Construction of 2D/1D Cu7S4 nanosheets/Mn0.3Cd0.7S nanorods heterojunction for highly efficient photocatalytic hydrogen evolution
[Display omitted] Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostruct...
Saved in:
Published in | Journal of colloid and interface science Vol. 653; no. Pt B; pp. 1304 - 1316 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H2 evolution by coupling one-dimensional (1D) Mn0.3Cd0.7S nanorods with two-dimensional (2D) Cu7S4 nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu7S4/Mn0.3Cd0.7S heterojunction photocatalyst containing 1.5 wt% Cu7S4 displays excellent photostability and superior photocatalytic H2 evolution rate up to 914.3 μmol h−1, which is 4.43 and 2.22-folds increment relative to bare Mn0.3Cd0.7S and the 3 wt% Pt/Mn0.3Cd0.7S, respectively. The various characterization results reveal that the utilization of semimetallic Cu7S4 nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu7S4 nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu7S4-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion. |
---|---|
AbstractList | Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H2 evolution by coupling one-dimensional (1D) Mn0.3Cd0.7S nanorods with two-dimensional (2D) Cu7S4 nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu7S4/Mn0.3Cd0.7S heterojunction photocatalyst containing 1.5 wt% Cu7S4 displays excellent photostability and superior photocatalytic H2 evolution rate up to 914.3 μmol h-1, which is 4.43 and 2.22-folds increment relative to bare Mn0.3Cd0.7S and the 3 wt% Pt/Mn0.3Cd0.7S, respectively. The various characterization results reveal that the utilization of semimetallic Cu7S4 nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu7S4 nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu7S4-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion.Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H2 evolution by coupling one-dimensional (1D) Mn0.3Cd0.7S nanorods with two-dimensional (2D) Cu7S4 nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu7S4/Mn0.3Cd0.7S heterojunction photocatalyst containing 1.5 wt% Cu7S4 displays excellent photostability and superior photocatalytic H2 evolution rate up to 914.3 μmol h-1, which is 4.43 and 2.22-folds increment relative to bare Mn0.3Cd0.7S and the 3 wt% Pt/Mn0.3Cd0.7S, respectively. The various characterization results reveal that the utilization of semimetallic Cu7S4 nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu7S4 nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu7S4-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion. [Display omitted] Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H2 evolution by coupling one-dimensional (1D) Mn0.3Cd0.7S nanorods with two-dimensional (2D) Cu7S4 nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu7S4/Mn0.3Cd0.7S heterojunction photocatalyst containing 1.5 wt% Cu7S4 displays excellent photostability and superior photocatalytic H2 evolution rate up to 914.3 μmol h−1, which is 4.43 and 2.22-folds increment relative to bare Mn0.3Cd0.7S and the 3 wt% Pt/Mn0.3Cd0.7S, respectively. The various characterization results reveal that the utilization of semimetallic Cu7S4 nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu7S4 nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu7S4-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion. Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu₇S₄/Mn₀.₃Cd₀.₇S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H₂ evolution by coupling one-dimensional (1D) Mn₀.₃Cd₀.₇S nanorods with two-dimensional (2D) Cu₇S₄ nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu₇S₄/Mn₀.₃Cd₀.₇S heterojunction photocatalyst containing 1.5 wt% Cu₇S₄ displays excellent photostability and superior photocatalytic H₂ evolution rate up to 914.3 μmol h⁻¹, which is 4.43 and 2.22-folds increment relative to bare Mn₀.₃Cd₀.₇S and the 3 wt% Pt/Mn₀.₃Cd₀.₇S, respectively. The various characterization results reveal that the utilization of semimetallic Cu₇S₄ nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu₇S₄ nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu₇S₄-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion. |
Author | Wang, Guangtao Zhang, Fubiao Wang, Lanlan Wang, Gongke Lv, Hua Zhan, Mingyan Liu, Yumin Shen, Qinhui Li, Guanyong |
Author_xml | – sequence: 1 givenname: Hua surname: Lv fullname: Lv, Hua organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China – sequence: 2 givenname: Fubiao surname: Zhang fullname: Zhang, Fubiao organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China – sequence: 3 givenname: Lanlan surname: Wang fullname: Wang, Lanlan organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China – sequence: 4 givenname: Qinhui surname: Shen fullname: Shen, Qinhui organization: College of Physics, Henan Normal University, Xinxiang, Henan 453007, China – sequence: 5 givenname: Guanyong surname: Li fullname: Li, Guanyong organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China – sequence: 6 givenname: Mingyan surname: Zhan fullname: Zhan, Mingyan organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China – sequence: 7 givenname: Gongke surname: Wang fullname: Wang, Gongke email: wanggongke@126.com organization: School of Materials Science and Engineering, Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, Henan Normal University, Xinxiang, Henan 453007, China – sequence: 8 givenname: Guangtao surname: Wang fullname: Wang, Guangtao email: wangtao@htu.cn organization: College of Physics, Henan Normal University, Xinxiang, Henan 453007, China – sequence: 9 givenname: Yumin orcidid: 0000-0003-0953-2532 surname: Liu fullname: Liu, Yumin email: ymliu2007@163.com organization: Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China |
BookMark | eNqFkbtu3DAQRYnABrJ-_EAqlmmkHZLiUgLSBHKcGHCQwnFNcKmRRUEmNyRlYEv_eaRsqhQOphhgcM8U91yQMx88EvKBQcmA7bZjOVqXSg5clNCUTKh3ZMOgkYViIM7IBoCzolGNek8uUhoBGJOy2ZDXNviU42yzC56GnvKbLbuh7aweKuqND2lAzGn73UMp2g5K9fDnHEOX6IAZYxhnf6L7EOngnobpSLHvnXXoMz0MIQdrspmO2Vk6HLsYntBTfAnTvGJX5Lw3U8Lrv_uSPN5--dl-K-5_fL1rP98XVux2uWCVUdKovqulUrKSKGVVK75Xe9UJKY1oajC2M3JvsUeDBqC2YNV-16O1tRKX5OPp7yGGXzOmrJ9dsjhNxmOYkxZQLcOlqP8b5bWquAIQ1RLlp6iNIaWIvT5E92ziUTPQqxo96lWNXtVoaPSiZoHqfyDrslnLyNG46W300wnFpaoXh1GntWeLnYtos-6Cewv_DSAvrcA |
CitedBy_id | crossref_primary_10_1016_j_surfin_2024_105644 crossref_primary_10_1016_j_jece_2025_115447 crossref_primary_10_1016_j_jwpe_2025_107545 crossref_primary_10_1016_j_inoche_2024_113120 crossref_primary_10_1016_j_jece_2025_115445 crossref_primary_10_1039_D3DT03533F crossref_primary_10_1016_j_fuel_2024_132358 crossref_primary_10_1016_j_surfin_2024_105301 crossref_primary_10_1021_acs_inorgchem_4c01213 crossref_primary_10_1016_j_jcis_2025_137280 crossref_primary_10_1016_j_apsusc_2024_160895 crossref_primary_10_1016_j_jcis_2024_08_072 crossref_primary_10_1016_j_jwpe_2025_107387 crossref_primary_10_1016_j_surfin_2024_104838 crossref_primary_10_1016_j_materresbull_2024_113230 crossref_primary_10_1016_j_seppur_2024_127473 crossref_primary_10_1016_j_seppur_2025_131922 crossref_primary_10_1016_j_seppur_2024_129479 crossref_primary_10_1007_s11164_025_05514_7 crossref_primary_10_1016_j_apcata_2025_120142 crossref_primary_10_1016_j_jallcom_2024_177226 crossref_primary_10_1016_j_seppur_2024_129536 crossref_primary_10_1016_j_jallcom_2025_179400 crossref_primary_10_1016_j_fuel_2024_133463 crossref_primary_10_1016_j_ijhydene_2024_12_036 crossref_primary_10_1016_j_jallcom_2025_179245 crossref_primary_10_1021_acsanm_4c04947 crossref_primary_10_1002_solr_202300916 crossref_primary_10_1016_j_ijhydene_2024_05_226 crossref_primary_10_1016_j_jcis_2024_08_125 crossref_primary_10_1016_j_mssp_2023_107978 crossref_primary_10_1016_j_renene_2024_121189 crossref_primary_10_1016_j_apsusc_2024_159572 crossref_primary_10_1016_j_surfin_2024_104824 crossref_primary_10_1002_smll_202311725 crossref_primary_10_1016_j_jcis_2024_10_087 crossref_primary_10_1016_j_jcis_2024_06_040 crossref_primary_10_1016_j_jtice_2024_105587 crossref_primary_10_1016_j_jcis_2024_04_014 crossref_primary_10_1016_j_cjsc_2023_100201 crossref_primary_10_1016_j_seppur_2024_128357 crossref_primary_10_1016_j_surfin_2024_105395 crossref_primary_10_1016_j_jcis_2024_06_128 crossref_primary_10_1016_j_jallcom_2024_178249 crossref_primary_10_1016_j_jallcom_2025_179678 crossref_primary_10_1016_j_jallcom_2024_177572 crossref_primary_10_1016_j_jcis_2024_07_021 crossref_primary_10_1016_j_seppur_2024_127429 |
Cites_doi | 10.1016/j.apsusc.2018.03.226 10.1021/acsami.2c03230 10.1103/PhysRevB.45.13244 10.1021/acsami.1c20148 10.1016/j.matchemphys.2023.127410 10.1016/S1872-2067(19)63467-4 10.1021/acs.nanolett.5b00950 10.1002/adfm.202111740 10.1016/j.cej.2020.127177 10.1016/j.apsusc.2022.153448 10.1021/acsami.2c03421 10.1016/j.solener.2022.10.032 10.1016/j.seppur.2021.119461 10.1016/j.ijhydene.2021.12.165 10.1016/j.jcis.2021.11.032 10.1016/j.apcatb.2020.119151 10.1016/j.cej.2021.131069 10.1002/adom.201800911 10.1016/j.jcis.2018.10.018 10.1016/j.apcatb.2019.01.042 10.1016/j.apcatb.2019.118439 10.1016/j.cej.2022.136309 10.1016/j.apcatb.2018.06.040 10.1016/j.colsurfa.2023.131384 10.1016/j.jallcom.2021.159461 10.1016/j.cej.2020.127474 10.1021/acsami.8b02984 10.1016/j.ijhydene.2020.03.139 10.1021/acsami.8b00393 10.1016/j.powtec.2021.08.048 10.1016/j.apcatb.2019.118382 10.1103/PhysRevLett.77.3865 10.1039/C8DT03579B 10.1016/j.jcis.2022.01.079 10.1063/1.4903450 10.1016/j.seppur.2022.122266 10.1002/cctc.202001111 10.1002/smll.202101070 10.1002/adma.201807660 10.1002/smll.201804115 10.1002/aenm.202200298 10.1016/j.apcatb.2020.119482 10.1039/C8CY02266F 10.1016/j.jece.2022.107375 10.1016/j.cej.2020.128157 10.1039/C7CY01102D 10.1016/j.jece.2022.108010 10.1103/PhysRevB.54.11169 10.1016/j.cej.2022.134689 10.1016/j.cej.2021.129157 10.1016/j.jcis.2021.07.113 10.1039/C8CY02179A 10.1016/S1872-2067(21)63801-9 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2023.09.137 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 1316 |
ExternalDocumentID | 10_1016_j_jcis_2023_09_137 S0021979723018350 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO ABDPE ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABWVN ABXDB ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADECG ADEWK ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEZYN AFFNX AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-14a75a7fd8577545e554872b7b7d355a3980acda5bcefeaea008c0c7b6fecc873 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Wed Jul 02 04:40:01 EDT 2025 Fri Jul 11 01:23:57 EDT 2025 Tue Jul 01 04:19:13 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Sat Feb 08 15:51:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt B |
Keywords | Cu7S4 Mn0.3Cd0.7S Cocatalyst Mechanism Heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-14a75a7fd8577545e554872b7b7d355a3980acda5bcefeaea008c0c7b6fecc873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0953-2532 |
PQID | 2874270034 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3040402538 proquest_miscellaneous_2874270034 crossref_primary_10_1016_j_jcis_2023_09_137 crossref_citationtrail_10_1016_j_jcis_2023_09_137 elsevier_sciencedirect_doi_10_1016_j_jcis_2023_09_137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Huang, Tao, Ye, Yao, Li (b0070) 2018; 237 Lin, Sun, Wang, Ruan, Geng, Li, Wu, Wang, Liu, Wang (b0250) 2019; 15 Chu, Han, Yu, Du, Song, Xu (b0235) 2018; 10 Meng, Zhang, Cheng, Yu (b0095) 2019; 31 Liu, Wang, Yao, Shi (b0120) 2022; 247 Cao, Wan, Wang, Guo, Ou, Zhong (b0100) 2022; 605 Lv, Wu, Wu, Zheng, Liu (b0075) 2022; 593 Liu, Wang, Yao, Shi (b0110) 2023; 297 Zhu, Xu, Qiu, Xing, Zhang (b0090) 2021; 17 Zhu, Qi, Guo, Chen, Liu, Lou, Zhao (b0125) 2022; 47 Zhang, Pan, Yang, Wang, Pei, Chen, Huang (b0215) 2022; 43 Xu, Kong, Zhang, Yang, Wang, Chang, Chen, Huang, Zhang (b0255) 2022; 303 Bhavani, Praveen Kumar, Putta Rangappa, Hong, Gopannagari, Amaranatha Reddy, Kyu Kim (b0220) 2020; 13 Zeng, Luo, Wang, Peng (b0105) 2019; 9 Lei, Ng, Zhang, Li, Xu, Huang, Lai (b0050) 2022; 434 Zhang, Zhang, Zhang, Yang, Li, Dai (b0130) 2020; 10 Zhang, Wang, He, Wu, Zhang, Wu (b0085) 2022; 442 Zhu, Marianov, Xu, Lang, Jiang (b0245) 2018; 10 Sun, Qiu, Liang, Xue, Zhang, Yang, Cui, Tian (b0210) 2021; 406 Almusattar, Tahir, Madi, Tahir (b0240) 2022; 10 Yamazaki, Toyonaga, Doshita, Mori, Kuwahara, Yamazaki, Yamashita (b0025) 2022; 14 Han, Dong, Liang (b0180) 2019; 9 Wang, Xing, Meng, Zhang, Li, Pan, Zhou (b0265) 2021; 281 Cui, Li, Liu, Chen, Xu, Ma, Fang, Zhu, Wu, Zhao, Wang, Huang (b0145) 2015; 15 Perdew, Wang (b0200) 1992; 45 Chandra, Guharoy, Pradhan (b0150) 2022; 14 Chen, Huang, He, Ji, Zhang, Sun, Wang, Su (b0225) 2021; 277 Zhang, Chen, Wang, Zhang, Zheng, Rao, Han, Zhong, Hu, Deng (b0140) 2019; 246 Lehtomäki, Makkonen, Caro, Harju, Lopez-Acevedo (b0205) 2014; 141 Du, Li, Lin, Zhang, Xu, Fang (b0270) 2021; 409 Li, Wang, He, Meng, Xu, Chen, Fu (b0230) 2019; 535 Chen, Xia, She, Mo, Zhao, Yi, Xu, Chen, Xu, Li (b0160) 2018; 447 Liu, Wu, Lv, Wu (b0060) 2021; 394 Wang, Li, Li, Ma, Fan, Liu (b0115) 2022; 10 Ruan, Cui, Cui, Fan, Li, Xie, Ba, Jia, Zhang, Zhang, Zhang, Zhao, Leng, Jin, Singh, Zheng (b0020) 2022; 12 Liu, Meng, Zhang (b0080) 2017; 7 Kresse (b0190) 1996; 54 Zhang, Cheng, Xing, Chen, Huang (b0030) 2021; 414 Xiong, Qin, Chai, Yan, Fan, Xu, Wang, Song (b0065) 2022; 428 Liu, Wu, Lv, Cao, Ren (b0015) 2019; 48 Chen, Gao, Chen, Shi (b0010) 2021; 413 Lv, Wu, Zheng, Kong, Xing, Wang, Liu (b0040) 2023; 666 Xu, Zhu, Cheng, Yu, Xu (b0170) 2018; 6 Tan, Ma, Yu, Luan, Li, Liu, Dong, Su, Qiao, Gao, Lu, Bai (b0165) 2022; 32 Perdew, Burke, Ernzerhof (b0195) 1996; 77 Jiang, Gong, Liu, Song, Huang (b0035) 2020; 268 Ren, Shen, Jiang, Lu, Li (b0135) 2020; 41 Liu, Zhang, Wang, Zhang, Qiu (b0005) 2022; 14 Yang, Shao, Wang, Xia, Liu, Cheng, Yang, Li (b0185) 2020; 45 Xiao, Zhao, Zou, Chen, Tian, Xu, Tang, Liu, Lin, Yang (b0155) 2020; 268 Wan, Du, Lu, Ren, Shi, Liu, Li, Dou, Fang, Ye (b0260) 2021; 871 Yan, Wang, Du, Zhu, Phillips, Xu (b0175) 2020; 275 Wei, Zeng, Liu, Zheng, Fujita, Liao, Li, Wei (b0045) 2022; 608 Chen, Guo, Bian, Ji, Wang, Zhang, Cui, Tian (b0055) 2022; 613 Xiong (10.1016/j.jcis.2023.09.137_b0065) 2022; 428 Huang (10.1016/j.jcis.2023.09.137_b0070) 2018; 237 Zhang (10.1016/j.jcis.2023.09.137_b0140) 2019; 246 Cao (10.1016/j.jcis.2023.09.137_b0100) 2022; 605 Liu (10.1016/j.jcis.2023.09.137_b0080) 2017; 7 Bhavani (10.1016/j.jcis.2023.09.137_b0220) 2020; 13 Wang (10.1016/j.jcis.2023.09.137_b0115) 2022; 10 Zhu (10.1016/j.jcis.2023.09.137_b0125) 2022; 47 Sun (10.1016/j.jcis.2023.09.137_b0210) 2021; 406 Zhang (10.1016/j.jcis.2023.09.137_b0130) 2020; 10 Ren (10.1016/j.jcis.2023.09.137_b0135) 2020; 41 Lei (10.1016/j.jcis.2023.09.137_b0050) 2022; 434 Wan (10.1016/j.jcis.2023.09.137_b0260) 2021; 871 Wang (10.1016/j.jcis.2023.09.137_b0265) 2021; 281 Chen (10.1016/j.jcis.2023.09.137_b0010) 2021; 413 Xu (10.1016/j.jcis.2023.09.137_b0170) 2018; 6 Cui (10.1016/j.jcis.2023.09.137_b0145) 2015; 15 Liu (10.1016/j.jcis.2023.09.137_b0060) 2021; 394 Zhang (10.1016/j.jcis.2023.09.137_b0085) 2022; 442 Liu (10.1016/j.jcis.2023.09.137_b0005) 2022; 14 Lehtomäki (10.1016/j.jcis.2023.09.137_b0205) 2014; 141 Wei (10.1016/j.jcis.2023.09.137_b0045) 2022; 608 Perdew (10.1016/j.jcis.2023.09.137_b0200) 1992; 45 Du (10.1016/j.jcis.2023.09.137_b0270) 2021; 409 Zhu (10.1016/j.jcis.2023.09.137_b0090) 2021; 17 Han (10.1016/j.jcis.2023.09.137_b0180) 2019; 9 Chen (10.1016/j.jcis.2023.09.137_b0055) 2022; 613 Xu (10.1016/j.jcis.2023.09.137_b0255) 2022; 303 Lv (10.1016/j.jcis.2023.09.137_b0075) 2022; 593 Tan (10.1016/j.jcis.2023.09.137_b0165) 2022; 32 Yan (10.1016/j.jcis.2023.09.137_b0175) 2020; 275 Perdew (10.1016/j.jcis.2023.09.137_b0195) 1996; 77 Lin (10.1016/j.jcis.2023.09.137_b0250) 2019; 15 Xiao (10.1016/j.jcis.2023.09.137_b0155) 2020; 268 Zhu (10.1016/j.jcis.2023.09.137_b0245) 2018; 10 Chu (10.1016/j.jcis.2023.09.137_b0235) 2018; 10 Almusattar (10.1016/j.jcis.2023.09.137_b0240) 2022; 10 Meng (10.1016/j.jcis.2023.09.137_b0095) 2019; 31 Chen (10.1016/j.jcis.2023.09.137_b0225) 2021; 277 Li (10.1016/j.jcis.2023.09.137_b0230) 2019; 535 Zhang (10.1016/j.jcis.2023.09.137_b0215) 2022; 43 Liu (10.1016/j.jcis.2023.09.137_b0110) 2023; 297 Chen (10.1016/j.jcis.2023.09.137_b0160) 2018; 447 Lv (10.1016/j.jcis.2023.09.137_b0040) 2023; 666 Jiang (10.1016/j.jcis.2023.09.137_b0035) 2020; 268 Liu (10.1016/j.jcis.2023.09.137_b0015) 2019; 48 Yamazaki (10.1016/j.jcis.2023.09.137_b0025) 2022; 14 Kresse (10.1016/j.jcis.2023.09.137_b0190) 1996; 54 Yang (10.1016/j.jcis.2023.09.137_b0185) 2020; 45 Ruan (10.1016/j.jcis.2023.09.137_b0020) 2022; 12 Chandra (10.1016/j.jcis.2023.09.137_b0150) 2022; 14 Zeng (10.1016/j.jcis.2023.09.137_b0105) 2019; 9 Liu (10.1016/j.jcis.2023.09.137_b0120) 2022; 247 Zhang (10.1016/j.jcis.2023.09.137_b0030) 2021; 414 |
References_xml | – volume: 7 start-page: 3802 year: 2017 end-page: 3811 ident: b0080 article-title: Self-assembled three-dimensional flowerlike Mn publication-title: Cat. Sci. Technol. – volume: 15 start-page: 6295 year: 2015 end-page: 6301 ident: b0145 article-title: Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions publication-title: Nano Lett. – volume: 14 start-page: 31782 year: 2022 end-page: 31791 ident: b0005 article-title: 2D/2D interface engineering promotes charge separation of Mo publication-title: ACS Appl. Mater. Inter. – volume: 10 start-page: 107375 year: 2022 ident: b0115 article-title: NiS publication-title: J. Environ. Chem. Eng. – volume: 608 start-page: 3087 year: 2022 end-page: 3097 ident: b0045 article-title: Composition-dependent activity of Zn publication-title: J. Colloid Interface Sci. – volume: 593 start-page: 153448 year: 2022 ident: b0075 article-title: Fabricating WS publication-title: Appl. Surf. Sci. – volume: 247 start-page: 177 year: 2022 end-page: 184 ident: b0120 article-title: Simple preparation of amorphous nickel boride/Mn publication-title: Sol. Energy – volume: 10 start-page: 1030 year: 2020 end-page: 1039 ident: b0130 article-title: Black phosphorus quantum dots facilitate carrier separation for enhancing hydrogen production over hierarchical Cu publication-title: Sci. Technol. – volume: 297 start-page: 134689 year: 2023 ident: b0110 article-title: Ti publication-title: Mater. Chem. Phys. – volume: 406 start-page: 127177 year: 2021 ident: b0210 article-title: The fabrication of 1D/2D CdS nanorod@Ti publication-title: Chem. Eng. J. – volume: 409 start-page: 128157 year: 2021 ident: b0270 article-title: Highly efficient H publication-title: Chem. Eng. J. – volume: 15 start-page: 1804115 year: 2019 ident: b0250 article-title: Unique 1D Cd publication-title: Small – volume: 9 start-page: 762 year: 2019 end-page: 771 ident: b0105 article-title: One-pot hydrothermal synthesis of MoS publication-title: Cat. Sci. Technol. – volume: 277 start-page: 119461 year: 2021 ident: b0225 article-title: Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl publication-title: Sep. Purif. Technol. – volume: 281 start-page: 119482 year: 2021 ident: b0265 article-title: Hollow MoSe publication-title: Appl. Catal. b: Environ. – volume: 45 start-page: 13244 year: 1992 end-page: 13249 ident: b0200 article-title: Accurate and simple analytic representation of the electron-gas correlation energy publication-title: Phys. Rev. B – volume: 666 start-page: 131384 year: 2023 ident: b0040 article-title: Engineering of direct Z-scheme ZnIn publication-title: Colloid. Surface. A – volume: 47 start-page: 8275 year: 2022 end-page: 8283 ident: b0125 article-title: Two dimensional porous Ni publication-title: Int. J. Hydrogen Energy – volume: 613 start-page: 644 year: 2022 end-page: 651 ident: b0055 article-title: Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production publication-title: J. Colloid Interface Sci. – volume: 48 start-page: 1217 year: 2019 end-page: 1225 ident: b0015 article-title: Boosting the photocatalytic hydrogen evolution activity of g-C3N4 nanosheets by Cu2(OH)2CO3-modification and dye-sensitization publication-title: Dalton Trans. – volume: 303 start-page: 122266 year: 2022 ident: b0255 article-title: S-scheme 2D/2D FeTiO publication-title: Sep. Purif. Technol. – volume: 237 start-page: 689 year: 2018 end-page: 698 ident: b0070 article-title: Mn publication-title: Appl. Catal. b: Environ. – volume: 13 start-page: 304 year: 2020 end-page: 312 ident: b0220 article-title: Skeletal Cu7S4 nanocages wrapped by few-layered black phosphorus nanosheets as an efficient H2 production photocatalyst publication-title: ChemCatChem – volume: 268 start-page: 118382 year: 2020 ident: b0155 article-title: In situ fabrication of 1D CdS nanorod/2D Ti publication-title: Appl. Catal. b: Environ. – volume: 394 start-page: 171 year: 2021 end-page: 180 ident: b0060 article-title: Strategic integration of MoO publication-title: Powder Technol. – volume: 275 start-page: 119151 year: 2020 ident: b0175 article-title: Interpreting the enhanced photoactivities of 0D/1D heterojunctions of CdS quantum dots /TiO publication-title: Appl. Catal. b: Environ. – volume: 414 start-page: 129157 year: 2021 ident: b0030 article-title: 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production publication-title: Chem. Eng. J. – volume: 268 start-page: 118439 year: 2020 ident: b0035 article-title: In situ construction of NiSe/Mn publication-title: Appl. Catal. b: Environ. – volume: 10 start-page: 9468 year: 2018 end-page: 9477 ident: b0245 article-title: Bimetallic Ag-Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 2291 year: 2022 end-page: 2300 ident: b0025 article-title: Crystal facet engineering and hydrogen spillover-assisted synthesis of defective Pt/TiO publication-title: ACS Appl. Mater. Inter. – volume: 41 start-page: 31 year: 2020 end-page: 40 ident: b0135 article-title: Highly efficient visible-light photocatalytic H publication-title: Chin. J. Catal. – volume: 428 start-page: 131069 year: 2022 ident: b0065 article-title: Unveiling the role of Mn-Cd-S solid solution and MnS in Mn publication-title: Chem. Eng. J. – volume: 32 start-page: 2111740 year: 2022 ident: b0165 article-title: Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-Scheme ZnIn publication-title: Adv. Funct. Mater. – volume: 10 start-page: 20404 year: 2018 end-page: 20411 ident: b0235 article-title: Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu publication-title: ACS Appl. Mater. Interfaces – volume: 442 start-page: 136309 year: 2022 ident: b0085 article-title: Rationally design and in-situ fabrication of ultrasmall pomegranate-like CdIn publication-title: Chem. Eng. J. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0195 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 605 start-page: 311 year: 2022 end-page: 319 ident: b0100 article-title: Highly-efficient visible-light-driven photocatalytic H publication-title: J. Colloid Interface Sci. – volume: 45 start-page: 14334 year: 2020 end-page: 14346 ident: b0185 article-title: Boosted photogenerated carriers separation in Z-scheme Cu publication-title: Int. J. Hydrogen Energy – volume: 14 start-page: 22122 year: 2022 end-page: 22137 ident: b0150 article-title: Boosting the photocatalytic H publication-title: ACS Appl. Mater. Inter. – volume: 141 start-page: 234102 year: 2014 ident: b0205 article-title: Orbital-free density functional theory implementation with the projector augmented-wave method publication-title: J. Chem. Phys. – volume: 447 start-page: 732 year: 2018 end-page: 739 ident: b0160 article-title: 1D metallic MoO publication-title: Appl. Surf. Sci. – volume: 6 start-page: 1800911 year: 2018 ident: b0170 article-title: 1D/2D TiO publication-title: Adv. Opt. Mater. – volume: 10 start-page: 108010 year: 2022 ident: b0240 article-title: Fabricating Ti publication-title: J. Environ. Chem. Eng. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: b0190 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 535 start-page: 469 year: 2019 end-page: 480 ident: b0230 article-title: Rational synthesis of Mn publication-title: J. Colloid Interface Sci. – volume: 434 start-page: 134689 year: 2022 ident: b0050 article-title: One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H publication-title: Chem. Eng. J. – volume: 413 start-page: 127474 year: 2021 ident: b0010 article-title: Metallic NiSe cocatalyst decorated g-C publication-title: Chem. Eng. J. – volume: 31 start-page: 1807660 year: 2019 ident: b0095 article-title: Dual cocatalysts in TiO publication-title: Adv. Mater. – volume: 9 start-page: 1427 year: 2019 end-page: 1436 ident: b0180 article-title: Synthesis of Mn publication-title: Catal Science and Technology – volume: 43 start-page: 265 year: 2022 end-page: 275 ident: b0215 article-title: Boosting the catalytic activity of a step-scheme In publication-title: Chin. J. Catal. – volume: 246 start-page: 202 year: 2019 end-page: 210 ident: b0140 article-title: Enhanced light harvesting and electron-hole separation for efficient photocatalytic hydrogen evolution over Cu publication-title: Appl. Catal. b: Environ. – volume: 12 start-page: 2200298 year: 2022 ident: b0020 article-title: Favorable energy band alignment of TiO publication-title: Adv. Energy Mater. – volume: 17 start-page: 2101070 year: 2021 ident: b0090 article-title: Emerging cocatalysts on g-C publication-title: Small – volume: 871 start-page: 159461 year: 2021 ident: b0260 article-title: Metallic CuS decorated CdS nanowires for efficient photocatalytic H publication-title: J. Alloy. Compd. – volume: 447 start-page: 732 year: 2018 ident: 10.1016/j.jcis.2023.09.137_b0160 article-title: 1D metallic MoO2-C as co-catalyst on 2D g-C3N4 semiconductor to promote photocatlaytic hydrogen production publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.226 – volume: 14 start-page: 22122 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0150 article-title: Boosting the photocatalytic H2 evolution and benzylamine oxidation using 2D/1D g-C3N4/TiO2 nanoheterojunction publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.2c03230 – volume: 45 start-page: 13244 year: 1992 ident: 10.1016/j.jcis.2023.09.137_b0200 article-title: Accurate and simple analytic representation of the electron-gas correlation energy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 14 start-page: 2291 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0025 article-title: Crystal facet engineering and hydrogen spillover-assisted synthesis of defective Pt/TiO2-x nanorods with enhanced visible light-driven photocatalytic activity publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.1c20148 – volume: 297 start-page: 134689 year: 2023 ident: 10.1016/j.jcis.2023.09.137_b0110 article-title: Ti3C2/Mn0.5Cd0.5S composite photocatalyst for enhanced H2 generation publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2023.127410 – volume: 41 start-page: 31 year: 2020 ident: 10.1016/j.jcis.2023.09.137_b0135 article-title: Highly efficient visible-light photocatalytic H2 evolution over 2D–2D CdS/Cu7S4 layered heterojunctions publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63467-4 – volume: 15 start-page: 6295 year: 2015 ident: 10.1016/j.jcis.2023.09.137_b0145 article-title: Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00950 – volume: 32 start-page: 2111740 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0165 article-title: Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-Scheme ZnIn2S4/g-C3N4 heterojunction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111740 – volume: 10 start-page: 1030 year: 2020 ident: 10.1016/j.jcis.2023.09.137_b0130 article-title: Black phosphorus quantum dots facilitate carrier separation for enhancing hydrogen production over hierarchical Cu7S4/ZnIn2S4 composites, Catal publication-title: Sci. Technol. – volume: 406 start-page: 127177 year: 2021 ident: 10.1016/j.jcis.2023.09.137_b0210 article-title: The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127177 – volume: 593 start-page: 153448 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0075 article-title: Fabricating WS2/Mn0.5Cd0.5S/CuInS2 hierarchical tandem p-n heterojunction for highly efficient hydrogen production publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153448 – volume: 14 start-page: 31782 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0005 article-title: 2D/2D interface engineering promotes charge separation of Mo2C/g-C3N4 nanojunction photocatalysts for efficient photocatalytic hydrogen evolution publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.2c03421 – volume: 247 start-page: 177 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0120 article-title: Simple preparation of amorphous nickel boride/Mn0.5Cd0.5S composite and its high-efficient photocatalytic performance for hydrogen production publication-title: Sol. Energy doi: 10.1016/j.solener.2022.10.032 – volume: 277 start-page: 119461 year: 2021 ident: 10.1016/j.jcis.2023.09.137_b0225 article-title: Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 p-n heterojunctions under visible light irradiation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119461 – volume: 47 start-page: 8275 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0125 article-title: Two dimensional porous Ni12P5 sheet modified Mn0.5Cd0.5S for efficient photocatalytic hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.165 – volume: 608 start-page: 3087 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0045 article-title: Composition-dependent activity of ZnxCd1-xSe solid solution coupled with Ni2P nanosheets for visible-light-driven photocatalytic H2 generation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.11.032 – volume: 275 start-page: 119151 year: 2020 ident: 10.1016/j.jcis.2023.09.137_b0175 article-title: Interpreting the enhanced photoactivities of 0D/1D heterojunctions of CdS quantum dots /TiO2 nanotube arrays using femtosecond transient absorption spectroscopy publication-title: Appl. Catal. b: Environ. doi: 10.1016/j.apcatb.2020.119151 – volume: 428 start-page: 131069 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0065 article-title: Unveiling the role of Mn-Cd-S solid solution and MnS in MnxCd1-xS photocatalysts and decorating with CoP nanoplates for enhanced photocatalytic H2 evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131069 – volume: 6 start-page: 1800911 year: 2018 ident: 10.1016/j.jcis.2023.09.137_b0170 article-title: 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800911 – volume: 535 start-page: 469 year: 2019 ident: 10.1016/j.jcis.2023.09.137_b0230 article-title: Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.10.018 – volume: 246 start-page: 202 year: 2019 ident: 10.1016/j.jcis.2023.09.137_b0140 article-title: Enhanced light harvesting and electron-hole separation for efficient photocatalytic hydrogen evolution over Cu7S4-enwrapped Cu2O nanocubes publication-title: Appl. Catal. b: Environ. doi: 10.1016/j.apcatb.2019.01.042 – volume: 268 start-page: 118439 year: 2020 ident: 10.1016/j.jcis.2023.09.137_b0035 article-title: In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light publication-title: Appl. Catal. b: Environ. doi: 10.1016/j.apcatb.2019.118439 – volume: 442 start-page: 136309 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0085 article-title: Rationally design and in-situ fabrication of ultrasmall pomegranate-like CdIn2S4/ZnIn2S4 Z-scheme heterojunction with abundant vacancies for improving CO2 reduction and water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136309 – volume: 237 start-page: 689 year: 2018 ident: 10.1016/j.jcis.2023.09.137_b0070 article-title: Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation publication-title: Appl. Catal. b: Environ. doi: 10.1016/j.apcatb.2018.06.040 – volume: 666 start-page: 131384 year: 2023 ident: 10.1016/j.jcis.2023.09.137_b0040 article-title: Engineering of direct Z-scheme ZnIn2S4/NiWO4 heterojunction with boosted photocatalytic hydrogen production publication-title: Colloid. Surface. A doi: 10.1016/j.colsurfa.2023.131384 – volume: 871 start-page: 159461 year: 2021 ident: 10.1016/j.jcis.2023.09.137_b0260 article-title: Metallic CuS decorated CdS nanowires for efficient photocatalytic H2 evolution under visible-light irradiation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.159461 – volume: 413 start-page: 127474 year: 2021 ident: 10.1016/j.jcis.2023.09.137_b0010 article-title: Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127474 – volume: 10 start-page: 20404 year: 2018 ident: 10.1016/j.jcis.2023.09.137_b0235 article-title: Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02984 – volume: 45 start-page: 14334 year: 2020 ident: 10.1016/j.jcis.2023.09.137_b0185 article-title: Boosted photogenerated carriers separation in Z-scheme Cu3P/ZnIn2S4 heterojunction photocatalyst for highly efficient H2 evolution under visible light publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.139 – volume: 10 start-page: 9468 year: 2018 ident: 10.1016/j.jcis.2023.09.137_b0245 article-title: Bimetallic Ag-Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00393 – volume: 394 start-page: 171 year: 2021 ident: 10.1016/j.jcis.2023.09.137_b0060 article-title: Strategic integration of MoO2 onto Mn0.5Cd0.5S/Cu2O p-n junction: Rational design with efficient charge transfer for boosting photocatalytic hydrogen production publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.08.048 – volume: 268 start-page: 118382 year: 2020 ident: 10.1016/j.jcis.2023.09.137_b0155 article-title: In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution publication-title: Appl. Catal. b: Environ. doi: 10.1016/j.apcatb.2019.118382 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jcis.2023.09.137_b0195 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 48 start-page: 1217 year: 2019 ident: 10.1016/j.jcis.2023.09.137_b0015 article-title: Boosting the photocatalytic hydrogen evolution activity of g-C3N4 nanosheets by Cu2(OH)2CO3-modification and dye-sensitization publication-title: Dalton Trans. doi: 10.1039/C8DT03579B – volume: 613 start-page: 644 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0055 article-title: Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.01.079 – volume: 141 start-page: 234102 year: 2014 ident: 10.1016/j.jcis.2023.09.137_b0205 article-title: Orbital-free density functional theory implementation with the projector augmented-wave method publication-title: J. Chem. Phys. doi: 10.1063/1.4903450 – volume: 303 start-page: 122266 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0255 article-title: S-scheme 2D/2D FeTiO3/g-C3N4 hybrid architectures as visible-light-driven photo-Fenton catalysts for tetracycline hydrochloride degradation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122266 – volume: 13 start-page: 304 year: 2020 ident: 10.1016/j.jcis.2023.09.137_b0220 article-title: Skeletal Cu7S4 nanocages wrapped by few-layered black phosphorus nanosheets as an efficient H2 production photocatalyst publication-title: ChemCatChem doi: 10.1002/cctc.202001111 – volume: 17 start-page: 2101070 year: 2021 ident: 10.1016/j.jcis.2023.09.137_b0090 article-title: Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution publication-title: Small doi: 10.1002/smll.202101070 – volume: 31 start-page: 1807660 year: 2019 ident: 10.1016/j.jcis.2023.09.137_b0095 article-title: Dual cocatalysts in TiO2 photocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201807660 – volume: 15 start-page: 1804115 year: 2019 ident: 10.1016/j.jcis.2023.09.137_b0250 article-title: Unique 1D Cd1-xZnxS@O-MoS2/NiOx nanohybrids: Highly efficient visible-light-driven photocatalytic hydrogen evolution via integrated structural regulation publication-title: Small doi: 10.1002/smll.201804115 – volume: 12 start-page: 2200298 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0020 article-title: Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6% publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200298 – volume: 281 start-page: 119482 year: 2021 ident: 10.1016/j.jcis.2023.09.137_b0265 article-title: Hollow MoSe2@Bi2S3/CdS core-shell nanostructure as dual z-scheme heterojunctions with enhanced full spectrum photocatalytic-photothermal performance publication-title: Appl. Catal. b: Environ. doi: 10.1016/j.apcatb.2020.119482 – volume: 9 start-page: 762 year: 2019 ident: 10.1016/j.jcis.2023.09.137_b0105 article-title: One-pot hydrothermal synthesis of MoS2-modified Mn0.5Cd0.5S solid solution for boosting H2 production activity under visible light publication-title: Cat. Sci. Technol. doi: 10.1039/C8CY02266F – volume: 10 start-page: 107375 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0115 article-title: NiSx modified Mn0.5Cd0.5S twinned homojunctions for efficient photocatalytic hydrogen evolution publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.107375 – volume: 409 start-page: 128157 year: 2021 ident: 10.1016/j.jcis.2023.09.137_b0270 article-title: Highly efficient H2 generation over Cu2Se decorated CdS0.95Se0.05 nanowires by photocatalytic water reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128157 – volume: 7 start-page: 3802 year: 2017 ident: 10.1016/j.jcis.2023.09.137_b0080 article-title: Self-assembled three-dimensional flowerlike Mn0.8Cd0.2S microspheres as efficient visible-light-driven photocatalysts for H2 evolution and CO2 reduction publication-title: Cat. Sci. Technol. doi: 10.1039/C7CY01102D – volume: 10 start-page: 108010 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0240 article-title: Fabricating Ti3C2 MXene cocatalyst supported NiAl-LDH/g-C3N4 ternary nanocomposite for stimulating solar photocatalytic H2 production publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108010 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.jcis.2023.09.137_b0190 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 434 start-page: 134689 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0050 article-title: One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H2 evolution under visible light irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134689 – volume: 414 start-page: 129157 year: 2021 ident: 10.1016/j.jcis.2023.09.137_b0030 article-title: 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129157 – volume: 605 start-page: 311 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0100 article-title: Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1-xS photocatalyst publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.07.113 – volume: 9 start-page: 1427 year: 2019 ident: 10.1016/j.jcis.2023.09.137_b0180 article-title: Synthesis of MnxCd1−xS nanorods and modification with CuS for extraordinarily superior photocatalytic H2 production publication-title: Catal Science and Technology doi: 10.1039/C8CY02179A – volume: 43 start-page: 265 year: 2022 ident: 10.1016/j.jcis.2023.09.137_b0215 article-title: Boosting the catalytic activity of a step-scheme In2O3/ZnIn2S4 hybrid system for the photofixation of nitrogen publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63801-9 |
SSID | ssj0011559 |
Score | 2.6258123 |
Snippet | [Display omitted]
Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is... Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1304 |
SubjectTerms | Cocatalyst cost effectiveness Cu7S4 Heterojunction hydrogen production Mechanism Mn0.3Cd0.7S nanorods nanosheets photocatalysis photocatalysts photostability semiconductors solar energy |
Title | Construction of 2D/1D Cu7S4 nanosheets/Mn0.3Cd0.7S nanorods heterojunction for highly efficient photocatalytic hydrogen evolution |
URI | https://dx.doi.org/10.1016/j.jcis.2023.09.137 https://www.proquest.com/docview/2874270034 https://www.proquest.com/docview/3040402538 |
Volume | 653 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LHtSD-MQ3EbxJ3aZNmvYoXWVV9KKCt5AmKbuLtIu7CnsR_OfO9CEq6sHeGpI0ZL7OTJLJN4QcyTyJEicD3LWJPW4cUt5m1jPMcCgSuc_wovD1TdS_55cP4qFD0vYuDIZVNrq_1umVtm5Kus1sdsfDId7xhb9NYtYsH3BZrduhe0T5yetHmAfDY7c6zIN5WLu5OFPHeI3MECm7gxC5ThnmQv_ZOH1T05XtOV8hy43TSE_rca2SjivWyELa5mpbI0ufaAXXyRtm4Wx5YWmZ06DXZT2aPstbTgtdlJOBc9NJ97qAxXRq_RN5WxWDLp3QAcbHlCMwd1Vr8GkpUho_zqir2CbASNHxoJyW1cbPDEZEBzP7VAIQqXtpgLxB7s_P7tK-16Ra8EwYRVOPcS2FlrmNBVLiCSdwJRNkMpMWPBIdJrGvjdUiMy532mlwHYxvZBblgIFYhptkrigLt0WojhyzcaxDeKCjOAMA6NDmImGW-1mwTVg7x8o0POSYDuNRtQFnI4VyUSgX5ScK5LJNjj_ajGsWjj9ri1Z06guWFJiJP9sdtnJWID88OdGFK5-hUiw5ntCH_Pc6IahDWIyDAdn55_d3ySK88XqDZ4_MAVDcPrg80-ygwvQBmT-9uOrfvAOT8wHV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcigcEBRQy6-R4ITSjRM7Tg4c0C7VlnZ7aSv1Zhzb0e6qSlbsFrQXJJ6JF2QmcSpA0ANSc3Rsx_GMZ8b2zDcAr1VVZIVXCZ3a5JGwniBvSxdZbgUWySrmFCg8Oc7GZ-LjuTzfgB99LAy5VQbZ38n0VlqHkkGYzcFiNqMYX1xtirJmxciXMg6elYd-_RX3bct3ByMk8psk2f9wOhxHIbVAZNMsW0VcGCWNqlwuCQJOekmWe1KqUjnUwCYt8thYZ2RpfeWNN6gqbWxVmVX4z7lKsd9bcFuguKC0CXvfrvxKON3zdX4lPKLhhUidzqlsbmeEEZ6kBK7KKfn637XhH3qhVXb79-FesFLZ-24iHsCGr7dha9gnh9uGu7_gGD6E75T2sweiZU3FktGAj9jwUp0IVpu6WU69Xy0Hkxp370MX76mTthiF95JNySGnmaN-bVujEc0IQ_lizXwLb4FakS2mzappT5rWOCI2XbvPDXI-81_CynkEZzdCgMewWTe13wFmMs9dnpsUH-woL5HjTOoqWXAn4jLZBd7PsbYB-Jzyb1zo3sNtrokumuii40IjXXbh7VWbRQf7cW1t2ZNO_8a8GvXSte1e9XTWSD-6qjG1by6xUq4EuQSk4t91UpS_uPtHFnzyn99_CVvj08mRPjo4PnwKd_CN6E6XnsEmMo1_jvbWqnzR8jeDTze9oH4Cf3Y-1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+2D%2F1D+Cu7S4+nanosheets%2FMn0.3Cd0.7S+nanorods+heterojunction+for+highly+efficient+photocatalytic+hydrogen+evolution&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Lv%2C+Hua&rft.au=Zhang%2C+Fubiao&rft.au=Wang%2C+Lanlan&rft.au=Shen%2C+Qinhui&rft.date=2024-01-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=653&rft.issue=Pt+B&rft.spage=1304&rft_id=info:doi/10.1016%2Fj.jcis.2023.09.137&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |