Development of an optimized multi-biomarker panel for the detection of lung cancer based on principal component analysis and artificial neural network modeling
► We evaluated serum biomarkers levels in lung cancer patients and non-cancer controls. ► We used principal component analysis and artificial neural network modeling. ► We found a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. ► ANN modeling offers a powerful diagnostic tool to...
Saved in:
Published in | Expert systems with applications Vol. 39; no. 12; pp. 10851 - 10856 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► We evaluated serum biomarkers levels in lung cancer patients and non-cancer controls. ► We used principal component analysis and artificial neural network modeling. ► We found a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. ► ANN modeling offers a powerful diagnostic tool to improve biomarker efficiency.
Lung cancer is a public health priority worldwide due to the high mortality rate and the costs involved. Early detection of lung cancer is important for increasing the survival rate, however, frequently its diagnosis is not made opportunely, since detection methods are not sufficiently sensitive and specific. In recent years serum biomarkers have been proposed as a method that might enhance diagnostic capabilities and complement imaging studies. However, when used alone they show low sensitivity and specificity because lung cancer is a heterogeneous disease. Recent reports have shown that simultaneous analysis of biomarkers has the potential to separate lung cancer patients from control subjects. However, it has become clear that a universal biomarker panel does not exist, and optimized panels need to be developed and validated in each population before their application in a clinical setting. In this study, we selected 14 biomarkers from literature, whose diagnostic or prognostic value had been previously demonstrated for lung cancer, and evaluated them in sera from 63 patients with lung cancer and 87 non-cancer controls (58 Chronic Obstructive Pulmonary Disease (COPD) patients and 29 current smokers). Principal component analysis and artificial neural network modeling allowed us to find a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. This panel was able to correctly classify 135 out of 150 subjects, showing a correct classification rate for lung cancer patients of 88.9%, 93.3% and 90% in training, validation and testing phases, respectively. Thus, sensitivity was increased 18.31% (sensitivity 94.5% at specificity 80%) with respect to the best single marker Cyfra 21.1. This optimized panel represents a potential tool for assisting lung cancer diagnosis, therefore it merits further consideration. |
---|---|
AbstractList | Lung cancer is a public health priority worldwide due to the high mortality rate and the costs involved. Early detection of lung cancer is important for increasing the survival rate, however, frequently its diagnosis is not made opportunely, since detection methods are not sufficiently sensitive and specific. In recent years serum biomarkers have been proposed as a method that might enhance diagnostic capabilities and complement imaging studies. However, when used alone they show low sensitivity and specificity because lung cancer is a heterogeneous disease. Recent reports have shown that simultaneous analysis of biomarkers has the potential to separate lung cancer patients from control subjects. However, it has become clear that a universal biomarker panel does not exist, and optimized panels need to be developed and validated in each population before their application in a clinical setting. In this study, we selected 14 biomarkers from literature, whose diagnostic or prognostic value had been previously demonstrated for lung cancer, and evaluated them in sera from 63 patients with lung cancer and 87 non-cancer controls (58 Chronic Obstructive Pulmonary Disease (COPD) patients and 29 current smokers). Principal component analysis and artificial neural network modeling allowed us to find a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. This panel was able to correctly classify 135 out of 150 subjects, showing a correct classification rate for lung cancer patients of 88.9%, 93.3% and 90% in training, validation and testing phases, respectively. Thus, sensitivity was increased 18.31% (sensitivity 94.5% at specificity 80%) with respect to the best single marker Cyfra 21.1. This optimized panel represents a potential tool for assisting lung cancer diagnosis, therefore it merits further consideration. ► We evaluated serum biomarkers levels in lung cancer patients and non-cancer controls. ► We used principal component analysis and artificial neural network modeling. ► We found a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. ► ANN modeling offers a powerful diagnostic tool to improve biomarker efficiency. Lung cancer is a public health priority worldwide due to the high mortality rate and the costs involved. Early detection of lung cancer is important for increasing the survival rate, however, frequently its diagnosis is not made opportunely, since detection methods are not sufficiently sensitive and specific. In recent years serum biomarkers have been proposed as a method that might enhance diagnostic capabilities and complement imaging studies. However, when used alone they show low sensitivity and specificity because lung cancer is a heterogeneous disease. Recent reports have shown that simultaneous analysis of biomarkers has the potential to separate lung cancer patients from control subjects. However, it has become clear that a universal biomarker panel does not exist, and optimized panels need to be developed and validated in each population before their application in a clinical setting. In this study, we selected 14 biomarkers from literature, whose diagnostic or prognostic value had been previously demonstrated for lung cancer, and evaluated them in sera from 63 patients with lung cancer and 87 non-cancer controls (58 Chronic Obstructive Pulmonary Disease (COPD) patients and 29 current smokers). Principal component analysis and artificial neural network modeling allowed us to find a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. This panel was able to correctly classify 135 out of 150 subjects, showing a correct classification rate for lung cancer patients of 88.9%, 93.3% and 90% in training, validation and testing phases, respectively. Thus, sensitivity was increased 18.31% (sensitivity 94.5% at specificity 80%) with respect to the best single marker Cyfra 21.1. This optimized panel represents a potential tool for assisting lung cancer diagnosis, therefore it merits further consideration. |
Author | Femat, R. Cabrera-Galeana, Paula Anel Flores-Fernández, José Miguel González-Palomar, María Guadalupe Sánchez-Llamas, Francisco Martínez-Velázquez, Moisés Leal-Pacheco, Gisela Rojas-Calvillo, Antonio Herrera-López, Enrique J. |
Author_xml | – sequence: 1 givenname: José Miguel surname: Flores-Fernández fullname: Flores-Fernández, José Miguel organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico – sequence: 2 givenname: Enrique J. surname: Herrera-López fullname: Herrera-López, Enrique J. organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico – sequence: 3 givenname: Francisco surname: Sánchez-Llamas fullname: Sánchez-Llamas, Francisco organization: OPD Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Servicio de Fisiología Pulmonar e Inhaloterapia, Hospital 278, C.P. 44280 Guadalajara, Jalisco, Mexico – sequence: 4 givenname: Antonio surname: Rojas-Calvillo fullname: Rojas-Calvillo, Antonio organization: Coordinación de Oncología Médica, Centro Oncológico Estatal ISSEMYM, Avenida Solidaridad las Torres 101, C.P. 50180 Toluca, Estado de Mexico, Mexico – sequence: 5 givenname: Paula Anel surname: Cabrera-Galeana fullname: Cabrera-Galeana, Paula Anel organization: Coordinación de Oncología Médica, Centro Oncológico Estatal ISSEMYM, Avenida Solidaridad las Torres 101, C.P. 50180 Toluca, Estado de Mexico, Mexico – sequence: 6 givenname: Gisela surname: Leal-Pacheco fullname: Leal-Pacheco, Gisela organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico – sequence: 7 givenname: María Guadalupe surname: González-Palomar fullname: González-Palomar, María Guadalupe organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico – sequence: 8 givenname: R. surname: Femat fullname: Femat, R. organization: División de Matemáticas Aplicadas, IPICyT, Camino a la presa San José 2055, Lomas 4a Secc, C.P. 78216 San Luis Potosí, Mexico – sequence: 9 givenname: Moisés surname: Martínez-Velázquez fullname: Martínez-Velázquez, Moisés email: moisesmartinezv@yahoo.com.mx, mmartinez@ciatej.net.mx organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico |
BookMark | eNqFkc-OFCEQxolZE2dXX8ATRy_dQtMD04kXs_5NNvGiZ0JDsTJLQwv0btaX8VWtcTzrqSrk9xVV33dJLlJOQMhLznrOuHx97KE-mH5gfOiZ6Bk7PCE7flCik2oSF2THpr3qRq7GZ-Sy1iNjXDGmduTXO7iHmNcFUqPZU5NoXltYwk9wdNliC90c8mLKHRS6mgSR-lxo-w7UQQPbQk4nXdzSLbUmWcRmU1GM72sJyYbVRGrzsuLG-IdJJj7WULFx1JQWfLABiQRb-VPaQy53dMkOYki3z8lTb2KFF3_rFfn24f3X60_dzZePn6_f3nRWSNk6LgeYZ2snpQ5mHo1y4DmfhXJKcmHB7qUVkzfGT8Any0bnpQM3SQteqMGKK_LqPHct-ccGteklVAsx4sl5qxrt4oztR87-jzJxGEbBxB7R4Yzakmst4DVagmY-IqRPwemjPgWnT8FpJjQGh6I3ZxHgvfcBiq42ADrrQkHDtcvhX_LfepWoeA |
CitedBy_id | crossref_primary_10_4236_jbise_2013_611138 crossref_primary_10_1029_2021GH000548 crossref_primary_10_1016_j_matcom_2022_06_014 crossref_primary_10_1039_C3LC51124C crossref_primary_10_32604_cmes_2023_024755 crossref_primary_10_1007_s11227_019_03002_5 crossref_primary_10_1007_s11250_022_03073_2 crossref_primary_10_1016_j_bios_2015_09_019 crossref_primary_10_1109_ACCESS_2020_3001426 crossref_primary_10_3390_en14206732 crossref_primary_10_1007_s00500_019_03856_0 crossref_primary_10_1007_s00500_020_04787_x crossref_primary_10_1371_journal_pone_0125517 crossref_primary_10_1016_j_asoc_2015_05_047 crossref_primary_10_1016_j_neuroscience_2015_08_013 crossref_primary_10_2217_fon_14_21 crossref_primary_10_1016_j_jab_2018_01_002 crossref_primary_10_1016_j_eswa_2024_123392 crossref_primary_10_1002_asi_23516 crossref_primary_10_3390_ijms24021506 crossref_primary_10_3390_cancers15215236 crossref_primary_10_1260_2040_2295_5_4_393 |
Cites_doi | 10.1200/JCO.2007.13.5392 10.1056/NEJMra072149 10.1016/j.biopha.2007.08.005 10.1038/sj.bjc.6605865 10.7326/0003-4819-140-9-200405040-00015 10.1148/radiol.2351041662 10.1007/s102380300005 10.1007/s10916-011-9775-1 10.1136/pgmj.2008.076307 10.1016/j.eswa.2011.02.183 10.1200/JCO.2004.01.091 10.1186/1465-9921-11-18 10.1016/j.chemolab.2005.05.007 10.1038/sj.bjc.6605253 10.1056/NEJMoa060476 10.4161/cbt.11.12.15526 10.1097/01243894-200607000-00003 10.1016/S0933-3657(01)00094-X 10.1007/s101470200021 10.1016/j.lungcan.2007.06.007 10.1016/j.canlet.2005.05.008 10.1111/j.1349-7006.2007.00509.x 10.1158/1078-0432.CCR-09-3192 10.1109/CIBCB.2005.1594954 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd |
Copyright_xml | – notice: 2012 Elsevier Ltd |
DBID | AAYXX CITATION 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2012.03.008 |
DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 10856 |
ExternalDocumentID | 10_1016_j_eswa_2012_03_008 S0957417412004782 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAXKI AAYXX ABKBG ACNTT ADJOM AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HLZ HVGLF R2- SBC SET SEW WUQ XPP ZMT 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c366t-162ebbcc9778ab4a7def11b37d7613cec56c39faaf9e19c04df6ded96cef372c3 |
IEDL.DBID | AIKHN |
ISSN | 0957-4174 |
IngestDate | Fri Oct 25 02:56:14 EDT 2024 Fri Oct 25 03:00:29 EDT 2024 Thu Sep 26 16:49:32 EDT 2024 Fri Feb 23 02:26:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Biomarkers Artificial neural network Diagnosis Lung cancer Principal component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-162ebbcc9778ab4a7def11b37d7613cec56c39faaf9e19c04df6ded96cef372c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1038243035 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1701005410 proquest_miscellaneous_1038243035 crossref_primary_10_1016_j_eswa_2012_03_008 elsevier_sciencedirect_doi_10_1016_j_eswa_2012_03_008 |
PublicationCentury | 2000 |
PublicationDate | 2012-09-15 |
PublicationDateYYYYMMDD | 2012-09-15 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ghosal, Kloer, Lewis (b0060) 2009; 85 Lancashire, L., Ugurel, S., Creaser, C., Schadendorf, D., Rees, R., Ball, G. (2005). Utilizing artificial neural networks to elucidate serum biomarker patterns which discriminate between clinical stages in melanoma. In Patz, Campa, Gottlin, Kusmartseva, Xiang, Herndon (b0110) 2007; 25 Feng, Wu, Wu, Nie, Ni (b0040) 2011 Wu, Wu, Wang, Yan, Qu, Xiang (b0155) 2011; 38 Zhou, Jiang, Yang, Chen (b0165) 2002; 24 (pp. 455–460). California, USA: La Jolla. Schneider, Peltri, Bitterlich, Philipp, Velcovsky, Morr (b0125) 2003; 2 Bajtarevic, Ager, Pienz, Klieber, Schwarz, Ligor (b0005) 2009; 9 Brenner, Hall (b0010) 2007; 357 La Habana, Cuba. He, Naka, Serada, Fujimoto, Tanaka, Hashimoto (b0070) 2007; 98 Franco-Marina, Villalba-Caloca (b0055) 2001; 14 Lu, Soria, Tang, Xu, Wang, Mao (b0100) 2004; 22 Ruíz-Godoy, Rizo, Sánchez, Osornio-Vargas, García-Cuellar, Meneses (b0115) 2007; 58 Swensen, Jett, Hartman, Midthun, Mandrekar, Hillman (b0135) 2005; 235 Flores, J. M., Herrera, E., Leal, G., González, M. G., Sánchez, F., Rojas A., Cabrera, P. A., Femat, R., Martínez-Velázquez, M. (2011). Artificial neural network-based serum biomarkers analysis improves sensitivity in the diagnosis of lung cancer. In Schneider, Bitterlich, Velcovsky, Morr, Katz, Eigenbrodt (b0120) 2002; 7 Travis, Brambilla, Mueller-Hermelink, Harris (b0145) 2004 Lee, Kim, Park, Shin, Kang, Kim (b0090) 2011; 12 Chu, Hou, Song, Xue, Wang, Zhang (b0025) 2011; 11 Castleberry, Smith, Anderson, Rotter, Grannis (b0015) 2009; 101 Fernández, Martínez, Gaspar, Filella, Molina, Ballesta (b0045) 2007; 26 Gomathi, Thangaraj (b0065) 2010; 2 Farlow, Vercillo, Coon, Basu, Kim, Faber (b0035) 2010; 103 . Hernández-García, Sáenz-González, González-Celador (b0075) 2010; 33 Leidinger, Keller, Heisel, Ludwig, Rheinheimer, Klein (b0095) 2010; 11 Zhang, Zhou, Liu, Harrington (b0160) 2006; 82 Schneider, Bitterlich, Kotschy-Lang, Raab, Hans-Joachim (b0130) 2007; 27 (b0140) 2006; 355 National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Lung Cancer Screening. Version 1.2012. Retrieved December 2011 from Tureci, Mack, Luxemburger, Heinen, Krummenauer, Sester (b0150) 2006; 236 Farlow, Patel, Basu, Lee, Kim, Coon (b0030) 2010; 16 Humphrey, Teutsch, Johnson (b0080) 2004; 140 Zhong, Coe, Stromberg, Khattar, Jett, Hirschowitz (b0170) 2006; 1 Cho (b0020) 2007; 61 Lee (10.1016/j.eswa.2012.03.008_b0090) 2011; 12 Swensen (10.1016/j.eswa.2012.03.008_b0135) 2005; 235 Travis (10.1016/j.eswa.2012.03.008_b0145) 2004 Fernández (10.1016/j.eswa.2012.03.008_b0045) 2007; 26 Bajtarevic (10.1016/j.eswa.2012.03.008_b0005) 2009; 9 (10.1016/j.eswa.2012.03.008_b0140) 2006; 355 Castleberry (10.1016/j.eswa.2012.03.008_b0015) 2009; 101 Brenner (10.1016/j.eswa.2012.03.008_b0010) 2007; 357 Chu (10.1016/j.eswa.2012.03.008_b0025) 2011; 11 Franco-Marina (10.1016/j.eswa.2012.03.008_b0055) 2001; 14 10.1016/j.eswa.2012.03.008_b0105 He (10.1016/j.eswa.2012.03.008_b0070) 2007; 98 10.1016/j.eswa.2012.03.008_b0085 Lu (10.1016/j.eswa.2012.03.008_b0100) 2004; 22 Zhou (10.1016/j.eswa.2012.03.008_b0165) 2002; 24 Feng (10.1016/j.eswa.2012.03.008_b0040) 2011 Schneider (10.1016/j.eswa.2012.03.008_b0120) 2002; 7 Patz (10.1016/j.eswa.2012.03.008_b0110) 2007; 25 Cho (10.1016/j.eswa.2012.03.008_b0020) 2007; 61 Hernández-García (10.1016/j.eswa.2012.03.008_b0075) 2010; 33 Zhang (10.1016/j.eswa.2012.03.008_b0160) 2006; 82 Gomathi (10.1016/j.eswa.2012.03.008_b0065) 2010; 2 Schneider (10.1016/j.eswa.2012.03.008_b0130) 2007; 27 Farlow (10.1016/j.eswa.2012.03.008_b0035) 2010; 103 Wu (10.1016/j.eswa.2012.03.008_b0155) 2011; 38 Humphrey (10.1016/j.eswa.2012.03.008_b0080) 2004; 140 Zhong (10.1016/j.eswa.2012.03.008_b0170) 2006; 1 Farlow (10.1016/j.eswa.2012.03.008_b0030) 2010; 16 Ghosal (10.1016/j.eswa.2012.03.008_b0060) 2009; 85 Schneider (10.1016/j.eswa.2012.03.008_b0125) 2003; 2 Ruíz-Godoy (10.1016/j.eswa.2012.03.008_b0115) 2007; 58 10.1016/j.eswa.2012.03.008_b0050 Tureci (10.1016/j.eswa.2012.03.008_b0150) 2006; 236 Leidinger (10.1016/j.eswa.2012.03.008_b0095) 2010; 11 |
References_xml | – volume: 2 start-page: 185 year: 2003 end-page: 191 ident: b0125 article-title: Fuzzy logic-based tumor marker profiles improved sensitivity of the detection of progression in small-cell lung cancer patients publication-title: Clinical and Experimental Medicine contributor: fullname: Morr – volume: 82 start-page: 294 year: 2006 end-page: 299 ident: b0160 article-title: An application of Takagi–Sugeno fuzzy system to the classification of cancer patients based on elemental contents in serum samples publication-title: Chemometrics and Intelligent Laboratory Systems contributor: fullname: Harrington – start-page: 10 year: 2004 end-page: 20 ident: b0145 article-title: World Health Organization classification tumours of the lung, pleura, thymus and heart publication-title: International Agency for Research on, Cancer contributor: fullname: Harris – volume: 7 start-page: 145 year: 2002 end-page: 151 ident: b0120 article-title: Fuzzy logic-based tumor-marker profiles improved sensitivity in the diagnosis of lung cancer publication-title: International Journal of Clinical Oncology contributor: fullname: Eigenbrodt – volume: 236 start-page: 64 year: 2006 end-page: 71 ident: b0150 article-title: Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1 publication-title: Cancer Letters contributor: fullname: Sester – volume: 24 start-page: 25 year: 2002 end-page: 36 ident: b0165 article-title: Lung cancer cell identification based on artificial neural network ensembles publication-title: Artificial Intelligence in Medicine contributor: fullname: Chen – volume: 12 year: 2011 ident: b0090 article-title: A novel detection method of non–small cell lung cancer using multiplexed bead-based serum biomarker profiling publication-title: The Journal of Thoracic and Cardiovascular Surgery contributor: fullname: Kim – volume: 26 start-page: 77 year: 2007 end-page: 85 ident: b0045 article-title: Marcadores tumorales serológicos publication-title: Química Clínica contributor: fullname: Ballesta – volume: 2 start-page: 5770 year: 2010 end-page: 5779 ident: b0065 article-title: A computer aided diagnosis system for lung cancer detection using machine learning technique publication-title: European Journal of Scientific Research contributor: fullname: Thangaraj – year: 2011 ident: b0040 article-title: The effect of artificial neural networks model combined with six tumor markers in auxiliary diagnosis of lung cancer publication-title: Journal of Medical Systems contributor: fullname: Ni – volume: 98 start-page: 1234 year: 2007 end-page: 1240 ident: b0070 article-title: Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer publication-title: Cancer Science contributor: fullname: Hashimoto – volume: 101 start-page: 882 year: 2009 end-page: 896 ident: b0015 article-title: Cost of a 5-year lung cancer survivor: symptomatic tumour identification vs proactive computed tomography screening publication-title: British Journal of Cancer contributor: fullname: Grannis – volume: 27 start-page: 1869 year: 2007 end-page: 1878 ident: b0130 article-title: A fuzzy classifier using a marker panel for the detection of lung cancer in asbestosis patients publication-title: Anticancer Research contributor: fullname: Hans-Joachim – volume: 355 start-page: 1763 year: 2006 end-page: 1771 ident: b0140 article-title: Survival of patients with stage I lung cancer detected on CT screening publication-title: The New England Journal of Medicine – volume: 140 start-page: 740 year: 2004 end-page: 753 ident: b0080 article-title: Lung cancer screening with sputum cytologic examination, chest radiography, and computed tomography: an update for the U.S. Preventive Services Task Force publication-title: Annals of Internal Medicine contributor: fullname: Johnson – volume: 22 start-page: 4575 year: 2004 end-page: 4583 ident: b0100 article-title: Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers publication-title: Journal of Clinical Oncology contributor: fullname: Mao – volume: 11 start-page: 18 year: 2010 ident: b0095 article-title: Identification of lung cancer with high sensitivity and specificity by blood testing publication-title: Respiratory Research contributor: fullname: Klein – volume: 235 start-page: 259 year: 2005 end-page: 265 ident: b0135 article-title: CT screening for lung cancer: Five-year prospective experience publication-title: Radiology contributor: fullname: Hillman – volume: 85 start-page: 358 year: 2009 end-page: 363 ident: b0060 article-title: A review of novel biological tools used in screening for the early detection of lung cancer publication-title: Postgraduate Medical Journal contributor: fullname: Lewis – volume: 11 start-page: 995 year: 2011 end-page: 1000 ident: b0025 article-title: Diagnostic values of SCC, CEA, Cyfra21-1 and NSE for lung cancer in patients with suspicious pulmonary masses: a single center analysis publication-title: Cancer Biology & Therapy contributor: fullname: Zhang – volume: 16 start-page: 3452 year: 2010 end-page: 3462 ident: b0030 article-title: Development of a multiplexed tumor-associated autoantibody-based blood test for the detection of non-small cell lung cancer publication-title: Clinical Cancer Research contributor: fullname: Coon – volume: 357 start-page: 2277 year: 2007 end-page: 2284 ident: b0010 article-title: Computed tomography-an increasing source of radiation exposure publication-title: The New England Journal of Medicine contributor: fullname: Hall – volume: 9 start-page: 1 year: 2009 end-page: 16 ident: b0005 article-title: Noninvasive detection of lung cancer by analysis of exhaled breath publication-title: BMC Cancer contributor: fullname: Ligor – volume: 61 start-page: 515 year: 2007 end-page: 519 ident: b0020 article-title: Potentially useful biomarkers for the diagnosis, treatment and prognosis of lung cancer publication-title: Biomedicine & Pharmacotherapy contributor: fullname: Cho – volume: 33 start-page: 23 year: 2010 end-page: 33 ident: b0075 article-title: Mortality attributable to smoking in Spain in 2006 publication-title: Anales del Sistema Sanitario de Navarra contributor: fullname: González-Celador – volume: 25 start-page: 5578 year: 2007 end-page: 5583 ident: b0110 article-title: Panel of serum biomarkers for the diagnosis of lung cancer publication-title: Journal of Clinical Oncology contributor: fullname: Herndon – volume: 58 start-page: 184 year: 2007 end-page: 190 ident: b0115 article-title: Mortality due to lung cancer in Mexico publication-title: Lung cancer contributor: fullname: Meneses – volume: 1 start-page: 513 year: 2006 end-page: 519 ident: b0170 article-title: Profiling tumor-associated antibodies for early detection of non-small cell lung cancer publication-title: Journal of Thoracic Oncology contributor: fullname: Hirschowitz – volume: 14 start-page: 207 year: 2001 end-page: 214 ident: b0055 article-title: La epidemia de cáncer pulmonar en México publication-title: Revista del Instituto Nacional de Enfermedades Respiratorias contributor: fullname: Villalba-Caloca – volume: 38 start-page: 11329 year: 2011 end-page: 11334 ident: b0155 article-title: An optimal tumor marker group-coupled to artificial neural network for diagnosis of lung cancer publication-title: Expert Systems with Applications contributor: fullname: Xiang – volume: 103 start-page: 1221 year: 2010 end-page: 1228 ident: b0035 article-title: A multi-analyte serum test for the detection of non-small cell lung cancer publication-title: British Journal of Cancer contributor: fullname: Faber – start-page: 10 year: 2004 ident: 10.1016/j.eswa.2012.03.008_b0145 article-title: World Health Organization classification tumours of the lung, pleura, thymus and heart publication-title: International Agency for Research on, Cancer contributor: fullname: Travis – volume: 12 year: 2011 ident: 10.1016/j.eswa.2012.03.008_b0090 article-title: A novel detection method of non–small cell lung cancer using multiplexed bead-based serum biomarker profiling publication-title: The Journal of Thoracic and Cardiovascular Surgery contributor: fullname: Lee – volume: 25 start-page: 5578 year: 2007 ident: 10.1016/j.eswa.2012.03.008_b0110 article-title: Panel of serum biomarkers for the diagnosis of lung cancer publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2007.13.5392 contributor: fullname: Patz – volume: 357 start-page: 2277 year: 2007 ident: 10.1016/j.eswa.2012.03.008_b0010 article-title: Computed tomography-an increasing source of radiation exposure publication-title: The New England Journal of Medicine doi: 10.1056/NEJMra072149 contributor: fullname: Brenner – volume: 61 start-page: 515 year: 2007 ident: 10.1016/j.eswa.2012.03.008_b0020 article-title: Potentially useful biomarkers for the diagnosis, treatment and prognosis of lung cancer publication-title: Biomedicine & Pharmacotherapy doi: 10.1016/j.biopha.2007.08.005 contributor: fullname: Cho – volume: 103 start-page: 1221 year: 2010 ident: 10.1016/j.eswa.2012.03.008_b0035 article-title: A multi-analyte serum test for the detection of non-small cell lung cancer publication-title: British Journal of Cancer doi: 10.1038/sj.bjc.6605865 contributor: fullname: Farlow – volume: 14 start-page: 207 year: 2001 ident: 10.1016/j.eswa.2012.03.008_b0055 article-title: La epidemia de cáncer pulmonar en México publication-title: Revista del Instituto Nacional de Enfermedades Respiratorias contributor: fullname: Franco-Marina – volume: 140 start-page: 740 issue: 9 year: 2004 ident: 10.1016/j.eswa.2012.03.008_b0080 article-title: Lung cancer screening with sputum cytologic examination, chest radiography, and computed tomography: an update for the U.S. Preventive Services Task Force publication-title: Annals of Internal Medicine doi: 10.7326/0003-4819-140-9-200405040-00015 contributor: fullname: Humphrey – volume: 235 start-page: 259 year: 2005 ident: 10.1016/j.eswa.2012.03.008_b0135 article-title: CT screening for lung cancer: Five-year prospective experience publication-title: Radiology doi: 10.1148/radiol.2351041662 contributor: fullname: Swensen – volume: 33 start-page: 23 year: 2010 ident: 10.1016/j.eswa.2012.03.008_b0075 article-title: Mortality attributable to smoking in Spain in 2006 publication-title: Anales del Sistema Sanitario de Navarra contributor: fullname: Hernández-García – volume: 2 start-page: 185 year: 2003 ident: 10.1016/j.eswa.2012.03.008_b0125 article-title: Fuzzy logic-based tumor marker profiles improved sensitivity of the detection of progression in small-cell lung cancer patients publication-title: Clinical and Experimental Medicine doi: 10.1007/s102380300005 contributor: fullname: Schneider – year: 2011 ident: 10.1016/j.eswa.2012.03.008_b0040 article-title: The effect of artificial neural networks model combined with six tumor markers in auxiliary diagnosis of lung cancer publication-title: Journal of Medical Systems doi: 10.1007/s10916-011-9775-1 contributor: fullname: Feng – volume: 85 start-page: 358 year: 2009 ident: 10.1016/j.eswa.2012.03.008_b0060 article-title: A review of novel biological tools used in screening for the early detection of lung cancer publication-title: Postgraduate Medical Journal doi: 10.1136/pgmj.2008.076307 contributor: fullname: Ghosal – volume: 2 start-page: 5770 year: 2010 ident: 10.1016/j.eswa.2012.03.008_b0065 article-title: A computer aided diagnosis system for lung cancer detection using machine learning technique publication-title: European Journal of Scientific Research contributor: fullname: Gomathi – volume: 27 start-page: 1869 year: 2007 ident: 10.1016/j.eswa.2012.03.008_b0130 article-title: A fuzzy classifier using a marker panel for the detection of lung cancer in asbestosis patients publication-title: Anticancer Research contributor: fullname: Schneider – volume: 38 start-page: 11329 year: 2011 ident: 10.1016/j.eswa.2012.03.008_b0155 article-title: An optimal tumor marker group-coupled to artificial neural network for diagnosis of lung cancer publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.183 contributor: fullname: Wu – volume: 22 start-page: 4575 issue: 22 year: 2004 ident: 10.1016/j.eswa.2012.03.008_b0100 article-title: Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2004.01.091 contributor: fullname: Lu – volume: 11 start-page: 18 year: 2010 ident: 10.1016/j.eswa.2012.03.008_b0095 article-title: Identification of lung cancer with high sensitivity and specificity by blood testing publication-title: Respiratory Research doi: 10.1186/1465-9921-11-18 contributor: fullname: Leidinger – volume: 82 start-page: 294 year: 2006 ident: 10.1016/j.eswa.2012.03.008_b0160 article-title: An application of Takagi–Sugeno fuzzy system to the classification of cancer patients based on elemental contents in serum samples publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2005.05.007 contributor: fullname: Zhang – volume: 101 start-page: 882 year: 2009 ident: 10.1016/j.eswa.2012.03.008_b0015 article-title: Cost of a 5-year lung cancer survivor: symptomatic tumour identification vs proactive computed tomography screening publication-title: British Journal of Cancer doi: 10.1038/sj.bjc.6605253 contributor: fullname: Castleberry – volume: 355 start-page: 1763 year: 2006 ident: 10.1016/j.eswa.2012.03.008_b0140 article-title: Survival of patients with stage I lung cancer detected on CT screening publication-title: The New England Journal of Medicine doi: 10.1056/NEJMoa060476 – volume: 11 start-page: 995 year: 2011 ident: 10.1016/j.eswa.2012.03.008_b0025 article-title: Diagnostic values of SCC, CEA, Cyfra21-1 and NSE for lung cancer in patients with suspicious pulmonary masses: a single center analysis publication-title: Cancer Biology & Therapy doi: 10.4161/cbt.11.12.15526 contributor: fullname: Chu – volume: 9 start-page: 1 issue: 348 year: 2009 ident: 10.1016/j.eswa.2012.03.008_b0005 article-title: Noninvasive detection of lung cancer by analysis of exhaled breath publication-title: BMC Cancer contributor: fullname: Bajtarevic – volume: 1 start-page: 513 issue: 6 year: 2006 ident: 10.1016/j.eswa.2012.03.008_b0170 article-title: Profiling tumor-associated antibodies for early detection of non-small cell lung cancer publication-title: Journal of Thoracic Oncology doi: 10.1097/01243894-200607000-00003 contributor: fullname: Zhong – volume: 24 start-page: 25 year: 2002 ident: 10.1016/j.eswa.2012.03.008_b0165 article-title: Lung cancer cell identification based on artificial neural network ensembles publication-title: Artificial Intelligence in Medicine doi: 10.1016/S0933-3657(01)00094-X contributor: fullname: Zhou – volume: 7 start-page: 145 year: 2002 ident: 10.1016/j.eswa.2012.03.008_b0120 article-title: Fuzzy logic-based tumor-marker profiles improved sensitivity in the diagnosis of lung cancer publication-title: International Journal of Clinical Oncology doi: 10.1007/s101470200021 contributor: fullname: Schneider – volume: 26 start-page: 77 year: 2007 ident: 10.1016/j.eswa.2012.03.008_b0045 article-title: Marcadores tumorales serológicos publication-title: Química Clínica contributor: fullname: Fernández – ident: 10.1016/j.eswa.2012.03.008_b0050 – ident: 10.1016/j.eswa.2012.03.008_b0105 – volume: 58 start-page: 184 year: 2007 ident: 10.1016/j.eswa.2012.03.008_b0115 article-title: Mortality due to lung cancer in Mexico publication-title: Lung cancer doi: 10.1016/j.lungcan.2007.06.007 contributor: fullname: Ruíz-Godoy – volume: 236 start-page: 64 issue: 1 year: 2006 ident: 10.1016/j.eswa.2012.03.008_b0150 article-title: Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1 publication-title: Cancer Letters doi: 10.1016/j.canlet.2005.05.008 contributor: fullname: Tureci – volume: 98 start-page: 1234 issue: 8 year: 2007 ident: 10.1016/j.eswa.2012.03.008_b0070 article-title: Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer publication-title: Cancer Science doi: 10.1111/j.1349-7006.2007.00509.x contributor: fullname: He – volume: 16 start-page: 3452 year: 2010 ident: 10.1016/j.eswa.2012.03.008_b0030 article-title: Development of a multiplexed tumor-associated autoantibody-based blood test for the detection of non-small cell lung cancer publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-09-3192 contributor: fullname: Farlow – ident: 10.1016/j.eswa.2012.03.008_b0085 doi: 10.1109/CIBCB.2005.1594954 |
SSID | ssj0017007 |
Score | 2.2127721 |
Snippet | ► We evaluated serum biomarkers levels in lung cancer patients and non-cancer controls. ► We used principal component analysis and artificial neural network... Lung cancer is a public health priority worldwide due to the high mortality rate and the costs involved. Early detection of lung cancer is important for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 10851 |
SubjectTerms | Artificial neural network Artificial neural networks Biomarkers Cancer Classification Diagnosis Lung cancer Lungs Panels Patients Principal component analysis |
Title | Development of an optimized multi-biomarker panel for the detection of lung cancer based on principal component analysis and artificial neural network modeling |
URI | https://dx.doi.org/10.1016/j.eswa.2012.03.008 https://search.proquest.com/docview/1038243035 https://search.proquest.com/docview/1701005410 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB2SzaWXNE0bkjQNU-ituGv5Q7aPy9KwTWguaSA3oS_DhsS7bDYEeshfyV_tjCyXttAcAgbbsoSFRpr3bD2NAD6lqcm1FkVC2NokhdEuqTm8ti19Q4RESx1Uld_P5eyyOL0qrzZgOqyFYVll9P29Tw_eOqaMY2uOl_P5-ILIAcEhHWxoArpN2CI4yuoRbE2-nc3Of08mVGm_apryJ1wgrp3pZV7-7oHDD_EvwRDr9H_49I-nDvBzsgPbkTfipK_aG9jw3S68HvZkwDhE38LTHyogXLSoO1yQV7id__QOg3ow4RX3LMpZIXkCf4NEW5FoIDq_DrqsjsvdkBNAy11ihYx0Dil92f-Zp3qwEn3R8Tt0jGpCFw655fqQFMiBMsMpyMwx7LhDMPkOLk--_pjOkrgJQ2JzKdeJkJk3xlriibU2ha6cb4UweeUqYgLW21LavGm1bhsvGpsWrpXOu0Za3-ZVZvM9GHVUoX1AelIzYyPHZgpTZ7oSpkhtrjNpUtO6A_g8NL1a9rE21CBCu1ZsKMWGUmmuyFAHUA7WUX_1GEVg8Gy5j4MpFQ0lnh-hxl7c3ymOFZ8VhOnlM3kq-oAlmivSwxe-_z284jvWnIjyCEbr1b3_QMRmbY5h88ujOI7d9xdGnfyS |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6re9CLb_HtCN6kbJ_p9iii7Lq6FxW8hbwKK9pd1hXBP-NfdSZNRQU9CIWWtCEhk8z3tf1mwthxGKpEyigNEFuLIFXSBF1Kr60zWyAhkVw6VeX1kPfu0sv77L7FzppYGJJVet9f-3TnrX1Jx49mZzIadW6QHCAc4kGGRqCbY21kAwWuzvZpf9Abfv5MyMM6ahqfD6iCj52pZV72-ZXSD9EnQZfr9Dd8-uGpHfxcrLAlzxvhtO7aKmvZao0tN3sygF-i6-z9iwoIxiXICsboFZ5Gb9aAUw8GFHFPopwpoCewj4C0FZAGgrEzp8uqqN4jOgHQNCWmQEhnAMsn9Zd57Acp0ccVtSF9VhO8MEAjV6ekAEqU6U5OZg5uxx2EyQ12d3F-e9YL_CYMgU44nwURj61SWiNP7EqVytzYMopUkpscmYC2OuM6KUopy8JGhQ5TU3JjTcG1LZM81skmm6-wQ1sM8E6XGBs6NpWqbizzSKWhTmTMVahKs81OmqEXkzrXhmhEaA-CDCXIUCJMBBpqm2WNdcS3GSMQDP6sd9SYUuBSov8jONjjl2dBueLjFDE9--OZHF9gkeZG4c4_2z9kC73b6ytx1R8Odtki3SH9SZTtsfnZ9MXuI8mZqQM_iT8AYZL-hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+optimized+multi-biomarker+panel+for+the+detection+of+lung+cancer+based+on+principal+component+analysis+and+artificial+neural+network+modeling&rft.jtitle=Expert+systems+with+applications&rft.au=Flores-Fern%C3%A1ndez%2C+Jos%C3%A9+Miguel&rft.au=Herrera-L%C3%B3pez%2C+Enrique+J.&rft.au=S%C3%A1nchez-Llamas%2C+Francisco&rft.au=Rojas-Calvillo%2C+Antonio&rft.date=2012-09-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=39&rft.issue=12&rft.spage=10851&rft.epage=10856&rft_id=info:doi/10.1016%2Fj.eswa.2012.03.008&rft.externalDocID=S0957417412004782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |