A review of GaN HEMT broadband power amplifiers

The unique material properties of GaN, wide bandgap, high thermal conductivity, high breakdown voltage, high electron mobility and the device properties of GaN HEMT (High Electron Mobility Transistor) namely low parasitic capacitance, low turn on resistance and high cut off frequencies make it a goo...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electronics and communications Vol. 116; p. 153040
Main Authors Husna Hamza, K., Nirmal, D.
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The unique material properties of GaN, wide bandgap, high thermal conductivity, high breakdown voltage, high electron mobility and the device properties of GaN HEMT (High Electron Mobility Transistor) namely low parasitic capacitance, low turn on resistance and high cut off frequencies make it a good choice to use in a power amplifier. During this era of wire- less communication with complex modulation schemes having high peak to average power ratio, maintaining the efficiency and linearity of power amplifier is a tough task. In this paper an extensive review of GaN HEMT based power amplifier is presented. First of all, GaN technology is described and compared with other semiconductor technologies. The different classes of power amplifier like class B, C, D, E, F and J with GaN is discussed. Efficiency and linearity enhancement techniques like envelope tracking, Doherty power amplifier and digital predistortion used in applications with high PAPR waveforms is described. The advantages of GaN MMIC (Microwave Monolithic Integrated Circuit) are reviewed. Finally different thermal management solutions used for GaN power amplifier to cope with its self heating phenomenon are explained.
AbstractList The unique material properties of GaN, wide bandgap, high thermal conductivity, high breakdown voltage, high electron mobility and the device properties of GaN HEMT (High Electron Mobility Transistor) namely low parasitic capacitance, low turn on resistance and high cut off frequencies make it a good choice to use in a power amplifier. During this era of wire- less communication with complex modulation schemes having high peak to average power ratio, maintaining the efficiency and linearity of power amplifier is a tough task. In this paper an extensive review of GaN HEMT based power amplifier is presented. First of all, GaN technology is described and compared with other semiconductor technologies. The different classes of power amplifier like class B, C, D, E, F and J with GaN is discussed. Efficiency and linearity enhancement techniques like envelope tracking, Doherty power amplifier and digital predistortion used in applications with high PAPR waveforms is described. The advantages of GaN MMIC (Microwave Monolithic Integrated Circuit) are reviewed. Finally different thermal management solutions used for GaN power amplifier to cope with its self heating phenomenon are explained.
ArticleNumber 153040
Author Nirmal, D.
Husna Hamza, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Husna Hamza
  fullname: Husna Hamza, K.
– sequence: 2
  givenname: D.
  surname: Nirmal
  fullname: Nirmal, D.
  email: dnirmalphd@gmail.com
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A7vN134EvJRSq1D1Us8hHxNIaTclWS3-e3epJw89zcDwzLzPzNCkix0g9EhJSQmtF_tSwxeUjFBZ0ooTQW7QlNa0LQiXcjL0gouiFZTeoVnOe0IYaVg9RYslTvAd4Iyjxxv9jl_WbztsUtTO6M7hUzxDwvp4OgQfIOV7dOv1IcPDX52jz-f1bvVSbD82r6vltrC8rvuCijGKkdJQw5wjunZt41jlG0Yka7WwjQbKvQTneGWGMMYZOcxF5XVFWz5H7LLXpphzAq9OKRx1-lGUqFFZ7dWorMY76qI8QO0_yIZe9yF2fdLhcB19uqAwSA3_SCrbAJ0FFxLYXrkYruG_68lx8w
CitedBy_id crossref_primary_10_3389_fphy_2021_648127
crossref_primary_10_1016_j_apsusc_2024_159668
crossref_primary_10_1109_TED_2022_3162555
crossref_primary_10_1088_1361_6641_acd13c
crossref_primary_10_3390_app142411881
crossref_primary_10_1007_s40042_023_00799_6
crossref_primary_10_1016_j_tca_2023_179491
crossref_primary_10_3390_electronics11193244
crossref_primary_10_1002_cta_2956
crossref_primary_10_1007_s11664_024_11672_y
crossref_primary_10_1109_ACCESS_2023_3336990
crossref_primary_10_1038_s41598_022_21324_y
crossref_primary_10_35848_1347_4065_abe999
crossref_primary_10_35848_1347_4065_ac19fc
crossref_primary_10_1007_s12633_022_01846_w
crossref_primary_10_1021_acsaelm_4c01424
crossref_primary_10_1063_5_0087344
crossref_primary_10_1109_TCPMT_2021_3050976
crossref_primary_10_1109_TPEL_2023_3313124
crossref_primary_10_1142_S0218625X21500773
crossref_primary_10_3390_electronics11030498
crossref_primary_10_35848_1882_0786_ad16ae
crossref_primary_10_1063_5_0201666
crossref_primary_10_1016_j_mejo_2024_106366
crossref_primary_10_35940_ijeat_F3766_0811622
crossref_primary_10_1002_pssa_202200722
crossref_primary_10_35848_1347_4065_ad4cc9
crossref_primary_10_1016_j_micrna_2023_207545
crossref_primary_10_1126_sciadv_abo6408
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124284
crossref_primary_10_1063_5_0049797
crossref_primary_10_1109_LMWT_2023_3239532
crossref_primary_10_1587_elex_21_20240486
crossref_primary_10_1063_5_0084511
crossref_primary_10_2339_politeknik_1424645
crossref_primary_10_48084_etasr_6264
crossref_primary_10_1021_acsaelm_4c01950
crossref_primary_10_1007_s40042_023_00885_9
crossref_primary_10_1364_OPTICA_488271
crossref_primary_10_3390_nano12101718
crossref_primary_10_1108_HFF_07_2020_0393
crossref_primary_10_1016_j_mssp_2021_105909
crossref_primary_10_1063_5_0194091
crossref_primary_10_1088_1361_6641_ac86eb
crossref_primary_10_35848_1347_4065_acfd34
crossref_primary_10_1007_s11664_022_10109_8
crossref_primary_10_1007_s12633_021_01322_x
crossref_primary_10_1016_j_micrna_2024_207815
crossref_primary_10_1016_j_aeue_2024_155293
crossref_primary_10_1016_j_aeue_2020_153142
crossref_primary_10_1002_pssa_202300806
crossref_primary_10_1016_j_aeue_2023_154564
crossref_primary_10_1063_5_0066346
crossref_primary_10_1134_S106373972360098X
crossref_primary_10_1002_adts_202400645
crossref_primary_10_3390_mi15091126
crossref_primary_10_1126_sciadv_adh9889
crossref_primary_10_3390_electronics11131934
crossref_primary_10_1109_TED_2023_3338586
crossref_primary_10_1109_ACCESS_2025_3539435
crossref_primary_10_1587_elex_18_20210313
crossref_primary_10_3390_nano14050460
crossref_primary_10_3390_nano14080732
crossref_primary_10_1109_LED_2023_3262589
crossref_primary_10_1587_elex_19_20220397
crossref_primary_10_1088_1361_6641_acf2be
crossref_primary_10_36548_jei_2023_1_002
crossref_primary_10_1016_j_chip_2023_100072
crossref_primary_10_1063_5_0131470
crossref_primary_10_1109_TED_2022_3213636
crossref_primary_10_1063_5_0172376
crossref_primary_10_1134_S1995078020060075
crossref_primary_10_3390_mi14112041
crossref_primary_10_1002_jnm_3115
crossref_primary_10_1002_mop_33360
crossref_primary_10_1134_S1063785021040118
crossref_primary_10_3390_cryst13030387
crossref_primary_10_3390_ma14227081
crossref_primary_10_1088_1361_6463_ad32a6
crossref_primary_10_3390_mi13122179
crossref_primary_10_1109_TMTT_2023_3245668
crossref_primary_10_3390_electronics11223768
crossref_primary_10_4218_etrij_2023_0250
Cites_doi 10.1109/TCSI.2017.2658689
10.1109/ITHERM.2014.6892417
10.1109/TMTT.2009.2027076
10.1109/COMCAS.2017.8244734
10.1007/s11664-016-4435-3
10.1109/MWSYM.2010.5518253
10.3390/electronics8010099
10.1109/TMTT.2016.2623705
10.1109/iMac4s.2013.6526462
10.1109/LMWC.2016.2597228
10.1109/EIF.1997.605386
10.1109/TMTT.2015.2495201
10.1109/TMTT.2004.839341
10.1109/TMTT.2017.2765632
10.1049/iet-smt.2016.0348
10.1109/TCSI.2014.2362311
10.1109/IBCAST.2015.7058556
10.1109/CSICS.2015.7314469
10.1109/TMTT.2017.2767586
10.1109/LMWC.2006.890347
10.1109/63.311263
10.1109/TMTT.2015.2452255
10.1109/TMTT.2012.2209446
10.1109/TMTT.2013.2250712
10.1049/el:20081170
10.1109/TEMC.2018.2820202
10.1109/PAWR.2011.5725378
10.1109/TMTT.2016.2613050
10.1109/LMWC.2003.817130
10.1109/INVENTIVE.2016.7830142
10.1109/TMTT.2018.2869571
10.1109/TDMR.2008.923743
10.1109/55.954910
10.1109/TMTT.2016.2636146
10.1109/TMTT.2015.2442973
10.1016/j.microrel.2009.07.003
10.1109/TMTT.2007.911967
10.1109/TMTT.2014.2359856
10.1109/JLT.2014.2384998
10.1109/TCSI.2013.2283781
10.1109/TCSI.2016.2515419
10.1109/TMTT.2016.2549524
10.1109/TMTT.2014.2362136
10.1016/j.spmi.2017.12.027
10.1109/TCS.1975.1084074
10.1109/ICDCSyst.2012.6188704
10.23919/EUMC.2009.5296560
10.1063/1.369664
10.1109/TMTT.2016.2614506
10.1109/LMWC.2012.2234090
10.1109/TMTT.2017.2701376
10.1109/TMTT.2012.2227783
10.1109/TMTT.2016.2574861
10.1557/adv.2016.120
10.1016/j.spmi.2017.05.042
10.1002/mop.30950
10.1109/APEMC.2013.7360619
10.1109/RWS.2008.4463518
10.1002/mop.24951
10.1109/TCE.2010.5681122
10.1109/TMTT.2010.2091207
10.23919/EuMIC.2017.8230650
10.1063/1.3184348
10.1115/1.4023898
10.1049/iet-cds:20080096
10.1109/MW-M.2006.247914
10.1109/MWSYM.2007.379980
10.1109/25.661047
10.1016/j.spmi.2015.06.048
10.1109/TMTT.2015.2447552
10.1109/CSICS.2006.319922
10.1049/iet-cds.2008.0339
10.1016/j.mejo.2015.04.006
10.1109/MMM.2009.934518
10.1109/TMTT.2012.2187535
10.1109/TCSII.2015.2407197
10.1109/TED.2014.2360504
10.1155/2018/6793814
10.1109/JSSC.2004.833558
10.1109/JSSC.2012.2204927
10.1109/TCPMT.2012.2223818
10.1109/TMTT.2014.2321356
10.1109/TCSI.2015.2512698
10.1109/ICDCSyst.2018.8605071
10.11113/jt.v68.2955
10.1115/IPACK2015-48334
10.1109/PRIME.2013.6603127
10.23919/APMC.2018.8617418
10.1109/JSSC.2006.878102
10.1016/S0038-1101(97)00104-4
10.1109/TCSI.2013.2268341
10.1109/TMTT.2011.2166122
10.1016/j.energy.2010.11.039
10.1116/1.590818
10.1109/TCSII.2016.2609460
10.1109/TMTT.2007.907399
10.1109/MIKON.2012.6233596
10.1016/S0038-1101(99)00089-1
10.1016/j.aeue.2018.12.006
10.1109/JSSC.2007.904317
10.1109/TMTT.2004.839306
10.1109/TNET.2013.2249667
10.1109/16.199372
10.1116/1.585897
10.1109/TMTT.2011.2170580
10.1063/1.2996281
10.1103/PhysRevB.56.R10024
10.1109/25.543741
10.1109/TMTT.2018.2828434
10.1016/j.aeue.2018.11.021
10.1103/PhysRevB.84.085317
10.1109/JPROC.2009.2034397
10.1109/TCSI.2018.2800041
10.1109/TEMC.2017.2731794
10.1109/IWSSC.2007.4409391
10.1109/TMTT.2006.884685
10.1063/1.1828580
10.1109/LMWC.2016.2587834
10.1109/TMTT.2015.2480739
10.1587/transfun.E101.A.374
10.1109/TMTT.2015.2479615
10.1587/transele.E96.C.774
10.1109/TCOMM.2003.822188
10.1109/LED.2007.908490
10.1109/CSICS.2005.1531801
10.1109/TMTT.2010.2063851
10.1109/ECS.2014.6892781
10.1007/s10762-010-9758-1
10.1115/IPACK2015-48179
10.1109/TMTT.2015.2495106
10.1109/MWSYM.2011.5972571
10.1109/TED.2013.2274669
10.1109/TMTT.2012.2231421
10.1063/1.4865583
10.1109/TMTT.2016.2550039
10.1016/S1672-6529(14)60025-1
10.1109/TMTT.2003.808713
10.1109/BCICTS.2018.8551070
10.1109/TMTT.2017.2704931
10.1109/55.43098
10.1109/TMTT.2014.2377725
10.1109/TCSI.2005.852500
10.1109/TSM.2016.2597363
10.1016/j.suscom.2018.05.002
10.1016/j.mejo.2017.11.013
10.1109/75.774146
10.1109/TMTT.2008.924364
10.1109/TCPMT.2017.2693399
10.1109/TCSI.2018.2869905
10.1109/TMTT.2002.807682
10.1109/JPROC.2007.911060
10.1109/CSICS.2012.6340057
10.1016/j.aeue.2019.06.015
10.1142/9789814579797_0016
10.1049/el.2018.7179
10.1109/MWSYM.2014.6848280
10.1109/TMTT.2014.2387061
10.1016/j.spmi.2014.10.038
10.1109/TPEL.2013.2291364
10.1063/1.357133
10.1109/TMTT.2016.2617882
ContentType Journal Article
Copyright 2020 Elsevier GmbH
Copyright_xml – notice: 2020 Elsevier GmbH
DBID AAYXX
CITATION
DOI 10.1016/j.aeue.2019.153040
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1618-0399
ExternalDocumentID 10_1016_j_aeue_2019_153040
S1434841119321892
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
8FE
8FG
8FW
8P~
8R4
8R5
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABLJU
ABMAC
ABUWG
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARAPS
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BENPR
BGLVJ
BJAXD
BKOJK
BLXMC
BPHCQ
CAG
CCPQU
COF
CS3
DWQXO
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HCIFZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M1Q
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P62
PC.
PQQKQ
PROAC
Q2X
Q38
R2-
RIG
ROL
RPZ
S0X
SDF
SDG
SES
SEW
SPC
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
PHGZM
PHGZT
SSH
ID FETCH-LOGICAL-c366t-142019b99b1b2dd0a6d87d25f720928a4c7ae13f9edd35b207bdb925f45fa5183
IEDL.DBID .~1
ISSN 1434-8411
IngestDate Tue Jul 01 01:32:12 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
Fri Feb 23 02:49:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Power added efficiency
HEMT
Doherty
Envelope tracking power amplifier
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-142019b99b1b2dd0a6d87d25f720928a4c7ae13f9edd35b207bdb925f45fa5183
ParticipantIDs crossref_primary_10_1016_j_aeue_2019_153040
crossref_citationtrail_10_1016_j_aeue_2019_153040
elsevier_sciencedirect_doi_10_1016_j_aeue_2019_153040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle International journal of electronics and communications
PublicationYear 2020
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Guggenheim R, Rodes L. Roadmap review for cooling high-power GaN HEMT devices. In: 2017 IEEE international conference on microwaves, antennas, communications and electronic systems (COMCAS); 2017.
Jung, Hammi, Ghannouchi (b0645) 2009; 57
Nadjahi, Louahlia, Lemasson (b0025) 2018; 19
Holzer, Yuan, Walling (b0705) 2018; 65
Kang H, Lee H, Lee W, Oh H, Lim W, Koo H, et al., Octave bandwidth doherty power amplifier using multiple reso- nance circuit for the peaking amplifier. IEEE Trans Circuits Syst I: Regular Papers; 2018. p. 1–11.doi:10.1109/tcsi.2018.2869905.
Meneghesso, Verzellesi, Danesin, Rampazzo, Zanon, Tazzoli, Zanoni (b0205) 2008; 8
Kimball, Jeong, Hsia, Draxler, Lanfranco, Nagy (b0400) 2006; 54
Yang, Cha, Shin, Kim (b0550) 2003; 51
George A, Nirmal D, Prajoon P, Mathew A. Design and simulation of Schottky-source/drain GaN/AlGaN HEMTs for break- down voltage improvement. In: 2014 international conference on electronics and communication systems (ICECS); 2014. doi:10.1109/ecs.2014.6892781.
Campbell CF, Tran K, Kao MY, Nayak S. A K-band 5W doherty amplifier MMIC utilizing 0.15m GaN on SiC HEMT technology. In: IEEE compound semiconductor integrated circuit symposium, October 2012. p. 1–4.
Kalyan, Rawat, Koul (b0465) 2018
Fang, Chung, Boumaiza (b0490) 2018; 1–10
Gupta, Vallabhaneni, Kumar (b0890) 2017; 7
Jebalin, Shobha Rekh, Prajoon, Kumar, Nir- mal (b0180) 2015; 46
Ambacher, Smart, Shealy, Weimann, Chu, Murphy (b0085) 1999; 85
Giofr‘e R, Colantonio P, Giannini F. GaN broadband power amplifiers for terrestrial and space transmitters. Microwave radar and wireless communications (MIKON), 2012 19th international conference on, vol. 2, no., pp. 605, 609, 21–23 May 2012 doi: 10.1109/MIKON.2012.6233596.
.
Van Straten, Smolders, van Zuijlen, Ooijman (b0370) 2004; 39
Enomoto, Ishikawa, Honjo (b0695) 2017; 65
Zhou, Zheng, Chan, Chen, Ho (b0520) 2017; 64
Tu¨lek R, Ilgaz A, G¨okden S, Teke A, O¨ ztu¨rk MK, Kasap M, et al. Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures. J Appl Phys 2009;105(1): 013707. doi:10.1063/1.2996281.
Yin, Xiong, Zhu, Chen, Min, Xu (b0390) 2019
Lemtiri Chlieh, Papapolymerou (b0875) 2017; 65
Zhou, Chan, Zheng, Feng, Liu, Cheng (b0275) 2019; 1–15
Chen, Chen, Ghannouchi, Feng, Liu (b0545) 2016; 64
Jain, Pahlevaninezhad, Pan, Drobnik (b0045) 2014; 29
Sakata, Lanfranco, Kolmonen, Piirainen, Fujiwara, Shinjo (b0785) 2017
Kang, Yu, Min, Han, Choi, Kim (b0300) 2008; 56
Lee, Park, Choi, Kwon (b0730) 2015; 63
Yan, Hsia, Kimball, Asbeck (b0770) Oct. 2008; 47
Ambacher, Majewski, Miskys, Link, Hermann, Eickhoff (b0125) 2002; 14
Paidi, Xie, Coffie, Moran, Heikman, Keller (b0320) 2003; 51
Pang, He, Huang, Dai, Peng, You (b0655) 2015; 63
Strite (b0070) 1992; 10
Dar, Feder, Mecozzi, Shtaif (b0040) 2015; 33
Pednekar, Hallberg, Fager, Barton (b0740) 2018; 66
Barthwal, Rawat, Koul (b0680) 2015; 63
Moon, Son, Lee, Kim (b0795) 2011; 59
Hu, Boumaiza (b0835) 2016; 64
CHA5356-QGG datasheet.
Sokal NO. (n.d.). RF power amplifiers, classes A through S-how they operate, and when to use each. Professional Program Proceedings. Electronic Industries Forum of New England. doi:10.1109/eif.1997.605386.
Gustafsson, Andersson, Leidenhed, Rhodin, Wegeland (b0610) 2016
Cwiklinski, Friesicke, Bruckner, Schwantuschke, Wagner, Lozar (b0690) 2018; 1–12
Jouzdani, Ebrahimi, Rawat, Helaoui, Ghan- nouchi (b0710) 2015; 62
Mohamed, Boumaiza, Mansour (b0360) 2014; 61
Sundstrom, Faulkner, Johansson (b0810) 1996; 45
Diaz MA, Courville N, Mosquera C, Liva G, Corazza GE. Non-linear interference mitigation for broadband multimedia satellite systems. In: 2007 International workshop on satellite and space communications; 2007. doi:10.1109/iwssc.2007.4409391.
Woo, Miller, Kenney (b0830) 2005; 53
Kim (b0725) 2018; 1–8
Oh (b0440) 2017; 65
Mimis K, Morris KA, McGeehan JP. A 2GHz GaN Class-J power amplifier for base station applications. In: 2011 IEEE topical conference on power amplifiers for wireless and radio applications; 2011.
Darraji, Ghannouchi (b0375) 2011; 59
Matin K, Bar-Cohen A, Maurer JJ. Modeling and simulation challenges in embedded two phase cooling: DARPA’s ICE- cool program. Volume 3: advanced fabrication and manufacturing; emerging technology frontiers; energy, health and water- applications of nano- , micro- and mini-scale devices; MEMS and NEMS; technology update talks; thermal management using micro channels, jets, sprays; 2015. doi:10.1115/ipack2015-48334.
Watanabe N, Wong J, Grebenniko A, Nishio G. A high-efficiency 4.35-4.85 GHz Doherty amplifier for base station applications. 2018 Asia-Pacific microwave conference (APMC); 2018. doi:10.23919/apmc.2018.8617418.
Lin, Liu, Chu, Huang, Liu, Chang (b0640) 2007; 17
Camarchia, Pirola, Quaglia, Jee, Cho, Kim (b0565) 2015; 63
Giofre, Colantonio, Gonzalez, De Arriba, Cabria, Lopez Molina (b0240) 2018; 1–1
Chen, Xia, Merrick, Brazil (b0485) 2017; 65
Lubritto, Petraglia, Vetromile, Curcuruto, Logorelli, Marsico (b0030) 2011; 36
Chen, Nazli Donmezer, Kumar, Graham (b0910) 2014; 61
Pengelly, Wood, Milligan, Sheppard, Pribble (b0065) 2012; 60
Bensmida S, Hammi O, Ghannouchi FM. High efficiency digitally linearized GaN based power amplifier for 3G applications. In: 2008 IEEE radio and wireless symposium; 2008. doi:10.1109/rws.2008.4463518.
Xu, Yi-Feng, Keller, Heikman, Thibeault, Mishra (b0215) 1999; 9
Pandit PP, Arivazhagan L, Prajoon P, Rajkumar J, Ajayan J, Nirmal D. DC Performance analysis of AlGaN/GaN HEMT for future high power applications. In: 2018 4th international conference on devices, circuits and systems (ICDCS). doi:10.1109/icdcsyst.2018.8605071.
Bhatnagar, Baliga (b0930) 1993; 40
Paek, Kim, Choo, Youn, Lee, Cho (b0395) 2018; 1–12
Yang, Cha, Shin, Kim (b0405) 2003; 13
Mishra, Shen, Kazior, Yi-Feng (b0935) 2008; 96
Waltereit, Mu¨ller, Bellmann, Buchheim, Goldhahn, K¨ohler, Ambacher (b0130) 2009; 106
Cidronali, Maddio, Giovannelli, Collodi (b0510) 2016; 64
Bukvic, Ilic (b0305) 2016; 26
Moon, Kim, Kim, Kim, Kim (b0415) 2011; 59
Chi, Jun, Lei (b0245) 2013
Jundi, Sarbishaei, Boumaiza (b0715) 2015; 63
Xu, Zhang, Tan (b1000) 2014
Li, Hsu, Zhang, Huang (b0380) 2018; 1–9
Brown A, Brown K, Chen J, Hwang KC, Kolias N, Scott R. W-band GaN power amplifier MMICs. 2011 IEEE MTT-S international microwave symposium; 2011. doi:10.1109/mwsym.2011.5972571.
Coffey M, MomenRoodaki P, Zai A, Popovic Z. A 4.2-W 10-GHz GaN MMIC doherty power amplifier. In: IEEE compound semicon- ductor integrated circuit symposium, October 2015. p. 1–4.
Moradi Ardekani, Abiri (b0475) 2019; 98
You, He, Tang, Cao (b0310) 2008; 2
Park (b0430) 2007; 55
Cho, Li, Bozorg-Grayeli, Kodama, Francis, Ejeckam (b0950) 2013; 3
Gustafsson, Andersson, Fager (b0575) 2013; 61
Watanabe, Takayama, Ishikawa, Honjo (b0745) 2015; 63
Micovic M, Kurdoghlian A, Moyer HP, Hashimoto P, Schmitz A, Milosavljevic I, et al. GaN MMIC technology for microwave and millimeter-wave applications. In: IEEE compound semiconductor integrated circuit symposium, 2005. CSIC ’05; 2005. doi:10.1109/csics.2005.1531801.
Kwon, Seo, Lee, Gu, Ham, Hwang (b0665) 2015; 62
Ku, Petersen (b0265) 1975; 22
Cappello, Duh, Barton, Popovic (b0675) 2019; 1–13
Nirmal, Arivazhagan, Fletcher, Ajayan, Pra- joon (b0145) 2018; 113
Gustafsson, Cahuana, Kuylenstierna, Angelov, Fager (b0570) 2014; 62
Camarchia, Fang, Rubio, Pirola, Quaglia (b0590) 2013; 23
Asif Khan, Chen, Shur, Dermott, Higgins, Burm (b0075) 1997; 41
Wu, Wapolnek, Ibbetson, Parikh, Keller, Mishra (b0915) 2000
Bar-Cohen, Maurer, Sivananthan (b0880) 2016; 1
Cripps (b0535) 2006
MAAP-011170 datasheet.
Moreno Rubio, Camarchia, Pirola, Quaglia (b0735) 2018; 66
Piersanti (b0985) 2018; 60
Rubio, Camarchia, Pirola, Quaglia (b0500) 2018; 66
Nair PP, Nirmal D. Gate recessed GaN based HEMT with Si3N4 passivation for microwave applications. In: 2016 international conference on inventive computation technologies (ICICT); 2016.
Won Y, Cho J, Agonafer D, Asheghi M, Goodson KE. Fundamental cooling limits for high power density GaN electronics. IEEE Transactions on Components, Packaging, and Manufacturing Technology, In preparation.
Ikeda, Niiyama, Kambayashi, Sato, Nomura, Kato (b0940) 2010; 98
Lee (b0435) 2017; 65
Camarchia V, Rubio JJM, Pirola M, Quaglia R, Colanto- nio P, Giannini F, et al., High-efficiency 7 GHz Doherty GaN MMIC power amplifiers for microwave backhaul radio links. IEEE Trans Electron Devices, 60(10), October 2013. p. 3592–5.
Saad P, Nemati HM, Thorsell M, Andersson K, Fager C. An inverse class-F GaN HEMT power amplifier with 78, doi: 10.23919/EUMC.2009.5296560.
Cho, Kim, Stapleton (b0555) 2005; 53
Wang, Roger, Lelandais-Perrault (b0260) 2018; 1–1
Grebennikov (b0335) 2016; 63
Chen, Li, Zhou, Chen, Huang, Wang (b0685) 2019; 8
Sun, Kung, Saxler, Ohsato, Bigan, Razeghi (b0925) 2019; 76
Mrad R, et al., Integrated class-D audio amplifier virtual test for output EMI filter performance to cite this version: Integrated class-D audio amplifier virtual test for output EMI filter performance, in: 9th Conf. Ph.D. Res. Microelect. Electron.; 2013. p. 73–6.
Fletcher, Nirmal (b0140) 2017; 109
Chen, Donmezer, Kumar, Graham (b0850) 2014; 61
Boutros K, Luo W, Ma Y, Nagy G, Hacker J. 5W GaN MMIC for millimeter-wave applications. 2006 IEEE compound semi- conductor integrated circuit symposium; 2006. doi:10.1109/csics.2006.319922.
Lie, Mayeda, Li, Lopez (b0015) 2018; 2018
Zakaria, Fadzil, Othman, Salleh, Isa, Haron (b0005) 2014; 68
Li, Lin, Nandhasri, Ngarmnil (b0315) 2005; 52
Kashif A, Azam S, Mughal F, Cheema NB, Imran M. Two-stage GaN HEMT based class-C pulsed amplifier for S-band radar applications. In: 2015 12th international bhurban conference on applied sciences and technology (IBCAST); 2015. doi:10.1109/ibcast.2015.7058556.
Lin, Chen, Kuo, Chang (b0980) 2017; 11
Arivazhagan, Nirmal, Godfrey, Ajayan, Prajoon, Augustine Fletcher (b0135) 2019; 108
Van Capel, Turchinovich, Porte, Lahmann, Ros79sow, Hangleiter, Dijkhuis (b0970) 2011; 84
Varahram, Al-Azzo, Ali (b0350) 2010; 56
Ajayan, Nirmal (b0050) 2015; 86
Gustafsson, Cahuana, Kuylenstierna, Angelov, Rorsman, Fager (b0580) 2013;
10.1016/j.aeue.2019.153040_b0805
Kim (10.1016/j.aeue.2019.153040_b0410) 2006; 7
Hallberg (10.1016/j.aeue.2019.153040_b0700) 2016; 64
Sundstrom (10.1016/j.aeue.2019.153040_b0810) 1996; 45
Cho (10.1016/j.aeue.2019.153040_b0950) 2013; 3
Giofre (10.1016/j.aeue.2019.153040_b0240) 2018; 1–1
Chen (10.1016/j.aeue.2019.153040_b0460) 2014; 61
Li (10.1016/j.aeue.2019.153040_b0315) 2005; 52
You (10.1016/j.aeue.2019.153040_b0310) 2008; 2
Shen (10.1016/j.aeue.2019.153040_b0195) 2001; 22
10.1016/j.aeue.2019.153040_b0120
Kwon (10.1016/j.aeue.2019.153040_b0525) 2015; 62
Strite (10.1016/j.aeue.2019.153040_b0070) 1992; 10
Zhou (10.1016/j.aeue.2019.153040_b0275) 2019; 1–15
Zavarei (10.1016/j.aeue.2019.153040_b0775) 2018; 72
Paidi (10.1016/j.aeue.2019.153040_b0320) 2003; 51
Ditri (10.1016/j.aeue.2019.153040_b0885) 2016; 29
Van Capel (10.1016/j.aeue.2019.153040_b0970) 2011; 84
Jundi (10.1016/j.aeue.2019.153040_b0715) 2015; 63
Kunihiro (10.1016/j.aeue.2019.153040_b0020) 2018
Camarchia (10.1016/j.aeue.2019.153040_b0590) 2013; 23
Kang (10.1016/j.aeue.2019.153040_b0445) 2017; 64
Cappello (10.1016/j.aeue.2019.153040_b0255) 2019; 1–14
Pengelly (10.1016/j.aeue.2019.153040_b0065) 2012; 60
Faulkner (10.1016/j.aeue.2019.153040_b0825) 1998; 47
Bortoni (10.1016/j.aeue.2019.153040_b0295) 2002; 50
10.1016/j.aeue.2019.153040_b0905
10.1016/j.aeue.2019.153040_b0225
Yu (10.1016/j.aeue.2019.153040_b0095) 1999; 17
10.1016/j.aeue.2019.153040_b0345
Varahram (10.1016/j.aeue.2019.153040_b0350) 2010; 56
Pelk (10.1016/j.aeue.2019.153040_b0420) 2008; 56
Tasker (10.1016/j.aeue.2019.153040_b0540) 2009
10.1016/j.aeue.2019.153040_b0900
Woo (10.1016/j.aeue.2019.153040_b0830) 2005; 53
Hu (10.1016/j.aeue.2019.153040_b0835) 2016; 64
Kim (10.1016/j.aeue.2019.153040_b0765) 2014; 62
10.1016/j.aeue.2019.153040_b0105
Darraji (10.1016/j.aeue.2019.153040_b0375) 2011; 59
10.1016/j.aeue.2019.153040_b0220
Wu (10.1016/j.aeue.2019.153040_b0470) 2012; 60
Nadjahi (10.1016/j.aeue.2019.153040_b0025) 2018; 19
Chen (10.1016/j.aeue.2019.153040_b0480) 2016; 64
Chen (10.1016/j.aeue.2019.153040_b0850) 2014; 61
Del Alamo (10.1016/j.aeue.2019.153040_b0210) 2009; 49
Ajayan (10.1016/j.aeue.2019.153040_b0050) 2015; 86
Zheng (10.1016/j.aeue.2019.153040_b0450) 2016; 63
Schmelzer (10.1016/j.aeue.2019.153040_b0340) 2007; 42
Dadgar (10.1016/j.aeue.2019.153040_b0190) 2004; 85
Moreno Rubio (10.1016/j.aeue.2019.153040_b0735) 2018; 66
Kim (10.1016/j.aeue.2019.153040_b0725) 2018; 1–8
Ikeda (10.1016/j.aeue.2019.153040_b0940) 2010; 98
10.1016/j.aeue.2019.153040_b0115
10.1016/j.aeue.2019.153040_b0235
Yan (10.1016/j.aeue.2019.153040_b0280) 2017; 60
10.1016/j.aeue.2019.153040_b0595
Wu (10.1016/j.aeue.2019.153040_b0915) 2000
10.1016/j.aeue.2019.153040_b0230
Wang (10.1016/j.aeue.2019.153040_b0260) 2018; 1–1
Tong (10.1016/j.aeue.2019.153040_b0060) 2019; 1–1
10.1016/j.aeue.2019.153040_b0605
Kihara (10.1016/j.aeue.2019.153040_b0790) 2013
10.1016/j.aeue.2019.153040_b0840
Yang (10.1016/j.aeue.2019.153040_b0550) 2003; 51
Kim (10.1016/j.aeue.2019.153040_b0995) 2000
10.1016/j.aeue.2019.153040_b0845
Barthwal (10.1016/j.aeue.2019.153040_b0680) 2015; 63
10.1016/j.aeue.2019.153040_b0600
Bar-Cohen (10.1016/j.aeue.2019.153040_b0880) 2016; 1
10.1016/j.aeue.2019.153040_b1010
10.1016/j.aeue.2019.153040_b0160
Lee (10.1016/j.aeue.2019.153040_b0530) 2017; 65
10.1016/j.aeue.2019.153040_b0165
10.1016/j.aeue.2019.153040_b0285
Fang (10.1016/j.aeue.2019.153040_b0490) 2018; 1–10
Boyer (10.1016/j.aeue.2019.153040_b0975) 2007; 7
Ambacher (10.1016/j.aeue.2019.153040_b0125) 2002; 14
10.1016/j.aeue.2019.153040_b0615
Cho (10.1016/j.aeue.2019.153040_b0555) 2005; 53
Jebalin (10.1016/j.aeue.2019.153040_b0180) 2015; 46
Van Straten (10.1016/j.aeue.2019.153040_b0370) 2004; 39
Hosseinzadeh (10.1016/j.aeue.2019.153040_b0630) 2016; 26
Oh (10.1016/j.aeue.2019.153040_b0440) 2017; 65
10.1016/j.aeue.2019.153040_b0170
Aust (10.1016/j.aeue.2019.153040_b0635) 2006; 41
Enomoto (10.1016/j.aeue.2019.153040_b0695) 2017; 65
Jebalin (10.1016/j.aeue.2019.153040_b0175) 2015; 78
Mishra (10.1016/j.aeue.2019.153040_b0935) 2008; 96
10.1016/j.aeue.2019.153040_b0945
Florian (10.1016/j.aeue.2019.153040_b0780) 2015; 63
Gustafsson (10.1016/j.aeue.2019.153040_b0580) 2013; 61
10.1016/j.aeue.2019.153040_b0385
Zhou (10.1016/j.aeue.2019.153040_b0520) 2017; 64
Holzer (10.1016/j.aeue.2019.153040_b0705) 2018; 65
Addis (10.1016/j.aeue.2019.153040_b0760) 2014; 22
Yin (10.1016/j.aeue.2019.153040_b0390) 2019
Lemtiri Chlieh (10.1016/j.aeue.2019.153040_b0875) 2017; 65
10.1016/j.aeue.2019.153040_b0035
Meneghesso (10.1016/j.aeue.2019.153040_b0205) 2008; 8
Kang (10.1016/j.aeue.2019.153040_b0720) 2017; 64
Piersanti (10.1016/j.aeue.2019.153040_b0990) 2018; 60
10.1016/j.aeue.2019.153040_b1005
10.1016/j.aeue.2019.153040_b0150
Cho (10.1016/j.aeue.2019.153040_b0365) 2013; 61
Ejeckam (10.1016/j.aeue.2019.153040_b0955) 2014
Sun (10.1016/j.aeue.2019.153040_b0925) 2019; 76
Gupta (10.1016/j.aeue.2019.153040_b0890) 2017; 7
Lee (10.1016/j.aeue.2019.153040_b0815) 2010; 52
Waltereit (10.1016/j.aeue.2019.153040_b0130) 2009; 106
Mohamed (10.1016/j.aeue.2019.153040_b0455) 2014; 61
Ding (10.1016/j.aeue.2019.153040_b0820) 2004; 52
Li (10.1016/j.aeue.2019.153040_b0380) 2018; 1–9
Xu (10.1016/j.aeue.2019.153040_b0215) 1999; 9
Pang (10.1016/j.aeue.2019.153040_b0655) 2015; 63
Kimball (10.1016/j.aeue.2019.153040_b0400) 2006; 54
Burk (10.1016/j.aeue.2019.153040_b0100) 1999; 43
Gustafsson (10.1016/j.aeue.2019.153040_b0575) 2013; 61
Jouzdani (10.1016/j.aeue.2019.153040_b0710) 2015; 62
Ambacher (10.1016/j.aeue.2019.153040_b0085) 1999; 85
Bhatnagar (10.1016/j.aeue.2019.153040_b0930) 1993; 40
Chen (10.1016/j.aeue.2019.153040_b0545) 2016; 64
Wu (10.1016/j.aeue.2019.153040_b0750) 2018; 66
EjeckamPomeroy (10.1016/j.aeue.2019.153040_b0960) 2014; 104
Bloschock (10.1016/j.aeue.2019.153040_b0855) 2012; 2012
Bar-Cohen (10.1016/j.aeue.2019.153040_b0860) 2014; 421–457
Paek (10.1016/j.aeue.2019.153040_b0395) 2018; 1–12
Cidronali (10.1016/j.aeue.2019.153040_b0510) 2016; 64
Cappello (10.1016/j.aeue.2019.153040_b0675) 2019; 1–13
Pednekar (10.1016/j.aeue.2019.153040_b0740) 2018; 66
Moradi Ardekani (10.1016/j.aeue.2019.153040_b0475) 2019; 98
Mohamed (10.1016/j.aeue.2019.153040_b0360) 2014; 61
Sangwan (10.1016/j.aeue.2019.153040_b1015) 2019; 61
Zakaria (10.1016/j.aeue.2019.153040_b0005) 2014; 68
Kang (10.1016/j.aeue.2019.153040_b0355) 2010; 58
10.1016/j.aeue.2019.153040_b0620
10.1016/j.aeue.2019.153040_b0625
Yang (10.1016/j.aeue.2019.153040_b0425) 2003; 51
10.1016/j.aeue.2019.153040_b0865
10.1016/j.aeue.2019.153040_b0185
Guo (10.1016/j.aeue.2019.153040_b0800) 2015; 63
Augustine Fletcher (10.1016/j.aeue.2019.153040_b0155) 2019; 99
Asif Khan (10.1016/j.aeue.2019.153040_b0075) 1997; 41
Lie (10.1016/j.aeue.2019.153040_b0015) 2018; 2018
Kwon (10.1016/j.aeue.2019.153040_b0665) 2015; 62
Bukvic (10.1016/j.aeue.2019.153040_b0305) 2016; 26
Chen (10.1016/j.aeue.2019.153040_b0485) 2017; 65
Lin (10.1016/j.aeue.2019.153040_b0640) 2007; 17
Bernardini (10.1016/j.aeue.2019.153040_b0090) 1997; 56
Fletcher (10.1016/j.aeue.2019.153040_b0140) 2017; 109
Gustafsson (10.1016/j.aeue.2019.153040_b0570) 2014; 62
10.1016/j.aeue.2019.153040_b0755
Ku (10.1016/j.aeue.2019.153040_b0265) 1975; 22
Chen (10.1016/j.aeue.2019.153040_b0685) 2019; 8
Yan (10.1016/j.aeue.2019.153040_b0770) 2008; 47
Cripps (10.1016/j.aeue.2019.153040_b0535) 2006
Quaglia (10.1016/j.aeue.2019.153040_b0585) 2014; 62
Lee (10.1016/j.aeue.2019.153040_b0730) 2015; 63
Xu (10.1016/j.aeue.2019.153040_b1000) 2014
El-Hamamsy (10.1016/j.aeue.2019.153040_b0290) 1994; 9
Grebennikov (10.1016/j.aeue.2019.153040_b0335) 2016; 63
Lubritto (10.1016/j.aeue.2019.153040_b0030) 2011; 36
Lin (10.1016/j.aeue.2019.153040_b0270) 2009; 3
Camarchia (10.1016/j.aeue.2019.153040_b0565) 2015; 63
Fong (10.1016/j.aeue.2019.153040_b0250) 2019; 55
Arivazhagan (10.1016/j.aeue.2019.153040_b0135) 2019; 108
Nirmal (10.1016/j.aeue.2019.153040_b0145) 2018; 113
10.1016/j.aeue.2019.153040_b0200
Lee (10.1016/j.aeue.2019.153040_b0560) 2017; 65
Bar-Cohen (10.1016/j.aeue.2019.153040_b0870) 2013; 4
10.1016/j.aeue.2019.153040_b0325
Xia (10.1016/j.aeue.2019.153040_b0660) 2016; 64
Kalyan (10.1016/j.aeue.2019.153040_b0465) 2018
Dar (10.1016/j.aeue.2019.153040_b0040) 2015; 33
Chen (10.1016/j.aeue.2019.153040_b0910) 2014; 61
Lee (10.1016/j.aeue.2019.153040_b0920) 2000
Chi (10.1016/j.aeue.2019.153040_b0245) 2013
Lin (10.1016/j.aeue.2019.153040_b0980) 2017; 11
Park (10.1016/j.aeue.2019.153040_b0430) 2007; 55
Pang (10.1016/j.aeue.2019.153040_b0505) 2015; 63
Ciccognani (10.1016/j.aeue.2019.153040_b0110) 2008; 44
10.1016/j.aeue.2019.153040_b0330
Watanabe (10.1016/j.aeue.2019.153040_b0745) 2015; 63
Baliga (10.1016/j.aeue.2019.153040_b0055) 1989; 10
Flack (10.1016/j.aeue.2019.153040_b0080) 2016; 45
Cwiklinski (10.1016/j.aeue.2019.153040_b0690) 2018; 1–12
Moon (10.1016/j.aeue.2019.153040_b0795) 2011; 59
Sakata (10.1016/j.aeue.2019.153040_b0785) 2017
Kang (10.1016/j.aeue.2019.153040_b0300) 2008; 56
Lee (10.1016/j.aeue.2019.153040_b0435) 2017; 65
Chen (10.1016/j.aeue.2019.153040_b0650) 2017; 65
Moon (10.1016/j.aeue.2019.153040_b0415) 2011; 59
Piersanti (10.1016/j.aeue.2019.153040_b0985) 2018; 60
Jain (10.1016/j.aeue.2019.153040_b0045) 2014; 29
Felbinger (10.1016/j.aeue.2019.153040_b0965) 2007; 28
He (10.1016/j.aeue.2019.153040_b0895) 2014; 11
Jee (10.1016/j.aeue.2019.153040_b0495) 2015; 63
Rubio (10.1016/j.aeue.2019.153040_b0500) 2018; 66
Jung (10.1016/j.aeue.2019.153040_b0645) 2009; 57
Yang (10.1016/j.aeue.2019.153040_b0405) 2003; 13
Kleine-Ostmann (10.1016/j.aeue.2019.153040_b0010) 2011; 32
10.1016/j.aeue.2019.153040_b0670
Gustafsson (10.1016/j.aeue.2019.153040_b0610) 2016
Xia (10.1016/j.aeue.2019.153040_b0515) 2016; 64
References_xml – volume: 1–1
  year: 2018
  ident: b0240
  article-title: Design realization and tests of a space-borne GaN solid state power amplifier for second generation galileo navigation system
  publication-title: IEEE Trans Aerosp Electron Syst
– volume: 45
  start-page: 2673
  year: 2016
  end-page: 2682
  ident: b0080
  article-title: GaN technology for power electronic applications: a review
  publication-title: J Electron Mater
– volume: 65
  start-page: 5203
  year: 2017
  end-page: 5211
  ident: b0530
  article-title: Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network
  publication-title: IEEE Trans Microw Theory Techn
– volume: 42
  start-page: 2130
  year: 2007
  end-page: 2136
  ident: b0340
  article-title: A GaN HEMT Class F amplifier at 2 GHz with
  publication-title: IEEE J Solid-State Circuits
– volume: 23
  start-page: 34
  year: 2013
  end-page: 36
  ident: b0590
  article-title: 7 GHz MMIC GaN doherty power amplifier with 47 percent efficiency at 7 dB output back-off
  publication-title: IEEE Microwave Wirel Compon Lett
– volume: 7
  start-page: 42
  year: 2006
  end-page: 50
  ident: b0410
  article-title: The Doherty power amplifier
  publication-title: IEEE Microw Mag
– volume: 13
  start-page: 370
  year: 2003
  end-page: 372
  ident: b0405
  article-title: A microwave Doherty amplifier employing envelope tracking tech- nique for high efficiency and linearity
  publication-title: IEEE Microwave Wireless Compon Lett
– volume: 64
  start-page: 4505
  year: 2016
  end-page: 4517
  ident: b0545
  article-title: A broadband doherty power amplifier based on continuous-mode technology
  publication-title: IEEE Trans Microw Theory Tech
– reference: MAAP-011170 datasheet.
– volume: 41
  start-page: 2241
  year: 2006
  end-page: 2247
  ident: b0635
  article-title: A 2.8-W Q-band high-efficiency power amplifier
  publication-title: IEEE J Solid-State Circuits
– volume: 32
  start-page: 143
  year: 2011
  end-page: 171
  ident: b0010
  article-title: A review on terahertz communications research
  publication-title: J Infrared, Millimeter, Terahertz Waves
– volume: 1–1
  year: 2018
  ident: b0260
  article-title: Impacts of crest factor reduction and digital predistortion on linearity and power efficiency of power amplifiers
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– volume: 17
  start-page: 154
  year: 2007
  end-page: 156
  ident: b0640
  article-title: A compact 6.5-W PHEMT MMIC power amplifier for Ku-band applications
  publication-title: IEEE Microwave Wireless Compon Lett
– volume: 62
  start-page: 537
  year: 2015
  end-page: 553
  ident: b0525
  article-title: Broadband Doherty power amplifier based on asymmetric load matching networks
  publication-title: IEEE Trans Circuits Syst II, Express Briefs
– volume: 66
  start-page: 3306
  year: 2018
  end-page: 3314
  ident: b0750
  article-title: A compact ultrabroadband stacked traveling- wave GaN on Si power amplifier
  publication-title: IEEE Trans Microw Theory Tech
– reference: Camarchia V, Rubio JJM, Pirola M, Quaglia R, Colanto- nio P, Giannini F, et al., High-efficiency 7 GHz Doherty GaN MMIC power amplifiers for microwave backhaul radio links. IEEE Trans Electron Devices, 60(10), October 2013. p. 3592–5.
– reference: TGA2701-SM datasheet.
– volume: 78
  start-page: 210
  year: 2015
  end-page: 223
  ident: b0175
  article-title: Unique model of polarization engineered AlGaN/GaN based HEMTs for high power applications
  publication-title: Superlattices Microstruct
– reference: Nirmal D, Varughese SB, Joy D, Princess F, Kumar PV. Design and simulation of AlGaN/GaN HFET. In: 2012 international conference on devices, circuits and systems (ICDCS); 2012. doi:10.1109/icdcsyst.2012.6188704.
– reference: George A, Nirmal D, Prajoon P, Mathew A. Design and simulation of Schottky-source/drain GaN/AlGaN HEMTs for break- down voltage improvement. In: 2014 international conference on electronics and communication systems (ICECS); 2014. doi:10.1109/ecs.2014.6892781.
– volume: 59
  start-page: 3463
  year: 2011
  end-page: 3473
  ident: b0795
  article-title: A multimode/multiband envelope tracking transmitter with broadband saturated amplifier
  publication-title: IEEE Trans Microw Theory Tech
– volume: 1–13
  year: 2019
  ident: b0675
  article-title: A dual-band dual-output power amplifier for carrier aggregation
  publication-title: IEEE Trans Microw Theory Tech
– volume: 62
  start-page: 571
  year: 2015
  end-page: 579
  ident: b0710
  article-title: Envelope tracked pulse gate modulated GaN HEMT power amplifier for wireless transmitters
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– volume: 57
  start-page: 2105
  year: 2009
  end-page: 2113
  ident: b0645
  article-title: Design optimization and DPD linearization of GaN-based unsymmetrical doherty power amplifiers for 3G multicarrier applications
  publication-title: IEEE Trans Microw Theory Tech
– volume: 72
  start-page: 24
  year: 2018
  end-page: 31
  ident: b0775
  article-title: Envelope-tracking common-drain CMOS power amplifier with a switching-only supply modula- tor for LTE applications
  publication-title: Microelectron J
– volume: 104
  start-page: 083513
  year: 2014
  ident: b0960
  article-title: Low thermal resistance GaN-on-diamond tran- sistors characterized by three-dimensional Raman thermography mapping
  publication-title: Appl Phys Lett
– reference: Micovic M, Kurdoghlian A, Moyer HP, Hashimoto P, Schmitz A, Milosavljevic I, et al. GaN MMIC technology for microwave and millimeter-wave applications. In: IEEE compound semiconductor integrated circuit symposium, 2005. CSIC ’05; 2005. doi:10.1109/csics.2005.1531801.
– volume: 1–8
  year: 2018
  ident: b0725
  article-title: Highly efficient asymmetric class-F/F GaN doherty amplifier
  publication-title: IEEE Trans Microw Theory Tech
– volume: 22
  start-page: 457
  year: 2001
  end-page: 459
  ident: b0195
  article-title: AlGaN/AlN/GaN high-power microwave HEMT
  publication-title: IEEE Electron Device Lett
– volume: 66
  start-page: 1319
  year: 2018
  end-page: 1327
  ident: b0500
  article-title: Design of an 87% fractional bandwidth Doherty power amplifier supported by a simplified bandwidth estimation method
  publication-title: IEEE Trans Microw Theory Techn
– volume: 61
  start-page: 533
  year: 2013
  end-page: 542
  ident: b0575
  article-title: A modified doherty power amplifier with extended bandwidth and reconfigurable efficiency
  publication-title: IEEE Trans Microw Theory Tech
– start-page: 374
  year: 2018
  end-page: 384
  ident: b0020
  article-title: High efficiency power amplifiers for mobile base stations: recent trends and future prospects for 5G
  publication-title: IEICE Trans Fundam Electron, Commun Comput Sci
– volume: 56
  start-page: 1582
  year: 2008
  end-page: 1591
  ident: b0420
  article-title: A High-efficiency 100-W GaN three-way doherty amplifier for base-station applications
  publication-title: IEEE Trans Microw Theory Tech
– volume: 62
  start-page: 533
  year: 2015
  end-page: 537
  ident: b0665
  article-title: Broadband doherty power amplifier based on asymmetric load matching networks
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– volume: 65
  start-page: 2715
  year: 2018
  end-page: 2725
  ident: b0705
  article-title: Wideband techniques for outphasing power amplifiers
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– volume: 60
  start-page: 3201
  year: 2012
  end-page: 3213
  ident: b0470
  article-title: A modified Doherty configuration for broadband amplification using symmetrical devices
  publication-title: IEEE Trans Microw Theory Techn
– volume: 421–457
  year: 2014
  ident: b0860
  article-title: Towards embedded cooling - gen 3 thermal packaging technology
  publication-title: WSPC Series Adv Integration Packaging
– reference: Saad P, Nemati HM, Thorsell M, Andersson K, Fager C. An inverse class-F GaN HEMT power amplifier with 78, doi: 10.23919/EUMC.2009.5296560.
– volume: 51
  start-page: 986
  year: 2003
  end-page: 993
  ident: b0425
  article-title: A fully matched N-way Doherty amplifier with optimized linearity
  publication-title: IEEE Trans Microw Theory Techn
– reference: Satoh T, Osawa K, Nitta A. GaN HEMT for space applications. 2018 IEEE BiCMOS and compound semiconductor integrated circuits and technology symposium (BCICTS); 2018. doi:10.1109/bcicts.2018.8551070.
– volume: 36
  start-page: 1109
  year: 2011
  end-page: 1114
  ident: b0030
  article-title: Energy and environmental aspects of mobile communication systems
  publication-title: Energy
– volume: 1–9
  year: 2018
  ident: b0380
  article-title: De- sign of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications
  publication-title: IEEE Trans Microw Theory Tech
– volume: 59
  start-page: 143
  year: 2011
  end-page: 152
  ident: b0415
  article-title: Efficiency enhancement of Doherty amplifier through mitigation of the knee voltage effect
  publication-title: IEEE Trans Microw Theory Techn
– volume: 99
  start-page: 325
  year: 2019
  end-page: 330
  ident: b0155
  article-title: Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications
  publication-title: AEU - Int J Electron Commun
– volume: 9
  start-page: 277
  year: 1999
  end-page: 279
  ident: b0215
  article-title: 1–8-GHz GaN-based power amplifier using flip-chip bonding
  publication-title: IEEE Microwave Guided Wave Lett
– volume: 1–10
  year: 2018
  ident: b0490
  article-title: Linearity-enhanced doherty power amplifier using output combining network with prede- fined AM-PM characteristics
  publication-title: IEEE Trans Microw Theory Tech
– volume: 1–1
  year: 2019
  ident: b0060
  article-title: On the techniques to utilize SiC power devices in high- and very high-frequency power converters
  publication-title: IEEE Trans Power Electron
– year: 2014
  ident: b0955
  article-title: Diamond for enhanced GaN device perfor- mance
  publication-title: Fourteenth Intersociety Conference on Thermal and Thermomechan- ical Phenomena in Electronic Systems (ITherm)
– volume: 56
  start-page: 2416
  year: 2010
  end-page: 2420
  ident: b0350
  article-title: A low complexity partial transmit sequence scheme by use of dummy signals for PAPR reduction in OFDM systems
  publication-title: IEEE Trans Consum Electron
– volume: 85
  start-page: 5400
  year: 2004
  end-page: 5402
  ident: b0190
  article-title: High sheet charge carrier density AlInNGaN field effect transistors on Si(111)
  publication-title: Appl Phys Lett
– reference: Tu¨lek R, Ilgaz A, G¨okden S, Teke A, O¨ ztu¨rk MK, Kasap M, et al. Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures. J Appl Phys 2009;105(1): 013707. doi:10.1063/1.2996281.
– reference: Meharry DE, Lender RJ, Chu K, Gunter LL, Beech KE. Multi-watt wideband MMICs in GaN and GaAs. In: 2007 IEEE/MTT-S international microwave symposium; 2007. doi:10.1109/mwsym.2007.379980.
– reference: Boles T. GaN-on-silicon present challenges and future opportunities. In: 2017 12th european microwave integrated circuits conference (EuMIC); 2017. doi:10.23919/eumic.2017.8230650.
– volume: 52
  start-page: 1767
  year: 2005
  end-page: 1774
  ident: b0315
  article-title: New high-efficiency 2.5 V/0.45 W RWDM class-D audio amplifier for portable consumer electronics
  publication-title: IEEE Trans Circuits Syst I: Regular Papers
– volume: 8
  start-page: 99
  year: 2019
  ident: b0685
  article-title: An X-band 40 W power amplifier GaN MMIC design by using equivalent output impedance model
  publication-title: Electronics
– reference: Huynh H, Kim K, Nah W, Kim S. EMC/EMI verification methodology for semi-custom design. In: Proc. Asia-Pacific symp electro-magn compat; 2013. p. 1–4.
– volume: 68
  year: 2014
  ident: b0005
  article-title: Development of wideband power amplifier for RF/microwave front-end subsystem
  publication-title: Jurnal Teknologi
– volume: 65
  start-page: 860
  year: 2017
  end-page: 871
  ident: b0650
  article-title: Multiobjective Bayesian optimization for active load modulation in a broadband 20- W GaN Doherty power amplifier design
  publication-title: IEEE Trans Microw Theory Tech
– volume: 53
  start-page: 292
  year: 2005
  end-page: 300
  ident: b0555
  article-title: A highly efficient Doherty feedforward linear power amplifier for W-CDMA base-station applications
  publication-title: IEEE Trans Microw Theory Tech
– volume: 63
  start-page: 559
  year: 2015
  end-page: 571
  ident: b0565
  article-title: The Doherty power amplifier: review of recent solutions and trends
  publication-title: IEEE Trans Microw Theory Tech
– volume: 11
  start-page: 655
  year: 2017
  end-page: 665
  ident: b0980
  article-title: Design and appli- cation of a mobile miniature current probe for analysing the cause of EMI noise in IC circuits
  publication-title: IET Sci Meas Technol
– start-page: 65
  year: 2009
  end-page: 76
  ident: b0540
  article-title: Practical waveform engineering
  publication-title: IEEE Microw Mag
– reference: Motoi K, Wentzel A, Tanio M, Hori S, Hayakawa M, Heinrich W, et al. Digital doherty transmitter with envelope modulated class-D GaN power amplifier for 800 MHz band. 2014 IEEE MTT-S international microwave symposium (IMS2014); 2014. doi:10.1109/mwsym.2014.6848280.
– volume: 108
  start-page: 189
  year: 2019
  end-page: 194
  ident: b0135
  article-title: Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications
  publication-title: AEU - Int J Electron Commun
– volume: 51
  start-page: 986
  year: 2003
  end-page: 993
  ident: b0550
  article-title: A fully matched N-way doherty amplifier with optimized linearity
  publication-title: IEEE Trans Microw Theory Tech
– volume: 52
  start-page: 159
  year: 2004
  end-page: 165
  ident: b0820
  article-title: A robust digital baseband predistorter constructed using memory polynomials
  publication-title: IEEE Trans Commun
– volume: 4
  start-page: 020907
  year: 2013
  ident: b0870
  article-title: Gen-3 thermal management technology: role of microchannels and nanostructures in an embedded cooling paradigm
  publication-title: J Nanotechnol Eng Med
– volume: 22
  start-page: 523
  year: 1975
  end-page: 533
  ident: b0265
  article-title: Optimum gain-bandwidth limitations of transistor amplifiers as reactively constrained active two-port networks
  publication-title: IEEE Trans Circuits Syst
– volume: 106
  start-page: 023535
  year: 2009
  ident: b0130
  article-title: Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures
  publication-title: J Appl Phys
– volume: 55
  start-page: 393
  year: 2019
  end-page: 395
  ident: b0250
  article-title: Ku- and K-band high-efficiency GaN MMIC HPA chipset for satellite communications
  publication-title: Electron Lett
– volume: 63
  start-page: 4406
  year: 2015
  end-page: 4414
  ident: b0730
  article-title: A broadband GaN pHEMT power amplifier using non-foster matching
  publication-title: IEEE Trans Microw Theory Tech
– volume: 60
  start-page: 1764
  year: 2012
  end-page: 1783
  ident: b0065
  article-title: A review of GaN on SiC high electron-mobility power transistors and MMICs
  publication-title: IEEE Trans Microw Theory Tech
– volume: 22
  start-page: 313
  year: 2014
  end-page: 325
  ident: b0760
  article-title: Energy management through optimized routing and device pow- ering for greener communication networks
  publication-title: IEEE/ACM Trans Networking
– volume: 98
  start-page: 1151
  year: 2010
  end-page: 1161
  ident: b0940
  article-title: GaN power transistors on Si substrates for switching applications
  publication-title: Proc IEEE
– volume: 7
  start-page: 301
  year: 2007
  end-page: 306
  ident: b0975
  article-title: A methodology for predicting by near field chip to chip coupling
  publication-title: EMC Compo
– volume: 47
  start-page: 2298
  year: Oct. 2008
  end-page: 2308
  ident: b0770
  article-title: Design of a 4-W envelope tracking power amplifier with more than one octave carrier bandwidth
  publication-title: IEEE J. Solid-State Circuits
– start-page: 963
  year: 2000
  end-page: 965
  ident: b0915
  article-title: 14 W GaN-based microwave power amplifiers
  publication-title: IEEE MTT-S Int Microwave Symp Dig
– reference: Guggenheim R, Rodes L. Roadmap review for cooling high-power GaN HEMT devices. In: 2017 IEEE international conference on microwaves, antennas, communications and electronic systems (COMCAS); 2017.
– volume: 1
  start-page: 181
  year: 2016
  end-page: 195
  ident: b0880
  article-title: Near- junction microfluidic cooling for wide bandgap devices
  publication-title: MRS Adv
– reference: Ciccognani W, Limiti E, Longhi PE, Mitrano C, Nanni A, Peroni M. An ultra-broadband robust LNA for defence applications in AlGaN/GaN technology. Microwave symposium digest (MTT), 2010 IEEE MTT-S international, pp. 493,496, 23-28 May 2010. doi: 10.1109/MWSYM.2010.5518253.
– volume: 109
  start-page: 519
  year: 2017
  end-page: 537
  ident: b0140
  article-title: A survey of gallium nitride HEMT for RF and high power applications
  publication-title: Superlattices Microstruct
– volume: 63
  start-page: 572
  year: 2015
  end-page: 579
  ident: b0745
  article-title: A miniature broadband doherty power amplifier with a series-connected load
  publication-title: IEEE Trans Microw Theory Tech
– volume: 2012
  year: 2012
  ident: b0855
  article-title: Advanced thermal management technologies for defense electronics
  publication-title: Defense Transformation Net-Centric Syst
– reference: Kang H, Lee H, Lee W, Oh H, Lim W, Koo H, et al., Octave bandwidth doherty power amplifier using multiple reso- nance circuit for the peaking amplifier. IEEE Trans Circuits Syst I: Regular Papers; 2018. p. 1–11.doi:10.1109/tcsi.2018.2869905.
– volume: 65
  start-page: 5203
  year: 2017
  end-page: 5211
  ident: b0560
  article-title: Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network
  publication-title: IEEE Trans Microw Theory Tech
– volume: 61
  start-page: 1229
  year: 2014
  end-page: 1240
  ident: b0455
  article-title: Electronically tunable Doherty power amplifier for multi-mode multi-band base stations
  publication-title: IEEE Trans Circuits Syst I, Reg Papers
– volume: 64
  start-page: 862
  year: 2017
  end-page: 866
  ident: b0720
  article-title: Symmetric three-way doherty power amplifier for high efficiency and linearity
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– volume: 63
  start-page: 3595
  year: 2015
  end-page: 3607
  ident: b0800
  article-title: Power adaptive digital pre- distortion for wideband RF power amplifiers with dynamic power transmission
  publication-title: IEEE Trans Microw Theory Tech
– reference: Kenington B, Peter. Linearised RF amplifier and transmitter techniques; 1998. 8pp.
– volume: 43
  start-page: 1459
  year: 1999
  end-page: 1464
  ident: b0100
  article-title: SiC and GaN wide bandgap semi- conductor materials and devices
  publication-title: Solid-State Electron
– volume: 63
  start-page: 12
  year: 2016
  end-page: 22
  ident: b0335
  article-title: High-efficiency class-E power amplifier with shunt capacitance and shunt filter
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– volume: 61
  start-page: 922
  year: 2013
  end-page: 930
  ident: b0580
  article-title: A wideband and compact GaN MMIC doherty amplifier for microwave link applications
  publication-title: IEEE Trans Microw Theory Tech
– reference: .
– start-page: 549
  year: 2000
  end-page: 552
  ident: b0920
  article-title: Demonstra- tion of a high efficiency nonuniform monolithic gallium-nitride distributed amplifier
  publication-title: IEEE MTT-S Int Microwave Symp Dig
– start-page: 1
  year: 2019
  end-page: 11
  ident: b0390
  article-title: A compact dual-band digital polar doherty power amplifier using parallel-combining transformer
  publication-title: IEEE J Solid-State Circuits
– reference: Won Y, Cho J, Agonafer D, Asheghi M, Goodson KE. Fundamental cooling limits for high power density GaN electronics. IEEE Transactions on Components, Packaging, and Manufacturing Technology, In preparation.
– volume: 63
  start-page: 2399
  year: 2015
  end-page: 2410
  ident: b0680
  article-title: Bandwidth enhance- ment of three-stage doherty power amplifier using symmetric devices
  publication-title: IEEE Trans Microw Theory Tech
– volume: 62
  start-page: 1352
  year: 2014
  end-page: 1362
  ident: b0765
  article-title: Analysis of envelope-tracking power amplifier using mathematical modeling
  publication-title: IEEE Trans Microw Theory Tech
– volume: 61
  start-page: 4056
  year: 2014
  end-page: 4061
  ident: b0850
  article-title: A numerical study on comparing the active and passive cooling of Al- GaN/GaN HEMTs
  publication-title: IEEE Trans Electron Devices
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 16
  ident: b0015
  article-title: A review of 5G power amplifier design at cm-wave and mm-wave frequencies
  publication-title: Wireless Commun Mobile Comput
– volume: 14
  start-page: 3399
  year: 2002
  end-page: 3434
  ident: b0125
  article-title: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures
  publication-title: J Phys: Condens Matter
– volume: 49
  start-page: 1200
  year: 2009
  end-page: 1206
  ident: b0210
  article-title: GaN HEMT reliability
  publication-title: Microelectron Reliability
– volume: 29
  start-page: 3852
  year: 2014
  end-page: 3863
  ident: b0045
  article-title: A review of high-frequency power distribution systems: for space, telecommunication, and computer applications
  publication-title: IEEE Trans Power Electron
– reference: Mrad R, et al., Integrated class-D audio amplifier virtual test for output EMI filter performance to cite this version: Integrated class-D audio amplifier virtual test for output EMI filter performance, in: 9th Conf. Ph.D. Res. Microelect. Electron.; 2013. p. 73–6.
– volume: 3
  start-page: 135
  year: 2009
  end-page: 142
  ident: b0270
  article-title: Development of ultra wideband, high efficiency, distributed power amplifiers using discrete GaN HEMTs
  publication-title: IET Circuits Devices Syst
– volume: 65
  start-page: 4947
  year: 2017
  end-page: 4952
  ident: b0695
  article-title: Second harmonic treatment technique for bandwidth enhancement of GaN HEMT amplifier with harmonic reactive terminations
  publication-title: IEEE Trans Microw Theory Tech
– volume: 33
  start-page: 1044
  year: 2015
  end-page: 1053
  ident: b0040
  article-title: Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation
  publication-title: J Lightwave Technol
– volume: 50
  start-page: 547
  year: 2002
  end-page: 563
  ident: b0295
  article-title: On the design and efficiency of class A, B, AB, G, and H audio power amplifier output stages
  publication-title: J Audio Eng Soc Audio Eng Soc
– volume: 61
  start-page: 564
  year: 2019
  end-page: 571
  ident: b1015
  article-title: High-frequency electromagnetic simulation and optimization for GaN-HEMT power amplifier IC
  publication-title: IEEE Trans Electromagn Compatibility
– volume: 47
  start-page: 209
  year: 1998
  end-page: 215
  ident: b0825
  article-title: Amplifier linearization using RF feedback and feedforward techniques
  publication-title: IEEE Trans Veh Technol
– reference: Coffey M, MomenRoodaki P, Zai A, Popovic Z. A 4.2-W 10-GHz GaN MMIC doherty power amplifier. In: IEEE compound semicon- ductor integrated circuit symposium, October 2015. p. 1–4.
– volume: 64
  start-page: 2014
  year: 2016
  end-page: 2024
  ident: b0515
  article-title: A broadband high-efficiency doherty power amplifier with integrated compensating reactance
  publication-title: IEEE Trans Microw Theory Techn
– reference: Pandit PP, Arivazhagan L, Prajoon P, Rajkumar J, Ajayan J, Nirmal D. DC Performance analysis of AlGaN/GaN HEMT for future high power applications. In: 2018 4th international conference on devices, circuits and systems (ICDCS). doi:10.1109/icdcsyst.2018.8605071.
– volume: 41
  start-page: 1555
  year: 1997
  end-page: 1559
  ident: b0075
  article-title: GaN based heterostructure for high power devices
  publication-title: Solid-State Electron
– reference: Bensmida S, Hammi O, Ghannouchi FM. High efficiency digitally linearized GaN based power amplifier for 3G applications. In: 2008 IEEE radio and wireless symposium; 2008. doi:10.1109/rws.2008.4463518.
– volume: 56
  start-page: R10024
  year: 1997
  end-page: R10027
  ident: b0090
  article-title: Spontaneous polarization and piezoelectric constants of III-V nitrides
  publication-title: Phys Rev B
– reference: Nair PP, Nirmal D. Gate recessed GaN based HEMT with Si3N4 passivation for microwave applications. In: 2016 international conference on inventive computation technologies (ICICT); 2016.
– volume: 64
  start-page: 862
  year: 2017
  end-page: 866
  ident: b0445
  article-title: Symmetric three-way Doherty power amplifier for high efficiency and linearity
  publication-title: IEEE Trans Circuits Syst II, Exp Briefs
– volume: 98
  start-page: 181
  year: 2019
  end-page: 190
  ident: b0475
  article-title: A new design procedure for wide band Doherty power amplifiers
  publication-title: AEU - Int J Electron Commun
– volume: 64
  start-page: 2014
  year: 2016
  end-page: 2024
  ident: b0660
  article-title: A broadband high- efficiency doherty power amplifier with integrated compensating reactance
  publication-title: IEEE Trans Microw Theory Tech
– volume: 65
  start-page: 860
  year: 2017
  end-page: 871
  ident: b0485
  article-title: Multiobjective Bayesian optimization for active load modulation in a broadband 20-W GaN Doherty power amplifier design
  publication-title: IEEE Trans Microw Theory Techn
– volume: 86
  start-page: 1
  year: 2015
  end-page: 19
  ident: b0050
  article-title: A review of InP/InAlAs/InGaAs based transistors for high frequency applications
  publication-title: Superlattices Microstruct
– volume: 44
  start-page: 911
  year: 2008
  end-page: 912
  ident: b0110
  article-title: High-power monolithic AlGaN/GaN HEMT switch for X-band applications
  publication-title: Electron Lett
– volume: 3
  start-page: 79
  year: 2013
  end-page: 85
  ident: b0950
  article-title: Improved thermal interfaces of GaN–diamond composite substrates for HEMT applications
  publication-title: IEEE Trans Compon, Packaging Manuf Technol
– volume: 53
  start-page: 229
  year: 2005
  end-page: 237
  ident: b0830
  article-title: A hybrid digital/RF envelope predistortion linearization system for power amplifiers
  publication-title: IEEE Trans Microw Theory Tech
– volume: 7
  start-page: 1305
  year: 2017
  end-page: 1312
  ident: b0890
  article-title: Self- consistent electrothermal modeling of passive and microchannel cooling in AlGaN/GaN HEMTs
  publication-title: IEEE Trans Compon Packag Manuf Technol
– volume: 1–15
  year: 2019
  ident: b0275
  article-title: A mixed topology for broadband high-efficiency Doherty power am 4plifier
  publication-title: IEEE Trans Microw Theory Tech
– volume: 10
  start-page: 455
  year: 1989
  end-page: 457
  ident: b0055
  article-title: Power semiconductor device figure of merit for high-frequency applications
  publication-title: IEEE Electron Device Lett
– year: 2013
  ident: b0245
  article-title: L-band high efficiency GaN HEMT power amplifier for space application
  publication-title: IET international radar conference 2013
– volume: 65
  start-page: 4190
  year: 2017
  end-page: 4197
  ident: b0440
  article-title: Doherty power amplifier based on the fundamental current ratio for asymmetric cells
  publication-title: IEEE Trans MicrowTheory Techn
– volume: 60
  start-page: 196
  year: 2018
  end-page: 201
  ident: b0985
  article-title: Near-field shielding performances of absorbing materials for integrated circuits (IC) applications Part I: Lateral excitation
  publication-title: IEEE Trans Electromagn Compat
– year: 2018
  ident: b0465
  article-title: A digitally assisted dual-input dual-band doherty power amplifier with enhanced efficiency and linearity
  publication-title: IEEE Trans Circuits Syst II: Express Briefs
– volume: 40
  start-page: 645
  year: 1993
  end-page: 655
  ident: b0930
  article-title: Comparison of 6H-SiC, 3C-SiC, and Si for power devices
  publication-title: IEEE Trans Electron Devices
– volume: 58
  start-page: 2598
  year: 2010
  end-page: 2608
  ident: b0355
  article-title: A multimode/multiband power amplifier with a boosted supply modulator
  publication-title: IEEE Trans Microw Theory Tech
– volume: 56
  start-page: 77
  year: 2008
  end-page: 87
  ident: b0300
  article-title: A highly efficient and linear class-AB/F power amplifier for multi- mode operation
  publication-title: IEEE Trans Microw Theory Tech
– volume: 39
  start-page: 1598
  year: 2004
  end-page: 1604
  ident: b0370
  article-title: Multiband cellular RF solutions
  publication-title: IEEE J Solid-State Circuits
– reference: Diaz MA, Courville N, Mosquera C, Liva G, Corazza GE. Non-linear interference mitigation for broadband multimedia satellite systems. In: 2007 International workshop on satellite and space communications; 2007. doi:10.1109/iwssc.2007.4409391.
– reference: Altman DH, Gupta A, Tyhach M. Development of a diamond microfluidics-based intra-chip cooling technology for GaN. Volume 3: advanced fabrication and manufacturing; emerging technology frontiers; energy, health and water- applications of nano-, micro- and mini-scale devices; MEMS and NEMS; technology update talks; ther- mal management using micro channels, jets, sprays; 2015. doi:10.1115/ipack2015-48179.
– volume: 1–12
  year: 2018
  ident: b0395
  article-title: Design of boosted supply modulator with reverse current protection for wide battery range in envelope tracking operation
  publication-title: IEEE Trans Microwave Theory Tech
– volume: 96
  start-page: 287
  year: 2008
  end-page: 305
  ident: b0935
  article-title: GaN- based RF power devices and amplifiers
  publication-title: Proc IEEE
– volume: 54
  start-page: 3848
  year: 2006
  end-page: 3856
  ident: b0400
  article-title: High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs
  publication-title: IEEE Trans Microw Theory Tech
– volume: 28
  start-page: 948
  year: 2007
  end-page: 950
  ident: b0965
  article-title: Comparison of GaN HEMTs on diamond and SiC substrates
  publication-title: IEEE Electron Device Lett
– volume: 64
  start-page: 4505
  year: 2016
  end-page: 4517
  ident: b0480
  article-title: A broadband doherty power amplifier based on continuous-mode technology
  publication-title: IEEE Trans Microw Theory Techn
– year: 2006
  ident: b0535
  article-title: RF power ampliers for wireless communications
– reference: CHA5356-QGG datasheet.
– volume: 29
  start-page: 376
  year: 2016
  end-page: 383
  ident: b0885
  article-title: GaN unleashed: the benefits of mi- crofluidic cooling
  publication-title: IEEE Trans Semicond Manuf
– volume: 66
  start-page: 1319
  year: 2018
  end-page: 1327
  ident: b0735
  article-title: Design of an 87% fractional bandwidth doherty power amplifier supported by a simplified bandwidth estimation method
  publication-title: IEEE Trans Microwave Theory Tech
– volume: 63
  start-page: 4061
  year: 2015
  end-page: 4071
  ident: b0505
  article-title: A post- matching Doherty power amplifier employing low-order impedance inverters for broadband applications
  publication-title: IEEE Trans Microw Theory Techn
– reference: Sokal NO. (n.d.). RF power amplifiers, classes A through S-how they operate, and when to use each. Professional Program Proceedings. Electronic Industries Forum of New England. doi:10.1109/eif.1997.605386.
– volume: 26
  start-page: 622
  year: 2016
  end-page: 624
  ident: b0630
  article-title: Wideband 5 W Ka-Band GaAs power amplifier
  publication-title: IEEE Microwave Wirel Compon Lett
– volume: 17
  start-page: 1742
  year: 1999
  ident: b0095
  article-title: Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures
  publication-title: J Vacuum Sci Technol B: Microelectron Nanometer Struct
– volume: 63
  start-page: 337
  year: 2016
  end-page: 346
  ident: b0450
  article-title: Bandpass filtering Doherty power amplifier with enhanced efficiency and wideband harmonic suppression
  publication-title: IEEE Trans Circuits Syst I, Reg Papers
– volume: 61
  start-page: 1608
  year: 2013
  end-page: 1619
  ident: b0365
  article-title: A dual power-mode multi-band power amplifier with envelope tracking for handset applications
  publication-title: IEEE Trans Microw Theory Tech
– volume: 1–12
  year: 2018
  ident: b0690
  article-title: Full W-band GaN power amplifier MMICs using a novel type of broadband radial stub
  publication-title: IEEE Trans Microwave Theory Tech
– start-page: 551
  year: 2014
  end-page: 554
  ident: b1000
  article-title: Modeling and comparison of different edge radiation suppression methods in printed circuit boards
  publication-title: Model Compar Diff Edge
– reference: Boutros K, Luo W, Ma Y, Nagy G, Hacker J. 5W GaN MMIC for millimeter-wave applications. 2006 IEEE compound semi- conductor integrated circuit symposium; 2006. doi:10.1109/csics.2006.319922.
– volume: 64
  start-page: 4491
  year: 2016
  end-page: 4504
  ident: b0700
  article-title: A doherty power amplifier design method for improved efficiency and linearity
  publication-title: IEEE Trans Microw Theory Tech
– volume: 45
  start-page: 707
  year: 1996
  end-page: 719
  ident: b0810
  article-title: Quantization analysis and design of a digital predistortion linearizer for RF power amplifiers
  publication-title: IEEE Trans Veh Technol
– volume: 61
  start-page: 1229
  year: 2014
  end-page: 1240
  ident: b0360
  article-title: Electronically tunable doherty power amplifier for multi-mode multi-band base stations
  publication-title: IEEE Trans Circuits Syst I: Regular Papers
– volume: 8
  start-page: 332
  year: 2008
  end-page: 343
  ident: b0205
  article-title: Reliability of GaN high-electron- mobility transistors: state of the art and perspectives
  publication-title: IEEE Trans Device Mater Reliab
– reference: Brown A, Brown K, Chen J, Hwang KC, Kolias N, Scott R. W-band GaN power amplifier MMICs. 2011 IEEE MTT-S international microwave symposium; 2011. doi:10.1109/mwsym.2011.5972571.
– volume: 10
  start-page: 1237
  year: 1992
  ident: b0070
  article-title: GaN, AlN, and InN: A review
  publication-title: J Vacuum Sci Technol B: Microelectron Nanometer Struct
– volume: 51
  start-page: 643
  year: 2003
  end-page: 652
  ident: b0320
  article-title: High linearity and high efficiency of class- B power amplifiers in GaN HEMT technology
  publication-title: IEEE Trans Microwave Theory Tech
– reference: Kashif A, Azam S, Mughal F, Cheema NB, Imran M. Two-stage GaN HEMT based class-C pulsed amplifier for S-band radar applications. In: 2015 12th international bhurban conference on applied sciences and technology (IBCAST); 2015. doi:10.1109/ibcast.2015.7058556.
– volume: 64
  start-page: 1359
  year: 2016
  end-page: 1372
  ident: b0510
  article-title: Frequency analysis and multiline implementation of compensated impedance inverter for wideband Doherty high-power amplifier design
  publication-title: IEEE Trans Microw Theory Techn
– start-page: 153
  year: 2000
  end-page: 156
  ident: b0995
  article-title: Reduction of radiated emissions from semiconductor by using absorbent materials
  publication-title: IEEE Int Symp Electromagn Compat
– start-page: 1
  year: 2017
  end-page: 4
  ident: b0785
  article-title: An 80MHz modulation bandwidth high efficient and multi-band envelope-tracking power amplifier using GaN single-phase buck-converter
  publication-title: Proc IEEE MTT-S Int Microwave Symp
– volume: 64
  start-page: 1456
  year: 2016
  end-page: 1464
  ident: b0835
  article-title: Power-scalable wideband linearization of power amplifiers
  publication-title: IEEE Trans Microw Theory Tech
– reference: Matin K, Bar-Cohen A, Maurer JJ. Modeling and simulation challenges in embedded two phase cooling: DARPA’s ICE- cool program. Volume 3: advanced fabrication and manufacturing; emerging technology frontiers; energy, health and water- applications of nano- , micro- and mini-scale devices; MEMS and NEMS; technology update talks; thermal management using micro channels, jets, sprays; 2015. doi:10.1115/ipack2015-48334.
– volume: 65
  start-page: 156
  year: 2017
  end-page: 164
  ident: b0875
  article-title: Hybrid integrated microfluidic channels on multilayer organic substrate and on copper for tuning and cooling an RF reconfigurable S-/C-band GaN-based power amplifier
  publication-title: IEEE Trans Microw Theory Tech
– volume: 52
  start-page: 484
  year: 2010
  end-page: 487
  ident: b0815
  article-title: A wideband digital predistortion for highly linear and efficient GaN HEMT Doherty power amplifier
  publication-title: Microwave Opt Technol Lett
– volume: 65
  start-page: 209
  year: 2017
  end-page: 217
  ident: b0435
  article-title: Optimized current of the peaking amplifier for two- stage Doherty power amplifier
  publication-title: IEEE Trans Microw Theory Techn
– start-page: 774
  year: 2013
  end-page: 782
  ident: b0790
  article-title: A multiband LTE SAW-less CMOS transmitter with source-follower-driven passive mixers, envelope- tracked RF-PGAs, and marchand baluns
  publication-title: IEICE Trans Electron
– volume: 85
  start-page: 3222
  year: 1999
  end-page: 3233
  ident: b0085
  article-title: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures
  publication-title: J Appl Phys
– volume: 19
  start-page: 14
  year: 2018
  end-page: 28
  ident: b0025
  article-title: A review of thermal management and innovative cooling strategies for data center
  publication-title: Sustainable Comput Inf Syst
– volume: 62
  start-page: 2700
  year: 2014
  end-page: 2710
  ident: b0585
  article-title: Linear GaN MMIC combined power amplifiers for 7-GHz microwave back- haul
  publication-title: IEEE Trans Microw Theory Tech
– volume: 60
  start-page: 253
  year: 2017
  end-page: 256
  ident: b0280
  article-title: Broadband GaN HEMT distributed power amplifier design with phase adjustment
  publication-title: Microwave Opt Technol Lett
– reference: Campbell CF, Tran K, Kao MY, Nayak S. A K-band 5W doherty amplifier MMIC utilizing 0.15m GaN on SiC HEMT technology. In: IEEE compound semiconductor integrated circuit symposium, October 2012. p. 1–4.
– volume: 26
  start-page: 699
  year: 2016
  end-page: 701
  ident: b0305
  article-title: Simple design of a class-J amplifier with predetermined efficiency
  publication-title: IEEE Microwave Wirel Compon Lett
– volume: 63
  start-page: 2589
  year: 2015
  end-page: 2602
  ident: b0780
  article-title: Envelope tracking of an RF high power amplifier with an 8-level digitally controlled GaN-on-Si supply modulator
  publication-title: IEEE Trans Microw Theory Tech
– volume: 113
  start-page: 810
  year: 2018
  end-page: 820
  ident: b0145
  article-title: Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application
  publication-title: Superlattices Microstruct
– volume: 55
  start-page: 2313
  year: 2007
  end-page: 2319
  ident: b0430
  article-title: A new compact load network for Doherty amplifiers using an imperfect quarter-wave line
  publication-title: IEEE Trans Microw Theory Techn
– volume: 59
  start-page: 2898
  year: 2011
  end-page: 2909
  ident: b0375
  article-title: Digital doherty amplifier with enhanced efficiency and extended range
  publication-title: IEEE Trans Microwave Theory Tech
– volume: 63
  start-page: 2802
  year: 2015
  end-page: 2810
  ident: b0495
  article-title: Asymmetric broadband doherty power amplifier using GaN MMIC for femto-cell base-station
  publication-title: IEEE Trans Microw Theory Tech
– reference: Giofr‘e R, Colantonio P, Giannini F. GaN broadband power amplifiers for terrestrial and space transmitters. Microwave radar and wireless communications (MIKON), 2012 19th international conference on, vol. 2, no., pp. 605, 609, 21–23 May 2012 doi: 10.1109/MIKON.2012.6233596.
– volume: 61
  start-page: 4056
  year: 2014
  end-page: 4061
  ident: b0910
  article-title: A numerical study on comparing the active and passive cooling of AlGaN/GaN HEMTs
  publication-title: IEEE Trans Electron Devices
– volume: 1–14
  year: 2019
  ident: b0255
  article-title: Efficient X-band transmitter with integrated GaN power amplifier and supply modulator
  publication-title: IEEE Trans Microw Theory Tech
– volume: 60
  start-page: 196
  year: 2018
  end-page: 201
  ident: b0990
  article-title: Near-field shielding performances of absorbing materials for integrated circuits (IC) applications. Part II: Crossing excitation
  publication-title: IEEE Trans Electromagn Compat
– volume: 9
  start-page: 297
  year: 1994
  end-page: 308
  ident: b0290
  article-title: Design of high efficiency RF class-D power am- plifier
  publication-title: IEEE Trans Power Electron
– volume: 76
  start-page: 236
  year: 2019
  end-page: 241
  ident: b0925
  article-title: Thermal stability of GaN thin films grown on (0001) Al2O3, (0112) Al2O3 and (0001)Si 6H-SiC substrates
  publication-title: J Appl Phys
– volume: 66
  start-page: 5322
  year: 2018
  end-page: 5335
  ident: b0740
  article-title: Analysis and design of a doherty-like RF-input load modulated balanced amplifier
  publication-title: IEEE Trans Microw Theory Tech
– volume: 2
  start-page: 476
  year: 2008
  ident: b0310
  article-title: Analysis of a class E power amplifier with series-parallel resonator
  publication-title: IET Circuits Devices Syst
– volume: 46
  start-page: 1387
  year: 2015
  end-page: 1391
  ident: b0180
  article-title: The influence of high-k passivation layer on breakdown voltage of Schottky AlGaN/GaN HEMTs
  publication-title: Microelectron J
– volume: 64
  start-page: 1758
  year: 2017
  end-page: 1771
  ident: b0520
  article-title: Broadband efficiency-enhanced mutually coupled harmonic postmatching Doherty power amplifier
  publication-title: IEEE Trans Circuits Syst I, Reg Papers
– volume: 84
  year: 2011
  ident: b0970
  article-title: Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells
  publication-title: Phys Rev B
– volume: 61
  start-page: 552
  year: 2014
  end-page: 561
  ident: b0460
  article-title: A concur- rent dual-band uneven Doherty power amplifier with frequency-dependent input power division
  publication-title: IEEE Trans Circuits Syst I, Reg Papers
– volume: 63
  start-page: 4061
  year: 2015
  end-page: 4071
  ident: b0655
  article-title: A post-matching doherty power amplifier employing low-order impedance inverters for broadband applications
  publication-title: IEEE Trans Microw Theory Tech
– volume: 11
  start-page: 109
  year: 2014
  end-page: 114
  ident: b0895
  article-title: Characterization of leaf-inspired microfluidic chips for pumpless fluid transport
  publication-title: J Bionic Eng
– reference: Mimis K, Morris KA, McGeehan JP. A 2GHz GaN Class-J power amplifier for base station applications. In: 2011 IEEE topical conference on power amplifiers for wireless and radio applications; 2011.
– volume: 63
  start-page: 3691
  year: 2015
  end-page: 3700
  ident: b0715
  article-title: An 85-W multi- octave push-pull GaN HEMT power amplifier for high-efficiency communication applications at microwave frequencies
  publication-title: IEEE Trans Microwave Theory Tech
– reference: Watanabe N, Wong J, Grebenniko A, Nishio G. A high-efficiency 4.35-4.85 GHz Doherty amplifier for base station applications. 2018 Asia-Pacific microwave conference (APMC); 2018. doi:10.23919/apmc.2018.8617418.
– reference: Nair PP, Nirmal D, Soman S, Ramya MSA, Jeba IK. Design and simulation of GaN/AlGaN HEMTs with low leakage cur- rent and high ON/OFF current ratio. In: 2013 International mutliconference on automation, computing, communication, control and compressed sensing (iMac4s); 2013. doi:10.1109/imac4s.2013.6526462.
– volume: 62
  start-page: 3006
  year: 2014
  end-page: 3016
  ident: b0570
  article-title: A GaN MMIC modified doherty PA with large bandwidth and reconfigurable efficiency
  publication-title: IEEE Trans Microw Theory Tech
– year: 2016
  ident: b0610
  article-title: A packaged hybrid doherty PA for microwave links
  publication-title: Eur Microwave Week
– volume: 64
  start-page: 1758
  issue: 7
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0520
  article-title: Broadband efficiency-enhanced mutually coupled harmonic postmatching Doherty power amplifier
  publication-title: IEEE Trans Circuits Syst I, Reg Papers
  doi: 10.1109/TCSI.2017.2658689
– year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0955
  article-title: Diamond for enhanced GaN device perfor- mance
  publication-title: Fourteenth Intersociety Conference on Thermal and Thermomechan- ical Phenomena in Electronic Systems (ITherm)
  doi: 10.1109/ITHERM.2014.6892417
– volume: 57
  start-page: 2105
  issue: 9
  year: 2009
  ident: 10.1016/j.aeue.2019.153040_b0645
  article-title: Design optimization and DPD linearization of GaN-based unsymmetrical doherty power amplifiers for 3G multicarrier applications
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2009.2027076
– ident: 10.1016/j.aeue.2019.153040_b0845
  doi: 10.1109/COMCAS.2017.8244734
– volume: 45
  start-page: 2673
  issue: 6
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0080
  article-title: GaN technology for power electronic applications: a review
  publication-title: J Electron Mater
  doi: 10.1007/s11664-016-4435-3
– ident: 10.1016/j.aeue.2019.153040_b0115
  doi: 10.1109/MWSYM.2010.5518253
– volume: 8
  start-page: 99
  issue: 1
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0685
  article-title: An X-band 40 W power amplifier GaN MMIC design by using equivalent output impedance model
  publication-title: Electronics
  doi: 10.3390/electronics8010099
– volume: 64
  start-page: 4505
  issue: 12
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0545
  article-title: A broadband doherty power amplifier based on continuous-mode technology
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2016.2623705
– volume: 1–1
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0060
  article-title: On the techniques to utilize SiC power devices in high- and very high-frequency power converters
  publication-title: IEEE Trans Power Electron
– ident: 10.1016/j.aeue.2019.153040_b0165
  doi: 10.1109/iMac4s.2013.6526462
– volume: 26
  start-page: 699
  issue: 9
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0305
  article-title: Simple design of a class-J amplifier with predetermined efficiency
  publication-title: IEEE Microwave Wirel Compon Lett
  doi: 10.1109/LMWC.2016.2597228
– ident: 10.1016/j.aeue.2019.153040_b0285
  doi: 10.1109/EIF.1997.605386
– volume: 63
  start-page: 4061
  issue: 12
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0655
  article-title: A post-matching doherty power amplifier employing low-order impedance inverters for broadband applications
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2015.2495201
– volume: 53
  start-page: 292
  issue: 1
  year: 2005
  ident: 10.1016/j.aeue.2019.153040_b0555
  article-title: A highly efficient Doherty feedforward linear power amplifier for W-CDMA base-station applications
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2004.839341
– volume: 65
  start-page: 5203
  issue: 12
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0560
  article-title: Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2017.2765632
– volume: 11
  start-page: 655
  issue: 5
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0980
  article-title: Design and appli- cation of a mobile miniature current probe for analysing the cause of EMI noise in IC circuits
  publication-title: IET Sci Meas Technol
  doi: 10.1049/iet-smt.2016.0348
– volume: 62
  start-page: 571
  issue: 2
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0710
  article-title: Envelope tracked pulse gate modulated GaN HEMT power amplifier for wireless transmitters
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2014.2362311
– ident: 10.1016/j.aeue.2019.153040_b0325
  doi: 10.1109/IBCAST.2015.7058556
– ident: 10.1016/j.aeue.2019.153040_b0600
  doi: 10.1109/CSICS.2015.7314469
– volume: 65
  start-page: 5203
  issue: 12
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0530
  article-title: Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2017.2765632
– volume: 66
  start-page: 1319
  issue: 3
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0500
  article-title: Design of an 87% fractional bandwidth Doherty power amplifier supported by a simplified bandwidth estimation method
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2017.2767586
– year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0465
  article-title: A digitally assisted dual-input dual-band doherty power amplifier with enhanced efficiency and linearity
  publication-title: IEEE Trans Circuits Syst II: Express Briefs
– volume: 17
  start-page: 154
  issue: 2
  year: 2007
  ident: 10.1016/j.aeue.2019.153040_b0640
  article-title: A compact 6.5-W PHEMT MMIC power amplifier for Ku-band applications
  publication-title: IEEE Microwave Wireless Compon Lett
  doi: 10.1109/LMWC.2006.890347
– volume: 1–1
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0240
  article-title: Design realization and tests of a space-borne GaN solid state power amplifier for second generation galileo navigation system
  publication-title: IEEE Trans Aerosp Electron Syst
– volume: 9
  start-page: 297
  issue: 3
  year: 1994
  ident: 10.1016/j.aeue.2019.153040_b0290
  article-title: Design of high efficiency RF class-D power am- plifier
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/63.311263
– volume: 63
  start-page: 2399
  issue: 8
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0680
  article-title: Bandwidth enhance- ment of three-stage doherty power amplifier using symmetric devices
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2015.2452255
– volume: 60
  start-page: 3201
  issue: 10
  year: 2012
  ident: 10.1016/j.aeue.2019.153040_b0470
  article-title: A modified Doherty configuration for broadband amplification using symmetrical devices
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2012.2209446
– volume: 61
  start-page: 1608
  issue: 4
  year: 2013
  ident: 10.1016/j.aeue.2019.153040_b0365
  article-title: A dual power-mode multi-band power amplifier with envelope tracking for handset applications
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2013.2250712
– volume: 1–10
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0490
  article-title: Linearity-enhanced doherty power amplifier using output combining network with prede- fined AM-PM characteristics
  publication-title: IEEE Trans Microw Theory Tech
– volume: 44
  start-page: 911
  issue: 15
  year: 2008
  ident: 10.1016/j.aeue.2019.153040_b0110
  article-title: High-power monolithic AlGaN/GaN HEMT switch for X-band applications
  publication-title: Electron Lett
  doi: 10.1049/el:20081170
– volume: 61
  start-page: 564
  issue: 2
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b1015
  article-title: High-frequency electromagnetic simulation and optimization for GaN-HEMT power amplifier IC
  publication-title: IEEE Trans Electromagn Compatibility
  doi: 10.1109/TEMC.2018.2820202
– ident: 10.1016/j.aeue.2019.153040_b0345
  doi: 10.1109/PAWR.2011.5725378
– volume: 62
  start-page: 537
  issue: 6
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0525
  article-title: Broadband Doherty power amplifier based on asymmetric load matching networks
  publication-title: IEEE Trans Circuits Syst II, Express Briefs
– volume: 65
  start-page: 209
  issue: 1
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0435
  article-title: Optimized current of the peaking amplifier for two- stage Doherty power amplifier
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2016.2613050
– volume: 13
  start-page: 370
  issue: 9
  year: 2003
  ident: 10.1016/j.aeue.2019.153040_b0405
  article-title: A microwave Doherty amplifier employing envelope tracking tech- nique for high efficiency and linearity
  publication-title: IEEE Microwave Wireless Compon Lett
  doi: 10.1109/LMWC.2003.817130
– ident: 10.1016/j.aeue.2019.153040_b0185
  doi: 10.1109/INVENTIVE.2016.7830142
– volume: 66
  start-page: 5322
  issue: 12
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0740
  article-title: Analysis and design of a doherty-like RF-input load modulated balanced amplifier
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2018.2869571
– volume: 8
  start-page: 332
  issue: 2
  year: 2008
  ident: 10.1016/j.aeue.2019.153040_b0205
  article-title: Reliability of GaN high-electron- mobility transistors: state of the art and perspectives
  publication-title: IEEE Trans Device Mater Reliab
  doi: 10.1109/TDMR.2008.923743
– volume: 22
  start-page: 457
  issue: 10
  year: 2001
  ident: 10.1016/j.aeue.2019.153040_b0195
  article-title: AlGaN/AlN/GaN high-power microwave HEMT
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/55.954910
– volume: 65
  start-page: 860
  issue: 3
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0485
  article-title: Multiobjective Bayesian optimization for active load modulation in a broadband 20-W GaN Doherty power amplifier design
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2016.2636146
– volume: 63
  start-page: 2802
  issue: 9
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0495
  article-title: Asymmetric broadband doherty power amplifier using GaN MMIC for femto-cell base-station
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2015.2442973
– volume: 49
  start-page: 1200
  issue: 9–11
  year: 2009
  ident: 10.1016/j.aeue.2019.153040_b0210
  article-title: GaN HEMT reliability
  publication-title: Microelectron Reliability
  doi: 10.1016/j.microrel.2009.07.003
– volume: 56
  start-page: 77
  issue: 1
  year: 2008
  ident: 10.1016/j.aeue.2019.153040_b0300
  article-title: A highly efficient and linear class-AB/F power amplifier for multi- mode operation
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2007.911967
– volume: 62
  start-page: 2700
  issue: 11
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0585
  article-title: Linear GaN MMIC combined power amplifiers for 7-GHz microwave back- haul
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2014.2359856
– volume: 33
  start-page: 1044
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0040
  article-title: Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2014.2384998
– volume: 61
  start-page: 1229
  issue: 4
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0360
  article-title: Electronically tunable doherty power amplifier for multi-mode multi-band base stations
  publication-title: IEEE Trans Circuits Syst I: Regular Papers
  doi: 10.1109/TCSI.2013.2283781
– volume: 63
  start-page: 337
  issue: 3
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0450
  article-title: Bandpass filtering Doherty power amplifier with enhanced efficiency and wideband harmonic suppression
  publication-title: IEEE Trans Circuits Syst I, Reg Papers
  doi: 10.1109/TCSI.2016.2515419
– volume: 1–12
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0690
  article-title: Full W-band GaN power amplifier MMICs using a novel type of broadband radial stub
  publication-title: IEEE Trans Microwave Theory Tech
– volume: 64
  start-page: 1359
  issue: 5
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0510
  article-title: Frequency analysis and multiline implementation of compensated impedance inverter for wideband Doherty high-power amplifier design
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2016.2549524
– volume: 62
  start-page: 3006
  issue: 12
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0570
  article-title: A GaN MMIC modified doherty PA with large bandwidth and reconfigurable efficiency
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2014.2362136
– volume: 113
  start-page: 810
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0145
  article-title: Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application
  publication-title: Superlattices Microstruct
  doi: 10.1016/j.spmi.2017.12.027
– volume: 22
  start-page: 523
  issue: 6
  year: 1975
  ident: 10.1016/j.aeue.2019.153040_b0265
  article-title: Optimum gain-bandwidth limitations of transistor amplifiers as reactively constrained active two-port networks
  publication-title: IEEE Trans Circuits Syst
  doi: 10.1109/TCS.1975.1084074
– ident: 10.1016/j.aeue.2019.153040_b0625
– ident: 10.1016/j.aeue.2019.153040_b0160
  doi: 10.1109/ICDCSyst.2012.6188704
– ident: 10.1016/j.aeue.2019.153040_b0755
  doi: 10.23919/EUMC.2009.5296560
– volume: 85
  start-page: 3222
  issue: 6
  year: 1999
  ident: 10.1016/j.aeue.2019.153040_b0085
  article-title: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures
  publication-title: J Appl Phys
  doi: 10.1063/1.369664
– volume: 65
  start-page: 156
  issue: 1
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0875
  article-title: Hybrid integrated microfluidic channels on multilayer organic substrate and on copper for tuning and cooling an RF reconfigurable S-/C-band GaN-based power amplifier
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2016.2614506
– volume: 23
  start-page: 34
  issue: 1
  year: 2013
  ident: 10.1016/j.aeue.2019.153040_b0590
  article-title: 7 GHz MMIC GaN doherty power amplifier with 47 percent efficiency at 7 dB output back-off
  publication-title: IEEE Microwave Wirel Compon Lett
  doi: 10.1109/LMWC.2012.2234090
– volume: 65
  start-page: 4190
  issue: 11
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0440
  article-title: Doherty power amplifier based on the fundamental current ratio for asymmetric cells
  publication-title: IEEE Trans MicrowTheory Techn
  doi: 10.1109/TMTT.2017.2701376
– volume: 61
  start-page: 533
  issue: 1
  year: 2013
  ident: 10.1016/j.aeue.2019.153040_b0575
  article-title: A modified doherty power amplifier with extended bandwidth and reconfigurable efficiency
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2012.2227783
– volume: 64
  start-page: 2014
  issue: 7
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0660
  article-title: A broadband high- efficiency doherty power amplifier with integrated compensating reactance
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2016.2574861
– volume: 1
  start-page: 181
  issue: 02
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0880
  article-title: Near- junction microfluidic cooling for wide bandgap devices
  publication-title: MRS Adv
  doi: 10.1557/adv.2016.120
– ident: 10.1016/j.aeue.2019.153040_b0905
– volume: 109
  start-page: 519
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0140
  article-title: A survey of gallium nitride HEMT for RF and high power applications
  publication-title: Superlattices Microstruct
  doi: 10.1016/j.spmi.2017.05.042
– volume: 66
  start-page: 1319
  issue: 3
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0735
  article-title: Design of an 87% fractional bandwidth doherty power amplifier supported by a simplified bandwidth estimation method
  publication-title: IEEE Trans Microwave Theory Tech
  doi: 10.1109/TMTT.2017.2767586
– year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0610
  article-title: A packaged hybrid doherty PA for microwave links
  publication-title: Eur Microwave Week
– year: 2006
  ident: 10.1016/j.aeue.2019.153040_b0535
– volume: 60
  start-page: 253
  issue: 1
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0280
  article-title: Broadband GaN HEMT distributed power amplifier design with phase adjustment
  publication-title: Microwave Opt Technol Lett
  doi: 10.1002/mop.30950
– ident: 10.1016/j.aeue.2019.153040_b1005
  doi: 10.1109/APEMC.2013.7360619
– ident: 10.1016/j.aeue.2019.153040_b0840
  doi: 10.1109/RWS.2008.4463518
– volume: 52
  start-page: 484
  issue: 2
  year: 2010
  ident: 10.1016/j.aeue.2019.153040_b0815
  article-title: A wideband digital predistortion for highly linear and efficient GaN HEMT Doherty power amplifier
  publication-title: Microwave Opt Technol Lett
  doi: 10.1002/mop.24951
– volume: 56
  start-page: 2416
  issue: 4
  year: 2010
  ident: 10.1016/j.aeue.2019.153040_b0350
  article-title: A low complexity partial transmit sequence scheme by use of dummy signals for PAPR reduction in OFDM systems
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2010.5681122
– volume: 59
  start-page: 143
  issue: 1
  year: 2011
  ident: 10.1016/j.aeue.2019.153040_b0415
  article-title: Efficiency enhancement of Doherty amplifier through mitigation of the knee voltage effect
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2010.2091207
– ident: 10.1016/j.aeue.2019.153040_b0945
  doi: 10.23919/EuMIC.2017.8230650
– volume: 106
  start-page: 023535
  issue: 2
  year: 2009
  ident: 10.1016/j.aeue.2019.153040_b0130
  article-title: Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures
  publication-title: J Appl Phys
  doi: 10.1063/1.3184348
– volume: 4
  start-page: 020907
  issue: 2
  year: 2013
  ident: 10.1016/j.aeue.2019.153040_b0870
  article-title: Gen-3 thermal management technology: role of microchannels and nanostructures in an embedded cooling paradigm
  publication-title: J Nanotechnol Eng Med
  doi: 10.1115/1.4023898
– volume: 2
  start-page: 476
  issue: 6
  year: 2008
  ident: 10.1016/j.aeue.2019.153040_b0310
  article-title: Analysis of a class E power amplifier with series-parallel resonator
  publication-title: IET Circuits Devices Syst
  doi: 10.1049/iet-cds:20080096
– volume: 7
  start-page: 42
  issue: 5
  year: 2006
  ident: 10.1016/j.aeue.2019.153040_b0410
  article-title: The Doherty power amplifier
  publication-title: IEEE Microw Mag
  doi: 10.1109/MW-M.2006.247914
– ident: 10.1016/j.aeue.2019.153040_b0200
  doi: 10.1109/MWSYM.2007.379980
– volume: 47
  start-page: 209
  issue: 1
  year: 1998
  ident: 10.1016/j.aeue.2019.153040_b0825
  article-title: Amplifier linearization using RF feedback and feedforward techniques
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/25.661047
– start-page: 1
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0785
  article-title: An 80MHz modulation bandwidth high efficient and multi-band envelope-tracking power amplifier using GaN single-phase buck-converter
  publication-title: Proc IEEE MTT-S Int Microwave Symp
– volume: 86
  start-page: 1
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0050
  article-title: A review of InP/InAlAs/InGaAs based transistors for high frequency applications
  publication-title: Superlattices Microstruct
  doi: 10.1016/j.spmi.2015.06.048
– year: 2013
  ident: 10.1016/j.aeue.2019.153040_b0245
  article-title: L-band high efficiency GaN HEMT power amplifier for space application
– volume: 63
  start-page: 2589
  issue: 8
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0780
  article-title: Envelope tracking of an RF high power amplifier with an 8-level digitally controlled GaN-on-Si supply modulator
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2015.2447552
– ident: 10.1016/j.aeue.2019.153040_b0230
  doi: 10.1109/CSICS.2006.319922
– ident: 10.1016/j.aeue.2019.153040_b0620
– volume: 3
  start-page: 135
  issue: 3
  year: 2009
  ident: 10.1016/j.aeue.2019.153040_b0270
  article-title: Development of ultra wideband, high efficiency, distributed power amplifiers using discrete GaN HEMTs
  publication-title: IET Circuits Devices Syst
  doi: 10.1049/iet-cds.2008.0339
– volume: 46
  start-page: 1387
  issue: 12
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0180
  article-title: The influence of high-k passivation layer on breakdown voltage of Schottky AlGaN/GaN HEMTs
  publication-title: Microelectron J
  doi: 10.1016/j.mejo.2015.04.006
– start-page: 65
  year: 2009
  ident: 10.1016/j.aeue.2019.153040_b0540
  article-title: Practical waveform engineering
  publication-title: IEEE Microw Mag
  doi: 10.1109/MMM.2009.934518
– volume: 60
  start-page: 1764
  issue: 6
  year: 2012
  ident: 10.1016/j.aeue.2019.153040_b0065
  article-title: A review of GaN on SiC high electron-mobility power transistors and MMICs
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2012.2187535
– volume: 62
  start-page: 533
  issue: 6
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0665
  article-title: Broadband doherty power amplifier based on asymmetric load matching networks
  publication-title: IEEE Trans Circuits Syst II Express Briefs
  doi: 10.1109/TCSII.2015.2407197
– volume: 61
  start-page: 4056
  issue: 12
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0850
  article-title: A numerical study on comparing the active and passive cooling of Al- GaN/GaN HEMTs
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/TED.2014.2360504
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0015
  article-title: A review of 5G power amplifier design at cm-wave and mm-wave frequencies
  publication-title: Wireless Commun Mobile Comput
  doi: 10.1155/2018/6793814
– volume: 39
  start-page: 1598
  issue: 10
  year: 2004
  ident: 10.1016/j.aeue.2019.153040_b0370
  article-title: Multiband cellular RF solutions
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2004.833558
– volume: 47
  start-page: 2298
  issue: 10
  year: 2008
  ident: 10.1016/j.aeue.2019.153040_b0770
  article-title: Design of a 4-W envelope tracking power amplifier with more than one octave carrier bandwidth
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2012.2204927
– volume: 3
  start-page: 79
  issue: 1
  year: 2013
  ident: 10.1016/j.aeue.2019.153040_b0950
  article-title: Improved thermal interfaces of GaN–diamond composite substrates for HEMT applications
  publication-title: IEEE Trans Compon, Packaging Manuf Technol
  doi: 10.1109/TCPMT.2012.2223818
– volume: 62
  start-page: 1352
  issue: 6
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0765
  article-title: Analysis of envelope-tracking power amplifier using mathematical modeling
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2014.2321356
– volume: 63
  start-page: 12
  issue: 1
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0335
  article-title: High-efficiency class-E power amplifier with shunt capacitance and shunt filter
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2015.2512698
– ident: 10.1016/j.aeue.2019.153040_b0150
  doi: 10.1109/ICDCSyst.2018.8605071
– start-page: 1
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0390
  article-title: A compact dual-band digital polar doherty power amplifier using parallel-combining transformer
  publication-title: IEEE J Solid-State Circuits
– volume: 68
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0005
  article-title: Development of wideband power amplifier for RF/microwave front-end subsystem
  publication-title: Jurnal Teknologi
  doi: 10.11113/jt.v68.2955
– ident: 10.1016/j.aeue.2019.153040_b0865
  doi: 10.1115/IPACK2015-48334
– ident: 10.1016/j.aeue.2019.153040_b1010
  doi: 10.1109/PRIME.2013.6603127
– ident: 10.1016/j.aeue.2019.153040_b0385
  doi: 10.23919/APMC.2018.8617418
– volume: 41
  start-page: 2241
  issue: 10
  year: 2006
  ident: 10.1016/j.aeue.2019.153040_b0635
  article-title: A 2.8-W Q-band high-efficiency power amplifier
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2006.878102
– volume: 1–14
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0255
  article-title: Efficient X-band transmitter with integrated GaN power amplifier and supply modulator
  publication-title: IEEE Trans Microw Theory Tech
– volume: 1–8
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0725
  article-title: Highly efficient asymmetric class-F/F GaN doherty amplifier
  publication-title: IEEE Trans Microw Theory Tech
– volume: 1–9
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0380
  article-title: De- sign of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications
  publication-title: IEEE Trans Microw Theory Tech
– ident: 10.1016/j.aeue.2019.153040_b0615
– volume: 41
  start-page: 1555
  issue: 10
  year: 1997
  ident: 10.1016/j.aeue.2019.153040_b0075
  article-title: GaN based heterostructure for high power devices
  publication-title: Solid-State Electron
  doi: 10.1016/S0038-1101(97)00104-4
– volume: 1–1
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0260
  article-title: Impacts of crest factor reduction and digital predistortion on linearity and power efficiency of power amplifiers
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– volume: 61
  start-page: 552
  issue: 2
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0460
  article-title: A concur- rent dual-band uneven Doherty power amplifier with frequency-dependent input power division
  publication-title: IEEE Trans Circuits Syst I, Reg Papers
  doi: 10.1109/TCSI.2013.2268341
– volume: 59
  start-page: 2898
  issue: 11
  year: 2011
  ident: 10.1016/j.aeue.2019.153040_b0375
  article-title: Digital doherty amplifier with enhanced efficiency and extended range
  publication-title: IEEE Trans Microwave Theory Tech
  doi: 10.1109/TMTT.2011.2166122
– start-page: 963
  year: 2000
  ident: 10.1016/j.aeue.2019.153040_b0915
  article-title: 14 W GaN-based microwave power amplifiers
  publication-title: IEEE MTT-S Int Microwave Symp Dig
– volume: 36
  start-page: 1109
  issue: 2
  year: 2011
  ident: 10.1016/j.aeue.2019.153040_b0030
  article-title: Energy and environmental aspects of mobile communication systems
  publication-title: Energy
  doi: 10.1016/j.energy.2010.11.039
– volume: 50
  start-page: 547
  year: 2002
  ident: 10.1016/j.aeue.2019.153040_b0295
  article-title: On the design and efficiency of class A, B, AB, G, and H audio power amplifier output stages
  publication-title: J Audio Eng Soc Audio Eng Soc
– volume: 17
  start-page: 1742
  issue: 4
  year: 1999
  ident: 10.1016/j.aeue.2019.153040_b0095
  article-title: Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures
  publication-title: J Vacuum Sci Technol B: Microelectron Nanometer Struct
  doi: 10.1116/1.590818
– volume: 64
  start-page: 862
  issue: 8
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0445
  article-title: Symmetric three-way Doherty power amplifier for high efficiency and linearity
  publication-title: IEEE Trans Circuits Syst II, Exp Briefs
  doi: 10.1109/TCSII.2016.2609460
– volume: 1–12
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0395
  article-title: Design of boosted supply modulator with reverse current protection for wide battery range in envelope tracking operation
  publication-title: IEEE Trans Microwave Theory Tech
– volume: 14
  start-page: 3399
  issue: 13
  year: 2002
  ident: 10.1016/j.aeue.2019.153040_b0125
  article-title: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures
  publication-title: J Phys: Condens Matter
– volume: 55
  start-page: 2313
  issue: 11
  year: 2007
  ident: 10.1016/j.aeue.2019.153040_b0430
  article-title: A new compact load network for Doherty amplifiers using an imperfect quarter-wave line
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2007.907399
– ident: 10.1016/j.aeue.2019.153040_b0105
  doi: 10.1109/MIKON.2012.6233596
– volume: 61
  start-page: 1229
  issue: 4
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0455
  article-title: Electronically tunable Doherty power amplifier for multi-mode multi-band base stations
  publication-title: IEEE Trans Circuits Syst I, Reg Papers
  doi: 10.1109/TCSI.2013.2283781
– volume: 43
  start-page: 1459
  issue: 8
  year: 1999
  ident: 10.1016/j.aeue.2019.153040_b0100
  article-title: SiC and GaN wide bandgap semi- conductor materials and devices
  publication-title: Solid-State Electron
  doi: 10.1016/S0038-1101(99)00089-1
– volume: 99
  start-page: 325
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0155
  article-title: Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications
  publication-title: AEU - Int J Electron Commun
  doi: 10.1016/j.aeue.2018.12.006
– volume: 42
  start-page: 2130
  issue: 10
  year: 2007
  ident: 10.1016/j.aeue.2019.153040_b0340
  article-title: A GaN HEMT Class F amplifier at 2 GHz with > 80% PAE
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2007.904317
– volume: 53
  start-page: 229
  issue: 1
  year: 2005
  ident: 10.1016/j.aeue.2019.153040_b0830
  article-title: A hybrid digital/RF envelope predistortion linearization system for power amplifiers
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2004.839306
– volume: 22
  start-page: 313
  issue: 1
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0760
  article-title: Energy management through optimized routing and device pow- ering for greener communication networks
  publication-title: IEEE/ACM Trans Networking
  doi: 10.1109/TNET.2013.2249667
– volume: 40
  start-page: 645
  issue: 3
  year: 1993
  ident: 10.1016/j.aeue.2019.153040_b0930
  article-title: Comparison of 6H-SiC, 3C-SiC, and Si for power devices
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/16.199372
– volume: 10
  start-page: 1237
  issue: 4
  year: 1992
  ident: 10.1016/j.aeue.2019.153040_b0070
  article-title: GaN, AlN, and InN: A review
  publication-title: J Vacuum Sci Technol B: Microelectron Nanometer Struct
  doi: 10.1116/1.585897
– volume: 63
  start-page: 4061
  issue: 12
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0505
  article-title: A post- matching Doherty power amplifier employing low-order impedance inverters for broadband applications
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2015.2495201
– volume: 59
  start-page: 3463
  issue: 12
  year: 2011
  ident: 10.1016/j.aeue.2019.153040_b0795
  article-title: A multimode/multiband envelope tracking transmitter with broadband saturated amplifier
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2011.2170580
– ident: 10.1016/j.aeue.2019.153040_b0120
  doi: 10.1063/1.2996281
– volume: 56
  start-page: R10024
  issue: 16
  year: 1997
  ident: 10.1016/j.aeue.2019.153040_b0090
  article-title: Spontaneous polarization and piezoelectric constants of III-V nitrides
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.56.R10024
– volume: 45
  start-page: 707
  issue: 4
  year: 1996
  ident: 10.1016/j.aeue.2019.153040_b0810
  article-title: Quantization analysis and design of a digital predistortion linearizer for RF power amplifiers
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/25.543741
– volume: 66
  start-page: 3306
  issue: 7
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0750
  article-title: A compact ultrabroadband stacked traveling- wave GaN on Si power amplifier
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2018.2828434
– start-page: 551
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b1000
  article-title: Modeling and comparison of different edge radiation suppression methods in printed circuit boards
  publication-title: Model Compar Diff Edge
– volume: 98
  start-page: 181
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0475
  article-title: A new design procedure for wide band Doherty power amplifiers
  publication-title: AEU - Int J Electron Commun
  doi: 10.1016/j.aeue.2018.11.021
– volume: 84
  issue: 8
  year: 2011
  ident: 10.1016/j.aeue.2019.153040_b0970
  article-title: Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.84.085317
– volume: 98
  start-page: 1151
  issue: 7
  year: 2010
  ident: 10.1016/j.aeue.2019.153040_b0940
  article-title: GaN power transistors on Si substrates for switching applications
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2009.2034397
– volume: 65
  start-page: 2715
  issue: 9
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0705
  article-title: Wideband techniques for outphasing power amplifiers
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2018.2800041
– volume: 60
  start-page: 196
  issue: 1
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0990
  article-title: Near-field shielding performances of absorbing materials for integrated circuits (IC) applications. Part II: Crossing excitation
  publication-title: IEEE Trans Electromagn Compat
  doi: 10.1109/TEMC.2017.2731794
– ident: 10.1016/j.aeue.2019.153040_b0035
  doi: 10.1109/IWSSC.2007.4409391
– volume: 54
  start-page: 3848
  issue: 11
  year: 2006
  ident: 10.1016/j.aeue.2019.153040_b0400
  article-title: High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2006.884685
– volume: 85
  start-page: 5400
  issue: 22
  year: 2004
  ident: 10.1016/j.aeue.2019.153040_b0190
  article-title: High sheet charge carrier density AlInNGaN field effect transistors on Si(111)
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1828580
– volume: 26
  start-page: 622
  issue: 8
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0630
  article-title: Wideband 5 W Ka-Band GaAs power amplifier
  publication-title: IEEE Microwave Wirel Compon Lett
  doi: 10.1109/LMWC.2016.2587834
– volume: 63
  start-page: 3595
  issue: 11
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0800
  article-title: Power adaptive digital pre- distortion for wideband RF power amplifiers with dynamic power transmission
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2015.2480739
– start-page: 374
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0020
  article-title: High efficiency power amplifiers for mobile base stations: recent trends and future prospects for 5G
  publication-title: IEICE Trans Fundam Electron, Commun Comput Sci
  doi: 10.1587/transfun.E101.A.374
– volume: 63
  start-page: 3691
  issue: 11
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0715
  article-title: An 85-W multi- octave push-pull GaN HEMT power amplifier for high-efficiency communication applications at microwave frequencies
  publication-title: IEEE Trans Microwave Theory Tech
  doi: 10.1109/TMTT.2015.2479615
– start-page: 774
  year: 2013
  ident: 10.1016/j.aeue.2019.153040_b0790
  article-title: A multiband LTE SAW-less CMOS transmitter with source-follower-driven passive mixers, envelope- tracked RF-PGAs, and marchand baluns
  publication-title: IEICE Trans Electron
  doi: 10.1587/transele.E96.C.774
– volume: 52
  start-page: 159
  issue: 1
  year: 2004
  ident: 10.1016/j.aeue.2019.153040_b0820
  article-title: A robust digital baseband predistorter constructed using memory polynomials
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2003.822188
– volume: 28
  start-page: 948
  issue: 11
  year: 2007
  ident: 10.1016/j.aeue.2019.153040_b0965
  article-title: Comparison of GaN HEMTs on diamond and SiC substrates
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/LED.2007.908490
– ident: 10.1016/j.aeue.2019.153040_b0805
– ident: 10.1016/j.aeue.2019.153040_b0225
  doi: 10.1109/CSICS.2005.1531801
– volume: 58
  start-page: 2598
  issue: 10
  year: 2010
  ident: 10.1016/j.aeue.2019.153040_b0355
  article-title: A multimode/multiband power amplifier with a boosted supply modulator
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2010.2063851
– ident: 10.1016/j.aeue.2019.153040_b0170
  doi: 10.1109/ECS.2014.6892781
– volume: 32
  start-page: 143
  issue: 2
  year: 2011
  ident: 10.1016/j.aeue.2019.153040_b0010
  article-title: A review on terahertz communications research
  publication-title: J Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-010-9758-1
– ident: 10.1016/j.aeue.2019.153040_b0900
  doi: 10.1115/IPACK2015-48179
– volume: 63
  start-page: 4406
  issue: 12
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0730
  article-title: A broadband GaN pHEMT power amplifier using non-foster matching
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2015.2495106
– ident: 10.1016/j.aeue.2019.153040_b0220
  doi: 10.1109/MWSYM.2011.5972571
– ident: 10.1016/j.aeue.2019.153040_b0595
  doi: 10.1109/TED.2013.2274669
– volume: 61
  start-page: 922
  issue: 2
  year: 2013
  ident: 10.1016/j.aeue.2019.153040_b0580
  article-title: A wideband and compact GaN MMIC doherty amplifier for microwave link applications
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2012.2231421
– volume: 104
  start-page: 083513
  issue: 8
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0960
  article-title: Low thermal resistance GaN-on-diamond tran- sistors characterized by three-dimensional Raman thermography mapping
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4865583
– volume: 64
  start-page: 1456
  issue: 5
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0835
  article-title: Power-scalable wideband linearization of power amplifiers
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2016.2550039
– volume: 11
  start-page: 109
  issue: 1
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0895
  article-title: Characterization of leaf-inspired microfluidic chips for pumpless fluid transport
  publication-title: J Bionic Eng
  doi: 10.1016/S1672-6529(14)60025-1
– volume: 51
  start-page: 986
  issue: 3
  year: 2003
  ident: 10.1016/j.aeue.2019.153040_b0425
  article-title: A fully matched N-way Doherty amplifier with optimized linearity
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2003.808713
– ident: 10.1016/j.aeue.2019.153040_b0235
  doi: 10.1109/BCICTS.2018.8551070
– volume: 65
  start-page: 4947
  issue: 12
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0695
  article-title: Second harmonic treatment technique for bandwidth enhancement of GaN HEMT amplifier with harmonic reactive terminations
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2017.2704931
– volume: 10
  start-page: 455
  issue: 10
  year: 1989
  ident: 10.1016/j.aeue.2019.153040_b0055
  article-title: Power semiconductor device figure of merit for high-frequency applications
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/55.43098
– volume: 63
  start-page: 572
  issue: 2
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0745
  article-title: A miniature broadband doherty power amplifier with a series-connected load
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2014.2377725
– volume: 52
  start-page: 1767
  issue: 9
  year: 2005
  ident: 10.1016/j.aeue.2019.153040_b0315
  article-title: New high-efficiency 2.5 V/0.45 W RWDM class-D audio amplifier for portable consumer electronics
  publication-title: IEEE Trans Circuits Syst I: Regular Papers
  doi: 10.1109/TCSI.2005.852500
– volume: 29
  start-page: 376
  issue: 4
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0885
  article-title: GaN unleashed: the benefits of mi- crofluidic cooling
  publication-title: IEEE Trans Semicond Manuf
  doi: 10.1109/TSM.2016.2597363
– volume: 1–15
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0275
  article-title: A mixed topology for broadband high-efficiency Doherty power am 4plifier
  publication-title: IEEE Trans Microw Theory Tech
– start-page: 549
  year: 2000
  ident: 10.1016/j.aeue.2019.153040_b0920
  article-title: Demonstra- tion of a high efficiency nonuniform monolithic gallium-nitride distributed amplifier
  publication-title: IEEE MTT-S Int Microwave Symp Dig
– start-page: 153
  year: 2000
  ident: 10.1016/j.aeue.2019.153040_b0995
  article-title: Reduction of radiated emissions from semiconductor by using absorbent materials
  publication-title: IEEE Int Symp Electromagn Compat
– volume: 19
  start-page: 14
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0025
  article-title: A review of thermal management and innovative cooling strategies for data center
  publication-title: Sustainable Comput Inf Syst
  doi: 10.1016/j.suscom.2018.05.002
– volume: 72
  start-page: 24
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0775
  article-title: Envelope-tracking common-drain CMOS power amplifier with a switching-only supply modula- tor for LTE applications
  publication-title: Microelectron J
  doi: 10.1016/j.mejo.2017.11.013
– volume: 64
  start-page: 862
  issue: 8
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0720
  article-title: Symmetric three-way doherty power amplifier for high efficiency and linearity
  publication-title: IEEE Trans Circuits Syst II Express Briefs
  doi: 10.1109/TCSII.2016.2609460
– volume: 9
  start-page: 277
  issue: 7
  year: 1999
  ident: 10.1016/j.aeue.2019.153040_b0215
  article-title: 1–8-GHz GaN-based power amplifier using flip-chip bonding
  publication-title: IEEE Microwave Guided Wave Lett
  doi: 10.1109/75.774146
– volume: 56
  start-page: 1582
  issue: 7
  year: 2008
  ident: 10.1016/j.aeue.2019.153040_b0420
  article-title: A High-efficiency 100-W GaN three-way doherty amplifier for base-station applications
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2008.924364
– volume: 2012
  year: 2012
  ident: 10.1016/j.aeue.2019.153040_b0855
  article-title: Advanced thermal management technologies for defense electronics
  publication-title: Defense Transformation Net-Centric Syst
– volume: 7
  start-page: 1305
  issue: 8
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0890
  article-title: Self- consistent electrothermal modeling of passive and microchannel cooling in AlGaN/GaN HEMTs
  publication-title: IEEE Trans Compon Packag Manuf Technol
  doi: 10.1109/TCPMT.2017.2693399
– ident: 10.1016/j.aeue.2019.153040_b0670
  doi: 10.1109/TCSI.2018.2869905
– volume: 65
  start-page: 860
  issue: 3
  year: 2017
  ident: 10.1016/j.aeue.2019.153040_b0650
  article-title: Multiobjective Bayesian optimization for active load modulation in a broadband 20- W GaN Doherty power amplifier design
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2016.2636146
– volume: 64
  start-page: 2014
  issue: 7
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0515
  article-title: A broadband high-efficiency doherty power amplifier with integrated compensating reactance
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2016.2574861
– volume: 51
  start-page: 643
  issue: 2
  year: 2003
  ident: 10.1016/j.aeue.2019.153040_b0320
  article-title: High linearity and high efficiency of class- B power amplifiers in GaN HEMT technology
  publication-title: IEEE Trans Microwave Theory Tech
  doi: 10.1109/TMTT.2002.807682
– volume: 1–13
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0675
  article-title: A dual-band dual-output power amplifier for carrier aggregation
  publication-title: IEEE Trans Microw Theory Tech
– volume: 96
  start-page: 287
  issue: 2
  year: 2008
  ident: 10.1016/j.aeue.2019.153040_b0935
  article-title: GaN- based RF power devices and amplifiers
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2007.911060
– ident: 10.1016/j.aeue.2019.153040_b0605
  doi: 10.1109/CSICS.2012.6340057
– volume: 60
  start-page: 196
  issue: 1
  year: 2018
  ident: 10.1016/j.aeue.2019.153040_b0985
  article-title: Near-field shielding performances of absorbing materials for integrated circuits (IC) applications Part I: Lateral excitation
  publication-title: IEEE Trans Electromagn Compat
  doi: 10.1109/TEMC.2017.2731794
– volume: 108
  start-page: 189
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0135
  article-title: Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications
  publication-title: AEU - Int J Electron Commun
  doi: 10.1016/j.aeue.2019.06.015
– volume: 421–457
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0860
  article-title: Towards embedded cooling - gen 3 thermal packaging technology
  publication-title: WSPC Series Adv Integration Packaging
  doi: 10.1142/9789814579797_0016
– volume: 61
  start-page: 4056
  issue: 12
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0910
  article-title: A numerical study on comparing the active and passive cooling of AlGaN/GaN HEMTs
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/TED.2014.2360504
– volume: 55
  start-page: 393
  issue: 7
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0250
  article-title: Ku- and K-band high-efficiency GaN MMIC HPA chipset for satellite communications
  publication-title: Electron Lett
  doi: 10.1049/el.2018.7179
– volume: 7
  start-page: 301
  year: 2007
  ident: 10.1016/j.aeue.2019.153040_b0975
  article-title: A methodology for predicting by near field chip to chip coupling
  publication-title: EMC Compo
– volume: 51
  start-page: 986
  issue: 3
  year: 2003
  ident: 10.1016/j.aeue.2019.153040_b0550
  article-title: A fully matched N-way doherty amplifier with optimized linearity
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2003.808713
– ident: 10.1016/j.aeue.2019.153040_b0330
  doi: 10.1109/MWSYM.2014.6848280
– volume: 64
  start-page: 4505
  issue: 12
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0480
  article-title: A broadband doherty power amplifier based on continuous-mode technology
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2016.2623705
– volume: 63
  start-page: 559
  issue: 2
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0565
  article-title: The Doherty power amplifier: review of recent solutions and trends
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2014.2387061
– volume: 78
  start-page: 210
  year: 2015
  ident: 10.1016/j.aeue.2019.153040_b0175
  article-title: Unique model of polarization engineered AlGaN/GaN based HEMTs for high power applications
  publication-title: Superlattices Microstruct
  doi: 10.1016/j.spmi.2014.10.038
– volume: 29
  start-page: 3852
  issue: 8
  year: 2014
  ident: 10.1016/j.aeue.2019.153040_b0045
  article-title: A review of high-frequency power distribution systems: for space, telecommunication, and computer applications
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2013.2291364
– volume: 76
  start-page: 236
  issue: 1
  year: 2019
  ident: 10.1016/j.aeue.2019.153040_b0925
  article-title: Thermal stability of GaN thin films grown on (0001) Al2O3, (0112) Al2O3 and (0001)Si 6H-SiC substrates
  publication-title: J Appl Phys
  doi: 10.1063/1.357133
– volume: 64
  start-page: 4491
  issue: 12
  year: 2016
  ident: 10.1016/j.aeue.2019.153040_b0700
  article-title: A doherty power amplifier design method for improved efficiency and linearity
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2016.2617882
SSID ssj0020726
Score 2.547957
SecondaryResourceType review_article
Snippet The unique material properties of GaN, wide bandgap, high thermal conductivity, high breakdown voltage, high electron mobility and the device properties of GaN...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 153040
SubjectTerms Doherty
Envelope tracking power amplifier
HEMT
Power added efficiency
Title A review of GaN HEMT broadband power amplifiers
URI https://dx.doi.org/10.1016/j.aeue.2019.153040
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEA7SXtpD6ZPah-TQW1l3k002m6OIdtuilyp4WxInC5aiInrtb2_G3RULxUOvuxmYTDKv8M0MIU-Rz3pk6rymsQSfbkAGRps4cIyD5S7VTGPt8GCYZGPxNpGTBunWtTAIq6xsf2nTt9a6-hJW0gyXs1n44T29SIXXVR-CsFSjHRZC4S1vf-9gHjxSvKwwikWAq6vCmRLjZdwGW2Uy3faKH-EDyF_Oac_h9M_JWRUp0k7JzAVpuPklOd3rH3hFwg4tS0_ooqAvZkiz3mBE7WphwJo50CWOQKMGQeMFjry-JuN-b9TNgmoCQjCNk2QdMIHMWa0tsxwgMgmkCrgsFI80T42YKuNYXGgHEEvrN2vBav9fyMJIr6035Gi-mLtbQr0jV6owcQyFET5JM6gekEDCQCdKQJOweuv5tGoPjlMqvvIaB_aZo7hy5CgvxdUkzzuaZdkc4-BqWUs0_3XEubfeB-ju_kl3T044JsdbwNgDOVqvNu7RRxBr29pekRY57ry-Z8MfPtPBAg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na8IwFA-ih22HsU_mPnPYbXRt0iRtjiK6OrWXKXgLiUnBMaqI_v9LbDocDA-7pnnw8tL3Fd77PQCeI5v10NRYTUPMPd1oGkgu48AgrBU2KUfc9Q6Pc5ZNyfuMzhqgW_fCuLJKb_srm76z1n4l9NIMV4tF-GE9PUmJ1VUbgqCUWzvccuhUtAlancEwy3_yrijBVZNRTAJH4HtnqjIvabYOLRPxV6v7kXsD-cs_7fmc_hk49cEi7FT8nIOGKS_AyR6E4CUIO7DqPoHLAr7JHGa98QSq9VJqJUsNV24KGpSubrxwU6-vwLTfm3SzwA9BCOYxY5sAEcec4lwhhbWOJNNpojEtEhxxnEoyT6RBccGN1jFV9rBKK26_E1pIahX2GjTLZWluALS-PEkKGce6kMTmadJpiGaaIc1ZQnQboProYu4Rwt2gii9Rl4J9Cicu4TgSlbja4OWHZlXhYxzcTWuJil-3LKwBP0B3-0-6J3CUTcYjMRrkwztwjF2uvKsfuwfNzXprHmxAsVGP_of5Bv0Gw7M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+GaN+HEMT+broadband+power+amplifiers&rft.jtitle=International+journal+of+electronics+and+communications&rft.au=Husna+Hamza%2C+K.&rft.au=Nirmal%2C+D.&rft.date=2020-03-01&rft.issn=1434-8411&rft.volume=116&rft.spage=153040&rft_id=info:doi/10.1016%2Fj.aeue.2019.153040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aeue_2019_153040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-8411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-8411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-8411&client=summon