37
ADS (10.1016/j.ymssp.2010.11.018_bib26) 1986
Herzog (10.1016/j.ymssp.2010.11.018_bib148) 2009; 94
Shimanek (10.1016/j.ymssp.2010.11.018_bib22) 2003
Mazzuchi (10.1016/j.ymssp.2010.11.018_bib130) 2008; 93
Pierce (10.1016/j.ymssp.2010.11.018_bib141) 2008; 22
Lee (10.1016/j.ymssp.2010.11.018_bib58) 2004; 276
Line (10.1016/j.ymssp.2010.11.018_bib20) 2005
Krivtsov (10.1016/j.ymssp.2010.11.018_bib127) 2007; 92
Jardine (10.1016/j.ymssp.2010.11.018_bib172) 2006; 20
Liu (10.1016/j.ymssp.2010.11.018_bib116) 1997
10.1016/j.ymssp.2010.11.018_bib6
Ansell (10.1016/j.ymssp.2010.11.018_bib9) 1989; 38
Rabiner (10.1016/j.ymssp.2010.11.018_bib67) 1989; 77
Jardine (10.1016/j.ymssp.2010.11.018_bib24) 2006
Heckerman (10.1016/j.ymssp.2010.11.018_bib49) 1995
Cox (10.1016/j.ymssp.2010.11.018_bib104) 1972; 34
Isermann (10.1016/j.ymssp.2010.11.018_bib162) 2006
Oakes (10.1016/j.ymssp.2010.11.018_bib40) 1990; 77
Makis (10.1016/j.ymssp.2010.11.018_bib133) 1992; 30
Lewis (10.1016/j.ymssp.2010.11.018_bib45) 1986
Goode (10.1016/j.ymssp.2010.11.018_bib35) 2000; 214
Wang (10.1016/j.ymssp.2010.11.018_bib80) 1997; 99
Mazzuchi (10.1016/j.ymssp.2010.11.018_bib110) 1989; 36
Jardine (10.1016/j.ymssp.2010.11.018_bib118) 2001; 7
Kallen (10.1016/j.ymssp.2010.11.018_bib57) 2006; 83
Samrout (10.1016/j.ymssp.2010.11.018_bib122) 2009; 94
Box (10.1016/j.ymssp.2010.11.018_bib97) 1976
Yan (10.1016/j.ymssp.2010.11.018_bib101) 2004; 76
Kallen (10.1016/j.ymssp.2010.11.018_bib53) 2005; 90
Hagan (10.1016/j.ymssp.2010.11.018_bib147) 1994; 5
Weidl (10.1016/j.ymssp.2010.11.018_bib54) 2005; 29
Tsui (10.1016/j.ymssp.2010.11.018_bib157) 1995
References_xml – year: 2000
  ident: bib27
  article-title: Reliability: Modelling
  publication-title: Prediction and Optimization
– volume: 57
  year: 1995
  ident: bib51
  article-title: Bayesian model choice via Markov chain Monte Carlo methods
  publication-title: Journal of the Royal Statistical Society B
– volume: 20
  start-page: 404
  year: 1990
  end-page: 435
  ident: bib16
  article-title: Fuzzy logic in control systems, Parts I and II
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– reference: T. Brotherton, A testbed for data fusion for engine diagnostics and prognostics, in: IEEE Aerospace Conference, Big Sky MT, 2002, pp. 8–15.
– year: 2004
  ident: bib34
  article-title: Practical Reliability Engineering
– volume: 27
  start-page: 211
  year: 1968
  end-page: 277
  ident: bib63
  article-title: Growth functions for transformations on manifolds
  publication-title: Pacific Journal of Mathematics
– volume: 87
  start-page: 418
  year: 1992
  ident: bib89
  article-title: A Monte-Carlo approach to nonnormal and nonlinear state-space modeling
  publication-title: Journal of the American Statistical Association
– volume: 7
  start-page: 286
  year: 2001
  end-page: 301
  ident: bib118
  article-title: Optimizing a mine haul truck wheel motors' condition monitoring program: use of proportional hazards modeling
  publication-title: Journal of Quality in Maintenance Engineering
– year: 2005
  ident: bib95
  article-title: A particle filtering framework for failure prognosis, World Tribology Congress III, Washington, DC, United States
– volume: 23
  start-page: 724
  year: 2009
  end-page: 739
  ident: bib166
  article-title: Rotating machinery prognostics: state of the art, challenges and opportunities
  publication-title: Mechanical Systems and Signal Processing
– reference: A. Heng, A.C.C. Tan, J. Mathew, N. Montgomery, D. Banjevic, A.K.S. Jardine, Intelligent condition-based prediction of machinery reliability, Mechanical Systems and Signal Processing 23 (5) (2009) 1600–1614.
– volume: 54
  start-page: 23
  year: 1996
  end-page: 34
  ident: bib42
  article-title: Residual life of technical systems; diagnosis, prediction and life extension
  publication-title: Reliability Engineering and System Safety
– volume: 214
  start-page: 109
  year: 2000
  end-page: 122
  ident: bib35
  article-title: Plant machinery working life prediction method utilizing reliability and condition-monitoring data
  publication-title: Proceedings of the IMechE, Part E: Journal of Process Mechanical Engineering
– year: 2007
  ident: bib60
  article-title: The Effect of Minor Maintenance on Condition-Based Maintenance Models
– year: 1997
  ident: bib142
  article-title: Effective automatic expert systems for dynamic predictive maintenance applications
  publication-title: International Gas Turbine and Aerospace Congress
– reference: D.C. Swanson, A general prognostic tracking algorithm for predictive maintenance, in: IEEE Aerospace Conference, IEEE, 2001, pp. 2971–2977.
– volume: 73
  start-page: 360
  year: 1967
  end-page: 363
  ident: bib64
  article-title: An inequality with applications to statistical estimation for probabilitic functions of a Markov process and to a model for ecology
  publication-title: Bulletin of the American Meteorological Society
– volume: 12
  start-page: 491
  year: 1999
  end-page: 501
  ident: bib75
  article-title: Accident identification in nuclear power plants using hidden Markov models
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 99
  start-page: 493
  year: 1997
  end-page: 506
  ident: bib1
  article-title: On the application of mathematical models in maintenance
  publication-title: European Journal of Operational Research
– volume: 20
  start-page: 166
  year: 2004
  end-page: 179
  ident: bib18
  article-title: A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems
  publication-title: International Journal of Materials and Product Technology
– volume: 3
  start-page: 169
  year: 1992
  end-page: 175
  ident: bib134
  article-title: Computation of optimal policies in replacement models
  publication-title: IMA Journal of Mathematics Applied in Business and Industry
– volume: 53
  start-page: 193
  year: 2002
  end-page: 202
  ident: bib120
  article-title: Optimal component replacement decisions using vibration monitoring and the proportional-hazards model
  publication-title: Journal of the Operational Research Society
– volume: 12
  start-page: 37
  year: 2006
  end-page: 51
  ident: bib131
  article-title: Data management for CBM optimization
  publication-title: Journal of Quality in Maintenance Engineering
– volume: 11
  start-page: 175
  year: 1985
  end-page: 183
  ident: bib7
  article-title: Proportional hazards modelling in reliability assessment
  publication-title: Reliability Engineering
– volume: 94
  start-page: 44
  year: 2009
  end-page: 52
  ident: bib122
  article-title: Optimization of maintenance policy using the proportional hazard model
  publication-title: Reliability Engineering and System Safety
– volume: 28
  start-page: 1012
  year: 2006
  end-page: 1024
  ident: bib173
  article-title: System health monitoring and prognostics—a review of current paradigms and practices
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 22
  start-page: 1395
  year: 2008
  end-page: 1411
  ident: bib141
  article-title: Uncertainty analysis of a neural network used for fatigue lifetime prediction
  publication-title: Mechanical Systems and Signal Processing
– volume: 12
  start-page: 1278
  year: 2001
  end-page: 1287
  ident: bib149
  article-title: Confidence estimation methods for neural networks: a practical comparison
  publication-title: IEEE Transactions on Neural Networks
– reference: S.A. Lewis, T.G. Edwards, Smart sensors and system health management tools for avionics and mechanical systems, in: Digital Avionics Systems Conference, 1997.
– year: 2005
  ident: bib137
  article-title: A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors
  publication-title: IEEE Power Engineering Society General Meeting
– year: 2002
  ident: bib119
  article-title: Optimizing Condition Based Maintenance Decisions
– reference: Z. Lei, L. ZXingshan, Y. Jinsong, G. ZhanBao, A genetic training algorithm of wavelet neural networks for fault prognostics in condition based maintenance, in: Proceedings of the Eighth International Conference on Electronic Measurement and Instruments, IEEE, 2007, pp. 584–589.
– year: 1986
  ident: bib45
  publication-title: Optimal Estimation: With an Introduction to Stochastic Control Theory
– volume: 45
  start-page: 75
  year: 2005
  end-page: 91
  ident: bib47
  article-title: A Bayesian network approach to root cause diagnosis of process variations
  publication-title: International Journal of Machine Tools and Manufacture
– volume: 3
  start-page: 4
  year: 1986
  end-page: 16
  ident: bib66
  article-title: An introduction to hidden Markov models
  publication-title: ASSP Magazine
– volume: 14
  start-page: 597
  year: 2000
  end-page: 612
  ident: bib72
  article-title: Condition based maintenance of machines using hidden Markov models
  publication-title: Mechanical Systems and Signal Processing
– volume: 92
  start-page: 92
  year: 2007
  end-page: 108
  ident: bib48
  article-title: Bayesian networks in reliability
  publication-title: Reliability Engineering and System Safety
– volume: 94
  start-page: 2
  year: 2009
  end-page: 21
  ident: bib36
  article-title: A survey of the application of gamma processes in maintenance
  publication-title: Reliability Engineering and System Safety
– volume: 17
  start-page: 115
  year: 2006
  end-page: 130
  ident: bib43
  article-title: Calculation of reliability function and remaining useful life for a Markov failure time process
  publication-title: IMA Journal Management Mathematics
– volume: 94
  start-page: 479
  year: 2009
  end-page: 789
  ident: bib148
  article-title: Machine and component residual life estimation through the application of neural networks
  publication-title: Reliability Engineering and System Safety
– volume: 15
  start-page: 383
  year: 1998
  end-page: 390
  ident: bib23
  article-title: Fuzzy expert system for real-time process condition monitoring and incident prevention
  publication-title: Expert Systems with Applications
– volume: 21
  start-page: 197
  year: 1988
  end-page: 214
  ident: bib128
  article-title: Proportional hazards modelling in the analysis of computer systems reliability
  publication-title: Reliability Engineering and System Safety
– volume: 34
  start-page: 35
  year: 1991
  end-page: 53
  ident: bib8
  article-title: Applying proportional hazards modelling in reliability
  publication-title: Reliability Engineering and System Safety
– year: 2003
  ident: bib171
  article-title: A neural network approach to condition based maintenance: case study of airport ground transportation vehicles
  publication-title: IMA Journal Management Mathematics on Maintenance, Reliability and Replacement
– year: 1997
  ident: bib50
  article-title: Learning Dynamic Bayesian Networks
– volume: 45
  start-page: 910
  year: 2000
  end-page: 927
  ident: bib82
  article-title: Gaussian filters for nonlinear filtering problems
  publication-title: IEEE Transactions on Automatic Control
– volume: 91
  start-page: 945
  year: 2006
  end-page: 963
  ident: bib11
  article-title: An evaluation system of the setting up of predictive maintenance programmes
  publication-title: Reliability Engineering and System Safety
– volume: 8
  start-page: 157
  year: 1997
  end-page: 165
  ident: bib146
  article-title: A practical overview of neural networks
  publication-title: Journal of Intelligent Manufacturing
– volume: 15
  start-page: 349
  year: 2001
  end-page: 365
  ident: bib158
  article-title: Fault prognostics using dynamic wavelet neural networks
  publication-title: Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM
– reference: G.J. Kacprzynski, Sensor/Model Fusion for Adaptive Prognosis of Structural Corrosion Damage, United States, 2006, 6 pp.
– volume: 86
  start-page: 1024
  year: 1991
  end-page: 1033
  ident: bib93
  article-title: Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter
  publication-title: Journal of the American Statistical Association
– volume: 5
  start-page: 192
  year: 1999
  end-page: 202
  ident: bib117
  article-title: Optimizing condition-based maintenance decisions for equipment subject to vibration monitoring
  publication-title: Journal of Quality in Maintenance Engineering
– volume: 76
  start-page: 796
  year: 2004
  end-page: 801
  ident: bib101
  article-title: A prognostic algorithm for machine performance assessment and its application
  publication-title: Production Planning and Control
– start-page: 58
  year: 1992
  end-page: 61
  ident: bib14
  article-title: Fuzzy fundamentals
  publication-title: IEEE Spectrum
– volume: 83
  start-page: 249
  year: 2006
  end-page: 255
  ident: bib57
  article-title: Optimal periodic inspection of a deterioration process with sequential condition states
  publication-title: International Journal of Pressure Vessels and Piping
– volume: 29
  start-page: 738
  year: 2007
  end-page: 747
  ident: bib153
  article-title: Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network
  publication-title: International Journal of Fatigue
– volume: 34
  start-page: 91
  year: 1991
  end-page: 103
  ident: bib126
  article-title: The assessment of software reliability
  publication-title: Reliability Engineering and System Safety
– year: 2003
  ident: bib5
  article-title: Model-Based Prognostic Techniques, Anaheim, CA, United States: 2003
– volume: 28
  start-page: 382
  year: 2003
  ident: bib111
  article-title: Optimal replacement under partial observations
  publication-title: Mathematics of Operations Research
– volume: 21
  start-page: 193
  year: 2007
  end-page: 207
  ident: bib138
  article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
  publication-title: Mechanical Systems and Signal Processing
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: bib147
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Transactions on Neural Networks
– year: 1997
  ident: bib116
  article-title: Joint scheduling of the optimal tool replacement times and optimal operation sequencing in a flexible manufacturing system
– year: 2004
  ident: bib30
  publication-title: System Reliability Theory: Models, Statistical Methods and Applications
– year: 2007
  ident: bib100
  article-title: Prognostics of machine health condition using an improved ARIMA-based prediction method
– volume: 93
  start-page: 722
  year: 2008
  end-page: 731
  ident: bib130
  article-title: A paired comparison experiment for gathering expert judgment for an aircraft wiring risk assessment
  publication-title: Reliability Engineering and System Safety
– volume: 41
  start-page: 1363
  year: 2001
  end-page: 1384
  ident: bib74
  article-title: Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs)
  publication-title: International Journal of Machine Tools and Manufacture
– volume: 14
  start-page: 789
  year: 2000
  end-page: 803
  ident: bib86
  article-title: Prognostic modelling of crack growth in a tensioned steel band
  publication-title: Mechanical Systems and Signal Processing
– volume: 90
  start-page: 177
  year: 2005
  end-page: 185
  ident: bib53
  article-title: Optimal maintenance decisions under imperfect inspection
  publication-title: Reliability Engineering and System Safety
– volume: 94
  start-page: 752
  year: 2009
  end-page: 758
  ident: bib96
  article-title: Model-based Monte Carlo state estimation for condition-based component replacement
  publication-title: Reliability Engineering and System Safety
– reference: L.C. Jaw, Neural networks for model-based prognostics, in: IEEE Aerospace Conference, IEEE, Aspen, USA, 1999, pp. 21–28.
– start-page: 718
  year: 1991
  ident: bib115
  article-title: Optimal replacement of a production system. A proportional hazards model
  publication-title: Proceedings of the Transformation of Science and Technology into Productive Power
– year: 2001
  ident: bib13
  article-title: Hybrid Reasoning for Prognostic Learning in CBM Systems
– year: 2005
  ident: bib83
  article-title: A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes
– volume: 50
  start-page: 345
  year: 2002
  end-page: 356
  ident: bib94
  article-title: Perfect sampling: a review and applications to signal processing
  publication-title: IEEE Transactions on Signal Processing
– volume: 51
  start-page: 694
  year: 2004
  end-page: 700
  ident: bib136
  article-title: Residual life predictions from vibration-based degradation signals: a neural network approach
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 97
  start-page: 507
  year: 1997
  end-page: 515
  ident: bib121
  article-title: Maintenance scheduling under age replacement policy using proportional hazards model and TTT-plotting
  publication-title: European Journal of Operational Research
– volume: 113
  start-page: 685
  year: 2003
  end-page: 698
  ident: bib44
  article-title: On the mean residual life regression model
  publication-title: Journal of Statistical Planning and Inference
– year: 1995
  ident: bib157
  article-title: wavelet based neural network for prediction of ICP signal
  publication-title: IEEE Engineering in Medicine and Biology
– volume: 42
  start-page: 148
  year: 1993
  end-page: 155
  ident: bib39
  article-title: A model for the integrity assessment of ageing repairable systems
  publication-title: IEEE Transactions on Reliability
– year: 2006
  ident: bib24
  article-title: Maintenance, Replacement, and Reliability Theory and Applications
– year: 2000
  ident: bib165
  article-title: API581. Risk Based Inspection—Base Resource Document
– volume: 4
  start-page: 443
  year: 1996
  end-page: 451
  ident: bib85
  article-title: Stochastic modeling of fatigue crack dynamics for on-line failure prognostics
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 30
  start-page: 172
  year: 1992
  end-page: 183
  ident: bib133
  article-title: Optimal replacement in the proportional hazards model
  publication-title: INFOR
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib67
  article-title: Tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
– volume: 41
  start-page: 249
  year: 1995
  end-page: 256
  ident: bib113
  article-title: Optimal replacement of a tool subject to random failure
  publication-title: International Journal of Production Economics
– volume: 92
  start-page: 549
  year: 2007
  end-page: 551
  ident: bib127
  article-title: Recent advances in theory and applications of stochastic point process models in reliability engineering
  publication-title: Reliability Engineering and System Safety
– volume: 38
  start-page: 379
  year: 1989
  end-page: 382
  ident: bib46
  article-title: The Bayes predictive approach in reliability theory
  publication-title: IEEE Transactions on Reliability
– volume: 94
  start-page: 628
  year: 2009
  end-page: 643
  ident: bib52
  article-title: Bayesian inference in probabilistic risk assessment—the current state of the art
  publication-title: Reliability Engineering and System Safety
– volume: 42
  start-page: 1063
  year: 1995
  ident: bib124
  article-title: Replacement model with overhauls and repairs
  publication-title: Naval Research Logistics
– volume: 18
  start-page: 813
  year: 2004
  end-page: 831
  ident: bib155
  article-title: Prognosis of machine health conditions using neuro-fuzzy systems
  publication-title: Mechanical Systems and Signal Processing
– volume: 8
  start-page: 77
  year: 1999
  end-page: 85
  ident: bib151
  article-title: Point-wise confidence interval estimation by neural networks: a comparative study based on automotive engine calibration
  publication-title: Neural Computing and Applications
– reference: G. Weidl, A.L. Madsen, E. Dahlquist, Object oriented Bayesian networks for industrial process operation, in: Bayesian Modelling Applications Workshop Associated with the 19th Conference on Uncertainties in Artificial Intelligence, Acapulco Mexico, 2003, pp. 1–9, available online.
– year: 2006
  ident: bib59
  article-title: Reliability Functions and Optimal Decisions Using Condition Data for EDF Primary Pumps
– year: 2005
  ident: bib20
  article-title: A systematic approach for developing prognostic algorithms on large complex systems
– volume: 57
  start-page: 476
  year: 2006
  end-page: 489
  ident: bib102
  article-title: Intelligent prognostics tools and e-maintenance
  publication-title: Computers in Industry
– volume: 43
  start-page: 1086
  year: 2008
  end-page: 1093
  ident: bib154
  article-title: Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates
  publication-title: Computational Materials Science
– volume: 41
  start-page: 164
  year: 1970
  end-page: 171
  ident: bib62
  article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Annals of Mathematical Statistics
– reference: E. Bechhoefer, A. Bernhard, D. He, P. Banerjee, Use of hidden semi-Markov models in the prognostics of shaft failure, Phoenix, AZ, United States, American Helicopter Society, Alexandria, VA, United States, 2006, pp. 1330–1335.
– volume: 29
  start-page: 20
  year: 2007
  end-page: 29
  ident: bib140
  article-title: Artificial neural networks in spectrum fatigue life prediction of composite materials
  publication-title: International Journal of Fatigue
– volume: 54
  start-page: 2087
  year: 2006
  end-page: 2098
  ident: bib84
  article-title: Quasi-Monte Carlo Filtering in Nonlinear Dynamic Systems
  publication-title: IEEE Transactions on Signal Processing
– year: 2006
  ident: bib81
  article-title: An Introduction to the Kalman Filter
– year: 2005
  ident: bib31
  publication-title: Reliability and Risk Models—Setting Reliability Requirements
– volume: 95
  start-page: 638
  year: 2000
  end-page: 643
  ident: bib99
  article-title: Time series and forecasting: brief history and future research
  publication-title: Journal of the American Statistical Association
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: bib172
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mechanical Systems and Signal Processing
– reference: D.P. Filev, T. Finn, Real time novelty detection modeling for machine health prognostics, IEEE, Montreal, Quebec, Canada, 2006, 6 pp.
– volume: 71
  start-page: 173
  year: 2001
  end-page: 177
  ident: bib28
  article-title: Why the mixture failure rate decreases
  publication-title: Reliability Engineering and System Safety
– start-page: 9
  year: 2001
  end-page: 14
  ident: bib29
  article-title: Statistical analysis of reliability data, Part 1: random variables, distribution parameters, and data
  publication-title: Journal of the Reliability Analysis Centre
– reference: A. Hess, G. Calvello, P. Frith, S.J. Engel, D. Hoitsma, Challenges, issues, and lessons learned chasing the"Big P": real predictive prognostics, Part 2, in: Aerospace Conference, IEEE, 2006, pp. 1–19.
– volume: 38
  start-page: 654
  year: 2005
  end-page: 664
  ident: bib78
  article-title: Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition
  publication-title: NDT&E International
– volume: 2
  start-page: 563
  year: 1964
  end-page: 566
  ident: bib37
  article-title: Learning curve approach to reliability monitoring
  publication-title: IEEE Transactions on Aerospace
– year: 2005
  ident: bib160
  article-title: A proportional hazards neural network for performing reliability estimates and risk prognostics for mobile systems subject to stochastic covariates, Orlando, FL, United States
– year: 2006
  ident: bib162
  article-title: Fault-Diagnosis Systems: An Introduction from fault Detection to Fault Tolerance
– reference: K.M. Goh, B. Tjahjono, T. Bainers, S.A. Subramaniam, Review of research in manufacturing prognostics, in: 2006 IEEE International Conference on Industrial Informatics, IEEE, 2006, pp. 1–6.
– volume: 36
  start-page: 765
  year: 1989
  end-page: 777
  ident: bib110
  article-title: Assessment of machine tool reliability using a proportional hazards model
  publication-title: Naval Research Logistics
– year: 2003
  ident: bib22
  publication-title: Battery prognostics. EMPFasis, V12
– volume: 19
  start-page: 329
  year: 2005
  end-page: 339
  ident: bib77
  article-title: Hidden Markov model-based fault diangostics method in speed-up and speed-down process for rotating machinery
  publication-title: Mechanical Systems and Signal Processing
– volume: 10
  start-page: 1
  year: 1985
  end-page: 14
  ident: bib112
  article-title: Application of the proportional hazards model in the reliability field
  publication-title: Reliability Engineering
– reference: L.M. Maillart, E.A. Pohl, Introduction to Markov–Chain modeling, analysis and optimization, in: 2006 Annual Reliability and Maintainability Symposium, 2006.
– reference: K. Dmitry, V. Dmitry, An algorithm for rule generation in fuzzy expert systems, in: Proceedings of the 17th International Conference on Pattern Recognition, IEEE Computer Society, 2004.
– volume: 302
  start-page: 951
  year: 2007
  end-page: 961
  ident: bib76
  article-title: Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: a method for bearing prognostics
  publication-title: Journal of Sound and Vibration
– volume: 33
  start-page: 206
  year: 2001
  end-page: 222
  ident: bib125
  article-title: Optimal repair/replacement policy for a general repair model
  publication-title: Advances in Applied Probability
– volume: 29
  start-page: 2553
  year: 2004
  end-page: 2572
  ident: bib12
  article-title: Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems
  publication-title: Energy
– reference: A. Rodriguez, E. Ruiz, Bootstrap Prediction Intervals in State Space models, Statistics and Econometrics Working Papers, Universidad Carlos III, Departamento de Estadística y Econometría, 2008.
– year: 1992
  ident: bib98
  article-title: Applied Optimal Control and Estimation: Digital Design and Implementation
– year: 1976
  ident: bib97
  article-title: Time Series Analysis: Forecasting and Control
– year: 1995
  ident: bib49
  article-title: A Tutorial on Learning with Bayesian Networks
– year: 2006
  ident: bib4
  publication-title: Intelligent Fault Diagnosis and Prognosis for Engineering Systems
– year: 1986
  ident: bib26
  article-title: Mechanical Reliability
– volume: 77
  start-page: 409
  year: 1990
  end-page: 410
  ident: bib40
  article-title: A note on residual life
  publication-title: Biometrika
– volume: 276
  start-page: 1065
  year: 2004
  end-page: 1080
  ident: bib58
  article-title: Diagnosis of mechanical fault signals using continuous hidden Markov model
  publication-title: Journal of Sound and Vibration
– volume: 21
  start-page: 840
  year: 2007
  end-page: 855
  ident: bib70
  article-title: Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models
  publication-title: Mechanical Systems and Signal Processing
– volume: 58
  start-page: 165
  year: 1997
  end-page: 171
  ident: bib109
  article-title: Practical aspects of modelling of repairable systems data using proportional hazards models
  publication-title: Reliability Engineering and System Safety
– reference: M.J. Roemer, G.J. Kacprzynski, Advanced diagnostics and prognostics for gas turbine engine risk assessment, in: Aerospace Conference, Big Sky, MT, USA, IEEE, 2000, pp. 345–353.
– volume: 39
  start-page: 32
  year: 2001
  end-page: 50
  ident: bib135
  article-title: A control-limit policy and software for condition-based maintenance optimization
  publication-title: INFOR
– reference: J. Luo, A. Bixby, K. Pattipati, L. Qiao, M. Kawamoto, S. Chigusa, An interacting multiple model approach to model-based prognostics, in: IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, United States, Institute of Electrical and Electronics Engineers Inc., 2003, pp. 189–194.
– reference: A. Hess, G. Calvello, P. Frith, Challenges, issues, and lessons learned chasing the "Big P", Real predictive prognostics, Part 1, Aerospace, in: 2005 IEEE Conference, 2005, pp. 3610–3619.
– volume: 8
  start-page: 225
  year: 1992
  end-page: 227
  ident: bib145
  article-title: Introduction: the challenge of reinforcement learning
  publication-title: Machine Learning
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  ident: bib104
  article-title: Regression models and life-tables
  publication-title: Journal of the Royal Statistical Society
– volume: 44
  start-page: 177
  year: 1994
  end-page: 188
  ident: bib106
  article-title: Proportional hazards model: a review
  publication-title: Reliability Engineering and System Safety
– reference: N.K. Sinha, M.M. Gupta, D.H. Rao, Dynamic neural networks: an overview, in: IEEE International Conference on Industrial Technology, 2000, pp. 491–496.
– volume: 31
  start-page: 381
  year: 1991
  end-page: 388
  ident: bib123
  article-title: Optimal replacement of a system with imperfect repair
  publication-title: Microelectronics and Reliability
– volume: 56
  start-page: 477
  year: 1994
  end-page: 489
  ident: bib41
  article-title: Estimation in the mean residual life regression model
  publication-title: Journal of the Royal Statistical Society, Series B
– year: 2006
  ident: bib33
  article-title: Maintenance, Replacement and Reliability—Theory and Applications
– volume: 22
  start-page: 195
  year: 1980
  end-page: 199
  ident: bib38
  article-title: Testing adequacy of the Weibull and log linear rate models for a Poisson process
  publication-title: Technometrics
– volume: 40
  start-page: 531
  year: 1991
  end-page: 536
  ident: bib164
  article-title: Material failure mechanisms and damage models
  publication-title: IEEE Transactions on Reliability
– volume: 21
  start-page: 129
  year: 1988
  end-page: 144
  ident: bib129
  article-title: Proportional hazards modelling of transmission equipment failures
  publication-title: Reliability Engineering and System Safety
– volume: 43
  start-page: 1275
  year: 2005
  end-page: 1293
  ident: bib73
  article-title: HMMs for diagnostics and prognostics in machining processes
  publication-title: International Journal of Production Research
– volume: 99
  start-page: 516
  year: 1997
  end-page: 529
  ident: bib80
  article-title: Subjective estimation of the delay time distribution in maintenance modelling
  publication-title: European Journal of Operational Research
– volume: 16
  start-page: 453
  year: 2003
  end-page: 463
  ident: bib143
  article-title: Recurrent radial basis function network for time-series prediction
  publication-title: Engineering Applications of Artificial Intelligence
– reference: D. He, W. Shenliang, P. Banerjee, E. Bechhoefer, Probabilistic model based algorithms for prognostics, in: IEEE Aerospace Conference Proceedings, Big Sky, MT, United States, IEEE Computer Society, Piscataway, NJ, United States, 2006, pp. 1–10.
– reference: T. Khawaja, G. Vachtsevanos, B. Wu, Reasoning about uncertainty in prognosis: a confidence prediction neural network approach, in: Annual Meeting of the North American Fuzzy Information Processing Society, IEEE, 2005, pp. 7–12.
– volume: 37
  start-page: 630
  year: 2007
  end-page: 642
  ident: bib87
  article-title: Predicting time to failure using the IMM and excitable tests
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans
– volume: 3
  start-page: 1
  year: 1972
  end-page: 8
  ident: bib61
  article-title: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes
  publication-title: Inequalities
– volume: 140
  year: 1993
  ident: bib92
  article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation
  publication-title: IEE Proceedings —F
– volume: 11
  start-page: 3
  year: 2005
  end-page: 25
  ident: bib169
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems—a review, Part I
  publication-title: HVAC and R Research
– start-page: 68
  year: 1981
  ident: bib132
  article-title: On the regression analysis of multivariate failure time data
  publication-title: Biometrika
– reference: T. Brotherton, A testbed for data fusion for engine diagnostics and prognostics, in: IEEE Aerospace Conference, Big Sky MT, 2000, pp. 163–171.
– year: 2003
  ident: bib71
  article-title: A Novel Approach to Fault Diagnostics and Prognostics
– volume: 92
  start-page: 286
  year: 2007
  ident: bib107
  article-title: Design of PH-based accelerated life testing plans under multiple-stress-type
  publication-title: Reliability Engineering and system Safety
– volume: 5
  start-page: 207
  year: 1989
  end-page: 216
  ident: bib114
  article-title: Proportional hazards analysis of diesel engine failure data
  publication-title: Quality and Reliability Engineering International
– volume: 23
  start-page: 943
  year: 2007
  end-page: 960
  ident: bib10
  article-title: Optimizing the performance of a repairable system under a maintenance and repair contract
  publication-title: Quality and Reliability Engineering International
– year: 1980
  ident: bib108
  publication-title: The Statistical Analysis of Failure Time Data
– volume: 7
  start-page: 229
  year: 1996
  end-page: 232
  ident: bib150
  article-title: Confidence interval prediction for neural network models
  publication-title: IEEE Transactions on Neural Networks
– reference: ISO 13381-1, Condition Monitoring and Diagnostics of Machines – Prognostics – Part 1: General Guidelines: International Standards Organization, 2004.
– volume: 23
  start-page: 740
  year: 2009
  end-page: 751
  ident: bib103
  article-title: Dempster–Shafer regression for multi-step-ahead time-series prediction towards data-driven machinery prognosis
  publication-title: Mechanical Systems and Signal Processing
– year: 1984
  ident: bib105
  publication-title: Analysis of Survival Data
– volume: 29
  start-page: 1996
  year: 2005
  end-page: 2009
  ident: bib54
  article-title: Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes
  publication-title: Computers and Chemical Engineering
– year: 2005
  ident: bib32
  publication-title: Reliability, Maintainability and Risk
– reference: S.J. Engel, B.J. Gilmartin, K. Bongort, A. Hess, Prognostics, the real issues involved with predicting life remaining, in: Aerospace Conference Proceedings, vol. 6, IEEE, 2000, pp. 457–469.
– volume: 21
  start-page: 27
  year: 2002
  end-page: 38
  ident: bib90
  article-title: A comparison of methods for bootstrapping in the local level model
  publication-title: Journal of Forecasting
– volume: 29
  start-page: 489
  year: 2007
  end-page: 498
  ident: bib21
  article-title: Comparison of fuzzy logic and neural network in life prediction of boiler tubes
  publication-title: International Journal of Fatigue
– volume: 37
  start-page: 1554
  year: 1966
  end-page: 1563
  ident: bib65
  article-title: Statistical inference for probabilistic functions of finite state Markov chains
  publication-title: Annals of Mathematical Statistics
– volume: 21
  start-page: 2248
  year: 2007
  end-page: 2266
  ident: bib79
  article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
  publication-title: Mechanical Systems and Signal Processing
– volume: 38
  start-page: 205
  year: 1989
  end-page: 247
  ident: bib9
  article-title: Practical problems in the statistical analysis of reliability data (with discussion)
  publication-title: Applied Statistics
– year: 1997
  ident: 10.1016/j.ymssp.2010.11.018_bib142
  article-title: Effective automatic expert systems for dynamic predictive maintenance applications
– volume: 3
  start-page: 169
  year: 1992
  ident: 10.1016/j.ymssp.2010.11.018_bib134
  article-title: Computation of optimal policies in replacement models
  publication-title: IMA Journal of Mathematics Applied in Business and Industry
– volume: 29
  start-page: 489
  issue: 3
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib21
  article-title: Comparison of fuzzy logic and neural network in life prediction of boiler tubes
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2006.05.001
– volume: 21
  start-page: 193
  issue: 1
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib138
  article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.11.008
– year: 2004
  ident: 10.1016/j.ymssp.2010.11.018_bib34
– volume: 38
  start-page: 379
  issue: 3
  year: 1989
  ident: 10.1016/j.ymssp.2010.11.018_bib46
  article-title: The Bayes predictive approach in reliability theory
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/24.44186
– year: 1976
  ident: 10.1016/j.ymssp.2010.11.018_bib97
– volume: 50
  start-page: 345
  issue: 2
  year: 2002
  ident: 10.1016/j.ymssp.2010.11.018_bib94
  article-title: Perfect sampling: a review and applications to signal processing
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.978389
– volume: 51
  start-page: 694
  issue: 3
  year: 2004
  ident: 10.1016/j.ymssp.2010.11.018_bib136
  article-title: Residual life predictions from vibration-based degradation signals: a neural network approach
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2004.824875
– volume: 34
  start-page: 35
  issue: 1
  year: 1991
  ident: 10.1016/j.ymssp.2010.11.018_bib8
  article-title: Applying proportional hazards modelling in reliability
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/0951-8320(91)90098-R
– volume: 43
  start-page: 1275
  issue: 6
  year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib73
  article-title: HMMs for diagnostics and prognostics in machining processes
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540412331327727
– volume: 22
  start-page: 195
  issue: 2
  year: 1980
  ident: 10.1016/j.ymssp.2010.11.018_bib38
  article-title: Testing adequacy of the Weibull and log linear rate models for a Poisson process
  publication-title: Technometrics
  doi: 10.1080/00401706.1980.10486134
– volume: 8
  start-page: 225
  year: 1992
  ident: 10.1016/j.ymssp.2010.11.018_bib145
  article-title: Introduction: the challenge of reinforcement learning
  publication-title: Machine Learning
  doi: 10.1007/BF00992695
– year: 1997
  ident: 10.1016/j.ymssp.2010.11.018_bib50
– year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib160
– volume: 45
  start-page: 75
  year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib47
  article-title: A Bayesian network approach to root cause diagnosis of process variations
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2004.06.018
– volume: 93
  start-page: 722
  issue: 5
  year: 2008
  ident: 10.1016/j.ymssp.2010.11.018_bib130
  article-title: A paired comparison experiment for gathering expert judgment for an aircraft wiring risk assessment
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2007.03.011
– volume: 54
  start-page: 23
  issue: 1
  year: 1996
  ident: 10.1016/j.ymssp.2010.11.018_bib42
  article-title: Residual life of technical systems; diagnosis, prediction and life extension
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/S0951-8320(96)00092-0
– volume: 94
  start-page: 44
  issue: 1
  year: 2009
  ident: 10.1016/j.ymssp.2010.11.018_bib122
  article-title: Optimization of maintenance policy using the proportional hazard model
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2007.12.006
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: 10.1016/j.ymssp.2010.11.018_bib104
  article-title: Regression models and life-tables
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 5
  start-page: 207
  issue: 3
  year: 1989
  ident: 10.1016/j.ymssp.2010.11.018_bib114
  article-title: Proportional hazards analysis of diesel engine failure data
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.4680050305
– volume: 57
  issue: 3
  year: 1995
  ident: 10.1016/j.ymssp.2010.11.018_bib51
  article-title: Bayesian model choice via Markov chain Monte Carlo methods
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1995.tb02042.x
– volume: 23
  start-page: 943
  issue: 8
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib10
  article-title: Optimizing the performance of a repairable system under a maintenance and repair contract
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.859
– volume: 7
  start-page: 229
  issue: 1
  year: 1996
  ident: 10.1016/j.ymssp.2010.11.018_bib150
  article-title: Confidence interval prediction for neural network models
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.478409
– volume: 12
  start-page: 1278
  issue: 6
  year: 2001
  ident: 10.1016/j.ymssp.2010.11.018_bib149
  article-title: Confidence estimation methods for neural networks: a practical comparison
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.963764
– volume: 29
  start-page: 1996
  year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib54
  article-title: Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/j.compchemeng.2005.05.005
– volume: 276
  start-page: 1065
  year: 2004
  ident: 10.1016/j.ymssp.2010.11.018_bib58
  article-title: Diagnosis of mechanical fault signals using continuous hidden Markov model
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2003.08.021
– volume: 4
  start-page: 443
  issue: 4
  year: 1996
  ident: 10.1016/j.ymssp.2010.11.018_bib85
  article-title: Stochastic modeling of fatigue crack dynamics for on-line failure prognostics
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/87.508893
– year: 1992
  ident: 10.1016/j.ymssp.2010.11.018_bib98
– ident: 10.1016/j.ymssp.2010.11.018_bib15
  doi: 10.1109/ICPR.2004.1334061
– volume: 77
  start-page: 409
  year: 1990
  ident: 10.1016/j.ymssp.2010.11.018_bib40
  article-title: A note on residual life
  publication-title: Biometrika
  doi: 10.1093/biomet/77.2.409
– volume: 140
  issue: 2
  year: 1993
  ident: 10.1016/j.ymssp.2010.11.018_bib92
  article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation
  publication-title: IEE Proceedings —F
– volume: 33
  start-page: 206
  issue: 1
  year: 2001
  ident: 10.1016/j.ymssp.2010.11.018_bib125
  article-title: Optimal repair/replacement policy for a general repair model
  publication-title: Advances in Applied Probability
  doi: 10.1239/aap/999187904
– volume: 12
  start-page: 37
  issue: 1
  year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib131
  article-title: Data management for CBM optimization
  publication-title: Journal of Quality in Maintenance Engineering
  doi: 10.1108/13552510610654529
– volume: 34
  start-page: 91
  issue: 1
  year: 1991
  ident: 10.1016/j.ymssp.2010.11.018_bib126
  article-title: The assessment of software reliability
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/0951-8320(91)90101-C
– ident: 10.1016/j.ymssp.2010.11.018_bib56
– volume: 18
  start-page: 813
  year: 2004
  ident: 10.1016/j.ymssp.2010.11.018_bib155
  article-title: Prognosis of machine health conditions using neuro-fuzzy systems
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/S0888-3270(03)00079-7
– ident: 10.1016/j.ymssp.2010.11.018_bib144
  doi: 10.1109/ICIT.2000.854201
– ident: 10.1016/j.ymssp.2010.11.018_bib163
– volume: 42
  start-page: 1063
  issue: 7
  year: 1995
  ident: 10.1016/j.ymssp.2010.11.018_bib124
  article-title: Replacement model with overhauls and repairs
  publication-title: Naval Research Logistics
  doi: 10.1002/1520-6750(199510)42:7<1063::AID-NAV3220420706>3.0.CO;2-3
– year: 2003
  ident: 10.1016/j.ymssp.2010.11.018_bib22
  publication-title: Battery prognostics. EMPFasis, V12
– ident: 10.1016/j.ymssp.2010.11.018_bib3
  doi: 10.1109/AERO.2000.877920
– volume: 21
  start-page: 2248
  issue: 5
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib79
  article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.10.001
– volume: 12
  start-page: 491
  year: 1999
  ident: 10.1016/j.ymssp.2010.11.018_bib75
  article-title: Accident identification in nuclear power plants using hidden Markov models
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/S0952-1976(99)00011-1
– volume: 99
  start-page: 516
  issue: 3
  year: 1997
  ident: 10.1016/j.ymssp.2010.11.018_bib80
  article-title: Subjective estimation of the delay time distribution in maintenance modelling
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(96)00318-9
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.ymssp.2010.11.018_bib67
  article-title: Tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.18626
– volume: 17
  start-page: 115
  issue: 2
  year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib43
  article-title: Calculation of reliability function and remaining useful life for a Markov failure time process
  publication-title: IMA Journal Management Mathematics
  doi: 10.1093/imaman/dpi029
– volume: 21
  start-page: 197
  issue: 3
  year: 1988
  ident: 10.1016/j.ymssp.2010.11.018_bib128
  article-title: Proportional hazards modelling in the analysis of computer systems reliability
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/0951-8320(88)90121-4
– volume: 92
  start-page: 92
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib48
  article-title: Bayesian networks in reliability
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2005.11.037
– year: 2003
  ident: 10.1016/j.ymssp.2010.11.018_bib71
– volume: 3
  start-page: 4
  year: 1986
  ident: 10.1016/j.ymssp.2010.11.018_bib66
  article-title: An introduction to hidden Markov models
  publication-title: ASSP Magazine
  doi: 10.1109/MASSP.1986.1165342
– start-page: 9
  year: 2001
  ident: 10.1016/j.ymssp.2010.11.018_bib29
  article-title: Statistical analysis of reliability data, Part 1: random variables, distribution parameters, and data
  publication-title: Journal of the Reliability Analysis Centre
– volume: 83
  start-page: 249
  issue: 4
  year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib57
  article-title: Optimal periodic inspection of a deterioration process with sequential condition states
  publication-title: International Journal of Pressure Vessels and Piping
  doi: 10.1016/j.ijpvp.2006.02.007
– volume: 94
  start-page: 479
  issue: 2
  year: 2009
  ident: 10.1016/j.ymssp.2010.11.018_bib148
  article-title: Machine and component residual life estimation through the application of neural networks
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2008.05.008
– volume: 29
  start-page: 738
  issue: 4
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib153
  article-title: Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2006.06.013
– volume: 40
  start-page: 531
  issue: 5
  year: 1991
  ident: 10.1016/j.ymssp.2010.11.018_bib164
  article-title: Material failure mechanisms and damage models
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/24.106769
– volume: 99
  start-page: 493
  issue: 3
  year: 1997
  ident: 10.1016/j.ymssp.2010.11.018_bib1
  article-title: On the application of mathematical models in maintenance
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(96)00316-5
– volume: 19
  start-page: 329
  year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib77
  article-title: Hidden Markov model-based fault diangostics method in speed-up and speed-down process for rotating machinery
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.01.001
– volume: 37
  start-page: 1554
  year: 1966
  ident: 10.1016/j.ymssp.2010.11.018_bib65
  article-title: Statistical inference for probabilistic functions of finite state Markov chains
  publication-title: Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177699147
– volume: 54
  start-page: 2087
  issue: 6
  year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib84
  article-title: Quasi-Monte Carlo Filtering in Nonlinear Dynamic Systems
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2006.873585
– volume: 30
  start-page: 172
  issue: 2
  year: 1992
  ident: 10.1016/j.ymssp.2010.11.018_bib133
  article-title: Optimal replacement in the proportional hazards model
  publication-title: INFOR
– volume: 90
  start-page: 177
  year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib53
  article-title: Optimal maintenance decisions under imperfect inspection
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2004.10.004
– ident: 10.1016/j.ymssp.2010.11.018_bib2
– year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib95
– year: 2002
  ident: 10.1016/j.ymssp.2010.11.018_bib119
– volume: 21
  start-page: 129
  issue: 2
  year: 1988
  ident: 10.1016/j.ymssp.2010.11.018_bib129
  article-title: Proportional hazards modelling of transmission equipment failures
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/0951-8320(88)90051-8
– volume: 3
  start-page: 1
  year: 1972
  ident: 10.1016/j.ymssp.2010.11.018_bib61
  article-title: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes
  publication-title: Inequalities
– volume: 58
  start-page: 165
  issue: 2
  year: 1997
  ident: 10.1016/j.ymssp.2010.11.018_bib109
  article-title: Practical aspects of modelling of repairable systems data using proportional hazards models
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/S0951-8320(97)00026-4
– volume: 21
  start-page: 27
  year: 2002
  ident: 10.1016/j.ymssp.2010.11.018_bib90
  article-title: A comparison of methods for bootstrapping in the local level model
  publication-title: Journal of Forecasting
  doi: 10.1002/for.814
– year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib32
– volume: 11
  start-page: 3
  issue: 1
  year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib169
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems—a review, Part I
  publication-title: HVAC and R Research
  doi: 10.1080/10789669.2005.10391123
– volume: 23
  start-page: 724
  issue: 3
  year: 2009
  ident: 10.1016/j.ymssp.2010.11.018_bib166
  article-title: Rotating machinery prognostics: state of the art, challenges and opportunities
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2008.06.009
– year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib83
– ident: 10.1016/j.ymssp.2010.11.018_bib152
  doi: 10.1109/NAFIPS.2005.1548498
– volume: 29
  start-page: 20
  issue: 1
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib140
  article-title: Artificial neural networks in spectrum fatigue life prediction of composite materials
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2006.03.004
– volume: 92
  start-page: 549
  issue: 5
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib127
  article-title: Recent advances in theory and applications of stochastic point process models in reliability engineering
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2006.05.001
– year: 1995
  ident: 10.1016/j.ymssp.2010.11.018_bib157
  article-title: wavelet based neural network for prediction of ICP signal
– ident: 10.1016/j.ymssp.2010.11.018_bib174
  doi: 10.1109/INDIN.2006.275836
– volume: 44
  start-page: 177
  issue: 2
  year: 1994
  ident: 10.1016/j.ymssp.2010.11.018_bib106
  article-title: Proportional hazards model: a review
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/0951-8320(94)90010-8
– volume: 91
  start-page: 945
  issue: 8
  year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib11
  article-title: An evaluation system of the setting up of predictive maintenance programmes
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2005.09.003
– year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib24
– volume: 43
  start-page: 1086
  issue: 4
  year: 2008
  ident: 10.1016/j.ymssp.2010.11.018_bib154
  article-title: Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2008.02.028
– ident: 10.1016/j.ymssp.2010.11.018_bib159
  doi: 10.1109/AERO.1999.789761
– volume: 302
  start-page: 951
  issue: 4–5
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib76
  article-title: Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: a method for bearing prognostics
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2007.01.001
– volume: 10
  start-page: 1
  year: 1985
  ident: 10.1016/j.ymssp.2010.11.018_bib112
  article-title: Application of the proportional hazards model in the reliability field
  publication-title: Reliability Engineering
  doi: 10.1016/0143-8174(85)90038-1
– start-page: 58
  year: 1992
  ident: 10.1016/j.ymssp.2010.11.018_bib14
  article-title: Fuzzy fundamentals
  publication-title: IEEE Spectrum
  doi: 10.1109/6.158640
– volume: 214
  start-page: 109
  issue: E2
  year: 2000
  ident: 10.1016/j.ymssp.2010.11.018_bib35
  article-title: Plant machinery working life prediction method utilizing reliability and condition-monitoring data
  publication-title: Proceedings of the IMechE, Part E: Journal of Process Mechanical Engineering
  doi: 10.1243/0954408001530146
– year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib20
– volume: 57
  start-page: 476
  issue: 6
  year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib102
  article-title: Intelligent prognostics tools and e-maintenance
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2006.02.014
– volume: 31
  start-page: 381
  issue: 2–3
  year: 1991
  ident: 10.1016/j.ymssp.2010.11.018_bib123
  article-title: Optimal replacement of a system with imperfect repair
  publication-title: Microelectronics and Reliability
  doi: 10.1016/0026-2714(91)90225-V
– year: 2001
  ident: 10.1016/j.ymssp.2010.11.018_bib13
– volume: 97
  start-page: 507
  year: 1997
  ident: 10.1016/j.ymssp.2010.11.018_bib121
  article-title: Maintenance scheduling under age replacement policy using proportional hazards model and TTT-plotting
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(96)00317-7
– volume: 56
  start-page: 477
  issue: 3
  year: 1994
  ident: 10.1016/j.ymssp.2010.11.018_bib41
  article-title: Estimation in the mean residual life regression model
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1994.tb01994.x
– ident: 10.1016/j.ymssp.2010.11.018_bib69
– volume: 5
  start-page: 192
  issue: 3
  year: 1999
  ident: 10.1016/j.ymssp.2010.11.018_bib117
  article-title: Optimizing condition-based maintenance decisions for equipment subject to vibration monitoring
  publication-title: Journal of Quality in Maintenance Engineering
  doi: 10.1108/13552519910282647
– volume: 8
  start-page: 77
  issue: 1
  year: 1999
  ident: 10.1016/j.ymssp.2010.11.018_bib151
  article-title: Point-wise confidence interval estimation by neural networks: a comparative study based on automotive engine calibration
  publication-title: Neural Computing and Applications
  doi: 10.1007/s005210050009
– year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib60
– year: 1997
  ident: 10.1016/j.ymssp.2010.11.018_bib116
– ident: 10.1016/j.ymssp.2010.11.018_bib55
– volume: 20
  start-page: 404
  issue: 2
  year: 1990
  ident: 10.1016/j.ymssp.2010.11.018_bib16
  article-title: Fuzzy logic in control systems, Parts I and II
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/21.52551
– volume: 7
  start-page: 286
  issue: 4
  year: 2001
  ident: 10.1016/j.ymssp.2010.11.018_bib118
  article-title: Optimizing a mine haul truck wheel motors' condition monitoring program: use of proportional hazards modeling
  publication-title: Journal of Quality in Maintenance Engineering
  doi: 10.1108/EUM0000000006007
– ident: 10.1016/j.ymssp.2010.11.018_bib68
  doi: 10.1109/AERO.2006.1656122
– year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib4
– ident: 10.1016/j.ymssp.2010.11.018_bib167
  doi: 10.1109/AERO.2005.1559666
– volume: 73
  start-page: 360
  year: 1967
  ident: 10.1016/j.ymssp.2010.11.018_bib64
  article-title: An inequality with applications to statistical estimation for probabilitic functions of a Markov process and to a model for ecology
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1090/S0002-9904-1967-11751-8
– ident: 10.1016/j.ymssp.2010.11.018_bib139
  doi: 10.1109/ICEMI.2007.4350749
– volume: 76
  start-page: 796
  year: 2004
  ident: 10.1016/j.ymssp.2010.11.018_bib101
  article-title: A prognostic algorithm for machine performance assessment and its application
  publication-title: Production Planning and Control
  doi: 10.1080/09537280412331309208
– year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib162
– ident: 10.1016/j.ymssp.2010.11.018_bib170
– year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib81
– ident: 10.1016/j.ymssp.2010.11.018_bib156
– volume: 36
  start-page: 765
  year: 1989
  ident: 10.1016/j.ymssp.2010.11.018_bib110
  article-title: Assessment of machine tool reliability using a proportional hazards model
  publication-title: Naval Research Logistics
  doi: 10.1002/1520-6750(198912)36:6<765::AID-NAV3220360603>3.0.CO;2-C
– volume: 42
  start-page: 148
  issue: 1
  year: 1993
  ident: 10.1016/j.ymssp.2010.11.018_bib39
  article-title: A model for the integrity assessment of ageing repairable systems
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/24.210287
– ident: 10.1016/j.ymssp.2010.11.018_bib6
  doi: 10.1109/AERO.2005.1559666
– volume: 28
  start-page: 1012
  issue: 9–10
  year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib173
  article-title: System health monitoring and prognostics—a review of current paradigms and practices
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-004-2131-6
– volume: 94
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.ymssp.2010.11.018_bib36
  article-title: A survey of the application of gamma processes in maintenance
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2007.03.019
– volume: 113
  start-page: 685
  issue: 2
  year: 2003
  ident: 10.1016/j.ymssp.2010.11.018_bib44
  article-title: On the mean residual life regression model
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/S0378-3758(02)00091-5
– year: 1995
  ident: 10.1016/j.ymssp.2010.11.018_bib49
– volume: 15
  start-page: 383
  year: 1998
  ident: 10.1016/j.ymssp.2010.11.018_bib23
  article-title: Fuzzy expert system for real-time process condition monitoring and incident prevention
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(98)00053-0
– year: 1980
  ident: 10.1016/j.ymssp.2010.11.018_bib108
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 10.1016/j.ymssp.2010.11.018_bib147
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.329697
– volume: 11
  start-page: 175
  issue: 3
  year: 1985
  ident: 10.1016/j.ymssp.2010.11.018_bib7
  article-title: Proportional hazards modelling in reliability assessment
  publication-title: Reliability Engineering
  doi: 10.1016/0143-8174(85)90070-8
– volume: 39
  start-page: 32
  issue: 1
  year: 2001
  ident: 10.1016/j.ymssp.2010.11.018_bib135
  article-title: A control-limit policy and software for condition-based maintenance optimization
  publication-title: INFOR
– volume: 15
  start-page: 349
  issue: 4
  year: 2001
  ident: 10.1016/j.ymssp.2010.11.018_bib158
  article-title: Fault prognostics using dynamic wavelet neural networks
  publication-title: Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM
  doi: 10.1017/S0890060401154089
– year: 1986
  ident: 10.1016/j.ymssp.2010.11.018_bib26
– year: 2004
  ident: 10.1016/j.ymssp.2010.11.018_bib30
– year: 2000
  ident: 10.1016/j.ymssp.2010.11.018_bib165
– volume: 8
  start-page: 157
  year: 1997
  ident: 10.1016/j.ymssp.2010.11.018_bib146
  article-title: A practical overview of neural networks
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1023/A:1018513006083
– volume: 41
  start-page: 164
  issue: 1
  year: 1970
  ident: 10.1016/j.ymssp.2010.11.018_bib62
  article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177697196
– volume: 38
  start-page: 205
  issue: 2
  year: 1989
  ident: 10.1016/j.ymssp.2010.11.018_bib9
  article-title: Practical problems in the statistical analysis of reliability data (with discussion)
  publication-title: Applied Statistics
  doi: 10.2307/2348057
– year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib31
– volume: 37
  start-page: 630
  issue: 5
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib87
  article-title: Predicting time to failure using the IMM and excitable tests
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans
  doi: 10.1109/TSMCA.2007.902621
– volume: 41
  start-page: 1363
  issue: 9
  year: 2001
  ident: 10.1016/j.ymssp.2010.11.018_bib74
  article-title: Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs)
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/S0890-6955(00)00112-7
– ident: 10.1016/j.ymssp.2010.11.018_bib19
  doi: 10.1109/NAFIPS.2006.365465
– year: 1986
  ident: 10.1016/j.ymssp.2010.11.018_bib45
– volume: 20
  start-page: 166
  issue: 1–3
  year: 2004
  ident: 10.1016/j.ymssp.2010.11.018_bib18
  article-title: A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems
  publication-title: International Journal of Materials and Product Technology
  doi: 10.1504/IJMPT.2004.003920
– year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib33
– year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib59
– year: 2003
  ident: 10.1016/j.ymssp.2010.11.018_bib5
– volume: 53
  start-page: 193
  issue: 2
  year: 2002
  ident: 10.1016/j.ymssp.2010.11.018_bib120
  article-title: Optimal component replacement decisions using vibration monitoring and the proportional-hazards model
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2601261
– volume: 28
  start-page: 382
  issue: 2
  year: 2003
  ident: 10.1016/j.ymssp.2010.11.018_bib111
  article-title: Optimal replacement under partial observations
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.28.2.382.14484
– volume: 71
  start-page: 173
  issue: 2
  year: 2001
  ident: 10.1016/j.ymssp.2010.11.018_bib28
  article-title: Why the mixture failure rate decreases
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/S0951-8320(00)00092-2
– ident: 10.1016/j.ymssp.2010.11.018_bib91
– volume: 16
  start-page: 453
  issue: 5–6
  year: 2003
  ident: 10.1016/j.ymssp.2010.11.018_bib143
  article-title: Recurrent radial basis function network for time-series prediction
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/S0952-1976(03)00063-0
– year: 2000
  ident: 10.1016/j.ymssp.2010.11.018_bib27
  article-title: Reliability: Modelling
– volume: 2
  start-page: 563
  issue: 2
  year: 1964
  ident: 10.1016/j.ymssp.2010.11.018_bib37
  article-title: Learning curve approach to reliability monitoring
  publication-title: IEEE Transactions on Aerospace
  doi: 10.1109/TA.1964.4319640
– volume: 22
  start-page: 1395
  issue: 6
  year: 2008
  ident: 10.1016/j.ymssp.2010.11.018_bib141
  article-title: Uncertainty analysis of a neural network used for fatigue lifetime prediction
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2007.12.004
– ident: 10.1016/j.ymssp.2010.11.018_bib88
  doi: 10.21236/ADA448747
– ident: 10.1016/j.ymssp.2010.11.018_bib168
– volume: 14
  start-page: 789
  issue: 5
  year: 2000
  ident: 10.1016/j.ymssp.2010.11.018_bib86
  article-title: Prognostic modelling of crack growth in a tensioned steel band
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1006/mssp.2000.1324
– ident: 10.1016/j.ymssp.2010.11.018_bib25
  doi: 10.1016/j.ymssp.2008.12.006
– volume: 38
  start-page: 654
  year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib78
  article-title: Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition
  publication-title: NDT&E International
  doi: 10.1016/j.ndteint.2005.04.003
– volume: 87
  start-page: 418
  year: 1992
  ident: 10.1016/j.ymssp.2010.11.018_bib89
  article-title: A Monte-Carlo approach to nonnormal and nonlinear state-space modeling
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1992.10475231
– volume: 94
  start-page: 628
  issue: 2
  year: 2009
  ident: 10.1016/j.ymssp.2010.11.018_bib52
  article-title: Bayesian inference in probabilistic risk assessment—the current state of the art
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2008.07.002
– ident: 10.1016/j.ymssp.2010.11.018_bib161
  doi: 10.1115/2000-GT-0030
– volume: 86
  start-page: 1024
  issue: 416
  year: 1991
  ident: 10.1016/j.ymssp.2010.11.018_bib93
  article-title: Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1991.10475148
– volume: 14
  start-page: 597
  issue: 4
  year: 2000
  ident: 10.1016/j.ymssp.2010.11.018_bib72
  article-title: Condition based maintenance of machines using hidden Markov models
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1006/mssp.2000.1309
– start-page: 718
  year: 1991
  ident: 10.1016/j.ymssp.2010.11.018_bib115
  article-title: Optimal replacement of a production system. A proportional hazards model
  publication-title: Proceedings of the Transformation of Science and Technology into Productive Power
– volume: 95
  start-page: 638
  issue: 450
  year: 2000
  ident: 10.1016/j.ymssp.2010.11.018_bib99
  article-title: Time series and forecasting: brief history and future research
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2000.10474241
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.ymssp.2010.11.018_bib172
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 29
  start-page: 2553
  issue: 12–15
  year: 2004
  ident: 10.1016/j.ymssp.2010.11.018_bib12
  article-title: Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems
  publication-title: Energy
  doi: 10.1016/j.energy.2004.03.031
– volume: 27
  start-page: 211
  issue: 2
  year: 1968
  ident: 10.1016/j.ymssp.2010.11.018_bib63
  article-title: Growth functions for transformations on manifolds
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1968.27.211
– volume: 23
  start-page: 740
  year: 2009
  ident: 10.1016/j.ymssp.2010.11.018_bib103
  article-title: Dempster–Shafer regression for multi-step-ahead time-series prediction towards data-driven machinery prognosis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2008.08.004
– volume: 94
  start-page: 752
  issue: 3
  year: 2009
  ident: 10.1016/j.ymssp.2010.11.018_bib96
  article-title: Model-based Monte Carlo state estimation for condition-based component replacement
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2008.08.003
– year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib100
– ident: 10.1016/j.ymssp.2010.11.018_bib17
  doi: 10.1109/AERO.2001.931317
– volume: 41
  start-page: 249
  year: 1995
  ident: 10.1016/j.ymssp.2010.11.018_bib113
  article-title: Optimal replacement of a tool subject to random failure
  publication-title: International Journal of Production Economics
  doi: 10.1016/0925-5273(95)00061-5
– year: 1984
  ident: 10.1016/j.ymssp.2010.11.018_bib105
– year: 2005
  ident: 10.1016/j.ymssp.2010.11.018_bib137
  article-title: A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors
– year: 2003
  ident: 10.1016/j.ymssp.2010.11.018_bib171
  article-title: A neural network approach to condition based maintenance: case study of airport ground transportation vehicles
  publication-title: IMA Journal Management Mathematics on Maintenance, Reliability and Replacement
– volume: 45
  start-page: 910
  issue: 5
  year: 2000
  ident: 10.1016/j.ymssp.2010.11.018_bib82
  article-title: Gaussian filters for nonlinear filtering problems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.855552
– volume: 21
  start-page: 840
  issue: 2
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib70
  article-title: Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.01.009
– volume: 92
  start-page: 286
  issue: 3
  year: 2007
  ident: 10.1016/j.ymssp.2010.11.018_bib107
  article-title: Design of PH-based accelerated life testing plans under multiple-stress-type
  publication-title: Reliability Engineering and system Safety
  doi: 10.1016/j.ress.2006.04.016
– start-page: 68
  year: 1981
  ident: 10.1016/j.ymssp.2010.11.018_bib132
  article-title: On the regression analysis of multivariate failure time data
  publication-title: Biometrika
SSID ssj0009406
Score 2.545894
Snippet Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1803
SubjectTerms Applied sciences
Business
Exact sciences and technology
Fuzzy
Industrial metrology. Testing
Life prediction
Maintenance
Mathematical models
Mechanical engineering. Machine design
Mechanical systems
Modelling
Operational research and scientific management
Operational research. Management science
Prognostics
Reliability
Reliability theory. Replacement problems
Remaining useful life (RUL)
Tables
Title Prognostic modelling options for remaining useful life estimation by industry
URI https://dx.doi.org/10.1016/j.ymssp.2010.11.018
https://www.proquest.com/docview/1671299701
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvigifuL8GBF8tG5t02Z9HMMxFYf4AXsLTZbAZGvHuj3sxb_du6adDmUPPhXKhZS7y-WS_u5-hFyHRmrtR8xBeiuHGU85UgbSiY0XMSZxkeZoi37Ye2cPg2BQIZ2yFgZhlUXstzE9j9bFm0ahzcZ0NGq8wvoAd-RNvKFmsFNhBTvj2D__9vMb5hGxnF8ThR2ULjsP5Riv5STLphbfha08kfnj791pdxpnoDNjyS5-xe18M-ruk70ii6Rt-6EHpKKTQ7Lzo7fgEXl6nqUIogMJmtPdYN05TS2GhUKqSmd6Yukh6CLTZjGm45HRFLtu2HJGKpd0ZJk9lsfkpXv31uk5BXeCo_wwnDsud40fcCXhSDdkkBZGHoejmq_jWPFmoGNfKd_wSLqK-QqMwpHXe6i1y4z0T0g1SRN9SqhWGnK0ViRlK2S6KSGdhAQzUvAYeq70asQrFSZU0VUcyS3GooSPfYhcywK1DOcNAVqukZvVoKltqrFZPCwtIdZ8Q0DY3zywvma31WQeglsZa9bIVWlIAcsK_5XEiU4XmXBDDplQBN519t_Zz8m2vYBGbO8Fqc5nC30JGcxc1nMXrZOt9v1jr_8F9WDxRQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9qAi4hXnZUbw0bK1zVr7KEOZ7oJ4gb2FJkugshvr9rB_7zlN6wVlDz4VSkLKOScnX9Iv5wO4CozU2o-4Q_JWDjeecqRsSCc2XsS5pEmasS16QeuNP_Yb_TVoFndhiFaZ536b07Nsnb-p5dasTZOk9oLzA8MxrNMJNceVah3KVJ0Kg718-9Bu9b5q7_JMYpPaO9ShKD6U0byWozSdWooXVfMk8Y-_F6jtaZyi2YzVu_iVurP16H4XdnIgyW7tt-7Bmh7vw9a38oIH0H2aTYhHhy1YpnhDV8_ZxNJYGKJVNtMjqxDBFqk2iyEbJkYzKrxhbzQyuWSJFfdYHsLz_d1rs-Xk8gmO8oNg7riha_xGqCTu6gYckWHkhbhb83Ucq7De0LGvlG_CSLqK-wr9EpK090BrlxvpH0FpPBnrY2BaaYRpN5GUNwHXdYmIEjFmpPAx8FzpVcArDCZUXlic9C2GomCQvYvMyoKsjFsOgVauwPVnp6mtq7G6eVB4QvwID4GZf3XH6g-_fQ7mEb-V83oFLgtHCpxZ9LskHuvJIhVuECIYijDATv47-gVstF67HdF56LVPYdOeRxPV9wxK89lCnyOgmctqHrAfOOXz9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+modelling+options+for+remaining+useful+life+estimation+by+industry&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Sikorska%2C+J+Z&rft.au=Hodkiewicz%2C+M&rft.au=Ma%2C+L&rft.date=2011-07-01&rft.issn=0888-3270&rft.volume=25&rft.issue=5&rft.spage=1803&rft.epage=1836&rft_id=info:doi/10.1016%2Fj.ymssp.2010.11.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon