Development of an optimized multi-biomarker panel for the detection of lung cancer based on principal component analysis and artificial neural network modeling

► We evaluated serum biomarkers levels in lung cancer patients and non-cancer controls. ► We used principal component analysis and artificial neural network modeling. ► We found a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. ► ANN modeling offers a powerful diagnostic tool to...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 39; no. 12; pp. 10851 - 10856
Main Authors Flores-Fernández, José Miguel, Herrera-López, Enrique J., Sánchez-Llamas, Francisco, Rojas-Calvillo, Antonio, Cabrera-Galeana, Paula Anel, Leal-Pacheco, Gisela, González-Palomar, María Guadalupe, Femat, R., Martínez-Velázquez, Moisés
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► We evaluated serum biomarkers levels in lung cancer patients and non-cancer controls. ► We used principal component analysis and artificial neural network modeling. ► We found a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. ► ANN modeling offers a powerful diagnostic tool to improve biomarker efficiency. Lung cancer is a public health priority worldwide due to the high mortality rate and the costs involved. Early detection of lung cancer is important for increasing the survival rate, however, frequently its diagnosis is not made opportunely, since detection methods are not sufficiently sensitive and specific. In recent years serum biomarkers have been proposed as a method that might enhance diagnostic capabilities and complement imaging studies. However, when used alone they show low sensitivity and specificity because lung cancer is a heterogeneous disease. Recent reports have shown that simultaneous analysis of biomarkers has the potential to separate lung cancer patients from control subjects. However, it has become clear that a universal biomarker panel does not exist, and optimized panels need to be developed and validated in each population before their application in a clinical setting. In this study, we selected 14 biomarkers from literature, whose diagnostic or prognostic value had been previously demonstrated for lung cancer, and evaluated them in sera from 63 patients with lung cancer and 87 non-cancer controls (58 Chronic Obstructive Pulmonary Disease (COPD) patients and 29 current smokers). Principal component analysis and artificial neural network modeling allowed us to find a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. This panel was able to correctly classify 135 out of 150 subjects, showing a correct classification rate for lung cancer patients of 88.9%, 93.3% and 90% in training, validation and testing phases, respectively. Thus, sensitivity was increased 18.31% (sensitivity 94.5% at specificity 80%) with respect to the best single marker Cyfra 21.1. This optimized panel represents a potential tool for assisting lung cancer diagnosis, therefore it merits further consideration.
AbstractList Lung cancer is a public health priority worldwide due to the high mortality rate and the costs involved. Early detection of lung cancer is important for increasing the survival rate, however, frequently its diagnosis is not made opportunely, since detection methods are not sufficiently sensitive and specific. In recent years serum biomarkers have been proposed as a method that might enhance diagnostic capabilities and complement imaging studies. However, when used alone they show low sensitivity and specificity because lung cancer is a heterogeneous disease. Recent reports have shown that simultaneous analysis of biomarkers has the potential to separate lung cancer patients from control subjects. However, it has become clear that a universal biomarker panel does not exist, and optimized panels need to be developed and validated in each population before their application in a clinical setting. In this study, we selected 14 biomarkers from literature, whose diagnostic or prognostic value had been previously demonstrated for lung cancer, and evaluated them in sera from 63 patients with lung cancer and 87 non-cancer controls (58 Chronic Obstructive Pulmonary Disease (COPD) patients and 29 current smokers). Principal component analysis and artificial neural network modeling allowed us to find a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. This panel was able to correctly classify 135 out of 150 subjects, showing a correct classification rate for lung cancer patients of 88.9%, 93.3% and 90% in training, validation and testing phases, respectively. Thus, sensitivity was increased 18.31% (sensitivity 94.5% at specificity 80%) with respect to the best single marker Cyfra 21.1. This optimized panel represents a potential tool for assisting lung cancer diagnosis, therefore it merits further consideration.
► We evaluated serum biomarkers levels in lung cancer patients and non-cancer controls. ► We used principal component analysis and artificial neural network modeling. ► We found a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. ► ANN modeling offers a powerful diagnostic tool to improve biomarker efficiency. Lung cancer is a public health priority worldwide due to the high mortality rate and the costs involved. Early detection of lung cancer is important for increasing the survival rate, however, frequently its diagnosis is not made opportunely, since detection methods are not sufficiently sensitive and specific. In recent years serum biomarkers have been proposed as a method that might enhance diagnostic capabilities and complement imaging studies. However, when used alone they show low sensitivity and specificity because lung cancer is a heterogeneous disease. Recent reports have shown that simultaneous analysis of biomarkers has the potential to separate lung cancer patients from control subjects. However, it has become clear that a universal biomarker panel does not exist, and optimized panels need to be developed and validated in each population before their application in a clinical setting. In this study, we selected 14 biomarkers from literature, whose diagnostic or prognostic value had been previously demonstrated for lung cancer, and evaluated them in sera from 63 patients with lung cancer and 87 non-cancer controls (58 Chronic Obstructive Pulmonary Disease (COPD) patients and 29 current smokers). Principal component analysis and artificial neural network modeling allowed us to find a reduced biomarker panel composed of Cyfra 21.1, CEA, CA125 and CRP. This panel was able to correctly classify 135 out of 150 subjects, showing a correct classification rate for lung cancer patients of 88.9%, 93.3% and 90% in training, validation and testing phases, respectively. Thus, sensitivity was increased 18.31% (sensitivity 94.5% at specificity 80%) with respect to the best single marker Cyfra 21.1. This optimized panel represents a potential tool for assisting lung cancer diagnosis, therefore it merits further consideration.
Author Femat, R.
Cabrera-Galeana, Paula Anel
Flores-Fernández, José Miguel
González-Palomar, María Guadalupe
Sánchez-Llamas, Francisco
Martínez-Velázquez, Moisés
Leal-Pacheco, Gisela
Rojas-Calvillo, Antonio
Herrera-López, Enrique J.
Author_xml – sequence: 1
  givenname: José Miguel
  surname: Flores-Fernández
  fullname: Flores-Fernández, José Miguel
  organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico
– sequence: 2
  givenname: Enrique J.
  surname: Herrera-López
  fullname: Herrera-López, Enrique J.
  organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico
– sequence: 3
  givenname: Francisco
  surname: Sánchez-Llamas
  fullname: Sánchez-Llamas, Francisco
  organization: OPD Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Servicio de Fisiología Pulmonar e Inhaloterapia, Hospital 278, C.P. 44280 Guadalajara, Jalisco, Mexico
– sequence: 4
  givenname: Antonio
  surname: Rojas-Calvillo
  fullname: Rojas-Calvillo, Antonio
  organization: Coordinación de Oncología Médica, Centro Oncológico Estatal ISSEMYM, Avenida Solidaridad las Torres 101, C.P. 50180 Toluca, Estado de Mexico, Mexico
– sequence: 5
  givenname: Paula Anel
  surname: Cabrera-Galeana
  fullname: Cabrera-Galeana, Paula Anel
  organization: Coordinación de Oncología Médica, Centro Oncológico Estatal ISSEMYM, Avenida Solidaridad las Torres 101, C.P. 50180 Toluca, Estado de Mexico, Mexico
– sequence: 6
  givenname: Gisela
  surname: Leal-Pacheco
  fullname: Leal-Pacheco, Gisela
  organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico
– sequence: 7
  givenname: María Guadalupe
  surname: González-Palomar
  fullname: González-Palomar, María Guadalupe
  organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico
– sequence: 8
  givenname: R.
  surname: Femat
  fullname: Femat, R.
  organization: División de Matemáticas Aplicadas, IPICyT, Camino a la presa San José 2055, Lomas 4a Secc, C.P. 78216 San Luis Potosí, Mexico
– sequence: 9
  givenname: Moisés
  surname: Martínez-Velázquez
  fullname: Martínez-Velázquez, Moisés
  email: moisesmartinezv@yahoo.com.mx, mmartinez@ciatej.net.mx
  organization: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, C.P. 44270 Guadalajara, Jalisco, Mexico
BookMark eNqFkc-OFCEQxolZE2dXX8ATRy_dQtMD04kXs_5NNvGiZ0JDsTJLQwv0btaX8VWtcTzrqSrk9xVV33dJLlJOQMhLznrOuHx97KE-mH5gfOiZ6Bk7PCE7flCik2oSF2THpr3qRq7GZ-Sy1iNjXDGmduTXO7iHmNcFUqPZU5NoXltYwk9wdNliC90c8mLKHRS6mgSR-lxo-w7UQQPbQk4nXdzSLbUmWcRmU1GM72sJyYbVRGrzsuLG-IdJJj7WULFx1JQWfLABiQRb-VPaQy53dMkOYki3z8lTb2KFF3_rFfn24f3X60_dzZePn6_f3nRWSNk6LgeYZ2snpQ5mHo1y4DmfhXJKcmHB7qUVkzfGT8Any0bnpQM3SQteqMGKK_LqPHct-ccGteklVAsx4sl5qxrt4oztR87-jzJxGEbBxB7R4Yzakmst4DVagmY-IqRPwemjPgWnT8FpJjQGh6I3ZxHgvfcBiq42ADrrQkHDtcvhX_LfepWoeA
CitedBy_id crossref_primary_10_4236_jbise_2013_611138
crossref_primary_10_1029_2021GH000548
crossref_primary_10_1016_j_matcom_2022_06_014
crossref_primary_10_1039_C3LC51124C
crossref_primary_10_32604_cmes_2023_024755
crossref_primary_10_1007_s11227_019_03002_5
crossref_primary_10_1007_s11250_022_03073_2
crossref_primary_10_1016_j_bios_2015_09_019
crossref_primary_10_1109_ACCESS_2020_3001426
crossref_primary_10_3390_en14206732
crossref_primary_10_1007_s00500_019_03856_0
crossref_primary_10_1007_s00500_020_04787_x
crossref_primary_10_1371_journal_pone_0125517
crossref_primary_10_1016_j_asoc_2015_05_047
crossref_primary_10_1016_j_neuroscience_2015_08_013
crossref_primary_10_2217_fon_14_21
crossref_primary_10_1016_j_jab_2018_01_002
crossref_primary_10_1016_j_eswa_2024_123392
crossref_primary_10_1002_asi_23516
crossref_primary_10_3390_ijms24021506
crossref_primary_10_3390_cancers15215236
crossref_primary_10_1260_2040_2295_5_4_393
Cites_doi 10.1200/JCO.2007.13.5392
10.1056/NEJMra072149
10.1016/j.biopha.2007.08.005
10.1038/sj.bjc.6605865
10.7326/0003-4819-140-9-200405040-00015
10.1148/radiol.2351041662
10.1007/s102380300005
10.1007/s10916-011-9775-1
10.1136/pgmj.2008.076307
10.1016/j.eswa.2011.02.183
10.1200/JCO.2004.01.091
10.1186/1465-9921-11-18
10.1016/j.chemolab.2005.05.007
10.1038/sj.bjc.6605253
10.1056/NEJMoa060476
10.4161/cbt.11.12.15526
10.1097/01243894-200607000-00003
10.1016/S0933-3657(01)00094-X
10.1007/s101470200021
10.1016/j.lungcan.2007.06.007
10.1016/j.canlet.2005.05.008
10.1111/j.1349-7006.2007.00509.x
10.1158/1078-0432.CCR-09-3192
10.1109/CIBCB.2005.1594954
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2012.03.008
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 10856
ExternalDocumentID 10_1016_j_eswa_2012_03_008
S0957417412004782
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAXKI
AAYXX
ABKBG
ACNTT
ADJOM
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c366t-162ebbcc9778ab4a7def11b37d7613cec56c39faaf9e19c04df6ded96cef372c3
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Fri Oct 25 02:56:14 EDT 2024
Fri Oct 25 03:00:29 EDT 2024
Thu Sep 26 16:49:32 EDT 2024
Fri Feb 23 02:26:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Biomarkers
Artificial neural network
Diagnosis
Lung cancer
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-162ebbcc9778ab4a7def11b37d7613cec56c39faaf9e19c04df6ded96cef372c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1038243035
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_1701005410
proquest_miscellaneous_1038243035
crossref_primary_10_1016_j_eswa_2012_03_008
elsevier_sciencedirect_doi_10_1016_j_eswa_2012_03_008
PublicationCentury 2000
PublicationDate 2012-09-15
PublicationDateYYYYMMDD 2012-09-15
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ghosal, Kloer, Lewis (b0060) 2009; 85
Lancashire, L., Ugurel, S., Creaser, C., Schadendorf, D., Rees, R., Ball, G. (2005). Utilizing artificial neural networks to elucidate serum biomarker patterns which discriminate between clinical stages in melanoma. In
Patz, Campa, Gottlin, Kusmartseva, Xiang, Herndon (b0110) 2007; 25
Feng, Wu, Wu, Nie, Ni (b0040) 2011
Wu, Wu, Wang, Yan, Qu, Xiang (b0155) 2011; 38
Zhou, Jiang, Yang, Chen (b0165) 2002; 24
(pp. 455–460). California, USA: La Jolla.
Schneider, Peltri, Bitterlich, Philipp, Velcovsky, Morr (b0125) 2003; 2
Bajtarevic, Ager, Pienz, Klieber, Schwarz, Ligor (b0005) 2009; 9
Brenner, Hall (b0010) 2007; 357
La Habana, Cuba.
He, Naka, Serada, Fujimoto, Tanaka, Hashimoto (b0070) 2007; 98
Franco-Marina, Villalba-Caloca (b0055) 2001; 14
Lu, Soria, Tang, Xu, Wang, Mao (b0100) 2004; 22
Ruíz-Godoy, Rizo, Sánchez, Osornio-Vargas, García-Cuellar, Meneses (b0115) 2007; 58
Swensen, Jett, Hartman, Midthun, Mandrekar, Hillman (b0135) 2005; 235
Flores, J. M., Herrera, E., Leal, G., González, M. G., Sánchez, F., Rojas A., Cabrera, P. A., Femat, R., Martínez-Velázquez, M. (2011). Artificial neural network-based serum biomarkers analysis improves sensitivity in the diagnosis of lung cancer. In
Schneider, Bitterlich, Velcovsky, Morr, Katz, Eigenbrodt (b0120) 2002; 7
Travis, Brambilla, Mueller-Hermelink, Harris (b0145) 2004
Lee, Kim, Park, Shin, Kang, Kim (b0090) 2011; 12
Chu, Hou, Song, Xue, Wang, Zhang (b0025) 2011; 11
Castleberry, Smith, Anderson, Rotter, Grannis (b0015) 2009; 101
Fernández, Martínez, Gaspar, Filella, Molina, Ballesta (b0045) 2007; 26
Gomathi, Thangaraj (b0065) 2010; 2
Farlow, Vercillo, Coon, Basu, Kim, Faber (b0035) 2010; 103
.
Hernández-García, Sáenz-González, González-Celador (b0075) 2010; 33
Leidinger, Keller, Heisel, Ludwig, Rheinheimer, Klein (b0095) 2010; 11
Zhang, Zhou, Liu, Harrington (b0160) 2006; 82
Schneider, Bitterlich, Kotschy-Lang, Raab, Hans-Joachim (b0130) 2007; 27
(b0140) 2006; 355
National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Lung Cancer Screening. Version 1.2012. Retrieved December 2011 from
Tureci, Mack, Luxemburger, Heinen, Krummenauer, Sester (b0150) 2006; 236
Farlow, Patel, Basu, Lee, Kim, Coon (b0030) 2010; 16
Humphrey, Teutsch, Johnson (b0080) 2004; 140
Zhong, Coe, Stromberg, Khattar, Jett, Hirschowitz (b0170) 2006; 1
Cho (b0020) 2007; 61
Lee (10.1016/j.eswa.2012.03.008_b0090) 2011; 12
Swensen (10.1016/j.eswa.2012.03.008_b0135) 2005; 235
Travis (10.1016/j.eswa.2012.03.008_b0145) 2004
Fernández (10.1016/j.eswa.2012.03.008_b0045) 2007; 26
Bajtarevic (10.1016/j.eswa.2012.03.008_b0005) 2009; 9
(10.1016/j.eswa.2012.03.008_b0140) 2006; 355
Castleberry (10.1016/j.eswa.2012.03.008_b0015) 2009; 101
Brenner (10.1016/j.eswa.2012.03.008_b0010) 2007; 357
Chu (10.1016/j.eswa.2012.03.008_b0025) 2011; 11
Franco-Marina (10.1016/j.eswa.2012.03.008_b0055) 2001; 14
10.1016/j.eswa.2012.03.008_b0105
He (10.1016/j.eswa.2012.03.008_b0070) 2007; 98
10.1016/j.eswa.2012.03.008_b0085
Lu (10.1016/j.eswa.2012.03.008_b0100) 2004; 22
Zhou (10.1016/j.eswa.2012.03.008_b0165) 2002; 24
Feng (10.1016/j.eswa.2012.03.008_b0040) 2011
Schneider (10.1016/j.eswa.2012.03.008_b0120) 2002; 7
Patz (10.1016/j.eswa.2012.03.008_b0110) 2007; 25
Cho (10.1016/j.eswa.2012.03.008_b0020) 2007; 61
Hernández-García (10.1016/j.eswa.2012.03.008_b0075) 2010; 33
Zhang (10.1016/j.eswa.2012.03.008_b0160) 2006; 82
Gomathi (10.1016/j.eswa.2012.03.008_b0065) 2010; 2
Schneider (10.1016/j.eswa.2012.03.008_b0130) 2007; 27
Farlow (10.1016/j.eswa.2012.03.008_b0035) 2010; 103
Wu (10.1016/j.eswa.2012.03.008_b0155) 2011; 38
Humphrey (10.1016/j.eswa.2012.03.008_b0080) 2004; 140
Zhong (10.1016/j.eswa.2012.03.008_b0170) 2006; 1
Farlow (10.1016/j.eswa.2012.03.008_b0030) 2010; 16
Ghosal (10.1016/j.eswa.2012.03.008_b0060) 2009; 85
Schneider (10.1016/j.eswa.2012.03.008_b0125) 2003; 2
Ruíz-Godoy (10.1016/j.eswa.2012.03.008_b0115) 2007; 58
10.1016/j.eswa.2012.03.008_b0050
Tureci (10.1016/j.eswa.2012.03.008_b0150) 2006; 236
Leidinger (10.1016/j.eswa.2012.03.008_b0095) 2010; 11
References_xml – volume: 2
  start-page: 185
  year: 2003
  end-page: 191
  ident: b0125
  article-title: Fuzzy logic-based tumor marker profiles improved sensitivity of the detection of progression in small-cell lung cancer patients
  publication-title: Clinical and Experimental Medicine
  contributor:
    fullname: Morr
– volume: 82
  start-page: 294
  year: 2006
  end-page: 299
  ident: b0160
  article-title: An application of Takagi–Sugeno fuzzy system to the classification of cancer patients based on elemental contents in serum samples
  publication-title: Chemometrics and Intelligent Laboratory Systems
  contributor:
    fullname: Harrington
– start-page: 10
  year: 2004
  end-page: 20
  ident: b0145
  article-title: World Health Organization classification tumours of the lung, pleura, thymus and heart
  publication-title: International Agency for Research on, Cancer
  contributor:
    fullname: Harris
– volume: 7
  start-page: 145
  year: 2002
  end-page: 151
  ident: b0120
  article-title: Fuzzy logic-based tumor-marker profiles improved sensitivity in the diagnosis of lung cancer
  publication-title: International Journal of Clinical Oncology
  contributor:
    fullname: Eigenbrodt
– volume: 236
  start-page: 64
  year: 2006
  end-page: 71
  ident: b0150
  article-title: Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1
  publication-title: Cancer Letters
  contributor:
    fullname: Sester
– volume: 24
  start-page: 25
  year: 2002
  end-page: 36
  ident: b0165
  article-title: Lung cancer cell identification based on artificial neural network ensembles
  publication-title: Artificial Intelligence in Medicine
  contributor:
    fullname: Chen
– volume: 12
  year: 2011
  ident: b0090
  article-title: A novel detection method of non–small cell lung cancer using multiplexed bead-based serum biomarker profiling
  publication-title: The Journal of Thoracic and Cardiovascular Surgery
  contributor:
    fullname: Kim
– volume: 26
  start-page: 77
  year: 2007
  end-page: 85
  ident: b0045
  article-title: Marcadores tumorales serológicos
  publication-title: Química Clínica
  contributor:
    fullname: Ballesta
– volume: 2
  start-page: 5770
  year: 2010
  end-page: 5779
  ident: b0065
  article-title: A computer aided diagnosis system for lung cancer detection using machine learning technique
  publication-title: European Journal of Scientific Research
  contributor:
    fullname: Thangaraj
– year: 2011
  ident: b0040
  article-title: The effect of artificial neural networks model combined with six tumor markers in auxiliary diagnosis of lung cancer
  publication-title: Journal of Medical Systems
  contributor:
    fullname: Ni
– volume: 98
  start-page: 1234
  year: 2007
  end-page: 1240
  ident: b0070
  article-title: Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer
  publication-title: Cancer Science
  contributor:
    fullname: Hashimoto
– volume: 101
  start-page: 882
  year: 2009
  end-page: 896
  ident: b0015
  article-title: Cost of a 5-year lung cancer survivor: symptomatic tumour identification vs proactive computed tomography screening
  publication-title: British Journal of Cancer
  contributor:
    fullname: Grannis
– volume: 27
  start-page: 1869
  year: 2007
  end-page: 1878
  ident: b0130
  article-title: A fuzzy classifier using a marker panel for the detection of lung cancer in asbestosis patients
  publication-title: Anticancer Research
  contributor:
    fullname: Hans-Joachim
– volume: 355
  start-page: 1763
  year: 2006
  end-page: 1771
  ident: b0140
  article-title: Survival of patients with stage I lung cancer detected on CT screening
  publication-title: The New England Journal of Medicine
– volume: 140
  start-page: 740
  year: 2004
  end-page: 753
  ident: b0080
  article-title: Lung cancer screening with sputum cytologic examination, chest radiography, and computed tomography: an update for the U.S. Preventive Services Task Force
  publication-title: Annals of Internal Medicine
  contributor:
    fullname: Johnson
– volume: 22
  start-page: 4575
  year: 2004
  end-page: 4583
  ident: b0100
  article-title: Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers
  publication-title: Journal of Clinical Oncology
  contributor:
    fullname: Mao
– volume: 11
  start-page: 18
  year: 2010
  ident: b0095
  article-title: Identification of lung cancer with high sensitivity and specificity by blood testing
  publication-title: Respiratory Research
  contributor:
    fullname: Klein
– volume: 235
  start-page: 259
  year: 2005
  end-page: 265
  ident: b0135
  article-title: CT screening for lung cancer: Five-year prospective experience
  publication-title: Radiology
  contributor:
    fullname: Hillman
– volume: 85
  start-page: 358
  year: 2009
  end-page: 363
  ident: b0060
  article-title: A review of novel biological tools used in screening for the early detection of lung cancer
  publication-title: Postgraduate Medical Journal
  contributor:
    fullname: Lewis
– volume: 11
  start-page: 995
  year: 2011
  end-page: 1000
  ident: b0025
  article-title: Diagnostic values of SCC, CEA, Cyfra21-1 and NSE for lung cancer in patients with suspicious pulmonary masses: a single center analysis
  publication-title: Cancer Biology & Therapy
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 3452
  year: 2010
  end-page: 3462
  ident: b0030
  article-title: Development of a multiplexed tumor-associated autoantibody-based blood test for the detection of non-small cell lung cancer
  publication-title: Clinical Cancer Research
  contributor:
    fullname: Coon
– volume: 357
  start-page: 2277
  year: 2007
  end-page: 2284
  ident: b0010
  article-title: Computed tomography-an increasing source of radiation exposure
  publication-title: The New England Journal of Medicine
  contributor:
    fullname: Hall
– volume: 9
  start-page: 1
  year: 2009
  end-page: 16
  ident: b0005
  article-title: Noninvasive detection of lung cancer by analysis of exhaled breath
  publication-title: BMC Cancer
  contributor:
    fullname: Ligor
– volume: 61
  start-page: 515
  year: 2007
  end-page: 519
  ident: b0020
  article-title: Potentially useful biomarkers for the diagnosis, treatment and prognosis of lung cancer
  publication-title: Biomedicine & Pharmacotherapy
  contributor:
    fullname: Cho
– volume: 33
  start-page: 23
  year: 2010
  end-page: 33
  ident: b0075
  article-title: Mortality attributable to smoking in Spain in 2006
  publication-title: Anales del Sistema Sanitario de Navarra
  contributor:
    fullname: González-Celador
– volume: 25
  start-page: 5578
  year: 2007
  end-page: 5583
  ident: b0110
  article-title: Panel of serum biomarkers for the diagnosis of lung cancer
  publication-title: Journal of Clinical Oncology
  contributor:
    fullname: Herndon
– volume: 58
  start-page: 184
  year: 2007
  end-page: 190
  ident: b0115
  article-title: Mortality due to lung cancer in Mexico
  publication-title: Lung cancer
  contributor:
    fullname: Meneses
– volume: 1
  start-page: 513
  year: 2006
  end-page: 519
  ident: b0170
  article-title: Profiling tumor-associated antibodies for early detection of non-small cell lung cancer
  publication-title: Journal of Thoracic Oncology
  contributor:
    fullname: Hirschowitz
– volume: 14
  start-page: 207
  year: 2001
  end-page: 214
  ident: b0055
  article-title: La epidemia de cáncer pulmonar en México
  publication-title: Revista del Instituto Nacional de Enfermedades Respiratorias
  contributor:
    fullname: Villalba-Caloca
– volume: 38
  start-page: 11329
  year: 2011
  end-page: 11334
  ident: b0155
  article-title: An optimal tumor marker group-coupled to artificial neural network for diagnosis of lung cancer
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Xiang
– volume: 103
  start-page: 1221
  year: 2010
  end-page: 1228
  ident: b0035
  article-title: A multi-analyte serum test for the detection of non-small cell lung cancer
  publication-title: British Journal of Cancer
  contributor:
    fullname: Faber
– start-page: 10
  year: 2004
  ident: 10.1016/j.eswa.2012.03.008_b0145
  article-title: World Health Organization classification tumours of the lung, pleura, thymus and heart
  publication-title: International Agency for Research on, Cancer
  contributor:
    fullname: Travis
– volume: 12
  year: 2011
  ident: 10.1016/j.eswa.2012.03.008_b0090
  article-title: A novel detection method of non–small cell lung cancer using multiplexed bead-based serum biomarker profiling
  publication-title: The Journal of Thoracic and Cardiovascular Surgery
  contributor:
    fullname: Lee
– volume: 25
  start-page: 5578
  year: 2007
  ident: 10.1016/j.eswa.2012.03.008_b0110
  article-title: Panel of serum biomarkers for the diagnosis of lung cancer
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.2007.13.5392
  contributor:
    fullname: Patz
– volume: 357
  start-page: 2277
  year: 2007
  ident: 10.1016/j.eswa.2012.03.008_b0010
  article-title: Computed tomography-an increasing source of radiation exposure
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJMra072149
  contributor:
    fullname: Brenner
– volume: 61
  start-page: 515
  year: 2007
  ident: 10.1016/j.eswa.2012.03.008_b0020
  article-title: Potentially useful biomarkers for the diagnosis, treatment and prognosis of lung cancer
  publication-title: Biomedicine & Pharmacotherapy
  doi: 10.1016/j.biopha.2007.08.005
  contributor:
    fullname: Cho
– volume: 103
  start-page: 1221
  year: 2010
  ident: 10.1016/j.eswa.2012.03.008_b0035
  article-title: A multi-analyte serum test for the detection of non-small cell lung cancer
  publication-title: British Journal of Cancer
  doi: 10.1038/sj.bjc.6605865
  contributor:
    fullname: Farlow
– volume: 14
  start-page: 207
  year: 2001
  ident: 10.1016/j.eswa.2012.03.008_b0055
  article-title: La epidemia de cáncer pulmonar en México
  publication-title: Revista del Instituto Nacional de Enfermedades Respiratorias
  contributor:
    fullname: Franco-Marina
– volume: 140
  start-page: 740
  issue: 9
  year: 2004
  ident: 10.1016/j.eswa.2012.03.008_b0080
  article-title: Lung cancer screening with sputum cytologic examination, chest radiography, and computed tomography: an update for the U.S. Preventive Services Task Force
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-140-9-200405040-00015
  contributor:
    fullname: Humphrey
– volume: 235
  start-page: 259
  year: 2005
  ident: 10.1016/j.eswa.2012.03.008_b0135
  article-title: CT screening for lung cancer: Five-year prospective experience
  publication-title: Radiology
  doi: 10.1148/radiol.2351041662
  contributor:
    fullname: Swensen
– volume: 33
  start-page: 23
  year: 2010
  ident: 10.1016/j.eswa.2012.03.008_b0075
  article-title: Mortality attributable to smoking in Spain in 2006
  publication-title: Anales del Sistema Sanitario de Navarra
  contributor:
    fullname: Hernández-García
– volume: 2
  start-page: 185
  year: 2003
  ident: 10.1016/j.eswa.2012.03.008_b0125
  article-title: Fuzzy logic-based tumor marker profiles improved sensitivity of the detection of progression in small-cell lung cancer patients
  publication-title: Clinical and Experimental Medicine
  doi: 10.1007/s102380300005
  contributor:
    fullname: Schneider
– year: 2011
  ident: 10.1016/j.eswa.2012.03.008_b0040
  article-title: The effect of artificial neural networks model combined with six tumor markers in auxiliary diagnosis of lung cancer
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-011-9775-1
  contributor:
    fullname: Feng
– volume: 85
  start-page: 358
  year: 2009
  ident: 10.1016/j.eswa.2012.03.008_b0060
  article-title: A review of novel biological tools used in screening for the early detection of lung cancer
  publication-title: Postgraduate Medical Journal
  doi: 10.1136/pgmj.2008.076307
  contributor:
    fullname: Ghosal
– volume: 2
  start-page: 5770
  year: 2010
  ident: 10.1016/j.eswa.2012.03.008_b0065
  article-title: A computer aided diagnosis system for lung cancer detection using machine learning technique
  publication-title: European Journal of Scientific Research
  contributor:
    fullname: Gomathi
– volume: 27
  start-page: 1869
  year: 2007
  ident: 10.1016/j.eswa.2012.03.008_b0130
  article-title: A fuzzy classifier using a marker panel for the detection of lung cancer in asbestosis patients
  publication-title: Anticancer Research
  contributor:
    fullname: Schneider
– volume: 38
  start-page: 11329
  year: 2011
  ident: 10.1016/j.eswa.2012.03.008_b0155
  article-title: An optimal tumor marker group-coupled to artificial neural network for diagnosis of lung cancer
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.183
  contributor:
    fullname: Wu
– volume: 22
  start-page: 4575
  issue: 22
  year: 2004
  ident: 10.1016/j.eswa.2012.03.008_b0100
  article-title: Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.2004.01.091
  contributor:
    fullname: Lu
– volume: 11
  start-page: 18
  year: 2010
  ident: 10.1016/j.eswa.2012.03.008_b0095
  article-title: Identification of lung cancer with high sensitivity and specificity by blood testing
  publication-title: Respiratory Research
  doi: 10.1186/1465-9921-11-18
  contributor:
    fullname: Leidinger
– volume: 82
  start-page: 294
  year: 2006
  ident: 10.1016/j.eswa.2012.03.008_b0160
  article-title: An application of Takagi–Sugeno fuzzy system to the classification of cancer patients based on elemental contents in serum samples
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2005.05.007
  contributor:
    fullname: Zhang
– volume: 101
  start-page: 882
  year: 2009
  ident: 10.1016/j.eswa.2012.03.008_b0015
  article-title: Cost of a 5-year lung cancer survivor: symptomatic tumour identification vs proactive computed tomography screening
  publication-title: British Journal of Cancer
  doi: 10.1038/sj.bjc.6605253
  contributor:
    fullname: Castleberry
– volume: 355
  start-page: 1763
  year: 2006
  ident: 10.1016/j.eswa.2012.03.008_b0140
  article-title: Survival of patients with stage I lung cancer detected on CT screening
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJMoa060476
– volume: 11
  start-page: 995
  year: 2011
  ident: 10.1016/j.eswa.2012.03.008_b0025
  article-title: Diagnostic values of SCC, CEA, Cyfra21-1 and NSE for lung cancer in patients with suspicious pulmonary masses: a single center analysis
  publication-title: Cancer Biology & Therapy
  doi: 10.4161/cbt.11.12.15526
  contributor:
    fullname: Chu
– volume: 9
  start-page: 1
  issue: 348
  year: 2009
  ident: 10.1016/j.eswa.2012.03.008_b0005
  article-title: Noninvasive detection of lung cancer by analysis of exhaled breath
  publication-title: BMC Cancer
  contributor:
    fullname: Bajtarevic
– volume: 1
  start-page: 513
  issue: 6
  year: 2006
  ident: 10.1016/j.eswa.2012.03.008_b0170
  article-title: Profiling tumor-associated antibodies for early detection of non-small cell lung cancer
  publication-title: Journal of Thoracic Oncology
  doi: 10.1097/01243894-200607000-00003
  contributor:
    fullname: Zhong
– volume: 24
  start-page: 25
  year: 2002
  ident: 10.1016/j.eswa.2012.03.008_b0165
  article-title: Lung cancer cell identification based on artificial neural network ensembles
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/S0933-3657(01)00094-X
  contributor:
    fullname: Zhou
– volume: 7
  start-page: 145
  year: 2002
  ident: 10.1016/j.eswa.2012.03.008_b0120
  article-title: Fuzzy logic-based tumor-marker profiles improved sensitivity in the diagnosis of lung cancer
  publication-title: International Journal of Clinical Oncology
  doi: 10.1007/s101470200021
  contributor:
    fullname: Schneider
– volume: 26
  start-page: 77
  year: 2007
  ident: 10.1016/j.eswa.2012.03.008_b0045
  article-title: Marcadores tumorales serológicos
  publication-title: Química Clínica
  contributor:
    fullname: Fernández
– ident: 10.1016/j.eswa.2012.03.008_b0050
– ident: 10.1016/j.eswa.2012.03.008_b0105
– volume: 58
  start-page: 184
  year: 2007
  ident: 10.1016/j.eswa.2012.03.008_b0115
  article-title: Mortality due to lung cancer in Mexico
  publication-title: Lung cancer
  doi: 10.1016/j.lungcan.2007.06.007
  contributor:
    fullname: Ruíz-Godoy
– volume: 236
  start-page: 64
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2012.03.008_b0150
  article-title: Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1
  publication-title: Cancer Letters
  doi: 10.1016/j.canlet.2005.05.008
  contributor:
    fullname: Tureci
– volume: 98
  start-page: 1234
  issue: 8
  year: 2007
  ident: 10.1016/j.eswa.2012.03.008_b0070
  article-title: Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer
  publication-title: Cancer Science
  doi: 10.1111/j.1349-7006.2007.00509.x
  contributor:
    fullname: He
– volume: 16
  start-page: 3452
  year: 2010
  ident: 10.1016/j.eswa.2012.03.008_b0030
  article-title: Development of a multiplexed tumor-associated autoantibody-based blood test for the detection of non-small cell lung cancer
  publication-title: Clinical Cancer Research
  doi: 10.1158/1078-0432.CCR-09-3192
  contributor:
    fullname: Farlow
– ident: 10.1016/j.eswa.2012.03.008_b0085
  doi: 10.1109/CIBCB.2005.1594954
SSID ssj0017007
Score 2.2127721
Snippet ► We evaluated serum biomarkers levels in lung cancer patients and non-cancer controls. ► We used principal component analysis and artificial neural network...
Lung cancer is a public health priority worldwide due to the high mortality rate and the costs involved. Early detection of lung cancer is important for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 10851
SubjectTerms Artificial neural network
Artificial neural networks
Biomarkers
Cancer
Classification
Diagnosis
Lung cancer
Lungs
Panels
Patients
Principal component analysis
Title Development of an optimized multi-biomarker panel for the detection of lung cancer based on principal component analysis and artificial neural network modeling
URI https://dx.doi.org/10.1016/j.eswa.2012.03.008
https://search.proquest.com/docview/1038243035
https://search.proquest.com/docview/1701005410
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB2SzaWXNE0bkjQNU-ituGv5Q7aPy9KwTWguaSA3oS_DhsS7bDYEeshfyV_tjCyXttAcAgbbsoSFRpr3bD2NAD6lqcm1FkVC2NokhdEuqTm8ti19Q4RESx1Uld_P5eyyOL0qrzZgOqyFYVll9P29Tw_eOqaMY2uOl_P5-ILIAcEhHWxoArpN2CI4yuoRbE2-nc3Of08mVGm_apryJ1wgrp3pZV7-7oHDD_EvwRDr9H_49I-nDvBzsgPbkTfipK_aG9jw3S68HvZkwDhE38LTHyogXLSoO1yQV7id__QOg3ow4RX3LMpZIXkCf4NEW5FoIDq_DrqsjsvdkBNAy11ihYx0Dil92f-Zp3qwEn3R8Tt0jGpCFw655fqQFMiBMsMpyMwx7LhDMPkOLk--_pjOkrgJQ2JzKdeJkJk3xlriibU2ha6cb4UweeUqYgLW21LavGm1bhsvGpsWrpXOu0Za3-ZVZvM9GHVUoX1AelIzYyPHZgpTZ7oSpkhtrjNpUtO6A_g8NL1a9rE21CBCu1ZsKMWGUmmuyFAHUA7WUX_1GEVg8Gy5j4MpFQ0lnh-hxl7c3ymOFZ8VhOnlM3kq-oAlmivSwxe-_z284jvWnIjyCEbr1b3_QMRmbY5h88ujOI7d9xdGnfyS
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6re9CLb_HtCN6kbJ_p9iii7Lq6FxW8hbwKK9pd1hXBP-NfdSZNRQU9CIWWtCEhk8z3tf1mwthxGKpEyigNEFuLIFXSBF1Kr60zWyAhkVw6VeX1kPfu0sv77L7FzppYGJJVet9f-3TnrX1Jx49mZzIadW6QHCAc4kGGRqCbY21kAwWuzvZpf9Abfv5MyMM6ahqfD6iCj52pZV72-ZXSD9EnQZfr9Dd8-uGpHfxcrLAlzxvhtO7aKmvZao0tN3sygF-i6-z9iwoIxiXICsboFZ5Gb9aAUw8GFHFPopwpoCewj4C0FZAGgrEzp8uqqN4jOgHQNCWmQEhnAMsn9Zd57Acp0ccVtSF9VhO8MEAjV6ekAEqU6U5OZg5uxx2EyQ12d3F-e9YL_CYMgU44nwURj61SWiNP7EqVytzYMopUkpscmYC2OuM6KUopy8JGhQ5TU3JjTcG1LZM81skmm6-wQ1sM8E6XGBs6NpWqbizzSKWhTmTMVahKs81OmqEXkzrXhmhEaA-CDCXIUCJMBBpqm2WNdcS3GSMQDP6sd9SYUuBSov8jONjjl2dBueLjFDE9--OZHF9gkeZG4c4_2z9kC73b6ytx1R8Odtki3SH9SZTtsfnZ9MXuI8mZqQM_iT8AYZL-hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+optimized+multi-biomarker+panel+for+the+detection+of+lung+cancer+based+on+principal+component+analysis+and+artificial+neural+network+modeling&rft.jtitle=Expert+systems+with+applications&rft.au=Flores-Fern%C3%A1ndez%2C+Jos%C3%A9+Miguel&rft.au=Herrera-L%C3%B3pez%2C+Enrique+J.&rft.au=S%C3%A1nchez-Llamas%2C+Francisco&rft.au=Rojas-Calvillo%2C+Antonio&rft.date=2012-09-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=39&rft.issue=12&rft.spage=10851&rft.epage=10856&rft_id=info:doi/10.1016%2Fj.eswa.2012.03.008&rft.externalDocID=S0957417412004782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon