A review of GaN HEMT broadband power amplifiers
The unique material properties of GaN, wide bandgap, high thermal conductivity, high breakdown voltage, high electron mobility and the device properties of GaN HEMT (High Electron Mobility Transistor) namely low parasitic capacitance, low turn on resistance and high cut off frequencies make it a goo...
Saved in:
Published in | International journal of electronics and communications Vol. 116; p. 153040 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier GmbH
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The unique material properties of GaN, wide bandgap, high thermal conductivity, high breakdown voltage, high electron mobility and the device properties of GaN HEMT (High Electron Mobility Transistor) namely low parasitic capacitance, low turn on resistance and high cut off frequencies make it a good choice to use in a power amplifier. During this era of wire- less communication with complex modulation schemes having high peak to average power ratio, maintaining the efficiency and linearity of power amplifier is a tough task. In this paper an extensive review of GaN HEMT based power amplifier is presented. First of all, GaN technology is described and compared with other semiconductor technologies. The different classes of power amplifier like class B, C, D, E, F and J with GaN is discussed. Efficiency and linearity enhancement techniques like envelope tracking, Doherty power amplifier and digital predistortion used in applications with high PAPR waveforms is described. The advantages of GaN MMIC (Microwave Monolithic Integrated Circuit) are reviewed. Finally different thermal management solutions used for GaN power amplifier to cope with its self heating phenomenon are explained. |
---|---|
AbstractList | The unique material properties of GaN, wide bandgap, high thermal conductivity, high breakdown voltage, high electron mobility and the device properties of GaN HEMT (High Electron Mobility Transistor) namely low parasitic capacitance, low turn on resistance and high cut off frequencies make it a good choice to use in a power amplifier. During this era of wire- less communication with complex modulation schemes having high peak to average power ratio, maintaining the efficiency and linearity of power amplifier is a tough task. In this paper an extensive review of GaN HEMT based power amplifier is presented. First of all, GaN technology is described and compared with other semiconductor technologies. The different classes of power amplifier like class B, C, D, E, F and J with GaN is discussed. Efficiency and linearity enhancement techniques like envelope tracking, Doherty power amplifier and digital predistortion used in applications with high PAPR waveforms is described. The advantages of GaN MMIC (Microwave Monolithic Integrated Circuit) are reviewed. Finally different thermal management solutions used for GaN power amplifier to cope with its self heating phenomenon are explained. |
ArticleNumber | 153040 |
Author | Nirmal, D. Husna Hamza, K. |
Author_xml | – sequence: 1 givenname: K. surname: Husna Hamza fullname: Husna Hamza, K. – sequence: 2 givenname: D. surname: Nirmal fullname: Nirmal, D. email: dnirmalphd@gmail.com |
BookMark | eNp9kE1LAzEQhoNUsK3-AU_5A7vN134EvJRSq1D1Us8hHxNIaTclWS3-e3epJw89zcDwzLzPzNCkix0g9EhJSQmtF_tSwxeUjFBZ0ooTQW7QlNa0LQiXcjL0gouiFZTeoVnOe0IYaVg9RYslTvAd4Iyjxxv9jl_WbztsUtTO6M7hUzxDwvp4OgQfIOV7dOv1IcPDX52jz-f1bvVSbD82r6vltrC8rvuCijGKkdJQw5wjunZt41jlG0Yka7WwjQbKvQTneGWGMMYZOcxF5XVFWz5H7LLXpphzAq9OKRx1-lGUqFFZ7dWorMY76qI8QO0_yIZe9yF2fdLhcB19uqAwSA3_SCrbAJ0FFxLYXrkYruG_68lx8w |
CitedBy_id | crossref_primary_10_3389_fphy_2021_648127 crossref_primary_10_1016_j_apsusc_2024_159668 crossref_primary_10_1109_TED_2022_3162555 crossref_primary_10_1088_1361_6641_acd13c crossref_primary_10_3390_app142411881 crossref_primary_10_1007_s40042_023_00799_6 crossref_primary_10_1016_j_tca_2023_179491 crossref_primary_10_3390_electronics11193244 crossref_primary_10_1002_cta_2956 crossref_primary_10_1007_s11664_024_11672_y crossref_primary_10_1109_ACCESS_2023_3336990 crossref_primary_10_1038_s41598_022_21324_y crossref_primary_10_35848_1347_4065_abe999 crossref_primary_10_35848_1347_4065_ac19fc crossref_primary_10_1007_s12633_022_01846_w crossref_primary_10_1021_acsaelm_4c01424 crossref_primary_10_1063_5_0087344 crossref_primary_10_1109_TCPMT_2021_3050976 crossref_primary_10_1109_TPEL_2023_3313124 crossref_primary_10_1142_S0218625X21500773 crossref_primary_10_3390_electronics11030498 crossref_primary_10_35848_1882_0786_ad16ae crossref_primary_10_1063_5_0201666 crossref_primary_10_1016_j_mejo_2024_106366 crossref_primary_10_35940_ijeat_F3766_0811622 crossref_primary_10_1002_pssa_202200722 crossref_primary_10_35848_1347_4065_ad4cc9 crossref_primary_10_1016_j_micrna_2023_207545 crossref_primary_10_1126_sciadv_abo6408 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124284 crossref_primary_10_1063_5_0049797 crossref_primary_10_1109_LMWT_2023_3239532 crossref_primary_10_1587_elex_21_20240486 crossref_primary_10_1063_5_0084511 crossref_primary_10_2339_politeknik_1424645 crossref_primary_10_48084_etasr_6264 crossref_primary_10_1021_acsaelm_4c01950 crossref_primary_10_1007_s40042_023_00885_9 crossref_primary_10_1364_OPTICA_488271 crossref_primary_10_3390_nano12101718 crossref_primary_10_1108_HFF_07_2020_0393 crossref_primary_10_1016_j_mssp_2021_105909 crossref_primary_10_1063_5_0194091 crossref_primary_10_1088_1361_6641_ac86eb crossref_primary_10_35848_1347_4065_acfd34 crossref_primary_10_1007_s11664_022_10109_8 crossref_primary_10_1007_s12633_021_01322_x crossref_primary_10_1016_j_micrna_2024_207815 crossref_primary_10_1016_j_aeue_2024_155293 crossref_primary_10_1016_j_aeue_2020_153142 crossref_primary_10_1002_pssa_202300806 crossref_primary_10_1016_j_aeue_2023_154564 crossref_primary_10_1063_5_0066346 crossref_primary_10_1134_S106373972360098X crossref_primary_10_1002_adts_202400645 crossref_primary_10_3390_mi15091126 crossref_primary_10_1126_sciadv_adh9889 crossref_primary_10_3390_electronics11131934 crossref_primary_10_1109_TED_2023_3338586 crossref_primary_10_1109_ACCESS_2025_3539435 crossref_primary_10_1587_elex_18_20210313 crossref_primary_10_3390_nano14050460 crossref_primary_10_3390_nano14080732 crossref_primary_10_1109_LED_2023_3262589 crossref_primary_10_1587_elex_19_20220397 crossref_primary_10_1088_1361_6641_acf2be crossref_primary_10_36548_jei_2023_1_002 crossref_primary_10_1016_j_chip_2023_100072 crossref_primary_10_1063_5_0131470 crossref_primary_10_1109_TED_2022_3213636 crossref_primary_10_1063_5_0172376 crossref_primary_10_1134_S1995078020060075 crossref_primary_10_3390_mi14112041 crossref_primary_10_1002_jnm_3115 crossref_primary_10_1002_mop_33360 crossref_primary_10_1134_S1063785021040118 crossref_primary_10_3390_cryst13030387 crossref_primary_10_3390_ma14227081 crossref_primary_10_1088_1361_6463_ad32a6 crossref_primary_10_3390_mi13122179 crossref_primary_10_1109_TMTT_2023_3245668 crossref_primary_10_3390_electronics11223768 crossref_primary_10_4218_etrij_2023_0250 |
Cites_doi | 10.1109/TCSI.2017.2658689 10.1109/ITHERM.2014.6892417 10.1109/TMTT.2009.2027076 10.1109/COMCAS.2017.8244734 10.1007/s11664-016-4435-3 10.1109/MWSYM.2010.5518253 10.3390/electronics8010099 10.1109/TMTT.2016.2623705 10.1109/iMac4s.2013.6526462 10.1109/LMWC.2016.2597228 10.1109/EIF.1997.605386 10.1109/TMTT.2015.2495201 10.1109/TMTT.2004.839341 10.1109/TMTT.2017.2765632 10.1049/iet-smt.2016.0348 10.1109/TCSI.2014.2362311 10.1109/IBCAST.2015.7058556 10.1109/CSICS.2015.7314469 10.1109/TMTT.2017.2767586 10.1109/LMWC.2006.890347 10.1109/63.311263 10.1109/TMTT.2015.2452255 10.1109/TMTT.2012.2209446 10.1109/TMTT.2013.2250712 10.1049/el:20081170 10.1109/TEMC.2018.2820202 10.1109/PAWR.2011.5725378 10.1109/TMTT.2016.2613050 10.1109/LMWC.2003.817130 10.1109/INVENTIVE.2016.7830142 10.1109/TMTT.2018.2869571 10.1109/TDMR.2008.923743 10.1109/55.954910 10.1109/TMTT.2016.2636146 10.1109/TMTT.2015.2442973 10.1016/j.microrel.2009.07.003 10.1109/TMTT.2007.911967 10.1109/TMTT.2014.2359856 10.1109/JLT.2014.2384998 10.1109/TCSI.2013.2283781 10.1109/TCSI.2016.2515419 10.1109/TMTT.2016.2549524 10.1109/TMTT.2014.2362136 10.1016/j.spmi.2017.12.027 10.1109/TCS.1975.1084074 10.1109/ICDCSyst.2012.6188704 10.23919/EUMC.2009.5296560 10.1063/1.369664 10.1109/TMTT.2016.2614506 10.1109/LMWC.2012.2234090 10.1109/TMTT.2017.2701376 10.1109/TMTT.2012.2227783 10.1109/TMTT.2016.2574861 10.1557/adv.2016.120 10.1016/j.spmi.2017.05.042 10.1002/mop.30950 10.1109/APEMC.2013.7360619 10.1109/RWS.2008.4463518 10.1002/mop.24951 10.1109/TCE.2010.5681122 10.1109/TMTT.2010.2091207 10.23919/EuMIC.2017.8230650 10.1063/1.3184348 10.1115/1.4023898 10.1049/iet-cds:20080096 10.1109/MW-M.2006.247914 10.1109/MWSYM.2007.379980 10.1109/25.661047 10.1016/j.spmi.2015.06.048 10.1109/TMTT.2015.2447552 10.1109/CSICS.2006.319922 10.1049/iet-cds.2008.0339 10.1016/j.mejo.2015.04.006 10.1109/MMM.2009.934518 10.1109/TMTT.2012.2187535 10.1109/TCSII.2015.2407197 10.1109/TED.2014.2360504 10.1155/2018/6793814 10.1109/JSSC.2004.833558 10.1109/JSSC.2012.2204927 10.1109/TCPMT.2012.2223818 10.1109/TMTT.2014.2321356 10.1109/TCSI.2015.2512698 10.1109/ICDCSyst.2018.8605071 10.11113/jt.v68.2955 10.1115/IPACK2015-48334 10.1109/PRIME.2013.6603127 10.23919/APMC.2018.8617418 10.1109/JSSC.2006.878102 10.1016/S0038-1101(97)00104-4 10.1109/TCSI.2013.2268341 10.1109/TMTT.2011.2166122 10.1016/j.energy.2010.11.039 10.1116/1.590818 10.1109/TCSII.2016.2609460 10.1109/TMTT.2007.907399 10.1109/MIKON.2012.6233596 10.1016/S0038-1101(99)00089-1 10.1016/j.aeue.2018.12.006 10.1109/JSSC.2007.904317 10.1109/TMTT.2004.839306 10.1109/TNET.2013.2249667 10.1109/16.199372 10.1116/1.585897 10.1109/TMTT.2011.2170580 10.1063/1.2996281 10.1103/PhysRevB.56.R10024 10.1109/25.543741 10.1109/TMTT.2018.2828434 10.1016/j.aeue.2018.11.021 10.1103/PhysRevB.84.085317 10.1109/JPROC.2009.2034397 10.1109/TCSI.2018.2800041 10.1109/TEMC.2017.2731794 10.1109/IWSSC.2007.4409391 10.1109/TMTT.2006.884685 10.1063/1.1828580 10.1109/LMWC.2016.2587834 10.1109/TMTT.2015.2480739 10.1587/transfun.E101.A.374 10.1109/TMTT.2015.2479615 10.1587/transele.E96.C.774 10.1109/TCOMM.2003.822188 10.1109/LED.2007.908490 10.1109/CSICS.2005.1531801 10.1109/TMTT.2010.2063851 10.1109/ECS.2014.6892781 10.1007/s10762-010-9758-1 10.1115/IPACK2015-48179 10.1109/TMTT.2015.2495106 10.1109/MWSYM.2011.5972571 10.1109/TED.2013.2274669 10.1109/TMTT.2012.2231421 10.1063/1.4865583 10.1109/TMTT.2016.2550039 10.1016/S1672-6529(14)60025-1 10.1109/TMTT.2003.808713 10.1109/BCICTS.2018.8551070 10.1109/TMTT.2017.2704931 10.1109/55.43098 10.1109/TMTT.2014.2377725 10.1109/TCSI.2005.852500 10.1109/TSM.2016.2597363 10.1016/j.suscom.2018.05.002 10.1016/j.mejo.2017.11.013 10.1109/75.774146 10.1109/TMTT.2008.924364 10.1109/TCPMT.2017.2693399 10.1109/TCSI.2018.2869905 10.1109/TMTT.2002.807682 10.1109/JPROC.2007.911060 10.1109/CSICS.2012.6340057 10.1016/j.aeue.2019.06.015 10.1142/9789814579797_0016 10.1049/el.2018.7179 10.1109/MWSYM.2014.6848280 10.1109/TMTT.2014.2387061 10.1016/j.spmi.2014.10.038 10.1109/TPEL.2013.2291364 10.1063/1.357133 10.1109/TMTT.2016.2617882 |
ContentType | Journal Article |
Copyright | 2020 Elsevier GmbH |
Copyright_xml | – notice: 2020 Elsevier GmbH |
DBID | AAYXX CITATION |
DOI | 10.1016/j.aeue.2019.153040 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1618-0399 |
ExternalDocumentID | 10_1016_j_aeue_2019_153040 S1434841119321892 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 8FE 8FG 8FW 8P~ 8R4 8R5 AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABFNM ABLJU ABMAC ABUWG ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARAPS ARUGR ASPBG AVWKF AXJTR AZFZN BENPR BGLVJ BJAXD BKOJK BLXMC BPHCQ CAG CCPQU COF CS3 DWQXO EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HCIFZ HVGLF HZ~ IHE J1W JJJVA KOM M1Q M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P62 PC. PQQKQ PROAC Q2X Q38 R2- RIG ROL RPZ S0X SDF SDG SES SEW SPC SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION PHGZM PHGZT SSH |
ID | FETCH-LOGICAL-c366t-142019b99b1b2dd0a6d87d25f720928a4c7ae13f9edd35b207bdb925f45fa5183 |
IEDL.DBID | .~1 |
ISSN | 1434-8411 |
IngestDate | Tue Jul 01 01:32:12 EDT 2025 Thu Apr 24 22:51:56 EDT 2025 Fri Feb 23 02:49:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Power added efficiency HEMT Doherty Envelope tracking power amplifier |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-142019b99b1b2dd0a6d87d25f720928a4c7ae13f9edd35b207bdb925f45fa5183 |
ParticipantIDs | crossref_primary_10_1016_j_aeue_2019_153040 crossref_citationtrail_10_1016_j_aeue_2019_153040 elsevier_sciencedirect_doi_10_1016_j_aeue_2019_153040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationTitle | International journal of electronics and communications |
PublicationYear | 2020 |
Publisher | Elsevier GmbH |
Publisher_xml | – name: Elsevier GmbH |
References | Guggenheim R, Rodes L. Roadmap review for cooling high-power GaN HEMT devices. In: 2017 IEEE international conference on microwaves, antennas, communications and electronic systems (COMCAS); 2017. Jung, Hammi, Ghannouchi (b0645) 2009; 57 Nadjahi, Louahlia, Lemasson (b0025) 2018; 19 Holzer, Yuan, Walling (b0705) 2018; 65 Kang H, Lee H, Lee W, Oh H, Lim W, Koo H, et al., Octave bandwidth doherty power amplifier using multiple reso- nance circuit for the peaking amplifier. IEEE Trans Circuits Syst I: Regular Papers; 2018. p. 1–11.doi:10.1109/tcsi.2018.2869905. Meneghesso, Verzellesi, Danesin, Rampazzo, Zanon, Tazzoli, Zanoni (b0205) 2008; 8 Kimball, Jeong, Hsia, Draxler, Lanfranco, Nagy (b0400) 2006; 54 Yang, Cha, Shin, Kim (b0550) 2003; 51 George A, Nirmal D, Prajoon P, Mathew A. Design and simulation of Schottky-source/drain GaN/AlGaN HEMTs for break- down voltage improvement. In: 2014 international conference on electronics and communication systems (ICECS); 2014. doi:10.1109/ecs.2014.6892781. Campbell CF, Tran K, Kao MY, Nayak S. A K-band 5W doherty amplifier MMIC utilizing 0.15m GaN on SiC HEMT technology. In: IEEE compound semiconductor integrated circuit symposium, October 2012. p. 1–4. Kalyan, Rawat, Koul (b0465) 2018 Fang, Chung, Boumaiza (b0490) 2018; 1–10 Gupta, Vallabhaneni, Kumar (b0890) 2017; 7 Jebalin, Shobha Rekh, Prajoon, Kumar, Nir- mal (b0180) 2015; 46 Ambacher, Smart, Shealy, Weimann, Chu, Murphy (b0085) 1999; 85 Giofr‘e R, Colantonio P, Giannini F. GaN broadband power amplifiers for terrestrial and space transmitters. Microwave radar and wireless communications (MIKON), 2012 19th international conference on, vol. 2, no., pp. 605, 609, 21–23 May 2012 doi: 10.1109/MIKON.2012.6233596. . Van Straten, Smolders, van Zuijlen, Ooijman (b0370) 2004; 39 Enomoto, Ishikawa, Honjo (b0695) 2017; 65 Zhou, Zheng, Chan, Chen, Ho (b0520) 2017; 64 Tu¨lek R, Ilgaz A, G¨okden S, Teke A, O¨ ztu¨rk MK, Kasap M, et al. Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures. J Appl Phys 2009;105(1): 013707. doi:10.1063/1.2996281. Yin, Xiong, Zhu, Chen, Min, Xu (b0390) 2019 Lemtiri Chlieh, Papapolymerou (b0875) 2017; 65 Zhou, Chan, Zheng, Feng, Liu, Cheng (b0275) 2019; 1–15 Chen, Chen, Ghannouchi, Feng, Liu (b0545) 2016; 64 Jain, Pahlevaninezhad, Pan, Drobnik (b0045) 2014; 29 Sakata, Lanfranco, Kolmonen, Piirainen, Fujiwara, Shinjo (b0785) 2017 Kang, Yu, Min, Han, Choi, Kim (b0300) 2008; 56 Lee, Park, Choi, Kwon (b0730) 2015; 63 Yan, Hsia, Kimball, Asbeck (b0770) Oct. 2008; 47 Ambacher, Majewski, Miskys, Link, Hermann, Eickhoff (b0125) 2002; 14 Paidi, Xie, Coffie, Moran, Heikman, Keller (b0320) 2003; 51 Pang, He, Huang, Dai, Peng, You (b0655) 2015; 63 Strite (b0070) 1992; 10 Dar, Feder, Mecozzi, Shtaif (b0040) 2015; 33 Pednekar, Hallberg, Fager, Barton (b0740) 2018; 66 Barthwal, Rawat, Koul (b0680) 2015; 63 Moon, Son, Lee, Kim (b0795) 2011; 59 Hu, Boumaiza (b0835) 2016; 64 CHA5356-QGG datasheet. Sokal NO. (n.d.). RF power amplifiers, classes A through S-how they operate, and when to use each. Professional Program Proceedings. Electronic Industries Forum of New England. doi:10.1109/eif.1997.605386. Gustafsson, Andersson, Leidenhed, Rhodin, Wegeland (b0610) 2016 Cwiklinski, Friesicke, Bruckner, Schwantuschke, Wagner, Lozar (b0690) 2018; 1–12 Jouzdani, Ebrahimi, Rawat, Helaoui, Ghan- nouchi (b0710) 2015; 62 Mohamed, Boumaiza, Mansour (b0360) 2014; 61 Sundstrom, Faulkner, Johansson (b0810) 1996; 45 Diaz MA, Courville N, Mosquera C, Liva G, Corazza GE. Non-linear interference mitigation for broadband multimedia satellite systems. In: 2007 International workshop on satellite and space communications; 2007. doi:10.1109/iwssc.2007.4409391. Woo, Miller, Kenney (b0830) 2005; 53 Kim (b0725) 2018; 1–8 Oh (b0440) 2017; 65 Mimis K, Morris KA, McGeehan JP. A 2GHz GaN Class-J power amplifier for base station applications. In: 2011 IEEE topical conference on power amplifiers for wireless and radio applications; 2011. Darraji, Ghannouchi (b0375) 2011; 59 Matin K, Bar-Cohen A, Maurer JJ. Modeling and simulation challenges in embedded two phase cooling: DARPA’s ICE- cool program. Volume 3: advanced fabrication and manufacturing; emerging technology frontiers; energy, health and water- applications of nano- , micro- and mini-scale devices; MEMS and NEMS; technology update talks; thermal management using micro channels, jets, sprays; 2015. doi:10.1115/ipack2015-48334. Watanabe N, Wong J, Grebenniko A, Nishio G. A high-efficiency 4.35-4.85 GHz Doherty amplifier for base station applications. 2018 Asia-Pacific microwave conference (APMC); 2018. doi:10.23919/apmc.2018.8617418. Lin, Liu, Chu, Huang, Liu, Chang (b0640) 2007; 17 Camarchia, Pirola, Quaglia, Jee, Cho, Kim (b0565) 2015; 63 Giofre, Colantonio, Gonzalez, De Arriba, Cabria, Lopez Molina (b0240) 2018; 1–1 Chen, Xia, Merrick, Brazil (b0485) 2017; 65 Lubritto, Petraglia, Vetromile, Curcuruto, Logorelli, Marsico (b0030) 2011; 36 Chen, Nazli Donmezer, Kumar, Graham (b0910) 2014; 61 Pengelly, Wood, Milligan, Sheppard, Pribble (b0065) 2012; 60 Bensmida S, Hammi O, Ghannouchi FM. High efficiency digitally linearized GaN based power amplifier for 3G applications. In: 2008 IEEE radio and wireless symposium; 2008. doi:10.1109/rws.2008.4463518. Xu, Yi-Feng, Keller, Heikman, Thibeault, Mishra (b0215) 1999; 9 Pandit PP, Arivazhagan L, Prajoon P, Rajkumar J, Ajayan J, Nirmal D. DC Performance analysis of AlGaN/GaN HEMT for future high power applications. In: 2018 4th international conference on devices, circuits and systems (ICDCS). doi:10.1109/icdcsyst.2018.8605071. Bhatnagar, Baliga (b0930) 1993; 40 Paek, Kim, Choo, Youn, Lee, Cho (b0395) 2018; 1–12 Yang, Cha, Shin, Kim (b0405) 2003; 13 Mishra, Shen, Kazior, Yi-Feng (b0935) 2008; 96 Waltereit, Mu¨ller, Bellmann, Buchheim, Goldhahn, K¨ohler, Ambacher (b0130) 2009; 106 Cidronali, Maddio, Giovannelli, Collodi (b0510) 2016; 64 Bukvic, Ilic (b0305) 2016; 26 Moon, Kim, Kim, Kim, Kim (b0415) 2011; 59 Chi, Jun, Lei (b0245) 2013 Jundi, Sarbishaei, Boumaiza (b0715) 2015; 63 Xu, Zhang, Tan (b1000) 2014 Li, Hsu, Zhang, Huang (b0380) 2018; 1–9 Brown A, Brown K, Chen J, Hwang KC, Kolias N, Scott R. W-band GaN power amplifier MMICs. 2011 IEEE MTT-S international microwave symposium; 2011. doi:10.1109/mwsym.2011.5972571. Coffey M, MomenRoodaki P, Zai A, Popovic Z. A 4.2-W 10-GHz GaN MMIC doherty power amplifier. In: IEEE compound semicon- ductor integrated circuit symposium, October 2015. p. 1–4. Moradi Ardekani, Abiri (b0475) 2019; 98 You, He, Tang, Cao (b0310) 2008; 2 Park (b0430) 2007; 55 Cho, Li, Bozorg-Grayeli, Kodama, Francis, Ejeckam (b0950) 2013; 3 Gustafsson, Andersson, Fager (b0575) 2013; 61 Watanabe, Takayama, Ishikawa, Honjo (b0745) 2015; 63 Micovic M, Kurdoghlian A, Moyer HP, Hashimoto P, Schmitz A, Milosavljevic I, et al. GaN MMIC technology for microwave and millimeter-wave applications. In: IEEE compound semiconductor integrated circuit symposium, 2005. CSIC ’05; 2005. doi:10.1109/csics.2005.1531801. Kwon, Seo, Lee, Gu, Ham, Hwang (b0665) 2015; 62 Ku, Petersen (b0265) 1975; 22 Cappello, Duh, Barton, Popovic (b0675) 2019; 1–13 Nirmal, Arivazhagan, Fletcher, Ajayan, Pra- joon (b0145) 2018; 113 Gustafsson, Cahuana, Kuylenstierna, Angelov, Fager (b0570) 2014; 62 Camarchia, Fang, Rubio, Pirola, Quaglia (b0590) 2013; 23 Asif Khan, Chen, Shur, Dermott, Higgins, Burm (b0075) 1997; 41 Wu, Wapolnek, Ibbetson, Parikh, Keller, Mishra (b0915) 2000 Bar-Cohen, Maurer, Sivananthan (b0880) 2016; 1 Cripps (b0535) 2006 MAAP-011170 datasheet. Moreno Rubio, Camarchia, Pirola, Quaglia (b0735) 2018; 66 Piersanti (b0985) 2018; 60 Rubio, Camarchia, Pirola, Quaglia (b0500) 2018; 66 Nair PP, Nirmal D. Gate recessed GaN based HEMT with Si3N4 passivation for microwave applications. In: 2016 international conference on inventive computation technologies (ICICT); 2016. Won Y, Cho J, Agonafer D, Asheghi M, Goodson KE. Fundamental cooling limits for high power density GaN electronics. IEEE Transactions on Components, Packaging, and Manufacturing Technology, In preparation. Ikeda, Niiyama, Kambayashi, Sato, Nomura, Kato (b0940) 2010; 98 Lee (b0435) 2017; 65 Camarchia V, Rubio JJM, Pirola M, Quaglia R, Colanto- nio P, Giannini F, et al., High-efficiency 7 GHz Doherty GaN MMIC power amplifiers for microwave backhaul radio links. IEEE Trans Electron Devices, 60(10), October 2013. p. 3592–5. Saad P, Nemati HM, Thorsell M, Andersson K, Fager C. An inverse class-F GaN HEMT power amplifier with 78, doi: 10.23919/EUMC.2009.5296560. Cho, Kim, Stapleton (b0555) 2005; 53 Wang, Roger, Lelandais-Perrault (b0260) 2018; 1–1 Grebennikov (b0335) 2016; 63 Chen, Li, Zhou, Chen, Huang, Wang (b0685) 2019; 8 Sun, Kung, Saxler, Ohsato, Bigan, Razeghi (b0925) 2019; 76 Mrad R, et al., Integrated class-D audio amplifier virtual test for output EMI filter performance to cite this version: Integrated class-D audio amplifier virtual test for output EMI filter performance, in: 9th Conf. Ph.D. Res. Microelect. Electron.; 2013. p. 73–6. Fletcher, Nirmal (b0140) 2017; 109 Chen, Donmezer, Kumar, Graham (b0850) 2014; 61 Boutros K, Luo W, Ma Y, Nagy G, Hacker J. 5W GaN MMIC for millimeter-wave applications. 2006 IEEE compound semi- conductor integrated circuit symposium; 2006. doi:10.1109/csics.2006.319922. Lie, Mayeda, Li, Lopez (b0015) 2018; 2018 Zakaria, Fadzil, Othman, Salleh, Isa, Haron (b0005) 2014; 68 Li, Lin, Nandhasri, Ngarmnil (b0315) 2005; 52 Kashif A, Azam S, Mughal F, Cheema NB, Imran M. Two-stage GaN HEMT based class-C pulsed amplifier for S-band radar applications. In: 2015 12th international bhurban conference on applied sciences and technology (IBCAST); 2015. doi:10.1109/ibcast.2015.7058556. Lin, Chen, Kuo, Chang (b0980) 2017; 11 Arivazhagan, Nirmal, Godfrey, Ajayan, Prajoon, Augustine Fletcher (b0135) 2019; 108 Van Capel, Turchinovich, Porte, Lahmann, Ros79sow, Hangleiter, Dijkhuis (b0970) 2011; 84 Varahram, Al-Azzo, Ali (b0350) 2010; 56 Ajayan, Nirmal (b0050) 2015; 86 Gustafsson, Cahuana, Kuylenstierna, Angelov, Rorsman, Fager (b0580) 2013; 10.1016/j.aeue.2019.153040_b0805 Kim (10.1016/j.aeue.2019.153040_b0410) 2006; 7 Hallberg (10.1016/j.aeue.2019.153040_b0700) 2016; 64 Sundstrom (10.1016/j.aeue.2019.153040_b0810) 1996; 45 Cho (10.1016/j.aeue.2019.153040_b0950) 2013; 3 Giofre (10.1016/j.aeue.2019.153040_b0240) 2018; 1–1 Chen (10.1016/j.aeue.2019.153040_b0460) 2014; 61 Li (10.1016/j.aeue.2019.153040_b0315) 2005; 52 You (10.1016/j.aeue.2019.153040_b0310) 2008; 2 Shen (10.1016/j.aeue.2019.153040_b0195) 2001; 22 10.1016/j.aeue.2019.153040_b0120 Kwon (10.1016/j.aeue.2019.153040_b0525) 2015; 62 Strite (10.1016/j.aeue.2019.153040_b0070) 1992; 10 Zhou (10.1016/j.aeue.2019.153040_b0275) 2019; 1–15 Zavarei (10.1016/j.aeue.2019.153040_b0775) 2018; 72 Paidi (10.1016/j.aeue.2019.153040_b0320) 2003; 51 Ditri (10.1016/j.aeue.2019.153040_b0885) 2016; 29 Van Capel (10.1016/j.aeue.2019.153040_b0970) 2011; 84 Jundi (10.1016/j.aeue.2019.153040_b0715) 2015; 63 Kunihiro (10.1016/j.aeue.2019.153040_b0020) 2018 Camarchia (10.1016/j.aeue.2019.153040_b0590) 2013; 23 Kang (10.1016/j.aeue.2019.153040_b0445) 2017; 64 Cappello (10.1016/j.aeue.2019.153040_b0255) 2019; 1–14 Pengelly (10.1016/j.aeue.2019.153040_b0065) 2012; 60 Faulkner (10.1016/j.aeue.2019.153040_b0825) 1998; 47 Bortoni (10.1016/j.aeue.2019.153040_b0295) 2002; 50 10.1016/j.aeue.2019.153040_b0905 10.1016/j.aeue.2019.153040_b0225 Yu (10.1016/j.aeue.2019.153040_b0095) 1999; 17 10.1016/j.aeue.2019.153040_b0345 Varahram (10.1016/j.aeue.2019.153040_b0350) 2010; 56 Pelk (10.1016/j.aeue.2019.153040_b0420) 2008; 56 Tasker (10.1016/j.aeue.2019.153040_b0540) 2009 10.1016/j.aeue.2019.153040_b0900 Woo (10.1016/j.aeue.2019.153040_b0830) 2005; 53 Hu (10.1016/j.aeue.2019.153040_b0835) 2016; 64 Kim (10.1016/j.aeue.2019.153040_b0765) 2014; 62 10.1016/j.aeue.2019.153040_b0105 Darraji (10.1016/j.aeue.2019.153040_b0375) 2011; 59 10.1016/j.aeue.2019.153040_b0220 Wu (10.1016/j.aeue.2019.153040_b0470) 2012; 60 Nadjahi (10.1016/j.aeue.2019.153040_b0025) 2018; 19 Chen (10.1016/j.aeue.2019.153040_b0480) 2016; 64 Chen (10.1016/j.aeue.2019.153040_b0850) 2014; 61 Del Alamo (10.1016/j.aeue.2019.153040_b0210) 2009; 49 Ajayan (10.1016/j.aeue.2019.153040_b0050) 2015; 86 Zheng (10.1016/j.aeue.2019.153040_b0450) 2016; 63 Schmelzer (10.1016/j.aeue.2019.153040_b0340) 2007; 42 Dadgar (10.1016/j.aeue.2019.153040_b0190) 2004; 85 Moreno Rubio (10.1016/j.aeue.2019.153040_b0735) 2018; 66 Kim (10.1016/j.aeue.2019.153040_b0725) 2018; 1–8 Ikeda (10.1016/j.aeue.2019.153040_b0940) 2010; 98 10.1016/j.aeue.2019.153040_b0115 10.1016/j.aeue.2019.153040_b0235 Yan (10.1016/j.aeue.2019.153040_b0280) 2017; 60 10.1016/j.aeue.2019.153040_b0595 Wu (10.1016/j.aeue.2019.153040_b0915) 2000 10.1016/j.aeue.2019.153040_b0230 Wang (10.1016/j.aeue.2019.153040_b0260) 2018; 1–1 Tong (10.1016/j.aeue.2019.153040_b0060) 2019; 1–1 10.1016/j.aeue.2019.153040_b0605 Kihara (10.1016/j.aeue.2019.153040_b0790) 2013 10.1016/j.aeue.2019.153040_b0840 Yang (10.1016/j.aeue.2019.153040_b0550) 2003; 51 Kim (10.1016/j.aeue.2019.153040_b0995) 2000 10.1016/j.aeue.2019.153040_b0845 Barthwal (10.1016/j.aeue.2019.153040_b0680) 2015; 63 10.1016/j.aeue.2019.153040_b0600 Bar-Cohen (10.1016/j.aeue.2019.153040_b0880) 2016; 1 10.1016/j.aeue.2019.153040_b1010 10.1016/j.aeue.2019.153040_b0160 Lee (10.1016/j.aeue.2019.153040_b0530) 2017; 65 10.1016/j.aeue.2019.153040_b0165 10.1016/j.aeue.2019.153040_b0285 Fang (10.1016/j.aeue.2019.153040_b0490) 2018; 1–10 Boyer (10.1016/j.aeue.2019.153040_b0975) 2007; 7 Ambacher (10.1016/j.aeue.2019.153040_b0125) 2002; 14 10.1016/j.aeue.2019.153040_b0615 Cho (10.1016/j.aeue.2019.153040_b0555) 2005; 53 Jebalin (10.1016/j.aeue.2019.153040_b0180) 2015; 46 Van Straten (10.1016/j.aeue.2019.153040_b0370) 2004; 39 Hosseinzadeh (10.1016/j.aeue.2019.153040_b0630) 2016; 26 Oh (10.1016/j.aeue.2019.153040_b0440) 2017; 65 10.1016/j.aeue.2019.153040_b0170 Aust (10.1016/j.aeue.2019.153040_b0635) 2006; 41 Enomoto (10.1016/j.aeue.2019.153040_b0695) 2017; 65 Jebalin (10.1016/j.aeue.2019.153040_b0175) 2015; 78 Mishra (10.1016/j.aeue.2019.153040_b0935) 2008; 96 10.1016/j.aeue.2019.153040_b0945 Florian (10.1016/j.aeue.2019.153040_b0780) 2015; 63 Gustafsson (10.1016/j.aeue.2019.153040_b0580) 2013; 61 10.1016/j.aeue.2019.153040_b0385 Zhou (10.1016/j.aeue.2019.153040_b0520) 2017; 64 Holzer (10.1016/j.aeue.2019.153040_b0705) 2018; 65 Addis (10.1016/j.aeue.2019.153040_b0760) 2014; 22 Yin (10.1016/j.aeue.2019.153040_b0390) 2019 Lemtiri Chlieh (10.1016/j.aeue.2019.153040_b0875) 2017; 65 10.1016/j.aeue.2019.153040_b0035 Meneghesso (10.1016/j.aeue.2019.153040_b0205) 2008; 8 Kang (10.1016/j.aeue.2019.153040_b0720) 2017; 64 Piersanti (10.1016/j.aeue.2019.153040_b0990) 2018; 60 10.1016/j.aeue.2019.153040_b1005 10.1016/j.aeue.2019.153040_b0150 Cho (10.1016/j.aeue.2019.153040_b0365) 2013; 61 Ejeckam (10.1016/j.aeue.2019.153040_b0955) 2014 Sun (10.1016/j.aeue.2019.153040_b0925) 2019; 76 Gupta (10.1016/j.aeue.2019.153040_b0890) 2017; 7 Lee (10.1016/j.aeue.2019.153040_b0815) 2010; 52 Waltereit (10.1016/j.aeue.2019.153040_b0130) 2009; 106 Mohamed (10.1016/j.aeue.2019.153040_b0455) 2014; 61 Ding (10.1016/j.aeue.2019.153040_b0820) 2004; 52 Li (10.1016/j.aeue.2019.153040_b0380) 2018; 1–9 Xu (10.1016/j.aeue.2019.153040_b0215) 1999; 9 Pang (10.1016/j.aeue.2019.153040_b0655) 2015; 63 Kimball (10.1016/j.aeue.2019.153040_b0400) 2006; 54 Burk (10.1016/j.aeue.2019.153040_b0100) 1999; 43 Gustafsson (10.1016/j.aeue.2019.153040_b0575) 2013; 61 Jouzdani (10.1016/j.aeue.2019.153040_b0710) 2015; 62 Ambacher (10.1016/j.aeue.2019.153040_b0085) 1999; 85 Bhatnagar (10.1016/j.aeue.2019.153040_b0930) 1993; 40 Chen (10.1016/j.aeue.2019.153040_b0545) 2016; 64 Wu (10.1016/j.aeue.2019.153040_b0750) 2018; 66 EjeckamPomeroy (10.1016/j.aeue.2019.153040_b0960) 2014; 104 Bloschock (10.1016/j.aeue.2019.153040_b0855) 2012; 2012 Bar-Cohen (10.1016/j.aeue.2019.153040_b0860) 2014; 421–457 Paek (10.1016/j.aeue.2019.153040_b0395) 2018; 1–12 Cidronali (10.1016/j.aeue.2019.153040_b0510) 2016; 64 Cappello (10.1016/j.aeue.2019.153040_b0675) 2019; 1–13 Pednekar (10.1016/j.aeue.2019.153040_b0740) 2018; 66 Moradi Ardekani (10.1016/j.aeue.2019.153040_b0475) 2019; 98 Mohamed (10.1016/j.aeue.2019.153040_b0360) 2014; 61 Sangwan (10.1016/j.aeue.2019.153040_b1015) 2019; 61 Zakaria (10.1016/j.aeue.2019.153040_b0005) 2014; 68 Kang (10.1016/j.aeue.2019.153040_b0355) 2010; 58 10.1016/j.aeue.2019.153040_b0620 10.1016/j.aeue.2019.153040_b0625 Yang (10.1016/j.aeue.2019.153040_b0425) 2003; 51 10.1016/j.aeue.2019.153040_b0865 10.1016/j.aeue.2019.153040_b0185 Guo (10.1016/j.aeue.2019.153040_b0800) 2015; 63 Augustine Fletcher (10.1016/j.aeue.2019.153040_b0155) 2019; 99 Asif Khan (10.1016/j.aeue.2019.153040_b0075) 1997; 41 Lie (10.1016/j.aeue.2019.153040_b0015) 2018; 2018 Kwon (10.1016/j.aeue.2019.153040_b0665) 2015; 62 Bukvic (10.1016/j.aeue.2019.153040_b0305) 2016; 26 Chen (10.1016/j.aeue.2019.153040_b0485) 2017; 65 Lin (10.1016/j.aeue.2019.153040_b0640) 2007; 17 Bernardini (10.1016/j.aeue.2019.153040_b0090) 1997; 56 Fletcher (10.1016/j.aeue.2019.153040_b0140) 2017; 109 Gustafsson (10.1016/j.aeue.2019.153040_b0570) 2014; 62 10.1016/j.aeue.2019.153040_b0755 Ku (10.1016/j.aeue.2019.153040_b0265) 1975; 22 Chen (10.1016/j.aeue.2019.153040_b0685) 2019; 8 Yan (10.1016/j.aeue.2019.153040_b0770) 2008; 47 Cripps (10.1016/j.aeue.2019.153040_b0535) 2006 Quaglia (10.1016/j.aeue.2019.153040_b0585) 2014; 62 Lee (10.1016/j.aeue.2019.153040_b0730) 2015; 63 Xu (10.1016/j.aeue.2019.153040_b1000) 2014 El-Hamamsy (10.1016/j.aeue.2019.153040_b0290) 1994; 9 Grebennikov (10.1016/j.aeue.2019.153040_b0335) 2016; 63 Lubritto (10.1016/j.aeue.2019.153040_b0030) 2011; 36 Lin (10.1016/j.aeue.2019.153040_b0270) 2009; 3 Camarchia (10.1016/j.aeue.2019.153040_b0565) 2015; 63 Fong (10.1016/j.aeue.2019.153040_b0250) 2019; 55 Arivazhagan (10.1016/j.aeue.2019.153040_b0135) 2019; 108 Nirmal (10.1016/j.aeue.2019.153040_b0145) 2018; 113 10.1016/j.aeue.2019.153040_b0200 Lee (10.1016/j.aeue.2019.153040_b0560) 2017; 65 Bar-Cohen (10.1016/j.aeue.2019.153040_b0870) 2013; 4 10.1016/j.aeue.2019.153040_b0325 Xia (10.1016/j.aeue.2019.153040_b0660) 2016; 64 Kalyan (10.1016/j.aeue.2019.153040_b0465) 2018 Dar (10.1016/j.aeue.2019.153040_b0040) 2015; 33 Chen (10.1016/j.aeue.2019.153040_b0910) 2014; 61 Lee (10.1016/j.aeue.2019.153040_b0920) 2000 Chi (10.1016/j.aeue.2019.153040_b0245) 2013 Lin (10.1016/j.aeue.2019.153040_b0980) 2017; 11 Park (10.1016/j.aeue.2019.153040_b0430) 2007; 55 Pang (10.1016/j.aeue.2019.153040_b0505) 2015; 63 Ciccognani (10.1016/j.aeue.2019.153040_b0110) 2008; 44 10.1016/j.aeue.2019.153040_b0330 Watanabe (10.1016/j.aeue.2019.153040_b0745) 2015; 63 Baliga (10.1016/j.aeue.2019.153040_b0055) 1989; 10 Flack (10.1016/j.aeue.2019.153040_b0080) 2016; 45 Cwiklinski (10.1016/j.aeue.2019.153040_b0690) 2018; 1–12 Moon (10.1016/j.aeue.2019.153040_b0795) 2011; 59 Sakata (10.1016/j.aeue.2019.153040_b0785) 2017 Kang (10.1016/j.aeue.2019.153040_b0300) 2008; 56 Lee (10.1016/j.aeue.2019.153040_b0435) 2017; 65 Chen (10.1016/j.aeue.2019.153040_b0650) 2017; 65 Moon (10.1016/j.aeue.2019.153040_b0415) 2011; 59 Piersanti (10.1016/j.aeue.2019.153040_b0985) 2018; 60 Jain (10.1016/j.aeue.2019.153040_b0045) 2014; 29 Felbinger (10.1016/j.aeue.2019.153040_b0965) 2007; 28 He (10.1016/j.aeue.2019.153040_b0895) 2014; 11 Jee (10.1016/j.aeue.2019.153040_b0495) 2015; 63 Rubio (10.1016/j.aeue.2019.153040_b0500) 2018; 66 Jung (10.1016/j.aeue.2019.153040_b0645) 2009; 57 Yang (10.1016/j.aeue.2019.153040_b0405) 2003; 13 Kleine-Ostmann (10.1016/j.aeue.2019.153040_b0010) 2011; 32 10.1016/j.aeue.2019.153040_b0670 Gustafsson (10.1016/j.aeue.2019.153040_b0610) 2016 Xia (10.1016/j.aeue.2019.153040_b0515) 2016; 64 |
References_xml | – volume: 1–1 year: 2018 ident: b0240 article-title: Design realization and tests of a space-borne GaN solid state power amplifier for second generation galileo navigation system publication-title: IEEE Trans Aerosp Electron Syst – volume: 45 start-page: 2673 year: 2016 end-page: 2682 ident: b0080 article-title: GaN technology for power electronic applications: a review publication-title: J Electron Mater – volume: 65 start-page: 5203 year: 2017 end-page: 5211 ident: b0530 article-title: Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network publication-title: IEEE Trans Microw Theory Techn – volume: 42 start-page: 2130 year: 2007 end-page: 2136 ident: b0340 article-title: A GaN HEMT Class F amplifier at 2 GHz with publication-title: IEEE J Solid-State Circuits – volume: 23 start-page: 34 year: 2013 end-page: 36 ident: b0590 article-title: 7 GHz MMIC GaN doherty power amplifier with 47 percent efficiency at 7 dB output back-off publication-title: IEEE Microwave Wirel Compon Lett – volume: 7 start-page: 42 year: 2006 end-page: 50 ident: b0410 article-title: The Doherty power amplifier publication-title: IEEE Microw Mag – volume: 13 start-page: 370 year: 2003 end-page: 372 ident: b0405 article-title: A microwave Doherty amplifier employing envelope tracking tech- nique for high efficiency and linearity publication-title: IEEE Microwave Wireless Compon Lett – volume: 64 start-page: 4505 year: 2016 end-page: 4517 ident: b0545 article-title: A broadband doherty power amplifier based on continuous-mode technology publication-title: IEEE Trans Microw Theory Tech – reference: MAAP-011170 datasheet. – volume: 41 start-page: 2241 year: 2006 end-page: 2247 ident: b0635 article-title: A 2.8-W Q-band high-efficiency power amplifier publication-title: IEEE J Solid-State Circuits – volume: 32 start-page: 143 year: 2011 end-page: 171 ident: b0010 article-title: A review on terahertz communications research publication-title: J Infrared, Millimeter, Terahertz Waves – volume: 1–1 year: 2018 ident: b0260 article-title: Impacts of crest factor reduction and digital predistortion on linearity and power efficiency of power amplifiers publication-title: IEEE Trans Circuits Syst II Express Briefs – volume: 17 start-page: 154 year: 2007 end-page: 156 ident: b0640 article-title: A compact 6.5-W PHEMT MMIC power amplifier for Ku-band applications publication-title: IEEE Microwave Wireless Compon Lett – volume: 62 start-page: 537 year: 2015 end-page: 553 ident: b0525 article-title: Broadband Doherty power amplifier based on asymmetric load matching networks publication-title: IEEE Trans Circuits Syst II, Express Briefs – volume: 66 start-page: 3306 year: 2018 end-page: 3314 ident: b0750 article-title: A compact ultrabroadband stacked traveling- wave GaN on Si power amplifier publication-title: IEEE Trans Microw Theory Tech – reference: Camarchia V, Rubio JJM, Pirola M, Quaglia R, Colanto- nio P, Giannini F, et al., High-efficiency 7 GHz Doherty GaN MMIC power amplifiers for microwave backhaul radio links. IEEE Trans Electron Devices, 60(10), October 2013. p. 3592–5. – reference: TGA2701-SM datasheet. – volume: 78 start-page: 210 year: 2015 end-page: 223 ident: b0175 article-title: Unique model of polarization engineered AlGaN/GaN based HEMTs for high power applications publication-title: Superlattices Microstruct – reference: Nirmal D, Varughese SB, Joy D, Princess F, Kumar PV. Design and simulation of AlGaN/GaN HFET. In: 2012 international conference on devices, circuits and systems (ICDCS); 2012. doi:10.1109/icdcsyst.2012.6188704. – reference: George A, Nirmal D, Prajoon P, Mathew A. Design and simulation of Schottky-source/drain GaN/AlGaN HEMTs for break- down voltage improvement. In: 2014 international conference on electronics and communication systems (ICECS); 2014. doi:10.1109/ecs.2014.6892781. – volume: 59 start-page: 3463 year: 2011 end-page: 3473 ident: b0795 article-title: A multimode/multiband envelope tracking transmitter with broadband saturated amplifier publication-title: IEEE Trans Microw Theory Tech – volume: 1–13 year: 2019 ident: b0675 article-title: A dual-band dual-output power amplifier for carrier aggregation publication-title: IEEE Trans Microw Theory Tech – volume: 62 start-page: 571 year: 2015 end-page: 579 ident: b0710 article-title: Envelope tracked pulse gate modulated GaN HEMT power amplifier for wireless transmitters publication-title: IEEE Trans Circuits Syst I Regul Pap – volume: 57 start-page: 2105 year: 2009 end-page: 2113 ident: b0645 article-title: Design optimization and DPD linearization of GaN-based unsymmetrical doherty power amplifiers for 3G multicarrier applications publication-title: IEEE Trans Microw Theory Tech – volume: 72 start-page: 24 year: 2018 end-page: 31 ident: b0775 article-title: Envelope-tracking common-drain CMOS power amplifier with a switching-only supply modula- tor for LTE applications publication-title: Microelectron J – volume: 104 start-page: 083513 year: 2014 ident: b0960 article-title: Low thermal resistance GaN-on-diamond tran- sistors characterized by three-dimensional Raman thermography mapping publication-title: Appl Phys Lett – reference: Micovic M, Kurdoghlian A, Moyer HP, Hashimoto P, Schmitz A, Milosavljevic I, et al. GaN MMIC technology for microwave and millimeter-wave applications. In: IEEE compound semiconductor integrated circuit symposium, 2005. CSIC ’05; 2005. doi:10.1109/csics.2005.1531801. – volume: 1–8 year: 2018 ident: b0725 article-title: Highly efficient asymmetric class-F/F GaN doherty amplifier publication-title: IEEE Trans Microw Theory Tech – volume: 22 start-page: 457 year: 2001 end-page: 459 ident: b0195 article-title: AlGaN/AlN/GaN high-power microwave HEMT publication-title: IEEE Electron Device Lett – volume: 66 start-page: 1319 year: 2018 end-page: 1327 ident: b0500 article-title: Design of an 87% fractional bandwidth Doherty power amplifier supported by a simplified bandwidth estimation method publication-title: IEEE Trans Microw Theory Techn – volume: 61 start-page: 533 year: 2013 end-page: 542 ident: b0575 article-title: A modified doherty power amplifier with extended bandwidth and reconfigurable efficiency publication-title: IEEE Trans Microw Theory Tech – start-page: 374 year: 2018 end-page: 384 ident: b0020 article-title: High efficiency power amplifiers for mobile base stations: recent trends and future prospects for 5G publication-title: IEICE Trans Fundam Electron, Commun Comput Sci – volume: 56 start-page: 1582 year: 2008 end-page: 1591 ident: b0420 article-title: A High-efficiency 100-W GaN three-way doherty amplifier for base-station applications publication-title: IEEE Trans Microw Theory Tech – volume: 62 start-page: 533 year: 2015 end-page: 537 ident: b0665 article-title: Broadband doherty power amplifier based on asymmetric load matching networks publication-title: IEEE Trans Circuits Syst II Express Briefs – volume: 65 start-page: 2715 year: 2018 end-page: 2725 ident: b0705 article-title: Wideband techniques for outphasing power amplifiers publication-title: IEEE Trans Circuits Syst I Regul Pap – volume: 60 start-page: 3201 year: 2012 end-page: 3213 ident: b0470 article-title: A modified Doherty configuration for broadband amplification using symmetrical devices publication-title: IEEE Trans Microw Theory Techn – volume: 421–457 year: 2014 ident: b0860 article-title: Towards embedded cooling - gen 3 thermal packaging technology publication-title: WSPC Series Adv Integration Packaging – reference: Saad P, Nemati HM, Thorsell M, Andersson K, Fager C. An inverse class-F GaN HEMT power amplifier with 78, doi: 10.23919/EUMC.2009.5296560. – volume: 51 start-page: 986 year: 2003 end-page: 993 ident: b0425 article-title: A fully matched N-way Doherty amplifier with optimized linearity publication-title: IEEE Trans Microw Theory Techn – reference: Satoh T, Osawa K, Nitta A. GaN HEMT for space applications. 2018 IEEE BiCMOS and compound semiconductor integrated circuits and technology symposium (BCICTS); 2018. doi:10.1109/bcicts.2018.8551070. – volume: 36 start-page: 1109 year: 2011 end-page: 1114 ident: b0030 article-title: Energy and environmental aspects of mobile communication systems publication-title: Energy – volume: 1–9 year: 2018 ident: b0380 article-title: De- sign of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications publication-title: IEEE Trans Microw Theory Tech – volume: 59 start-page: 143 year: 2011 end-page: 152 ident: b0415 article-title: Efficiency enhancement of Doherty amplifier through mitigation of the knee voltage effect publication-title: IEEE Trans Microw Theory Techn – volume: 99 start-page: 325 year: 2019 end-page: 330 ident: b0155 article-title: Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications publication-title: AEU - Int J Electron Commun – volume: 9 start-page: 277 year: 1999 end-page: 279 ident: b0215 article-title: 1–8-GHz GaN-based power amplifier using flip-chip bonding publication-title: IEEE Microwave Guided Wave Lett – volume: 1–10 year: 2018 ident: b0490 article-title: Linearity-enhanced doherty power amplifier using output combining network with prede- fined AM-PM characteristics publication-title: IEEE Trans Microw Theory Tech – volume: 1–1 year: 2019 ident: b0060 article-title: On the techniques to utilize SiC power devices in high- and very high-frequency power converters publication-title: IEEE Trans Power Electron – year: 2014 ident: b0955 article-title: Diamond for enhanced GaN device perfor- mance publication-title: Fourteenth Intersociety Conference on Thermal and Thermomechan- ical Phenomena in Electronic Systems (ITherm) – volume: 56 start-page: 2416 year: 2010 end-page: 2420 ident: b0350 article-title: A low complexity partial transmit sequence scheme by use of dummy signals for PAPR reduction in OFDM systems publication-title: IEEE Trans Consum Electron – volume: 85 start-page: 5400 year: 2004 end-page: 5402 ident: b0190 article-title: High sheet charge carrier density AlInNGaN field effect transistors on Si(111) publication-title: Appl Phys Lett – reference: Tu¨lek R, Ilgaz A, G¨okden S, Teke A, O¨ ztu¨rk MK, Kasap M, et al. Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures. J Appl Phys 2009;105(1): 013707. doi:10.1063/1.2996281. – reference: Meharry DE, Lender RJ, Chu K, Gunter LL, Beech KE. Multi-watt wideband MMICs in GaN and GaAs. In: 2007 IEEE/MTT-S international microwave symposium; 2007. doi:10.1109/mwsym.2007.379980. – reference: Boles T. GaN-on-silicon present challenges and future opportunities. In: 2017 12th european microwave integrated circuits conference (EuMIC); 2017. doi:10.23919/eumic.2017.8230650. – volume: 52 start-page: 1767 year: 2005 end-page: 1774 ident: b0315 article-title: New high-efficiency 2.5 V/0.45 W RWDM class-D audio amplifier for portable consumer electronics publication-title: IEEE Trans Circuits Syst I: Regular Papers – volume: 8 start-page: 99 year: 2019 ident: b0685 article-title: An X-band 40 W power amplifier GaN MMIC design by using equivalent output impedance model publication-title: Electronics – reference: Huynh H, Kim K, Nah W, Kim S. EMC/EMI verification methodology for semi-custom design. In: Proc. Asia-Pacific symp electro-magn compat; 2013. p. 1–4. – volume: 68 year: 2014 ident: b0005 article-title: Development of wideband power amplifier for RF/microwave front-end subsystem publication-title: Jurnal Teknologi – volume: 65 start-page: 860 year: 2017 end-page: 871 ident: b0650 article-title: Multiobjective Bayesian optimization for active load modulation in a broadband 20- W GaN Doherty power amplifier design publication-title: IEEE Trans Microw Theory Tech – volume: 53 start-page: 292 year: 2005 end-page: 300 ident: b0555 article-title: A highly efficient Doherty feedforward linear power amplifier for W-CDMA base-station applications publication-title: IEEE Trans Microw Theory Tech – volume: 63 start-page: 559 year: 2015 end-page: 571 ident: b0565 article-title: The Doherty power amplifier: review of recent solutions and trends publication-title: IEEE Trans Microw Theory Tech – volume: 11 start-page: 655 year: 2017 end-page: 665 ident: b0980 article-title: Design and appli- cation of a mobile miniature current probe for analysing the cause of EMI noise in IC circuits publication-title: IET Sci Meas Technol – start-page: 65 year: 2009 end-page: 76 ident: b0540 article-title: Practical waveform engineering publication-title: IEEE Microw Mag – reference: Motoi K, Wentzel A, Tanio M, Hori S, Hayakawa M, Heinrich W, et al. Digital doherty transmitter with envelope modulated class-D GaN power amplifier for 800 MHz band. 2014 IEEE MTT-S international microwave symposium (IMS2014); 2014. doi:10.1109/mwsym.2014.6848280. – volume: 108 start-page: 189 year: 2019 end-page: 194 ident: b0135 article-title: Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications publication-title: AEU - Int J Electron Commun – volume: 51 start-page: 986 year: 2003 end-page: 993 ident: b0550 article-title: A fully matched N-way doherty amplifier with optimized linearity publication-title: IEEE Trans Microw Theory Tech – volume: 52 start-page: 159 year: 2004 end-page: 165 ident: b0820 article-title: A robust digital baseband predistorter constructed using memory polynomials publication-title: IEEE Trans Commun – volume: 4 start-page: 020907 year: 2013 ident: b0870 article-title: Gen-3 thermal management technology: role of microchannels and nanostructures in an embedded cooling paradigm publication-title: J Nanotechnol Eng Med – volume: 22 start-page: 523 year: 1975 end-page: 533 ident: b0265 article-title: Optimum gain-bandwidth limitations of transistor amplifiers as reactively constrained active two-port networks publication-title: IEEE Trans Circuits Syst – volume: 106 start-page: 023535 year: 2009 ident: b0130 article-title: Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures publication-title: J Appl Phys – volume: 55 start-page: 393 year: 2019 end-page: 395 ident: b0250 article-title: Ku- and K-band high-efficiency GaN MMIC HPA chipset for satellite communications publication-title: Electron Lett – volume: 63 start-page: 4406 year: 2015 end-page: 4414 ident: b0730 article-title: A broadband GaN pHEMT power amplifier using non-foster matching publication-title: IEEE Trans Microw Theory Tech – volume: 60 start-page: 1764 year: 2012 end-page: 1783 ident: b0065 article-title: A review of GaN on SiC high electron-mobility power transistors and MMICs publication-title: IEEE Trans Microw Theory Tech – volume: 22 start-page: 313 year: 2014 end-page: 325 ident: b0760 article-title: Energy management through optimized routing and device pow- ering for greener communication networks publication-title: IEEE/ACM Trans Networking – volume: 98 start-page: 1151 year: 2010 end-page: 1161 ident: b0940 article-title: GaN power transistors on Si substrates for switching applications publication-title: Proc IEEE – volume: 7 start-page: 301 year: 2007 end-page: 306 ident: b0975 article-title: A methodology for predicting by near field chip to chip coupling publication-title: EMC Compo – volume: 47 start-page: 2298 year: Oct. 2008 end-page: 2308 ident: b0770 article-title: Design of a 4-W envelope tracking power amplifier with more than one octave carrier bandwidth publication-title: IEEE J. Solid-State Circuits – start-page: 963 year: 2000 end-page: 965 ident: b0915 article-title: 14 W GaN-based microwave power amplifiers publication-title: IEEE MTT-S Int Microwave Symp Dig – reference: Guggenheim R, Rodes L. Roadmap review for cooling high-power GaN HEMT devices. In: 2017 IEEE international conference on microwaves, antennas, communications and electronic systems (COMCAS); 2017. – volume: 1 start-page: 181 year: 2016 end-page: 195 ident: b0880 article-title: Near- junction microfluidic cooling for wide bandgap devices publication-title: MRS Adv – reference: Ciccognani W, Limiti E, Longhi PE, Mitrano C, Nanni A, Peroni M. An ultra-broadband robust LNA for defence applications in AlGaN/GaN technology. Microwave symposium digest (MTT), 2010 IEEE MTT-S international, pp. 493,496, 23-28 May 2010. doi: 10.1109/MWSYM.2010.5518253. – volume: 109 start-page: 519 year: 2017 end-page: 537 ident: b0140 article-title: A survey of gallium nitride HEMT for RF and high power applications publication-title: Superlattices Microstruct – volume: 63 start-page: 572 year: 2015 end-page: 579 ident: b0745 article-title: A miniature broadband doherty power amplifier with a series-connected load publication-title: IEEE Trans Microw Theory Tech – volume: 2012 year: 2012 ident: b0855 article-title: Advanced thermal management technologies for defense electronics publication-title: Defense Transformation Net-Centric Syst – reference: Kang H, Lee H, Lee W, Oh H, Lim W, Koo H, et al., Octave bandwidth doherty power amplifier using multiple reso- nance circuit for the peaking amplifier. IEEE Trans Circuits Syst I: Regular Papers; 2018. p. 1–11.doi:10.1109/tcsi.2018.2869905. – volume: 65 start-page: 5203 year: 2017 end-page: 5211 ident: b0560 article-title: Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network publication-title: IEEE Trans Microw Theory Tech – volume: 61 start-page: 1229 year: 2014 end-page: 1240 ident: b0455 article-title: Electronically tunable Doherty power amplifier for multi-mode multi-band base stations publication-title: IEEE Trans Circuits Syst I, Reg Papers – volume: 64 start-page: 862 year: 2017 end-page: 866 ident: b0720 article-title: Symmetric three-way doherty power amplifier for high efficiency and linearity publication-title: IEEE Trans Circuits Syst II Express Briefs – volume: 63 start-page: 3595 year: 2015 end-page: 3607 ident: b0800 article-title: Power adaptive digital pre- distortion for wideband RF power amplifiers with dynamic power transmission publication-title: IEEE Trans Microw Theory Tech – reference: Kenington B, Peter. Linearised RF amplifier and transmitter techniques; 1998. 8pp. – volume: 43 start-page: 1459 year: 1999 end-page: 1464 ident: b0100 article-title: SiC and GaN wide bandgap semi- conductor materials and devices publication-title: Solid-State Electron – volume: 63 start-page: 12 year: 2016 end-page: 22 ident: b0335 article-title: High-efficiency class-E power amplifier with shunt capacitance and shunt filter publication-title: IEEE Trans Circuits Syst I Regul Pap – volume: 61 start-page: 922 year: 2013 end-page: 930 ident: b0580 article-title: A wideband and compact GaN MMIC doherty amplifier for microwave link applications publication-title: IEEE Trans Microw Theory Tech – reference: . – start-page: 549 year: 2000 end-page: 552 ident: b0920 article-title: Demonstra- tion of a high efficiency nonuniform monolithic gallium-nitride distributed amplifier publication-title: IEEE MTT-S Int Microwave Symp Dig – start-page: 1 year: 2019 end-page: 11 ident: b0390 article-title: A compact dual-band digital polar doherty power amplifier using parallel-combining transformer publication-title: IEEE J Solid-State Circuits – reference: Won Y, Cho J, Agonafer D, Asheghi M, Goodson KE. Fundamental cooling limits for high power density GaN electronics. IEEE Transactions on Components, Packaging, and Manufacturing Technology, In preparation. – volume: 63 start-page: 2399 year: 2015 end-page: 2410 ident: b0680 article-title: Bandwidth enhance- ment of three-stage doherty power amplifier using symmetric devices publication-title: IEEE Trans Microw Theory Tech – volume: 62 start-page: 1352 year: 2014 end-page: 1362 ident: b0765 article-title: Analysis of envelope-tracking power amplifier using mathematical modeling publication-title: IEEE Trans Microw Theory Tech – volume: 61 start-page: 4056 year: 2014 end-page: 4061 ident: b0850 article-title: A numerical study on comparing the active and passive cooling of Al- GaN/GaN HEMTs publication-title: IEEE Trans Electron Devices – volume: 2018 start-page: 1 year: 2018 end-page: 16 ident: b0015 article-title: A review of 5G power amplifier design at cm-wave and mm-wave frequencies publication-title: Wireless Commun Mobile Comput – volume: 14 start-page: 3399 year: 2002 end-page: 3434 ident: b0125 article-title: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures publication-title: J Phys: Condens Matter – volume: 49 start-page: 1200 year: 2009 end-page: 1206 ident: b0210 article-title: GaN HEMT reliability publication-title: Microelectron Reliability – volume: 29 start-page: 3852 year: 2014 end-page: 3863 ident: b0045 article-title: A review of high-frequency power distribution systems: for space, telecommunication, and computer applications publication-title: IEEE Trans Power Electron – reference: Mrad R, et al., Integrated class-D audio amplifier virtual test for output EMI filter performance to cite this version: Integrated class-D audio amplifier virtual test for output EMI filter performance, in: 9th Conf. Ph.D. Res. Microelect. Electron.; 2013. p. 73–6. – volume: 3 start-page: 135 year: 2009 end-page: 142 ident: b0270 article-title: Development of ultra wideband, high efficiency, distributed power amplifiers using discrete GaN HEMTs publication-title: IET Circuits Devices Syst – volume: 65 start-page: 4947 year: 2017 end-page: 4952 ident: b0695 article-title: Second harmonic treatment technique for bandwidth enhancement of GaN HEMT amplifier with harmonic reactive terminations publication-title: IEEE Trans Microw Theory Tech – volume: 33 start-page: 1044 year: 2015 end-page: 1053 ident: b0040 article-title: Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation publication-title: J Lightwave Technol – volume: 50 start-page: 547 year: 2002 end-page: 563 ident: b0295 article-title: On the design and efficiency of class A, B, AB, G, and H audio power amplifier output stages publication-title: J Audio Eng Soc Audio Eng Soc – volume: 61 start-page: 564 year: 2019 end-page: 571 ident: b1015 article-title: High-frequency electromagnetic simulation and optimization for GaN-HEMT power amplifier IC publication-title: IEEE Trans Electromagn Compatibility – volume: 47 start-page: 209 year: 1998 end-page: 215 ident: b0825 article-title: Amplifier linearization using RF feedback and feedforward techniques publication-title: IEEE Trans Veh Technol – reference: Coffey M, MomenRoodaki P, Zai A, Popovic Z. A 4.2-W 10-GHz GaN MMIC doherty power amplifier. In: IEEE compound semicon- ductor integrated circuit symposium, October 2015. p. 1–4. – volume: 64 start-page: 2014 year: 2016 end-page: 2024 ident: b0515 article-title: A broadband high-efficiency doherty power amplifier with integrated compensating reactance publication-title: IEEE Trans Microw Theory Techn – reference: Pandit PP, Arivazhagan L, Prajoon P, Rajkumar J, Ajayan J, Nirmal D. DC Performance analysis of AlGaN/GaN HEMT for future high power applications. In: 2018 4th international conference on devices, circuits and systems (ICDCS). doi:10.1109/icdcsyst.2018.8605071. – volume: 41 start-page: 1555 year: 1997 end-page: 1559 ident: b0075 article-title: GaN based heterostructure for high power devices publication-title: Solid-State Electron – reference: Bensmida S, Hammi O, Ghannouchi FM. High efficiency digitally linearized GaN based power amplifier for 3G applications. In: 2008 IEEE radio and wireless symposium; 2008. doi:10.1109/rws.2008.4463518. – volume: 56 start-page: R10024 year: 1997 end-page: R10027 ident: b0090 article-title: Spontaneous polarization and piezoelectric constants of III-V nitrides publication-title: Phys Rev B – reference: Nair PP, Nirmal D. Gate recessed GaN based HEMT with Si3N4 passivation for microwave applications. In: 2016 international conference on inventive computation technologies (ICICT); 2016. – volume: 64 start-page: 862 year: 2017 end-page: 866 ident: b0445 article-title: Symmetric three-way Doherty power amplifier for high efficiency and linearity publication-title: IEEE Trans Circuits Syst II, Exp Briefs – volume: 98 start-page: 181 year: 2019 end-page: 190 ident: b0475 article-title: A new design procedure for wide band Doherty power amplifiers publication-title: AEU - Int J Electron Commun – volume: 64 start-page: 2014 year: 2016 end-page: 2024 ident: b0660 article-title: A broadband high- efficiency doherty power amplifier with integrated compensating reactance publication-title: IEEE Trans Microw Theory Tech – volume: 65 start-page: 860 year: 2017 end-page: 871 ident: b0485 article-title: Multiobjective Bayesian optimization for active load modulation in a broadband 20-W GaN Doherty power amplifier design publication-title: IEEE Trans Microw Theory Techn – volume: 86 start-page: 1 year: 2015 end-page: 19 ident: b0050 article-title: A review of InP/InAlAs/InGaAs based transistors for high frequency applications publication-title: Superlattices Microstruct – volume: 44 start-page: 911 year: 2008 end-page: 912 ident: b0110 article-title: High-power monolithic AlGaN/GaN HEMT switch for X-band applications publication-title: Electron Lett – volume: 3 start-page: 79 year: 2013 end-page: 85 ident: b0950 article-title: Improved thermal interfaces of GaN–diamond composite substrates for HEMT applications publication-title: IEEE Trans Compon, Packaging Manuf Technol – volume: 53 start-page: 229 year: 2005 end-page: 237 ident: b0830 article-title: A hybrid digital/RF envelope predistortion linearization system for power amplifiers publication-title: IEEE Trans Microw Theory Tech – volume: 7 start-page: 1305 year: 2017 end-page: 1312 ident: b0890 article-title: Self- consistent electrothermal modeling of passive and microchannel cooling in AlGaN/GaN HEMTs publication-title: IEEE Trans Compon Packag Manuf Technol – volume: 1–15 year: 2019 ident: b0275 article-title: A mixed topology for broadband high-efficiency Doherty power am 4plifier publication-title: IEEE Trans Microw Theory Tech – volume: 10 start-page: 455 year: 1989 end-page: 457 ident: b0055 article-title: Power semiconductor device figure of merit for high-frequency applications publication-title: IEEE Electron Device Lett – year: 2013 ident: b0245 article-title: L-band high efficiency GaN HEMT power amplifier for space application publication-title: IET international radar conference 2013 – volume: 65 start-page: 4190 year: 2017 end-page: 4197 ident: b0440 article-title: Doherty power amplifier based on the fundamental current ratio for asymmetric cells publication-title: IEEE Trans MicrowTheory Techn – volume: 60 start-page: 196 year: 2018 end-page: 201 ident: b0985 article-title: Near-field shielding performances of absorbing materials for integrated circuits (IC) applications Part I: Lateral excitation publication-title: IEEE Trans Electromagn Compat – year: 2018 ident: b0465 article-title: A digitally assisted dual-input dual-band doherty power amplifier with enhanced efficiency and linearity publication-title: IEEE Trans Circuits Syst II: Express Briefs – volume: 40 start-page: 645 year: 1993 end-page: 655 ident: b0930 article-title: Comparison of 6H-SiC, 3C-SiC, and Si for power devices publication-title: IEEE Trans Electron Devices – volume: 58 start-page: 2598 year: 2010 end-page: 2608 ident: b0355 article-title: A multimode/multiband power amplifier with a boosted supply modulator publication-title: IEEE Trans Microw Theory Tech – volume: 56 start-page: 77 year: 2008 end-page: 87 ident: b0300 article-title: A highly efficient and linear class-AB/F power amplifier for multi- mode operation publication-title: IEEE Trans Microw Theory Tech – volume: 39 start-page: 1598 year: 2004 end-page: 1604 ident: b0370 article-title: Multiband cellular RF solutions publication-title: IEEE J Solid-State Circuits – reference: Diaz MA, Courville N, Mosquera C, Liva G, Corazza GE. Non-linear interference mitigation for broadband multimedia satellite systems. In: 2007 International workshop on satellite and space communications; 2007. doi:10.1109/iwssc.2007.4409391. – reference: Altman DH, Gupta A, Tyhach M. Development of a diamond microfluidics-based intra-chip cooling technology for GaN. Volume 3: advanced fabrication and manufacturing; emerging technology frontiers; energy, health and water- applications of nano-, micro- and mini-scale devices; MEMS and NEMS; technology update talks; ther- mal management using micro channels, jets, sprays; 2015. doi:10.1115/ipack2015-48179. – volume: 1–12 year: 2018 ident: b0395 article-title: Design of boosted supply modulator with reverse current protection for wide battery range in envelope tracking operation publication-title: IEEE Trans Microwave Theory Tech – volume: 96 start-page: 287 year: 2008 end-page: 305 ident: b0935 article-title: GaN- based RF power devices and amplifiers publication-title: Proc IEEE – volume: 54 start-page: 3848 year: 2006 end-page: 3856 ident: b0400 article-title: High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs publication-title: IEEE Trans Microw Theory Tech – volume: 28 start-page: 948 year: 2007 end-page: 950 ident: b0965 article-title: Comparison of GaN HEMTs on diamond and SiC substrates publication-title: IEEE Electron Device Lett – volume: 64 start-page: 4505 year: 2016 end-page: 4517 ident: b0480 article-title: A broadband doherty power amplifier based on continuous-mode technology publication-title: IEEE Trans Microw Theory Techn – year: 2006 ident: b0535 article-title: RF power ampliers for wireless communications – reference: CHA5356-QGG datasheet. – volume: 29 start-page: 376 year: 2016 end-page: 383 ident: b0885 article-title: GaN unleashed: the benefits of mi- crofluidic cooling publication-title: IEEE Trans Semicond Manuf – volume: 66 start-page: 1319 year: 2018 end-page: 1327 ident: b0735 article-title: Design of an 87% fractional bandwidth doherty power amplifier supported by a simplified bandwidth estimation method publication-title: IEEE Trans Microwave Theory Tech – volume: 63 start-page: 4061 year: 2015 end-page: 4071 ident: b0505 article-title: A post- matching Doherty power amplifier employing low-order impedance inverters for broadband applications publication-title: IEEE Trans Microw Theory Techn – reference: Sokal NO. (n.d.). RF power amplifiers, classes A through S-how they operate, and when to use each. Professional Program Proceedings. Electronic Industries Forum of New England. doi:10.1109/eif.1997.605386. – volume: 26 start-page: 622 year: 2016 end-page: 624 ident: b0630 article-title: Wideband 5 W Ka-Band GaAs power amplifier publication-title: IEEE Microwave Wirel Compon Lett – volume: 17 start-page: 1742 year: 1999 ident: b0095 article-title: Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures publication-title: J Vacuum Sci Technol B: Microelectron Nanometer Struct – volume: 63 start-page: 337 year: 2016 end-page: 346 ident: b0450 article-title: Bandpass filtering Doherty power amplifier with enhanced efficiency and wideband harmonic suppression publication-title: IEEE Trans Circuits Syst I, Reg Papers – volume: 61 start-page: 1608 year: 2013 end-page: 1619 ident: b0365 article-title: A dual power-mode multi-band power amplifier with envelope tracking for handset applications publication-title: IEEE Trans Microw Theory Tech – volume: 1–12 year: 2018 ident: b0690 article-title: Full W-band GaN power amplifier MMICs using a novel type of broadband radial stub publication-title: IEEE Trans Microwave Theory Tech – start-page: 551 year: 2014 end-page: 554 ident: b1000 article-title: Modeling and comparison of different edge radiation suppression methods in printed circuit boards publication-title: Model Compar Diff Edge – reference: Boutros K, Luo W, Ma Y, Nagy G, Hacker J. 5W GaN MMIC for millimeter-wave applications. 2006 IEEE compound semi- conductor integrated circuit symposium; 2006. doi:10.1109/csics.2006.319922. – volume: 64 start-page: 4491 year: 2016 end-page: 4504 ident: b0700 article-title: A doherty power amplifier design method for improved efficiency and linearity publication-title: IEEE Trans Microw Theory Tech – volume: 45 start-page: 707 year: 1996 end-page: 719 ident: b0810 article-title: Quantization analysis and design of a digital predistortion linearizer for RF power amplifiers publication-title: IEEE Trans Veh Technol – volume: 61 start-page: 1229 year: 2014 end-page: 1240 ident: b0360 article-title: Electronically tunable doherty power amplifier for multi-mode multi-band base stations publication-title: IEEE Trans Circuits Syst I: Regular Papers – volume: 8 start-page: 332 year: 2008 end-page: 343 ident: b0205 article-title: Reliability of GaN high-electron- mobility transistors: state of the art and perspectives publication-title: IEEE Trans Device Mater Reliab – reference: Brown A, Brown K, Chen J, Hwang KC, Kolias N, Scott R. W-band GaN power amplifier MMICs. 2011 IEEE MTT-S international microwave symposium; 2011. doi:10.1109/mwsym.2011.5972571. – volume: 10 start-page: 1237 year: 1992 ident: b0070 article-title: GaN, AlN, and InN: A review publication-title: J Vacuum Sci Technol B: Microelectron Nanometer Struct – volume: 51 start-page: 643 year: 2003 end-page: 652 ident: b0320 article-title: High linearity and high efficiency of class- B power amplifiers in GaN HEMT technology publication-title: IEEE Trans Microwave Theory Tech – reference: Kashif A, Azam S, Mughal F, Cheema NB, Imran M. Two-stage GaN HEMT based class-C pulsed amplifier for S-band radar applications. In: 2015 12th international bhurban conference on applied sciences and technology (IBCAST); 2015. doi:10.1109/ibcast.2015.7058556. – volume: 64 start-page: 1359 year: 2016 end-page: 1372 ident: b0510 article-title: Frequency analysis and multiline implementation of compensated impedance inverter for wideband Doherty high-power amplifier design publication-title: IEEE Trans Microw Theory Techn – start-page: 153 year: 2000 end-page: 156 ident: b0995 article-title: Reduction of radiated emissions from semiconductor by using absorbent materials publication-title: IEEE Int Symp Electromagn Compat – start-page: 1 year: 2017 end-page: 4 ident: b0785 article-title: An 80MHz modulation bandwidth high efficient and multi-band envelope-tracking power amplifier using GaN single-phase buck-converter publication-title: Proc IEEE MTT-S Int Microwave Symp – volume: 64 start-page: 1456 year: 2016 end-page: 1464 ident: b0835 article-title: Power-scalable wideband linearization of power amplifiers publication-title: IEEE Trans Microw Theory Tech – reference: Matin K, Bar-Cohen A, Maurer JJ. Modeling and simulation challenges in embedded two phase cooling: DARPA’s ICE- cool program. Volume 3: advanced fabrication and manufacturing; emerging technology frontiers; energy, health and water- applications of nano- , micro- and mini-scale devices; MEMS and NEMS; technology update talks; thermal management using micro channels, jets, sprays; 2015. doi:10.1115/ipack2015-48334. – volume: 65 start-page: 156 year: 2017 end-page: 164 ident: b0875 article-title: Hybrid integrated microfluidic channels on multilayer organic substrate and on copper for tuning and cooling an RF reconfigurable S-/C-band GaN-based power amplifier publication-title: IEEE Trans Microw Theory Tech – volume: 52 start-page: 484 year: 2010 end-page: 487 ident: b0815 article-title: A wideband digital predistortion for highly linear and efficient GaN HEMT Doherty power amplifier publication-title: Microwave Opt Technol Lett – volume: 65 start-page: 209 year: 2017 end-page: 217 ident: b0435 article-title: Optimized current of the peaking amplifier for two- stage Doherty power amplifier publication-title: IEEE Trans Microw Theory Techn – start-page: 774 year: 2013 end-page: 782 ident: b0790 article-title: A multiband LTE SAW-less CMOS transmitter with source-follower-driven passive mixers, envelope- tracked RF-PGAs, and marchand baluns publication-title: IEICE Trans Electron – volume: 85 start-page: 3222 year: 1999 end-page: 3233 ident: b0085 article-title: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures publication-title: J Appl Phys – volume: 19 start-page: 14 year: 2018 end-page: 28 ident: b0025 article-title: A review of thermal management and innovative cooling strategies for data center publication-title: Sustainable Comput Inf Syst – volume: 62 start-page: 2700 year: 2014 end-page: 2710 ident: b0585 article-title: Linear GaN MMIC combined power amplifiers for 7-GHz microwave back- haul publication-title: IEEE Trans Microw Theory Tech – volume: 60 start-page: 253 year: 2017 end-page: 256 ident: b0280 article-title: Broadband GaN HEMT distributed power amplifier design with phase adjustment publication-title: Microwave Opt Technol Lett – reference: Campbell CF, Tran K, Kao MY, Nayak S. A K-band 5W doherty amplifier MMIC utilizing 0.15m GaN on SiC HEMT technology. In: IEEE compound semiconductor integrated circuit symposium, October 2012. p. 1–4. – volume: 26 start-page: 699 year: 2016 end-page: 701 ident: b0305 article-title: Simple design of a class-J amplifier with predetermined efficiency publication-title: IEEE Microwave Wirel Compon Lett – volume: 63 start-page: 2589 year: 2015 end-page: 2602 ident: b0780 article-title: Envelope tracking of an RF high power amplifier with an 8-level digitally controlled GaN-on-Si supply modulator publication-title: IEEE Trans Microw Theory Tech – volume: 113 start-page: 810 year: 2018 end-page: 820 ident: b0145 article-title: Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application publication-title: Superlattices Microstruct – volume: 55 start-page: 2313 year: 2007 end-page: 2319 ident: b0430 article-title: A new compact load network for Doherty amplifiers using an imperfect quarter-wave line publication-title: IEEE Trans Microw Theory Techn – volume: 59 start-page: 2898 year: 2011 end-page: 2909 ident: b0375 article-title: Digital doherty amplifier with enhanced efficiency and extended range publication-title: IEEE Trans Microwave Theory Tech – volume: 63 start-page: 2802 year: 2015 end-page: 2810 ident: b0495 article-title: Asymmetric broadband doherty power amplifier using GaN MMIC for femto-cell base-station publication-title: IEEE Trans Microw Theory Tech – reference: Giofr‘e R, Colantonio P, Giannini F. GaN broadband power amplifiers for terrestrial and space transmitters. Microwave radar and wireless communications (MIKON), 2012 19th international conference on, vol. 2, no., pp. 605, 609, 21–23 May 2012 doi: 10.1109/MIKON.2012.6233596. – volume: 61 start-page: 4056 year: 2014 end-page: 4061 ident: b0910 article-title: A numerical study on comparing the active and passive cooling of AlGaN/GaN HEMTs publication-title: IEEE Trans Electron Devices – volume: 1–14 year: 2019 ident: b0255 article-title: Efficient X-band transmitter with integrated GaN power amplifier and supply modulator publication-title: IEEE Trans Microw Theory Tech – volume: 60 start-page: 196 year: 2018 end-page: 201 ident: b0990 article-title: Near-field shielding performances of absorbing materials for integrated circuits (IC) applications. Part II: Crossing excitation publication-title: IEEE Trans Electromagn Compat – volume: 9 start-page: 297 year: 1994 end-page: 308 ident: b0290 article-title: Design of high efficiency RF class-D power am- plifier publication-title: IEEE Trans Power Electron – volume: 76 start-page: 236 year: 2019 end-page: 241 ident: b0925 article-title: Thermal stability of GaN thin films grown on (0001) Al2O3, (0112) Al2O3 and (0001)Si 6H-SiC substrates publication-title: J Appl Phys – volume: 66 start-page: 5322 year: 2018 end-page: 5335 ident: b0740 article-title: Analysis and design of a doherty-like RF-input load modulated balanced amplifier publication-title: IEEE Trans Microw Theory Tech – volume: 2 start-page: 476 year: 2008 ident: b0310 article-title: Analysis of a class E power amplifier with series-parallel resonator publication-title: IET Circuits Devices Syst – volume: 46 start-page: 1387 year: 2015 end-page: 1391 ident: b0180 article-title: The influence of high-k passivation layer on breakdown voltage of Schottky AlGaN/GaN HEMTs publication-title: Microelectron J – volume: 64 start-page: 1758 year: 2017 end-page: 1771 ident: b0520 article-title: Broadband efficiency-enhanced mutually coupled harmonic postmatching Doherty power amplifier publication-title: IEEE Trans Circuits Syst I, Reg Papers – volume: 84 year: 2011 ident: b0970 article-title: Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells publication-title: Phys Rev B – volume: 61 start-page: 552 year: 2014 end-page: 561 ident: b0460 article-title: A concur- rent dual-band uneven Doherty power amplifier with frequency-dependent input power division publication-title: IEEE Trans Circuits Syst I, Reg Papers – volume: 63 start-page: 4061 year: 2015 end-page: 4071 ident: b0655 article-title: A post-matching doherty power amplifier employing low-order impedance inverters for broadband applications publication-title: IEEE Trans Microw Theory Tech – volume: 11 start-page: 109 year: 2014 end-page: 114 ident: b0895 article-title: Characterization of leaf-inspired microfluidic chips for pumpless fluid transport publication-title: J Bionic Eng – reference: Mimis K, Morris KA, McGeehan JP. A 2GHz GaN Class-J power amplifier for base station applications. In: 2011 IEEE topical conference on power amplifiers for wireless and radio applications; 2011. – volume: 63 start-page: 3691 year: 2015 end-page: 3700 ident: b0715 article-title: An 85-W multi- octave push-pull GaN HEMT power amplifier for high-efficiency communication applications at microwave frequencies publication-title: IEEE Trans Microwave Theory Tech – reference: Watanabe N, Wong J, Grebenniko A, Nishio G. A high-efficiency 4.35-4.85 GHz Doherty amplifier for base station applications. 2018 Asia-Pacific microwave conference (APMC); 2018. doi:10.23919/apmc.2018.8617418. – reference: Nair PP, Nirmal D, Soman S, Ramya MSA, Jeba IK. Design and simulation of GaN/AlGaN HEMTs with low leakage cur- rent and high ON/OFF current ratio. In: 2013 International mutliconference on automation, computing, communication, control and compressed sensing (iMac4s); 2013. doi:10.1109/imac4s.2013.6526462. – volume: 62 start-page: 3006 year: 2014 end-page: 3016 ident: b0570 article-title: A GaN MMIC modified doherty PA with large bandwidth and reconfigurable efficiency publication-title: IEEE Trans Microw Theory Tech – year: 2016 ident: b0610 article-title: A packaged hybrid doherty PA for microwave links publication-title: Eur Microwave Week – volume: 64 start-page: 1758 issue: 7 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0520 article-title: Broadband efficiency-enhanced mutually coupled harmonic postmatching Doherty power amplifier publication-title: IEEE Trans Circuits Syst I, Reg Papers doi: 10.1109/TCSI.2017.2658689 – year: 2014 ident: 10.1016/j.aeue.2019.153040_b0955 article-title: Diamond for enhanced GaN device perfor- mance publication-title: Fourteenth Intersociety Conference on Thermal and Thermomechan- ical Phenomena in Electronic Systems (ITherm) doi: 10.1109/ITHERM.2014.6892417 – volume: 57 start-page: 2105 issue: 9 year: 2009 ident: 10.1016/j.aeue.2019.153040_b0645 article-title: Design optimization and DPD linearization of GaN-based unsymmetrical doherty power amplifiers for 3G multicarrier applications publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2009.2027076 – ident: 10.1016/j.aeue.2019.153040_b0845 doi: 10.1109/COMCAS.2017.8244734 – volume: 45 start-page: 2673 issue: 6 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0080 article-title: GaN technology for power electronic applications: a review publication-title: J Electron Mater doi: 10.1007/s11664-016-4435-3 – ident: 10.1016/j.aeue.2019.153040_b0115 doi: 10.1109/MWSYM.2010.5518253 – volume: 8 start-page: 99 issue: 1 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0685 article-title: An X-band 40 W power amplifier GaN MMIC design by using equivalent output impedance model publication-title: Electronics doi: 10.3390/electronics8010099 – volume: 64 start-page: 4505 issue: 12 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0545 article-title: A broadband doherty power amplifier based on continuous-mode technology publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2016.2623705 – volume: 1–1 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0060 article-title: On the techniques to utilize SiC power devices in high- and very high-frequency power converters publication-title: IEEE Trans Power Electron – ident: 10.1016/j.aeue.2019.153040_b0165 doi: 10.1109/iMac4s.2013.6526462 – volume: 26 start-page: 699 issue: 9 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0305 article-title: Simple design of a class-J amplifier with predetermined efficiency publication-title: IEEE Microwave Wirel Compon Lett doi: 10.1109/LMWC.2016.2597228 – ident: 10.1016/j.aeue.2019.153040_b0285 doi: 10.1109/EIF.1997.605386 – volume: 63 start-page: 4061 issue: 12 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0655 article-title: A post-matching doherty power amplifier employing low-order impedance inverters for broadband applications publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2015.2495201 – volume: 53 start-page: 292 issue: 1 year: 2005 ident: 10.1016/j.aeue.2019.153040_b0555 article-title: A highly efficient Doherty feedforward linear power amplifier for W-CDMA base-station applications publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2004.839341 – volume: 65 start-page: 5203 issue: 12 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0560 article-title: Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2017.2765632 – volume: 11 start-page: 655 issue: 5 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0980 article-title: Design and appli- cation of a mobile miniature current probe for analysing the cause of EMI noise in IC circuits publication-title: IET Sci Meas Technol doi: 10.1049/iet-smt.2016.0348 – volume: 62 start-page: 571 issue: 2 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0710 article-title: Envelope tracked pulse gate modulated GaN HEMT power amplifier for wireless transmitters publication-title: IEEE Trans Circuits Syst I Regul Pap doi: 10.1109/TCSI.2014.2362311 – ident: 10.1016/j.aeue.2019.153040_b0325 doi: 10.1109/IBCAST.2015.7058556 – ident: 10.1016/j.aeue.2019.153040_b0600 doi: 10.1109/CSICS.2015.7314469 – volume: 65 start-page: 5203 issue: 12 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0530 article-title: Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2017.2765632 – volume: 66 start-page: 1319 issue: 3 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0500 article-title: Design of an 87% fractional bandwidth Doherty power amplifier supported by a simplified bandwidth estimation method publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2017.2767586 – year: 2018 ident: 10.1016/j.aeue.2019.153040_b0465 article-title: A digitally assisted dual-input dual-band doherty power amplifier with enhanced efficiency and linearity publication-title: IEEE Trans Circuits Syst II: Express Briefs – volume: 17 start-page: 154 issue: 2 year: 2007 ident: 10.1016/j.aeue.2019.153040_b0640 article-title: A compact 6.5-W PHEMT MMIC power amplifier for Ku-band applications publication-title: IEEE Microwave Wireless Compon Lett doi: 10.1109/LMWC.2006.890347 – volume: 1–1 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0240 article-title: Design realization and tests of a space-borne GaN solid state power amplifier for second generation galileo navigation system publication-title: IEEE Trans Aerosp Electron Syst – volume: 9 start-page: 297 issue: 3 year: 1994 ident: 10.1016/j.aeue.2019.153040_b0290 article-title: Design of high efficiency RF class-D power am- plifier publication-title: IEEE Trans Power Electron doi: 10.1109/63.311263 – volume: 63 start-page: 2399 issue: 8 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0680 article-title: Bandwidth enhance- ment of three-stage doherty power amplifier using symmetric devices publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2015.2452255 – volume: 60 start-page: 3201 issue: 10 year: 2012 ident: 10.1016/j.aeue.2019.153040_b0470 article-title: A modified Doherty configuration for broadband amplification using symmetrical devices publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2012.2209446 – volume: 61 start-page: 1608 issue: 4 year: 2013 ident: 10.1016/j.aeue.2019.153040_b0365 article-title: A dual power-mode multi-band power amplifier with envelope tracking for handset applications publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2013.2250712 – volume: 1–10 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0490 article-title: Linearity-enhanced doherty power amplifier using output combining network with prede- fined AM-PM characteristics publication-title: IEEE Trans Microw Theory Tech – volume: 44 start-page: 911 issue: 15 year: 2008 ident: 10.1016/j.aeue.2019.153040_b0110 article-title: High-power monolithic AlGaN/GaN HEMT switch for X-band applications publication-title: Electron Lett doi: 10.1049/el:20081170 – volume: 61 start-page: 564 issue: 2 year: 2019 ident: 10.1016/j.aeue.2019.153040_b1015 article-title: High-frequency electromagnetic simulation and optimization for GaN-HEMT power amplifier IC publication-title: IEEE Trans Electromagn Compatibility doi: 10.1109/TEMC.2018.2820202 – ident: 10.1016/j.aeue.2019.153040_b0345 doi: 10.1109/PAWR.2011.5725378 – volume: 62 start-page: 537 issue: 6 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0525 article-title: Broadband Doherty power amplifier based on asymmetric load matching networks publication-title: IEEE Trans Circuits Syst II, Express Briefs – volume: 65 start-page: 209 issue: 1 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0435 article-title: Optimized current of the peaking amplifier for two- stage Doherty power amplifier publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2016.2613050 – volume: 13 start-page: 370 issue: 9 year: 2003 ident: 10.1016/j.aeue.2019.153040_b0405 article-title: A microwave Doherty amplifier employing envelope tracking tech- nique for high efficiency and linearity publication-title: IEEE Microwave Wireless Compon Lett doi: 10.1109/LMWC.2003.817130 – ident: 10.1016/j.aeue.2019.153040_b0185 doi: 10.1109/INVENTIVE.2016.7830142 – volume: 66 start-page: 5322 issue: 12 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0740 article-title: Analysis and design of a doherty-like RF-input load modulated balanced amplifier publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2018.2869571 – volume: 8 start-page: 332 issue: 2 year: 2008 ident: 10.1016/j.aeue.2019.153040_b0205 article-title: Reliability of GaN high-electron- mobility transistors: state of the art and perspectives publication-title: IEEE Trans Device Mater Reliab doi: 10.1109/TDMR.2008.923743 – volume: 22 start-page: 457 issue: 10 year: 2001 ident: 10.1016/j.aeue.2019.153040_b0195 article-title: AlGaN/AlN/GaN high-power microwave HEMT publication-title: IEEE Electron Device Lett doi: 10.1109/55.954910 – volume: 65 start-page: 860 issue: 3 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0485 article-title: Multiobjective Bayesian optimization for active load modulation in a broadband 20-W GaN Doherty power amplifier design publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2016.2636146 – volume: 63 start-page: 2802 issue: 9 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0495 article-title: Asymmetric broadband doherty power amplifier using GaN MMIC for femto-cell base-station publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2015.2442973 – volume: 49 start-page: 1200 issue: 9–11 year: 2009 ident: 10.1016/j.aeue.2019.153040_b0210 article-title: GaN HEMT reliability publication-title: Microelectron Reliability doi: 10.1016/j.microrel.2009.07.003 – volume: 56 start-page: 77 issue: 1 year: 2008 ident: 10.1016/j.aeue.2019.153040_b0300 article-title: A highly efficient and linear class-AB/F power amplifier for multi- mode operation publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2007.911967 – volume: 62 start-page: 2700 issue: 11 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0585 article-title: Linear GaN MMIC combined power amplifiers for 7-GHz microwave back- haul publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2014.2359856 – volume: 33 start-page: 1044 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0040 article-title: Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation publication-title: J Lightwave Technol doi: 10.1109/JLT.2014.2384998 – volume: 61 start-page: 1229 issue: 4 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0360 article-title: Electronically tunable doherty power amplifier for multi-mode multi-band base stations publication-title: IEEE Trans Circuits Syst I: Regular Papers doi: 10.1109/TCSI.2013.2283781 – volume: 63 start-page: 337 issue: 3 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0450 article-title: Bandpass filtering Doherty power amplifier with enhanced efficiency and wideband harmonic suppression publication-title: IEEE Trans Circuits Syst I, Reg Papers doi: 10.1109/TCSI.2016.2515419 – volume: 1–12 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0690 article-title: Full W-band GaN power amplifier MMICs using a novel type of broadband radial stub publication-title: IEEE Trans Microwave Theory Tech – volume: 64 start-page: 1359 issue: 5 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0510 article-title: Frequency analysis and multiline implementation of compensated impedance inverter for wideband Doherty high-power amplifier design publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2016.2549524 – volume: 62 start-page: 3006 issue: 12 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0570 article-title: A GaN MMIC modified doherty PA with large bandwidth and reconfigurable efficiency publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2014.2362136 – volume: 113 start-page: 810 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0145 article-title: Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application publication-title: Superlattices Microstruct doi: 10.1016/j.spmi.2017.12.027 – volume: 22 start-page: 523 issue: 6 year: 1975 ident: 10.1016/j.aeue.2019.153040_b0265 article-title: Optimum gain-bandwidth limitations of transistor amplifiers as reactively constrained active two-port networks publication-title: IEEE Trans Circuits Syst doi: 10.1109/TCS.1975.1084074 – ident: 10.1016/j.aeue.2019.153040_b0625 – ident: 10.1016/j.aeue.2019.153040_b0160 doi: 10.1109/ICDCSyst.2012.6188704 – ident: 10.1016/j.aeue.2019.153040_b0755 doi: 10.23919/EUMC.2009.5296560 – volume: 85 start-page: 3222 issue: 6 year: 1999 ident: 10.1016/j.aeue.2019.153040_b0085 article-title: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures publication-title: J Appl Phys doi: 10.1063/1.369664 – volume: 65 start-page: 156 issue: 1 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0875 article-title: Hybrid integrated microfluidic channels on multilayer organic substrate and on copper for tuning and cooling an RF reconfigurable S-/C-band GaN-based power amplifier publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2016.2614506 – volume: 23 start-page: 34 issue: 1 year: 2013 ident: 10.1016/j.aeue.2019.153040_b0590 article-title: 7 GHz MMIC GaN doherty power amplifier with 47 percent efficiency at 7 dB output back-off publication-title: IEEE Microwave Wirel Compon Lett doi: 10.1109/LMWC.2012.2234090 – volume: 65 start-page: 4190 issue: 11 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0440 article-title: Doherty power amplifier based on the fundamental current ratio for asymmetric cells publication-title: IEEE Trans MicrowTheory Techn doi: 10.1109/TMTT.2017.2701376 – volume: 61 start-page: 533 issue: 1 year: 2013 ident: 10.1016/j.aeue.2019.153040_b0575 article-title: A modified doherty power amplifier with extended bandwidth and reconfigurable efficiency publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2012.2227783 – volume: 64 start-page: 2014 issue: 7 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0660 article-title: A broadband high- efficiency doherty power amplifier with integrated compensating reactance publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2016.2574861 – volume: 1 start-page: 181 issue: 02 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0880 article-title: Near- junction microfluidic cooling for wide bandgap devices publication-title: MRS Adv doi: 10.1557/adv.2016.120 – ident: 10.1016/j.aeue.2019.153040_b0905 – volume: 109 start-page: 519 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0140 article-title: A survey of gallium nitride HEMT for RF and high power applications publication-title: Superlattices Microstruct doi: 10.1016/j.spmi.2017.05.042 – volume: 66 start-page: 1319 issue: 3 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0735 article-title: Design of an 87% fractional bandwidth doherty power amplifier supported by a simplified bandwidth estimation method publication-title: IEEE Trans Microwave Theory Tech doi: 10.1109/TMTT.2017.2767586 – year: 2016 ident: 10.1016/j.aeue.2019.153040_b0610 article-title: A packaged hybrid doherty PA for microwave links publication-title: Eur Microwave Week – year: 2006 ident: 10.1016/j.aeue.2019.153040_b0535 – volume: 60 start-page: 253 issue: 1 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0280 article-title: Broadband GaN HEMT distributed power amplifier design with phase adjustment publication-title: Microwave Opt Technol Lett doi: 10.1002/mop.30950 – ident: 10.1016/j.aeue.2019.153040_b1005 doi: 10.1109/APEMC.2013.7360619 – ident: 10.1016/j.aeue.2019.153040_b0840 doi: 10.1109/RWS.2008.4463518 – volume: 52 start-page: 484 issue: 2 year: 2010 ident: 10.1016/j.aeue.2019.153040_b0815 article-title: A wideband digital predistortion for highly linear and efficient GaN HEMT Doherty power amplifier publication-title: Microwave Opt Technol Lett doi: 10.1002/mop.24951 – volume: 56 start-page: 2416 issue: 4 year: 2010 ident: 10.1016/j.aeue.2019.153040_b0350 article-title: A low complexity partial transmit sequence scheme by use of dummy signals for PAPR reduction in OFDM systems publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2010.5681122 – volume: 59 start-page: 143 issue: 1 year: 2011 ident: 10.1016/j.aeue.2019.153040_b0415 article-title: Efficiency enhancement of Doherty amplifier through mitigation of the knee voltage effect publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2010.2091207 – ident: 10.1016/j.aeue.2019.153040_b0945 doi: 10.23919/EuMIC.2017.8230650 – volume: 106 start-page: 023535 issue: 2 year: 2009 ident: 10.1016/j.aeue.2019.153040_b0130 article-title: Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures publication-title: J Appl Phys doi: 10.1063/1.3184348 – volume: 4 start-page: 020907 issue: 2 year: 2013 ident: 10.1016/j.aeue.2019.153040_b0870 article-title: Gen-3 thermal management technology: role of microchannels and nanostructures in an embedded cooling paradigm publication-title: J Nanotechnol Eng Med doi: 10.1115/1.4023898 – volume: 2 start-page: 476 issue: 6 year: 2008 ident: 10.1016/j.aeue.2019.153040_b0310 article-title: Analysis of a class E power amplifier with series-parallel resonator publication-title: IET Circuits Devices Syst doi: 10.1049/iet-cds:20080096 – volume: 7 start-page: 42 issue: 5 year: 2006 ident: 10.1016/j.aeue.2019.153040_b0410 article-title: The Doherty power amplifier publication-title: IEEE Microw Mag doi: 10.1109/MW-M.2006.247914 – ident: 10.1016/j.aeue.2019.153040_b0200 doi: 10.1109/MWSYM.2007.379980 – volume: 47 start-page: 209 issue: 1 year: 1998 ident: 10.1016/j.aeue.2019.153040_b0825 article-title: Amplifier linearization using RF feedback and feedforward techniques publication-title: IEEE Trans Veh Technol doi: 10.1109/25.661047 – start-page: 1 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0785 article-title: An 80MHz modulation bandwidth high efficient and multi-band envelope-tracking power amplifier using GaN single-phase buck-converter publication-title: Proc IEEE MTT-S Int Microwave Symp – volume: 86 start-page: 1 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0050 article-title: A review of InP/InAlAs/InGaAs based transistors for high frequency applications publication-title: Superlattices Microstruct doi: 10.1016/j.spmi.2015.06.048 – year: 2013 ident: 10.1016/j.aeue.2019.153040_b0245 article-title: L-band high efficiency GaN HEMT power amplifier for space application – volume: 63 start-page: 2589 issue: 8 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0780 article-title: Envelope tracking of an RF high power amplifier with an 8-level digitally controlled GaN-on-Si supply modulator publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2015.2447552 – ident: 10.1016/j.aeue.2019.153040_b0230 doi: 10.1109/CSICS.2006.319922 – ident: 10.1016/j.aeue.2019.153040_b0620 – volume: 3 start-page: 135 issue: 3 year: 2009 ident: 10.1016/j.aeue.2019.153040_b0270 article-title: Development of ultra wideband, high efficiency, distributed power amplifiers using discrete GaN HEMTs publication-title: IET Circuits Devices Syst doi: 10.1049/iet-cds.2008.0339 – volume: 46 start-page: 1387 issue: 12 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0180 article-title: The influence of high-k passivation layer on breakdown voltage of Schottky AlGaN/GaN HEMTs publication-title: Microelectron J doi: 10.1016/j.mejo.2015.04.006 – start-page: 65 year: 2009 ident: 10.1016/j.aeue.2019.153040_b0540 article-title: Practical waveform engineering publication-title: IEEE Microw Mag doi: 10.1109/MMM.2009.934518 – volume: 60 start-page: 1764 issue: 6 year: 2012 ident: 10.1016/j.aeue.2019.153040_b0065 article-title: A review of GaN on SiC high electron-mobility power transistors and MMICs publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2012.2187535 – volume: 62 start-page: 533 issue: 6 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0665 article-title: Broadband doherty power amplifier based on asymmetric load matching networks publication-title: IEEE Trans Circuits Syst II Express Briefs doi: 10.1109/TCSII.2015.2407197 – volume: 61 start-page: 4056 issue: 12 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0850 article-title: A numerical study on comparing the active and passive cooling of Al- GaN/GaN HEMTs publication-title: IEEE Trans Electron Devices doi: 10.1109/TED.2014.2360504 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0015 article-title: A review of 5G power amplifier design at cm-wave and mm-wave frequencies publication-title: Wireless Commun Mobile Comput doi: 10.1155/2018/6793814 – volume: 39 start-page: 1598 issue: 10 year: 2004 ident: 10.1016/j.aeue.2019.153040_b0370 article-title: Multiband cellular RF solutions publication-title: IEEE J Solid-State Circuits doi: 10.1109/JSSC.2004.833558 – volume: 47 start-page: 2298 issue: 10 year: 2008 ident: 10.1016/j.aeue.2019.153040_b0770 article-title: Design of a 4-W envelope tracking power amplifier with more than one octave carrier bandwidth publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2012.2204927 – volume: 3 start-page: 79 issue: 1 year: 2013 ident: 10.1016/j.aeue.2019.153040_b0950 article-title: Improved thermal interfaces of GaN–diamond composite substrates for HEMT applications publication-title: IEEE Trans Compon, Packaging Manuf Technol doi: 10.1109/TCPMT.2012.2223818 – volume: 62 start-page: 1352 issue: 6 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0765 article-title: Analysis of envelope-tracking power amplifier using mathematical modeling publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2014.2321356 – volume: 63 start-page: 12 issue: 1 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0335 article-title: High-efficiency class-E power amplifier with shunt capacitance and shunt filter publication-title: IEEE Trans Circuits Syst I Regul Pap doi: 10.1109/TCSI.2015.2512698 – ident: 10.1016/j.aeue.2019.153040_b0150 doi: 10.1109/ICDCSyst.2018.8605071 – start-page: 1 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0390 article-title: A compact dual-band digital polar doherty power amplifier using parallel-combining transformer publication-title: IEEE J Solid-State Circuits – volume: 68 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0005 article-title: Development of wideband power amplifier for RF/microwave front-end subsystem publication-title: Jurnal Teknologi doi: 10.11113/jt.v68.2955 – ident: 10.1016/j.aeue.2019.153040_b0865 doi: 10.1115/IPACK2015-48334 – ident: 10.1016/j.aeue.2019.153040_b1010 doi: 10.1109/PRIME.2013.6603127 – ident: 10.1016/j.aeue.2019.153040_b0385 doi: 10.23919/APMC.2018.8617418 – volume: 41 start-page: 2241 issue: 10 year: 2006 ident: 10.1016/j.aeue.2019.153040_b0635 article-title: A 2.8-W Q-band high-efficiency power amplifier publication-title: IEEE J Solid-State Circuits doi: 10.1109/JSSC.2006.878102 – volume: 1–14 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0255 article-title: Efficient X-band transmitter with integrated GaN power amplifier and supply modulator publication-title: IEEE Trans Microw Theory Tech – volume: 1–8 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0725 article-title: Highly efficient asymmetric class-F/F GaN doherty amplifier publication-title: IEEE Trans Microw Theory Tech – volume: 1–9 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0380 article-title: De- sign of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications publication-title: IEEE Trans Microw Theory Tech – ident: 10.1016/j.aeue.2019.153040_b0615 – volume: 41 start-page: 1555 issue: 10 year: 1997 ident: 10.1016/j.aeue.2019.153040_b0075 article-title: GaN based heterostructure for high power devices publication-title: Solid-State Electron doi: 10.1016/S0038-1101(97)00104-4 – volume: 1–1 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0260 article-title: Impacts of crest factor reduction and digital predistortion on linearity and power efficiency of power amplifiers publication-title: IEEE Trans Circuits Syst II Express Briefs – volume: 61 start-page: 552 issue: 2 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0460 article-title: A concur- rent dual-band uneven Doherty power amplifier with frequency-dependent input power division publication-title: IEEE Trans Circuits Syst I, Reg Papers doi: 10.1109/TCSI.2013.2268341 – volume: 59 start-page: 2898 issue: 11 year: 2011 ident: 10.1016/j.aeue.2019.153040_b0375 article-title: Digital doherty amplifier with enhanced efficiency and extended range publication-title: IEEE Trans Microwave Theory Tech doi: 10.1109/TMTT.2011.2166122 – start-page: 963 year: 2000 ident: 10.1016/j.aeue.2019.153040_b0915 article-title: 14 W GaN-based microwave power amplifiers publication-title: IEEE MTT-S Int Microwave Symp Dig – volume: 36 start-page: 1109 issue: 2 year: 2011 ident: 10.1016/j.aeue.2019.153040_b0030 article-title: Energy and environmental aspects of mobile communication systems publication-title: Energy doi: 10.1016/j.energy.2010.11.039 – volume: 50 start-page: 547 year: 2002 ident: 10.1016/j.aeue.2019.153040_b0295 article-title: On the design and efficiency of class A, B, AB, G, and H audio power amplifier output stages publication-title: J Audio Eng Soc Audio Eng Soc – volume: 17 start-page: 1742 issue: 4 year: 1999 ident: 10.1016/j.aeue.2019.153040_b0095 article-title: Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures publication-title: J Vacuum Sci Technol B: Microelectron Nanometer Struct doi: 10.1116/1.590818 – volume: 64 start-page: 862 issue: 8 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0445 article-title: Symmetric three-way Doherty power amplifier for high efficiency and linearity publication-title: IEEE Trans Circuits Syst II, Exp Briefs doi: 10.1109/TCSII.2016.2609460 – volume: 1–12 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0395 article-title: Design of boosted supply modulator with reverse current protection for wide battery range in envelope tracking operation publication-title: IEEE Trans Microwave Theory Tech – volume: 14 start-page: 3399 issue: 13 year: 2002 ident: 10.1016/j.aeue.2019.153040_b0125 article-title: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures publication-title: J Phys: Condens Matter – volume: 55 start-page: 2313 issue: 11 year: 2007 ident: 10.1016/j.aeue.2019.153040_b0430 article-title: A new compact load network for Doherty amplifiers using an imperfect quarter-wave line publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2007.907399 – ident: 10.1016/j.aeue.2019.153040_b0105 doi: 10.1109/MIKON.2012.6233596 – volume: 61 start-page: 1229 issue: 4 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0455 article-title: Electronically tunable Doherty power amplifier for multi-mode multi-band base stations publication-title: IEEE Trans Circuits Syst I, Reg Papers doi: 10.1109/TCSI.2013.2283781 – volume: 43 start-page: 1459 issue: 8 year: 1999 ident: 10.1016/j.aeue.2019.153040_b0100 article-title: SiC and GaN wide bandgap semi- conductor materials and devices publication-title: Solid-State Electron doi: 10.1016/S0038-1101(99)00089-1 – volume: 99 start-page: 325 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0155 article-title: Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications publication-title: AEU - Int J Electron Commun doi: 10.1016/j.aeue.2018.12.006 – volume: 42 start-page: 2130 issue: 10 year: 2007 ident: 10.1016/j.aeue.2019.153040_b0340 article-title: A GaN HEMT Class F amplifier at 2 GHz with > 80% PAE publication-title: IEEE J Solid-State Circuits doi: 10.1109/JSSC.2007.904317 – volume: 53 start-page: 229 issue: 1 year: 2005 ident: 10.1016/j.aeue.2019.153040_b0830 article-title: A hybrid digital/RF envelope predistortion linearization system for power amplifiers publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2004.839306 – volume: 22 start-page: 313 issue: 1 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0760 article-title: Energy management through optimized routing and device pow- ering for greener communication networks publication-title: IEEE/ACM Trans Networking doi: 10.1109/TNET.2013.2249667 – volume: 40 start-page: 645 issue: 3 year: 1993 ident: 10.1016/j.aeue.2019.153040_b0930 article-title: Comparison of 6H-SiC, 3C-SiC, and Si for power devices publication-title: IEEE Trans Electron Devices doi: 10.1109/16.199372 – volume: 10 start-page: 1237 issue: 4 year: 1992 ident: 10.1016/j.aeue.2019.153040_b0070 article-title: GaN, AlN, and InN: A review publication-title: J Vacuum Sci Technol B: Microelectron Nanometer Struct doi: 10.1116/1.585897 – volume: 63 start-page: 4061 issue: 12 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0505 article-title: A post- matching Doherty power amplifier employing low-order impedance inverters for broadband applications publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2015.2495201 – volume: 59 start-page: 3463 issue: 12 year: 2011 ident: 10.1016/j.aeue.2019.153040_b0795 article-title: A multimode/multiband envelope tracking transmitter with broadband saturated amplifier publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2011.2170580 – ident: 10.1016/j.aeue.2019.153040_b0120 doi: 10.1063/1.2996281 – volume: 56 start-page: R10024 issue: 16 year: 1997 ident: 10.1016/j.aeue.2019.153040_b0090 article-title: Spontaneous polarization and piezoelectric constants of III-V nitrides publication-title: Phys Rev B doi: 10.1103/PhysRevB.56.R10024 – volume: 45 start-page: 707 issue: 4 year: 1996 ident: 10.1016/j.aeue.2019.153040_b0810 article-title: Quantization analysis and design of a digital predistortion linearizer for RF power amplifiers publication-title: IEEE Trans Veh Technol doi: 10.1109/25.543741 – volume: 66 start-page: 3306 issue: 7 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0750 article-title: A compact ultrabroadband stacked traveling- wave GaN on Si power amplifier publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2018.2828434 – start-page: 551 year: 2014 ident: 10.1016/j.aeue.2019.153040_b1000 article-title: Modeling and comparison of different edge radiation suppression methods in printed circuit boards publication-title: Model Compar Diff Edge – volume: 98 start-page: 181 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0475 article-title: A new design procedure for wide band Doherty power amplifiers publication-title: AEU - Int J Electron Commun doi: 10.1016/j.aeue.2018.11.021 – volume: 84 issue: 8 year: 2011 ident: 10.1016/j.aeue.2019.153040_b0970 article-title: Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells publication-title: Phys Rev B doi: 10.1103/PhysRevB.84.085317 – volume: 98 start-page: 1151 issue: 7 year: 2010 ident: 10.1016/j.aeue.2019.153040_b0940 article-title: GaN power transistors on Si substrates for switching applications publication-title: Proc IEEE doi: 10.1109/JPROC.2009.2034397 – volume: 65 start-page: 2715 issue: 9 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0705 article-title: Wideband techniques for outphasing power amplifiers publication-title: IEEE Trans Circuits Syst I Regul Pap doi: 10.1109/TCSI.2018.2800041 – volume: 60 start-page: 196 issue: 1 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0990 article-title: Near-field shielding performances of absorbing materials for integrated circuits (IC) applications. Part II: Crossing excitation publication-title: IEEE Trans Electromagn Compat doi: 10.1109/TEMC.2017.2731794 – ident: 10.1016/j.aeue.2019.153040_b0035 doi: 10.1109/IWSSC.2007.4409391 – volume: 54 start-page: 3848 issue: 11 year: 2006 ident: 10.1016/j.aeue.2019.153040_b0400 article-title: High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2006.884685 – volume: 85 start-page: 5400 issue: 22 year: 2004 ident: 10.1016/j.aeue.2019.153040_b0190 article-title: High sheet charge carrier density AlInNGaN field effect transistors on Si(111) publication-title: Appl Phys Lett doi: 10.1063/1.1828580 – volume: 26 start-page: 622 issue: 8 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0630 article-title: Wideband 5 W Ka-Band GaAs power amplifier publication-title: IEEE Microwave Wirel Compon Lett doi: 10.1109/LMWC.2016.2587834 – volume: 63 start-page: 3595 issue: 11 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0800 article-title: Power adaptive digital pre- distortion for wideband RF power amplifiers with dynamic power transmission publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2015.2480739 – start-page: 374 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0020 article-title: High efficiency power amplifiers for mobile base stations: recent trends and future prospects for 5G publication-title: IEICE Trans Fundam Electron, Commun Comput Sci doi: 10.1587/transfun.E101.A.374 – volume: 63 start-page: 3691 issue: 11 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0715 article-title: An 85-W multi- octave push-pull GaN HEMT power amplifier for high-efficiency communication applications at microwave frequencies publication-title: IEEE Trans Microwave Theory Tech doi: 10.1109/TMTT.2015.2479615 – start-page: 774 year: 2013 ident: 10.1016/j.aeue.2019.153040_b0790 article-title: A multiband LTE SAW-less CMOS transmitter with source-follower-driven passive mixers, envelope- tracked RF-PGAs, and marchand baluns publication-title: IEICE Trans Electron doi: 10.1587/transele.E96.C.774 – volume: 52 start-page: 159 issue: 1 year: 2004 ident: 10.1016/j.aeue.2019.153040_b0820 article-title: A robust digital baseband predistorter constructed using memory polynomials publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2003.822188 – volume: 28 start-page: 948 issue: 11 year: 2007 ident: 10.1016/j.aeue.2019.153040_b0965 article-title: Comparison of GaN HEMTs on diamond and SiC substrates publication-title: IEEE Electron Device Lett doi: 10.1109/LED.2007.908490 – ident: 10.1016/j.aeue.2019.153040_b0805 – ident: 10.1016/j.aeue.2019.153040_b0225 doi: 10.1109/CSICS.2005.1531801 – volume: 58 start-page: 2598 issue: 10 year: 2010 ident: 10.1016/j.aeue.2019.153040_b0355 article-title: A multimode/multiband power amplifier with a boosted supply modulator publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2010.2063851 – ident: 10.1016/j.aeue.2019.153040_b0170 doi: 10.1109/ECS.2014.6892781 – volume: 32 start-page: 143 issue: 2 year: 2011 ident: 10.1016/j.aeue.2019.153040_b0010 article-title: A review on terahertz communications research publication-title: J Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-010-9758-1 – ident: 10.1016/j.aeue.2019.153040_b0900 doi: 10.1115/IPACK2015-48179 – volume: 63 start-page: 4406 issue: 12 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0730 article-title: A broadband GaN pHEMT power amplifier using non-foster matching publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2015.2495106 – ident: 10.1016/j.aeue.2019.153040_b0220 doi: 10.1109/MWSYM.2011.5972571 – ident: 10.1016/j.aeue.2019.153040_b0595 doi: 10.1109/TED.2013.2274669 – volume: 61 start-page: 922 issue: 2 year: 2013 ident: 10.1016/j.aeue.2019.153040_b0580 article-title: A wideband and compact GaN MMIC doherty amplifier for microwave link applications publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2012.2231421 – volume: 104 start-page: 083513 issue: 8 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0960 article-title: Low thermal resistance GaN-on-diamond tran- sistors characterized by three-dimensional Raman thermography mapping publication-title: Appl Phys Lett doi: 10.1063/1.4865583 – volume: 64 start-page: 1456 issue: 5 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0835 article-title: Power-scalable wideband linearization of power amplifiers publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2016.2550039 – volume: 11 start-page: 109 issue: 1 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0895 article-title: Characterization of leaf-inspired microfluidic chips for pumpless fluid transport publication-title: J Bionic Eng doi: 10.1016/S1672-6529(14)60025-1 – volume: 51 start-page: 986 issue: 3 year: 2003 ident: 10.1016/j.aeue.2019.153040_b0425 article-title: A fully matched N-way Doherty amplifier with optimized linearity publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2003.808713 – ident: 10.1016/j.aeue.2019.153040_b0235 doi: 10.1109/BCICTS.2018.8551070 – volume: 65 start-page: 4947 issue: 12 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0695 article-title: Second harmonic treatment technique for bandwidth enhancement of GaN HEMT amplifier with harmonic reactive terminations publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2017.2704931 – volume: 10 start-page: 455 issue: 10 year: 1989 ident: 10.1016/j.aeue.2019.153040_b0055 article-title: Power semiconductor device figure of merit for high-frequency applications publication-title: IEEE Electron Device Lett doi: 10.1109/55.43098 – volume: 63 start-page: 572 issue: 2 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0745 article-title: A miniature broadband doherty power amplifier with a series-connected load publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2014.2377725 – volume: 52 start-page: 1767 issue: 9 year: 2005 ident: 10.1016/j.aeue.2019.153040_b0315 article-title: New high-efficiency 2.5 V/0.45 W RWDM class-D audio amplifier for portable consumer electronics publication-title: IEEE Trans Circuits Syst I: Regular Papers doi: 10.1109/TCSI.2005.852500 – volume: 29 start-page: 376 issue: 4 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0885 article-title: GaN unleashed: the benefits of mi- crofluidic cooling publication-title: IEEE Trans Semicond Manuf doi: 10.1109/TSM.2016.2597363 – volume: 1–15 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0275 article-title: A mixed topology for broadband high-efficiency Doherty power am 4plifier publication-title: IEEE Trans Microw Theory Tech – start-page: 549 year: 2000 ident: 10.1016/j.aeue.2019.153040_b0920 article-title: Demonstra- tion of a high efficiency nonuniform monolithic gallium-nitride distributed amplifier publication-title: IEEE MTT-S Int Microwave Symp Dig – start-page: 153 year: 2000 ident: 10.1016/j.aeue.2019.153040_b0995 article-title: Reduction of radiated emissions from semiconductor by using absorbent materials publication-title: IEEE Int Symp Electromagn Compat – volume: 19 start-page: 14 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0025 article-title: A review of thermal management and innovative cooling strategies for data center publication-title: Sustainable Comput Inf Syst doi: 10.1016/j.suscom.2018.05.002 – volume: 72 start-page: 24 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0775 article-title: Envelope-tracking common-drain CMOS power amplifier with a switching-only supply modula- tor for LTE applications publication-title: Microelectron J doi: 10.1016/j.mejo.2017.11.013 – volume: 64 start-page: 862 issue: 8 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0720 article-title: Symmetric three-way doherty power amplifier for high efficiency and linearity publication-title: IEEE Trans Circuits Syst II Express Briefs doi: 10.1109/TCSII.2016.2609460 – volume: 9 start-page: 277 issue: 7 year: 1999 ident: 10.1016/j.aeue.2019.153040_b0215 article-title: 1–8-GHz GaN-based power amplifier using flip-chip bonding publication-title: IEEE Microwave Guided Wave Lett doi: 10.1109/75.774146 – volume: 56 start-page: 1582 issue: 7 year: 2008 ident: 10.1016/j.aeue.2019.153040_b0420 article-title: A High-efficiency 100-W GaN three-way doherty amplifier for base-station applications publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2008.924364 – volume: 2012 year: 2012 ident: 10.1016/j.aeue.2019.153040_b0855 article-title: Advanced thermal management technologies for defense electronics publication-title: Defense Transformation Net-Centric Syst – volume: 7 start-page: 1305 issue: 8 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0890 article-title: Self- consistent electrothermal modeling of passive and microchannel cooling in AlGaN/GaN HEMTs publication-title: IEEE Trans Compon Packag Manuf Technol doi: 10.1109/TCPMT.2017.2693399 – ident: 10.1016/j.aeue.2019.153040_b0670 doi: 10.1109/TCSI.2018.2869905 – volume: 65 start-page: 860 issue: 3 year: 2017 ident: 10.1016/j.aeue.2019.153040_b0650 article-title: Multiobjective Bayesian optimization for active load modulation in a broadband 20- W GaN Doherty power amplifier design publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2016.2636146 – volume: 64 start-page: 2014 issue: 7 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0515 article-title: A broadband high-efficiency doherty power amplifier with integrated compensating reactance publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2016.2574861 – volume: 51 start-page: 643 issue: 2 year: 2003 ident: 10.1016/j.aeue.2019.153040_b0320 article-title: High linearity and high efficiency of class- B power amplifiers in GaN HEMT technology publication-title: IEEE Trans Microwave Theory Tech doi: 10.1109/TMTT.2002.807682 – volume: 1–13 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0675 article-title: A dual-band dual-output power amplifier for carrier aggregation publication-title: IEEE Trans Microw Theory Tech – volume: 96 start-page: 287 issue: 2 year: 2008 ident: 10.1016/j.aeue.2019.153040_b0935 article-title: GaN- based RF power devices and amplifiers publication-title: Proc IEEE doi: 10.1109/JPROC.2007.911060 – ident: 10.1016/j.aeue.2019.153040_b0605 doi: 10.1109/CSICS.2012.6340057 – volume: 60 start-page: 196 issue: 1 year: 2018 ident: 10.1016/j.aeue.2019.153040_b0985 article-title: Near-field shielding performances of absorbing materials for integrated circuits (IC) applications Part I: Lateral excitation publication-title: IEEE Trans Electromagn Compat doi: 10.1109/TEMC.2017.2731794 – volume: 108 start-page: 189 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0135 article-title: Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications publication-title: AEU - Int J Electron Commun doi: 10.1016/j.aeue.2019.06.015 – volume: 421–457 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0860 article-title: Towards embedded cooling - gen 3 thermal packaging technology publication-title: WSPC Series Adv Integration Packaging doi: 10.1142/9789814579797_0016 – volume: 61 start-page: 4056 issue: 12 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0910 article-title: A numerical study on comparing the active and passive cooling of AlGaN/GaN HEMTs publication-title: IEEE Trans Electron Devices doi: 10.1109/TED.2014.2360504 – volume: 55 start-page: 393 issue: 7 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0250 article-title: Ku- and K-band high-efficiency GaN MMIC HPA chipset for satellite communications publication-title: Electron Lett doi: 10.1049/el.2018.7179 – volume: 7 start-page: 301 year: 2007 ident: 10.1016/j.aeue.2019.153040_b0975 article-title: A methodology for predicting by near field chip to chip coupling publication-title: EMC Compo – volume: 51 start-page: 986 issue: 3 year: 2003 ident: 10.1016/j.aeue.2019.153040_b0550 article-title: A fully matched N-way doherty amplifier with optimized linearity publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2003.808713 – ident: 10.1016/j.aeue.2019.153040_b0330 doi: 10.1109/MWSYM.2014.6848280 – volume: 64 start-page: 4505 issue: 12 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0480 article-title: A broadband doherty power amplifier based on continuous-mode technology publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2016.2623705 – volume: 63 start-page: 559 issue: 2 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0565 article-title: The Doherty power amplifier: review of recent solutions and trends publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2014.2387061 – volume: 78 start-page: 210 year: 2015 ident: 10.1016/j.aeue.2019.153040_b0175 article-title: Unique model of polarization engineered AlGaN/GaN based HEMTs for high power applications publication-title: Superlattices Microstruct doi: 10.1016/j.spmi.2014.10.038 – volume: 29 start-page: 3852 issue: 8 year: 2014 ident: 10.1016/j.aeue.2019.153040_b0045 article-title: A review of high-frequency power distribution systems: for space, telecommunication, and computer applications publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2013.2291364 – volume: 76 start-page: 236 issue: 1 year: 2019 ident: 10.1016/j.aeue.2019.153040_b0925 article-title: Thermal stability of GaN thin films grown on (0001) Al2O3, (0112) Al2O3 and (0001)Si 6H-SiC substrates publication-title: J Appl Phys doi: 10.1063/1.357133 – volume: 64 start-page: 4491 issue: 12 year: 2016 ident: 10.1016/j.aeue.2019.153040_b0700 article-title: A doherty power amplifier design method for improved efficiency and linearity publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2016.2617882 |
SSID | ssj0020726 |
Score | 2.547957 |
SecondaryResourceType | review_article |
Snippet | The unique material properties of GaN, wide bandgap, high thermal conductivity, high breakdown voltage, high electron mobility and the device properties of GaN... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 153040 |
SubjectTerms | Doherty Envelope tracking power amplifier HEMT Power added efficiency |
Title | A review of GaN HEMT broadband power amplifiers |
URI | https://dx.doi.org/10.1016/j.aeue.2019.153040 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEA7SXtpD6ZPah-TQW1l3k002m6OIdtuilyp4WxInC5aiInrtb2_G3RULxUOvuxmYTDKv8M0MIU-Rz3pk6rymsQSfbkAGRps4cIyD5S7VTGPt8GCYZGPxNpGTBunWtTAIq6xsf2nTt9a6-hJW0gyXs1n44T29SIXXVR-CsFSjHRZC4S1vf-9gHjxSvKwwikWAq6vCmRLjZdwGW2Uy3faKH-EDyF_Oac_h9M_JWRUp0k7JzAVpuPklOd3rH3hFwg4tS0_ooqAvZkiz3mBE7WphwJo50CWOQKMGQeMFjry-JuN-b9TNgmoCQjCNk2QdMIHMWa0tsxwgMgmkCrgsFI80T42YKuNYXGgHEEvrN2vBav9fyMJIr6035Gi-mLtbQr0jV6owcQyFET5JM6gekEDCQCdKQJOweuv5tGoPjlMqvvIaB_aZo7hy5CgvxdUkzzuaZdkc4-BqWUs0_3XEubfeB-ju_kl3T044JsdbwNgDOVqvNu7RRxBr29pekRY57ry-Z8MfPtPBAg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na8IwFA-ih22HsU_mPnPYbXRt0iRtjiK6OrWXKXgLiUnBMaqI_v9LbDocDA-7pnnw8tL3Fd77PQCeI5v10NRYTUPMPd1oGkgu48AgrBU2KUfc9Q6Pc5ZNyfuMzhqgW_fCuLJKb_srm76z1n4l9NIMV4tF-GE9PUmJ1VUbgqCUWzvccuhUtAlancEwy3_yrijBVZNRTAJH4HtnqjIvabYOLRPxV6v7kXsD-cs_7fmc_hk49cEi7FT8nIOGKS_AyR6E4CUIO7DqPoHLAr7JHGa98QSq9VJqJUsNV24KGpSubrxwU6-vwLTfm3SzwA9BCOYxY5sAEcec4lwhhbWOJNNpojEtEhxxnEoyT6RBccGN1jFV9rBKK26_E1pIahX2GjTLZWluALS-PEkKGce6kMTmadJpiGaaIc1ZQnQboProYu4Rwt2gii9Rl4J9Cicu4TgSlbja4OWHZlXhYxzcTWuJil-3LKwBP0B3-0-6J3CUTcYjMRrkwztwjF2uvKsfuwfNzXprHmxAsVGP_of5Bv0Gw7M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+GaN+HEMT+broadband+power+amplifiers&rft.jtitle=International+journal+of+electronics+and+communications&rft.au=Husna+Hamza%2C+K.&rft.au=Nirmal%2C+D.&rft.date=2020-03-01&rft.issn=1434-8411&rft.volume=116&rft.spage=153040&rft_id=info:doi/10.1016%2Fj.aeue.2019.153040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aeue_2019_153040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-8411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-8411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-8411&client=summon |