Construction of 2D/1D Cu7S4 nanosheets/Mn0.3Cd0.7S nanorods heterojunction for highly efficient photocatalytic hydrogen evolution

[Display omitted] Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostruct...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 653; no. Pt B; pp. 1304 - 1316
Main Authors Lv, Hua, Zhang, Fubiao, Wang, Lanlan, Shen, Qinhui, Li, Guanyong, Zhan, Mingyan, Wang, Gongke, Wang, Guangtao, Liu, Yumin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H2 evolution by coupling one-dimensional (1D) Mn0.3Cd0.7S nanorods with two-dimensional (2D) Cu7S4 nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu7S4/Mn0.3Cd0.7S heterojunction photocatalyst containing 1.5 wt% Cu7S4 displays excellent photostability and superior photocatalytic H2 evolution rate up to 914.3 μmol h−1, which is 4.43 and 2.22-folds increment relative to bare Mn0.3Cd0.7S and the 3 wt% Pt/Mn0.3Cd0.7S, respectively. The various characterization results reveal that the utilization of semimetallic Cu7S4 nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu7S4 nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu7S4-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion.
AbstractList Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H2 evolution by coupling one-dimensional (1D) Mn0.3Cd0.7S nanorods with two-dimensional (2D) Cu7S4 nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu7S4/Mn0.3Cd0.7S heterojunction photocatalyst containing 1.5 wt% Cu7S4 displays excellent photostability and superior photocatalytic H2 evolution rate up to 914.3 μmol h-1, which is 4.43 and 2.22-folds increment relative to bare Mn0.3Cd0.7S and the 3 wt% Pt/Mn0.3Cd0.7S, respectively. The various characterization results reveal that the utilization of semimetallic Cu7S4 nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu7S4 nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu7S4-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion.Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H2 evolution by coupling one-dimensional (1D) Mn0.3Cd0.7S nanorods with two-dimensional (2D) Cu7S4 nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu7S4/Mn0.3Cd0.7S heterojunction photocatalyst containing 1.5 wt% Cu7S4 displays excellent photostability and superior photocatalytic H2 evolution rate up to 914.3 μmol h-1, which is 4.43 and 2.22-folds increment relative to bare Mn0.3Cd0.7S and the 3 wt% Pt/Mn0.3Cd0.7S, respectively. The various characterization results reveal that the utilization of semimetallic Cu7S4 nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu7S4 nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu7S4-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion.
[Display omitted] Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H2 evolution by coupling one-dimensional (1D) Mn0.3Cd0.7S nanorods with two-dimensional (2D) Cu7S4 nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu7S4/Mn0.3Cd0.7S heterojunction photocatalyst containing 1.5 wt% Cu7S4 displays excellent photostability and superior photocatalytic H2 evolution rate up to 914.3 μmol h−1, which is 4.43 and 2.22-folds increment relative to bare Mn0.3Cd0.7S and the 3 wt% Pt/Mn0.3Cd0.7S, respectively. The various characterization results reveal that the utilization of semimetallic Cu7S4 nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu7S4 nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu7S4-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion.
Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu₇S₄/Mn₀.₃Cd₀.₇S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H₂ evolution by coupling one-dimensional (1D) Mn₀.₃Cd₀.₇S nanorods with two-dimensional (2D) Cu₇S₄ nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu₇S₄/Mn₀.₃Cd₀.₇S heterojunction photocatalyst containing 1.5 wt% Cu₇S₄ displays excellent photostability and superior photocatalytic H₂ evolution rate up to 914.3 μmol h⁻¹, which is 4.43 and 2.22-folds increment relative to bare Mn₀.₃Cd₀.₇S and the 3 wt% Pt/Mn₀.₃Cd₀.₇S, respectively. The various characterization results reveal that the utilization of semimetallic Cu₇S₄ nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu₇S₄ nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu₇S₄-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion.
Author Wang, Guangtao
Zhang, Fubiao
Wang, Lanlan
Wang, Gongke
Lv, Hua
Zhan, Mingyan
Liu, Yumin
Shen, Qinhui
Li, Guanyong
Author_xml – sequence: 1
  givenname: Hua
  surname: Lv
  fullname: Lv, Hua
  organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 2
  givenname: Fubiao
  surname: Zhang
  fullname: Zhang, Fubiao
  organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 3
  givenname: Lanlan
  surname: Wang
  fullname: Wang, Lanlan
  organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 4
  givenname: Qinhui
  surname: Shen
  fullname: Shen, Qinhui
  organization: College of Physics, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 5
  givenname: Guanyong
  surname: Li
  fullname: Li, Guanyong
  organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 6
  givenname: Mingyan
  surname: Zhan
  fullname: Zhan, Mingyan
  organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 7
  givenname: Gongke
  surname: Wang
  fullname: Wang, Gongke
  email: wanggongke@126.com
  organization: School of Materials Science and Engineering, Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 8
  givenname: Guangtao
  surname: Wang
  fullname: Wang, Guangtao
  email: wangtao@htu.cn
  organization: College of Physics, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 9
  givenname: Yumin
  orcidid: 0000-0003-0953-2532
  surname: Liu
  fullname: Liu, Yumin
  email: ymliu2007@163.com
  organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
BookMark eNqFkbtu3DAQRYnABrJ-_EAqlmmkHZLiUgLSBHKcGHCQwnFNcKmRRUEmNyRlYEv_eaRsqhQOphhgcM8U91yQMx88EvKBQcmA7bZjOVqXSg5clNCUTKh3ZMOgkYViIM7IBoCzolGNek8uUhoBGJOy2ZDXNviU42yzC56GnvKbLbuh7aweKuqND2lAzGn73UMp2g5K9fDnHEOX6IAZYxhnf6L7EOngnobpSLHvnXXoMz0MIQdrspmO2Vk6HLsYntBTfAnTvGJX5Lw3U8Lrv_uSPN5--dl-K-5_fL1rP98XVux2uWCVUdKovqulUrKSKGVVK75Xe9UJKY1oajC2M3JvsUeDBqC2YNV-16O1tRKX5OPp7yGGXzOmrJ9dsjhNxmOYkxZQLcOlqP8b5bWquAIQ1RLlp6iNIaWIvT5E92ziUTPQqxo96lWNXtVoaPSiZoHqfyDrslnLyNG46W300wnFpaoXh1GntWeLnYtos-6Cewv_DSAvrcA
CitedBy_id crossref_primary_10_1016_j_surfin_2024_105644
crossref_primary_10_1016_j_jece_2025_115447
crossref_primary_10_1016_j_jwpe_2025_107545
crossref_primary_10_1016_j_inoche_2024_113120
crossref_primary_10_1016_j_jece_2025_115445
crossref_primary_10_1039_D3DT03533F
crossref_primary_10_1016_j_fuel_2024_132358
crossref_primary_10_1016_j_surfin_2024_105301
crossref_primary_10_1021_acs_inorgchem_4c01213
crossref_primary_10_1016_j_jcis_2025_137280
crossref_primary_10_1016_j_apsusc_2024_160895
crossref_primary_10_1016_j_jcis_2024_08_072
crossref_primary_10_1016_j_jwpe_2025_107387
crossref_primary_10_1016_j_surfin_2024_104838
crossref_primary_10_1016_j_materresbull_2024_113230
crossref_primary_10_1016_j_seppur_2024_127473
crossref_primary_10_1016_j_seppur_2025_131922
crossref_primary_10_1016_j_seppur_2024_129479
crossref_primary_10_1007_s11164_025_05514_7
crossref_primary_10_1016_j_apcata_2025_120142
crossref_primary_10_1016_j_jallcom_2024_177226
crossref_primary_10_1016_j_seppur_2024_129536
crossref_primary_10_1016_j_jallcom_2025_179400
crossref_primary_10_1016_j_fuel_2024_133463
crossref_primary_10_1016_j_ijhydene_2024_12_036
crossref_primary_10_1016_j_jallcom_2025_179245
crossref_primary_10_1021_acsanm_4c04947
crossref_primary_10_1002_solr_202300916
crossref_primary_10_1016_j_ijhydene_2024_05_226
crossref_primary_10_1016_j_jcis_2024_08_125
crossref_primary_10_1016_j_mssp_2023_107978
crossref_primary_10_1016_j_renene_2024_121189
crossref_primary_10_1016_j_apsusc_2024_159572
crossref_primary_10_1016_j_surfin_2024_104824
crossref_primary_10_1002_smll_202311725
crossref_primary_10_1016_j_jcis_2024_10_087
crossref_primary_10_1016_j_jcis_2024_06_040
crossref_primary_10_1016_j_jtice_2024_105587
crossref_primary_10_1016_j_jcis_2024_04_014
crossref_primary_10_1016_j_cjsc_2023_100201
crossref_primary_10_1016_j_seppur_2024_128357
crossref_primary_10_1016_j_surfin_2024_105395
crossref_primary_10_1016_j_jcis_2024_06_128
crossref_primary_10_1016_j_jallcom_2024_178249
crossref_primary_10_1016_j_jallcom_2025_179678
crossref_primary_10_1016_j_jallcom_2024_177572
crossref_primary_10_1016_j_jcis_2024_07_021
crossref_primary_10_1016_j_seppur_2024_127429
Cites_doi 10.1016/j.apsusc.2018.03.226
10.1021/acsami.2c03230
10.1103/PhysRevB.45.13244
10.1021/acsami.1c20148
10.1016/j.matchemphys.2023.127410
10.1016/S1872-2067(19)63467-4
10.1021/acs.nanolett.5b00950
10.1002/adfm.202111740
10.1016/j.cej.2020.127177
10.1016/j.apsusc.2022.153448
10.1021/acsami.2c03421
10.1016/j.solener.2022.10.032
10.1016/j.seppur.2021.119461
10.1016/j.ijhydene.2021.12.165
10.1016/j.jcis.2021.11.032
10.1016/j.apcatb.2020.119151
10.1016/j.cej.2021.131069
10.1002/adom.201800911
10.1016/j.jcis.2018.10.018
10.1016/j.apcatb.2019.01.042
10.1016/j.apcatb.2019.118439
10.1016/j.cej.2022.136309
10.1016/j.apcatb.2018.06.040
10.1016/j.colsurfa.2023.131384
10.1016/j.jallcom.2021.159461
10.1016/j.cej.2020.127474
10.1021/acsami.8b02984
10.1016/j.ijhydene.2020.03.139
10.1021/acsami.8b00393
10.1016/j.powtec.2021.08.048
10.1016/j.apcatb.2019.118382
10.1103/PhysRevLett.77.3865
10.1039/C8DT03579B
10.1016/j.jcis.2022.01.079
10.1063/1.4903450
10.1016/j.seppur.2022.122266
10.1002/cctc.202001111
10.1002/smll.202101070
10.1002/adma.201807660
10.1002/smll.201804115
10.1002/aenm.202200298
10.1016/j.apcatb.2020.119482
10.1039/C8CY02266F
10.1016/j.jece.2022.107375
10.1016/j.cej.2020.128157
10.1039/C7CY01102D
10.1016/j.jece.2022.108010
10.1103/PhysRevB.54.11169
10.1016/j.cej.2022.134689
10.1016/j.cej.2021.129157
10.1016/j.jcis.2021.07.113
10.1039/C8CY02179A
10.1016/S1872-2067(21)63801-9
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2023.09.137
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 1316
ExternalDocumentID 10_1016_j_jcis_2023_09_137
S0021979723018350
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABWVN
ABXDB
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFFNX
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c366t-14a75a7fd8577545e554872b7b7d355a3980acda5bcefeaea008c0c7b6fecc873
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Wed Jul 02 04:40:01 EDT 2025
Fri Jul 11 01:23:57 EDT 2025
Tue Jul 01 04:19:13 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Sat Feb 08 15:51:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Cu7S4
Mn0.3Cd0.7S
Cocatalyst
Mechanism
Heterojunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-14a75a7fd8577545e554872b7b7d355a3980acda5bcefeaea008c0c7b6fecc873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0953-2532
PQID 2874270034
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3040402538
proquest_miscellaneous_2874270034
crossref_primary_10_1016_j_jcis_2023_09_137
crossref_citationtrail_10_1016_j_jcis_2023_09_137
elsevier_sciencedirect_doi_10_1016_j_jcis_2023_09_137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Huang, Tao, Ye, Yao, Li (b0070) 2018; 237
Lin, Sun, Wang, Ruan, Geng, Li, Wu, Wang, Liu, Wang (b0250) 2019; 15
Chu, Han, Yu, Du, Song, Xu (b0235) 2018; 10
Meng, Zhang, Cheng, Yu (b0095) 2019; 31
Liu, Wang, Yao, Shi (b0120) 2022; 247
Cao, Wan, Wang, Guo, Ou, Zhong (b0100) 2022; 605
Lv, Wu, Wu, Zheng, Liu (b0075) 2022; 593
Liu, Wang, Yao, Shi (b0110) 2023; 297
Zhu, Xu, Qiu, Xing, Zhang (b0090) 2021; 17
Zhu, Qi, Guo, Chen, Liu, Lou, Zhao (b0125) 2022; 47
Zhang, Pan, Yang, Wang, Pei, Chen, Huang (b0215) 2022; 43
Xu, Kong, Zhang, Yang, Wang, Chang, Chen, Huang, Zhang (b0255) 2022; 303
Bhavani, Praveen Kumar, Putta Rangappa, Hong, Gopannagari, Amaranatha Reddy, Kyu Kim (b0220) 2020; 13
Zeng, Luo, Wang, Peng (b0105) 2019; 9
Lei, Ng, Zhang, Li, Xu, Huang, Lai (b0050) 2022; 434
Zhang, Zhang, Zhang, Yang, Li, Dai (b0130) 2020; 10
Zhang, Wang, He, Wu, Zhang, Wu (b0085) 2022; 442
Zhu, Marianov, Xu, Lang, Jiang (b0245) 2018; 10
Sun, Qiu, Liang, Xue, Zhang, Yang, Cui, Tian (b0210) 2021; 406
Almusattar, Tahir, Madi, Tahir (b0240) 2022; 10
Yamazaki, Toyonaga, Doshita, Mori, Kuwahara, Yamazaki, Yamashita (b0025) 2022; 14
Han, Dong, Liang (b0180) 2019; 9
Wang, Xing, Meng, Zhang, Li, Pan, Zhou (b0265) 2021; 281
Cui, Li, Liu, Chen, Xu, Ma, Fang, Zhu, Wu, Zhao, Wang, Huang (b0145) 2015; 15
Perdew, Wang (b0200) 1992; 45
Chandra, Guharoy, Pradhan (b0150) 2022; 14
Chen, Huang, He, Ji, Zhang, Sun, Wang, Su (b0225) 2021; 277
Zhang, Chen, Wang, Zhang, Zheng, Rao, Han, Zhong, Hu, Deng (b0140) 2019; 246
Lehtomäki, Makkonen, Caro, Harju, Lopez-Acevedo (b0205) 2014; 141
Du, Li, Lin, Zhang, Xu, Fang (b0270) 2021; 409
Li, Wang, He, Meng, Xu, Chen, Fu (b0230) 2019; 535
Chen, Xia, She, Mo, Zhao, Yi, Xu, Chen, Xu, Li (b0160) 2018; 447
Liu, Wu, Lv, Wu (b0060) 2021; 394
Wang, Li, Li, Ma, Fan, Liu (b0115) 2022; 10
Ruan, Cui, Cui, Fan, Li, Xie, Ba, Jia, Zhang, Zhang, Zhang, Zhao, Leng, Jin, Singh, Zheng (b0020) 2022; 12
Liu, Meng, Zhang (b0080) 2017; 7
Kresse (b0190) 1996; 54
Zhang, Cheng, Xing, Chen, Huang (b0030) 2021; 414
Xiong, Qin, Chai, Yan, Fan, Xu, Wang, Song (b0065) 2022; 428
Liu, Wu, Lv, Cao, Ren (b0015) 2019; 48
Chen, Gao, Chen, Shi (b0010) 2021; 413
Lv, Wu, Zheng, Kong, Xing, Wang, Liu (b0040) 2023; 666
Xu, Zhu, Cheng, Yu, Xu (b0170) 2018; 6
Tan, Ma, Yu, Luan, Li, Liu, Dong, Su, Qiao, Gao, Lu, Bai (b0165) 2022; 32
Perdew, Burke, Ernzerhof (b0195) 1996; 77
Jiang, Gong, Liu, Song, Huang (b0035) 2020; 268
Ren, Shen, Jiang, Lu, Li (b0135) 2020; 41
Liu, Zhang, Wang, Zhang, Qiu (b0005) 2022; 14
Yang, Shao, Wang, Xia, Liu, Cheng, Yang, Li (b0185) 2020; 45
Xiao, Zhao, Zou, Chen, Tian, Xu, Tang, Liu, Lin, Yang (b0155) 2020; 268
Wan, Du, Lu, Ren, Shi, Liu, Li, Dou, Fang, Ye (b0260) 2021; 871
Yan, Wang, Du, Zhu, Phillips, Xu (b0175) 2020; 275
Wei, Zeng, Liu, Zheng, Fujita, Liao, Li, Wei (b0045) 2022; 608
Chen, Guo, Bian, Ji, Wang, Zhang, Cui, Tian (b0055) 2022; 613
Xiong (10.1016/j.jcis.2023.09.137_b0065) 2022; 428
Huang (10.1016/j.jcis.2023.09.137_b0070) 2018; 237
Zhang (10.1016/j.jcis.2023.09.137_b0140) 2019; 246
Cao (10.1016/j.jcis.2023.09.137_b0100) 2022; 605
Liu (10.1016/j.jcis.2023.09.137_b0080) 2017; 7
Bhavani (10.1016/j.jcis.2023.09.137_b0220) 2020; 13
Wang (10.1016/j.jcis.2023.09.137_b0115) 2022; 10
Zhu (10.1016/j.jcis.2023.09.137_b0125) 2022; 47
Sun (10.1016/j.jcis.2023.09.137_b0210) 2021; 406
Zhang (10.1016/j.jcis.2023.09.137_b0130) 2020; 10
Ren (10.1016/j.jcis.2023.09.137_b0135) 2020; 41
Lei (10.1016/j.jcis.2023.09.137_b0050) 2022; 434
Wan (10.1016/j.jcis.2023.09.137_b0260) 2021; 871
Wang (10.1016/j.jcis.2023.09.137_b0265) 2021; 281
Chen (10.1016/j.jcis.2023.09.137_b0010) 2021; 413
Xu (10.1016/j.jcis.2023.09.137_b0170) 2018; 6
Cui (10.1016/j.jcis.2023.09.137_b0145) 2015; 15
Liu (10.1016/j.jcis.2023.09.137_b0060) 2021; 394
Zhang (10.1016/j.jcis.2023.09.137_b0085) 2022; 442
Liu (10.1016/j.jcis.2023.09.137_b0005) 2022; 14
Lehtomäki (10.1016/j.jcis.2023.09.137_b0205) 2014; 141
Wei (10.1016/j.jcis.2023.09.137_b0045) 2022; 608
Perdew (10.1016/j.jcis.2023.09.137_b0200) 1992; 45
Du (10.1016/j.jcis.2023.09.137_b0270) 2021; 409
Zhu (10.1016/j.jcis.2023.09.137_b0090) 2021; 17
Han (10.1016/j.jcis.2023.09.137_b0180) 2019; 9
Chen (10.1016/j.jcis.2023.09.137_b0055) 2022; 613
Xu (10.1016/j.jcis.2023.09.137_b0255) 2022; 303
Lv (10.1016/j.jcis.2023.09.137_b0075) 2022; 593
Tan (10.1016/j.jcis.2023.09.137_b0165) 2022; 32
Yan (10.1016/j.jcis.2023.09.137_b0175) 2020; 275
Perdew (10.1016/j.jcis.2023.09.137_b0195) 1996; 77
Lin (10.1016/j.jcis.2023.09.137_b0250) 2019; 15
Xiao (10.1016/j.jcis.2023.09.137_b0155) 2020; 268
Zhu (10.1016/j.jcis.2023.09.137_b0245) 2018; 10
Chu (10.1016/j.jcis.2023.09.137_b0235) 2018; 10
Almusattar (10.1016/j.jcis.2023.09.137_b0240) 2022; 10
Meng (10.1016/j.jcis.2023.09.137_b0095) 2019; 31
Chen (10.1016/j.jcis.2023.09.137_b0225) 2021; 277
Li (10.1016/j.jcis.2023.09.137_b0230) 2019; 535
Zhang (10.1016/j.jcis.2023.09.137_b0215) 2022; 43
Liu (10.1016/j.jcis.2023.09.137_b0110) 2023; 297
Chen (10.1016/j.jcis.2023.09.137_b0160) 2018; 447
Lv (10.1016/j.jcis.2023.09.137_b0040) 2023; 666
Jiang (10.1016/j.jcis.2023.09.137_b0035) 2020; 268
Liu (10.1016/j.jcis.2023.09.137_b0015) 2019; 48
Yamazaki (10.1016/j.jcis.2023.09.137_b0025) 2022; 14
Kresse (10.1016/j.jcis.2023.09.137_b0190) 1996; 54
Yang (10.1016/j.jcis.2023.09.137_b0185) 2020; 45
Ruan (10.1016/j.jcis.2023.09.137_b0020) 2022; 12
Chandra (10.1016/j.jcis.2023.09.137_b0150) 2022; 14
Zeng (10.1016/j.jcis.2023.09.137_b0105) 2019; 9
Liu (10.1016/j.jcis.2023.09.137_b0120) 2022; 247
Zhang (10.1016/j.jcis.2023.09.137_b0030) 2021; 414
References_xml – volume: 7
  start-page: 3802
  year: 2017
  end-page: 3811
  ident: b0080
  article-title: Self-assembled three-dimensional flowerlike Mn
  publication-title: Cat. Sci. Technol.
– volume: 15
  start-page: 6295
  year: 2015
  end-page: 6301
  ident: b0145
  article-title: Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions
  publication-title: Nano Lett.
– volume: 14
  start-page: 31782
  year: 2022
  end-page: 31791
  ident: b0005
  article-title: 2D/2D interface engineering promotes charge separation of Mo
  publication-title: ACS Appl. Mater. Inter.
– volume: 10
  start-page: 107375
  year: 2022
  ident: b0115
  article-title: NiS
  publication-title: J. Environ. Chem. Eng.
– volume: 608
  start-page: 3087
  year: 2022
  end-page: 3097
  ident: b0045
  article-title: Composition-dependent activity of Zn
  publication-title: J. Colloid Interface Sci.
– volume: 593
  start-page: 153448
  year: 2022
  ident: b0075
  article-title: Fabricating WS
  publication-title: Appl. Surf. Sci.
– volume: 247
  start-page: 177
  year: 2022
  end-page: 184
  ident: b0120
  article-title: Simple preparation of amorphous nickel boride/Mn
  publication-title: Sol. Energy
– volume: 10
  start-page: 1030
  year: 2020
  end-page: 1039
  ident: b0130
  article-title: Black phosphorus quantum dots facilitate carrier separation for enhancing hydrogen production over hierarchical Cu
  publication-title: Sci. Technol.
– volume: 297
  start-page: 134689
  year: 2023
  ident: b0110
  article-title: Ti
  publication-title: Mater. Chem. Phys.
– volume: 406
  start-page: 127177
  year: 2021
  ident: b0210
  article-title: The fabrication of 1D/2D CdS nanorod@Ti
  publication-title: Chem. Eng. J.
– volume: 409
  start-page: 128157
  year: 2021
  ident: b0270
  article-title: Highly efficient H
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 1804115
  year: 2019
  ident: b0250
  article-title: Unique 1D Cd
  publication-title: Small
– volume: 9
  start-page: 762
  year: 2019
  end-page: 771
  ident: b0105
  article-title: One-pot hydrothermal synthesis of MoS
  publication-title: Cat. Sci. Technol.
– volume: 277
  start-page: 119461
  year: 2021
  ident: b0225
  article-title: Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl
  publication-title: Sep. Purif. Technol.
– volume: 281
  start-page: 119482
  year: 2021
  ident: b0265
  article-title: Hollow MoSe
  publication-title: Appl. Catal. b: Environ.
– volume: 45
  start-page: 13244
  year: 1992
  end-page: 13249
  ident: b0200
  article-title: Accurate and simple analytic representation of the electron-gas correlation energy
  publication-title: Phys. Rev. B
– volume: 666
  start-page: 131384
  year: 2023
  ident: b0040
  article-title: Engineering of direct Z-scheme ZnIn
  publication-title: Colloid. Surface. A
– volume: 47
  start-page: 8275
  year: 2022
  end-page: 8283
  ident: b0125
  article-title: Two dimensional porous Ni
  publication-title: Int. J. Hydrogen Energy
– volume: 613
  start-page: 644
  year: 2022
  end-page: 651
  ident: b0055
  article-title: Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production
  publication-title: J. Colloid Interface Sci.
– volume: 48
  start-page: 1217
  year: 2019
  end-page: 1225
  ident: b0015
  article-title: Boosting the photocatalytic hydrogen evolution activity of g-C3N4 nanosheets by Cu2(OH)2CO3-modification and dye-sensitization
  publication-title: Dalton Trans.
– volume: 303
  start-page: 122266
  year: 2022
  ident: b0255
  article-title: S-scheme 2D/2D FeTiO
  publication-title: Sep. Purif. Technol.
– volume: 237
  start-page: 689
  year: 2018
  end-page: 698
  ident: b0070
  article-title: Mn
  publication-title: Appl. Catal. b: Environ.
– volume: 13
  start-page: 304
  year: 2020
  end-page: 312
  ident: b0220
  article-title: Skeletal Cu7S4 nanocages wrapped by few-layered black phosphorus nanosheets as an efficient H2 production photocatalyst
  publication-title: ChemCatChem
– volume: 268
  start-page: 118382
  year: 2020
  ident: b0155
  article-title: In situ fabrication of 1D CdS nanorod/2D Ti
  publication-title: Appl. Catal. b: Environ.
– volume: 394
  start-page: 171
  year: 2021
  end-page: 180
  ident: b0060
  article-title: Strategic integration of MoO
  publication-title: Powder Technol.
– volume: 275
  start-page: 119151
  year: 2020
  ident: b0175
  article-title: Interpreting the enhanced photoactivities of 0D/1D heterojunctions of CdS quantum dots /TiO
  publication-title: Appl. Catal. b: Environ.
– volume: 414
  start-page: 129157
  year: 2021
  ident: b0030
  article-title: 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production
  publication-title: Chem. Eng. J.
– volume: 268
  start-page: 118439
  year: 2020
  ident: b0035
  article-title: In situ construction of NiSe/Mn
  publication-title: Appl. Catal. b: Environ.
– volume: 10
  start-page: 9468
  year: 2018
  end-page: 9477
  ident: b0245
  article-title: Bimetallic Ag-Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 2291
  year: 2022
  end-page: 2300
  ident: b0025
  article-title: Crystal facet engineering and hydrogen spillover-assisted synthesis of defective Pt/TiO
  publication-title: ACS Appl. Mater. Inter.
– volume: 41
  start-page: 31
  year: 2020
  end-page: 40
  ident: b0135
  article-title: Highly efficient visible-light photocatalytic H
  publication-title: Chin. J. Catal.
– volume: 428
  start-page: 131069
  year: 2022
  ident: b0065
  article-title: Unveiling the role of Mn-Cd-S solid solution and MnS in Mn
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 2111740
  year: 2022
  ident: b0165
  article-title: Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-Scheme ZnIn
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 20404
  year: 2018
  end-page: 20411
  ident: b0235
  article-title: Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu
  publication-title: ACS Appl. Mater. Interfaces
– volume: 442
  start-page: 136309
  year: 2022
  ident: b0085
  article-title: Rationally design and in-situ fabrication of ultrasmall pomegranate-like CdIn
  publication-title: Chem. Eng. J.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0195
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 605
  start-page: 311
  year: 2022
  end-page: 319
  ident: b0100
  article-title: Highly-efficient visible-light-driven photocatalytic H
  publication-title: J. Colloid Interface Sci.
– volume: 45
  start-page: 14334
  year: 2020
  end-page: 14346
  ident: b0185
  article-title: Boosted photogenerated carriers separation in Z-scheme Cu
  publication-title: Int. J. Hydrogen Energy
– volume: 14
  start-page: 22122
  year: 2022
  end-page: 22137
  ident: b0150
  article-title: Boosting the photocatalytic H
  publication-title: ACS Appl. Mater. Inter.
– volume: 141
  start-page: 234102
  year: 2014
  ident: b0205
  article-title: Orbital-free density functional theory implementation with the projector augmented-wave method
  publication-title: J. Chem. Phys.
– volume: 447
  start-page: 732
  year: 2018
  end-page: 739
  ident: b0160
  article-title: 1D metallic MoO
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 1800911
  year: 2018
  ident: b0170
  article-title: 1D/2D TiO
  publication-title: Adv. Opt. Mater.
– volume: 10
  start-page: 108010
  year: 2022
  ident: b0240
  article-title: Fabricating Ti
  publication-title: J. Environ. Chem. Eng.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: b0190
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 535
  start-page: 469
  year: 2019
  end-page: 480
  ident: b0230
  article-title: Rational synthesis of Mn
  publication-title: J. Colloid Interface Sci.
– volume: 434
  start-page: 134689
  year: 2022
  ident: b0050
  article-title: One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H
  publication-title: Chem. Eng. J.
– volume: 413
  start-page: 127474
  year: 2021
  ident: b0010
  article-title: Metallic NiSe cocatalyst decorated g-C
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: 1807660
  year: 2019
  ident: b0095
  article-title: Dual cocatalysts in TiO
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1427
  year: 2019
  end-page: 1436
  ident: b0180
  article-title: Synthesis of Mn
  publication-title: Catal Science and Technology
– volume: 43
  start-page: 265
  year: 2022
  end-page: 275
  ident: b0215
  article-title: Boosting the catalytic activity of a step-scheme In
  publication-title: Chin. J. Catal.
– volume: 246
  start-page: 202
  year: 2019
  end-page: 210
  ident: b0140
  article-title: Enhanced light harvesting and electron-hole separation for efficient photocatalytic hydrogen evolution over Cu
  publication-title: Appl. Catal. b: Environ.
– volume: 12
  start-page: 2200298
  year: 2022
  ident: b0020
  article-title: Favorable energy band alignment of TiO
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 2101070
  year: 2021
  ident: b0090
  article-title: Emerging cocatalysts on g-C
  publication-title: Small
– volume: 871
  start-page: 159461
  year: 2021
  ident: b0260
  article-title: Metallic CuS decorated CdS nanowires for efficient photocatalytic H
  publication-title: J. Alloy. Compd.
– volume: 447
  start-page: 732
  year: 2018
  ident: 10.1016/j.jcis.2023.09.137_b0160
  article-title: 1D metallic MoO2-C as co-catalyst on 2D g-C3N4 semiconductor to promote photocatlaytic hydrogen production
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.226
– volume: 14
  start-page: 22122
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0150
  article-title: Boosting the photocatalytic H2 evolution and benzylamine oxidation using 2D/1D g-C3N4/TiO2 nanoheterojunction
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.2c03230
– volume: 45
  start-page: 13244
  year: 1992
  ident: 10.1016/j.jcis.2023.09.137_b0200
  article-title: Accurate and simple analytic representation of the electron-gas correlation energy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 14
  start-page: 2291
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0025
  article-title: Crystal facet engineering and hydrogen spillover-assisted synthesis of defective Pt/TiO2-x nanorods with enhanced visible light-driven photocatalytic activity
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.1c20148
– volume: 297
  start-page: 134689
  year: 2023
  ident: 10.1016/j.jcis.2023.09.137_b0110
  article-title: Ti3C2/Mn0.5Cd0.5S composite photocatalyst for enhanced H2 generation
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2023.127410
– volume: 41
  start-page: 31
  year: 2020
  ident: 10.1016/j.jcis.2023.09.137_b0135
  article-title: Highly efficient visible-light photocatalytic H2 evolution over 2D–2D CdS/Cu7S4 layered heterojunctions
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63467-4
– volume: 15
  start-page: 6295
  year: 2015
  ident: 10.1016/j.jcis.2023.09.137_b0145
  article-title: Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00950
– volume: 32
  start-page: 2111740
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0165
  article-title: Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-Scheme ZnIn2S4/g-C3N4 heterojunction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111740
– volume: 10
  start-page: 1030
  year: 2020
  ident: 10.1016/j.jcis.2023.09.137_b0130
  article-title: Black phosphorus quantum dots facilitate carrier separation for enhancing hydrogen production over hierarchical Cu7S4/ZnIn2S4 composites, Catal
  publication-title: Sci. Technol.
– volume: 406
  start-page: 127177
  year: 2021
  ident: 10.1016/j.jcis.2023.09.137_b0210
  article-title: The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127177
– volume: 593
  start-page: 153448
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0075
  article-title: Fabricating WS2/Mn0.5Cd0.5S/CuInS2 hierarchical tandem p-n heterojunction for highly efficient hydrogen production
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153448
– volume: 14
  start-page: 31782
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0005
  article-title: 2D/2D interface engineering promotes charge separation of Mo2C/g-C3N4 nanojunction photocatalysts for efficient photocatalytic hydrogen evolution
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.2c03421
– volume: 247
  start-page: 177
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0120
  article-title: Simple preparation of amorphous nickel boride/Mn0.5Cd0.5S composite and its high-efficient photocatalytic performance for hydrogen production
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.10.032
– volume: 277
  start-page: 119461
  year: 2021
  ident: 10.1016/j.jcis.2023.09.137_b0225
  article-title: Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 p-n heterojunctions under visible light irradiation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119461
– volume: 47
  start-page: 8275
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0125
  article-title: Two dimensional porous Ni12P5 sheet modified Mn0.5Cd0.5S for efficient photocatalytic hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.12.165
– volume: 608
  start-page: 3087
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0045
  article-title: Composition-dependent activity of ZnxCd1-xSe solid solution coupled with Ni2P nanosheets for visible-light-driven photocatalytic H2 generation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.11.032
– volume: 275
  start-page: 119151
  year: 2020
  ident: 10.1016/j.jcis.2023.09.137_b0175
  article-title: Interpreting the enhanced photoactivities of 0D/1D heterojunctions of CdS quantum dots /TiO2 nanotube arrays using femtosecond transient absorption spectroscopy
  publication-title: Appl. Catal. b: Environ.
  doi: 10.1016/j.apcatb.2020.119151
– volume: 428
  start-page: 131069
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0065
  article-title: Unveiling the role of Mn-Cd-S solid solution and MnS in MnxCd1-xS photocatalysts and decorating with CoP nanoplates for enhanced photocatalytic H2 evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131069
– volume: 6
  start-page: 1800911
  year: 2018
  ident: 10.1016/j.jcis.2023.09.137_b0170
  article-title: 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800911
– volume: 535
  start-page: 469
  year: 2019
  ident: 10.1016/j.jcis.2023.09.137_b0230
  article-title: Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.10.018
– volume: 246
  start-page: 202
  year: 2019
  ident: 10.1016/j.jcis.2023.09.137_b0140
  article-title: Enhanced light harvesting and electron-hole separation for efficient photocatalytic hydrogen evolution over Cu7S4-enwrapped Cu2O nanocubes
  publication-title: Appl. Catal. b: Environ.
  doi: 10.1016/j.apcatb.2019.01.042
– volume: 268
  start-page: 118439
  year: 2020
  ident: 10.1016/j.jcis.2023.09.137_b0035
  article-title: In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light
  publication-title: Appl. Catal. b: Environ.
  doi: 10.1016/j.apcatb.2019.118439
– volume: 442
  start-page: 136309
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0085
  article-title: Rationally design and in-situ fabrication of ultrasmall pomegranate-like CdIn2S4/ZnIn2S4 Z-scheme heterojunction with abundant vacancies for improving CO2 reduction and water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136309
– volume: 237
  start-page: 689
  year: 2018
  ident: 10.1016/j.jcis.2023.09.137_b0070
  article-title: Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation
  publication-title: Appl. Catal. b: Environ.
  doi: 10.1016/j.apcatb.2018.06.040
– volume: 666
  start-page: 131384
  year: 2023
  ident: 10.1016/j.jcis.2023.09.137_b0040
  article-title: Engineering of direct Z-scheme ZnIn2S4/NiWO4 heterojunction with boosted photocatalytic hydrogen production
  publication-title: Colloid. Surface. A
  doi: 10.1016/j.colsurfa.2023.131384
– volume: 871
  start-page: 159461
  year: 2021
  ident: 10.1016/j.jcis.2023.09.137_b0260
  article-title: Metallic CuS decorated CdS nanowires for efficient photocatalytic H2 evolution under visible-light irradiation
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2021.159461
– volume: 413
  start-page: 127474
  year: 2021
  ident: 10.1016/j.jcis.2023.09.137_b0010
  article-title: Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127474
– volume: 10
  start-page: 20404
  year: 2018
  ident: 10.1016/j.jcis.2023.09.137_b0235
  article-title: Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02984
– volume: 45
  start-page: 14334
  year: 2020
  ident: 10.1016/j.jcis.2023.09.137_b0185
  article-title: Boosted photogenerated carriers separation in Z-scheme Cu3P/ZnIn2S4 heterojunction photocatalyst for highly efficient H2 evolution under visible light
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.139
– volume: 10
  start-page: 9468
  year: 2018
  ident: 10.1016/j.jcis.2023.09.137_b0245
  article-title: Bimetallic Ag-Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00393
– volume: 394
  start-page: 171
  year: 2021
  ident: 10.1016/j.jcis.2023.09.137_b0060
  article-title: Strategic integration of MoO2 onto Mn0.5Cd0.5S/Cu2O p-n junction: Rational design with efficient charge transfer for boosting photocatalytic hydrogen production
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.08.048
– volume: 268
  start-page: 118382
  year: 2020
  ident: 10.1016/j.jcis.2023.09.137_b0155
  article-title: In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution
  publication-title: Appl. Catal. b: Environ.
  doi: 10.1016/j.apcatb.2019.118382
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jcis.2023.09.137_b0195
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 48
  start-page: 1217
  year: 2019
  ident: 10.1016/j.jcis.2023.09.137_b0015
  article-title: Boosting the photocatalytic hydrogen evolution activity of g-C3N4 nanosheets by Cu2(OH)2CO3-modification and dye-sensitization
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT03579B
– volume: 613
  start-page: 644
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0055
  article-title: Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.01.079
– volume: 141
  start-page: 234102
  year: 2014
  ident: 10.1016/j.jcis.2023.09.137_b0205
  article-title: Orbital-free density functional theory implementation with the projector augmented-wave method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4903450
– volume: 303
  start-page: 122266
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0255
  article-title: S-scheme 2D/2D FeTiO3/g-C3N4 hybrid architectures as visible-light-driven photo-Fenton catalysts for tetracycline hydrochloride degradation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122266
– volume: 13
  start-page: 304
  year: 2020
  ident: 10.1016/j.jcis.2023.09.137_b0220
  article-title: Skeletal Cu7S4 nanocages wrapped by few-layered black phosphorus nanosheets as an efficient H2 production photocatalyst
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202001111
– volume: 17
  start-page: 2101070
  year: 2021
  ident: 10.1016/j.jcis.2023.09.137_b0090
  article-title: Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution
  publication-title: Small
  doi: 10.1002/smll.202101070
– volume: 31
  start-page: 1807660
  year: 2019
  ident: 10.1016/j.jcis.2023.09.137_b0095
  article-title: Dual cocatalysts in TiO2 photocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807660
– volume: 15
  start-page: 1804115
  year: 2019
  ident: 10.1016/j.jcis.2023.09.137_b0250
  article-title: Unique 1D Cd1-xZnxS@O-MoS2/NiOx nanohybrids: Highly efficient visible-light-driven photocatalytic hydrogen evolution via integrated structural regulation
  publication-title: Small
  doi: 10.1002/smll.201804115
– volume: 12
  start-page: 2200298
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0020
  article-title: Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200298
– volume: 281
  start-page: 119482
  year: 2021
  ident: 10.1016/j.jcis.2023.09.137_b0265
  article-title: Hollow MoSe2@Bi2S3/CdS core-shell nanostructure as dual z-scheme heterojunctions with enhanced full spectrum photocatalytic-photothermal performance
  publication-title: Appl. Catal. b: Environ.
  doi: 10.1016/j.apcatb.2020.119482
– volume: 9
  start-page: 762
  year: 2019
  ident: 10.1016/j.jcis.2023.09.137_b0105
  article-title: One-pot hydrothermal synthesis of MoS2-modified Mn0.5Cd0.5S solid solution for boosting H2 production activity under visible light
  publication-title: Cat. Sci. Technol.
  doi: 10.1039/C8CY02266F
– volume: 10
  start-page: 107375
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0115
  article-title: NiSx modified Mn0.5Cd0.5S twinned homojunctions for efficient photocatalytic hydrogen evolution
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.107375
– volume: 409
  start-page: 128157
  year: 2021
  ident: 10.1016/j.jcis.2023.09.137_b0270
  article-title: Highly efficient H2 generation over Cu2Se decorated CdS0.95Se0.05 nanowires by photocatalytic water reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128157
– volume: 7
  start-page: 3802
  year: 2017
  ident: 10.1016/j.jcis.2023.09.137_b0080
  article-title: Self-assembled three-dimensional flowerlike Mn0.8Cd0.2S microspheres as efficient visible-light-driven photocatalysts for H2 evolution and CO2 reduction
  publication-title: Cat. Sci. Technol.
  doi: 10.1039/C7CY01102D
– volume: 10
  start-page: 108010
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0240
  article-title: Fabricating Ti3C2 MXene cocatalyst supported NiAl-LDH/g-C3N4 ternary nanocomposite for stimulating solar photocatalytic H2 production
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108010
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.jcis.2023.09.137_b0190
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 434
  start-page: 134689
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0050
  article-title: One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H2 evolution under visible light irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134689
– volume: 414
  start-page: 129157
  year: 2021
  ident: 10.1016/j.jcis.2023.09.137_b0030
  article-title: 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129157
– volume: 605
  start-page: 311
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0100
  article-title: Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1-xS photocatalyst
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.07.113
– volume: 9
  start-page: 1427
  year: 2019
  ident: 10.1016/j.jcis.2023.09.137_b0180
  article-title: Synthesis of MnxCd1−xS nanorods and modification with CuS for extraordinarily superior photocatalytic H2 production
  publication-title: Catal Science and Technology
  doi: 10.1039/C8CY02179A
– volume: 43
  start-page: 265
  year: 2022
  ident: 10.1016/j.jcis.2023.09.137_b0215
  article-title: Boosting the catalytic activity of a step-scheme In2O3/ZnIn2S4 hybrid system for the photofixation of nitrogen
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63801-9
SSID ssj0011559
Score 2.6258123
Snippet [Display omitted] Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is...
Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1304
SubjectTerms Cocatalyst
cost effectiveness
Cu7S4
Heterojunction
hydrogen production
Mechanism
Mn0.3Cd0.7S
nanorods
nanosheets
photocatalysis
photocatalysts
photostability
semiconductors
solar energy
Title Construction of 2D/1D Cu7S4 nanosheets/Mn0.3Cd0.7S nanorods heterojunction for highly efficient photocatalytic hydrogen evolution
URI https://dx.doi.org/10.1016/j.jcis.2023.09.137
https://www.proquest.com/docview/2874270034
https://www.proquest.com/docview/3040402538
Volume 653
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LHtSD-MQ3EbxJ3aZNmvYoXWVV9KKCt5AmKbuLtIu7CnsR_OfO9CEq6sHeGpI0ZL7OTJLJN4QcyTyJEicD3LWJPW4cUt5m1jPMcCgSuc_wovD1TdS_55cP4qFD0vYuDIZVNrq_1umVtm5Kus1sdsfDId7xhb9NYtYsH3BZrduhe0T5yetHmAfDY7c6zIN5WLu5OFPHeI3MECm7gxC5ThnmQv_ZOH1T05XtOV8hy43TSE_rca2SjivWyELa5mpbI0ufaAXXyRtm4Wx5YWmZ06DXZT2aPstbTgtdlJOBc9NJ97qAxXRq_RN5WxWDLp3QAcbHlCMwd1Vr8GkpUho_zqir2CbASNHxoJyW1cbPDEZEBzP7VAIQqXtpgLxB7s_P7tK-16Ra8EwYRVOPcS2FlrmNBVLiCSdwJRNkMpMWPBIdJrGvjdUiMy532mlwHYxvZBblgIFYhptkrigLt0WojhyzcaxDeKCjOAMA6NDmImGW-1mwTVg7x8o0POSYDuNRtQFnI4VyUSgX5ScK5LJNjj_ajGsWjj9ri1Z06guWFJiJP9sdtnJWID88OdGFK5-hUiw5ntCH_Pc6IahDWIyDAdn55_d3ySK88XqDZ4_MAVDcPrg80-ygwvQBmT-9uOrfvAOT8wHV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcigcEBRQy6-R4ITSjRM7Tg4c0C7VlnZ7aSv1Zhzb0e6qSlbsFrQXJJ6JF2QmcSpA0ANSc3Rsx_GMZ8b2zDcAr1VVZIVXCZ3a5JGwniBvSxdZbgUWySrmFCg8Oc7GZ-LjuTzfgB99LAy5VQbZ38n0VlqHkkGYzcFiNqMYX1xtirJmxciXMg6elYd-_RX3bct3ByMk8psk2f9wOhxHIbVAZNMsW0VcGCWNqlwuCQJOekmWe1KqUjnUwCYt8thYZ2RpfeWNN6gqbWxVmVX4z7lKsd9bcFuguKC0CXvfrvxKON3zdX4lPKLhhUidzqlsbmeEEZ6kBK7KKfn637XhH3qhVXb79-FesFLZ-24iHsCGr7dha9gnh9uGu7_gGD6E75T2sweiZU3FktGAj9jwUp0IVpu6WU69Xy0Hkxp370MX76mTthiF95JNySGnmaN-bVujEc0IQ_lizXwLb4FakS2mzappT5rWOCI2XbvPDXI-81_CynkEZzdCgMewWTe13wFmMs9dnpsUH-woL5HjTOoqWXAn4jLZBd7PsbYB-Jzyb1zo3sNtrokumuii40IjXXbh7VWbRQf7cW1t2ZNO_8a8GvXSte1e9XTWSD-6qjG1by6xUq4EuQSk4t91UpS_uPtHFnzyn99_CVvj08mRPjo4PnwKd_CN6E6XnsEmMo1_jvbWqnzR8jeDTze9oH4Cf3Y-1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+2D%2F1D+Cu7S4+nanosheets%2FMn0.3Cd0.7S+nanorods+heterojunction+for+highly+efficient+photocatalytic+hydrogen+evolution&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Lv%2C+Hua&rft.au=Zhang%2C+Fubiao&rft.au=Wang%2C+Lanlan&rft.au=Shen%2C+Qinhui&rft.date=2024-01-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=653&rft.issue=Pt+B&rft.spage=1304&rft_id=info:doi/10.1016%2Fj.jcis.2023.09.137&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon