Single-Satellite Integrated Navigation Algorithm Based on Broadband LEO Constellation Communication Links

With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such as indoors, forests, and canyons, there is an urgent need to improve the position accuracy in these environments. However, traditional algori...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 4; p. 703
Main Authors Ye, Lvyang, Yang, Yikang, Jing, Xiaolun, Ma, Jiangang, Deng, Lingyu, Li, Hengnian
Format Journal Article
LanguageEnglish
Published MDPI AG 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such as indoors, forests, and canyons, there is an urgent need to improve the position accuracy in these environments. However, traditional algorithms obtain the position solution through time redundancy in exchange for spatial redundancy, and they require continuous observations that cannot satisfy the real-time location services. In addition, they must also consider the clock bias between the satellite and receiver. Therefore, in this paper, we provide a single-satellite integrated navigation algorithm based on the elimination of clock bias for broadband low earth orbit (LEO) satellite communication links. First, we derive the principle of LEO satellite communication link clock bias elimination; then, we give the principle and process of the algorithm. Next, we model and analyze the error of the system. Subsequently, based on the unscented Kalman filter (UKF), we model the state vector and observation vector of our algorithm and give the state and observation equations. Finally, for different scenarios, we conduct qualitative and quantitative analysis through simulations, and the results show that, whether in an altimeter scenario or non-altimeter scenario, the performance indicators of our algorithm are significantly better than the inertial navigation system (INS), which can effectively overcome the divergence problem of INS; compared with the medium earth orbit (MEO) constellation, the navigation trajectory under the LEO constellation is closer to the real trajectory of the aircraft; and compared with the traditional algorithm, the accuracy of each item is improved by more than 95%. These results show that our algorithm not only significantly improves the position error, but also effectively suppresses the divergence of INS. The algorithm is more robust and can satisfy the requirements of cm-level real-time location services in challenging environments.
AbstractList With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such as indoors, forests, and canyons, there is an urgent need to improve the position accuracy in these environments. However, traditional algorithms obtain the position solution through time redundancy in exchange for spatial redundancy, and they require continuous observations that cannot satisfy the real-time location services. In addition, they must also consider the clock bias between the satellite and receiver. Therefore, in this paper, we provide a single-satellite integrated navigation algorithm based on the elimination of clock bias for broadband low earth orbit (LEO) satellite communication links. First, we derive the principle of LEO satellite communication link clock bias elimination; then, we give the principle and process of the algorithm. Next, we model and analyze the error of the system. Subsequently, based on the unscented Kalman filter (UKF), we model the state vector and observation vector of our algorithm and give the state and observation equations. Finally, for different scenarios, we conduct qualitative and quantitative analysis through simulations, and the results show that, whether in an altimeter scenario or non-altimeter scenario, the performance indicators of our algorithm are significantly better than the inertial navigation system (INS), which can effectively overcome the divergence problem of INS; compared with the medium earth orbit (MEO) constellation, the navigation trajectory under the LEO constellation is closer to the real trajectory of the aircraft; and compared with the traditional algorithm, the accuracy of each item is improved by more than 95%. These results show that our algorithm not only significantly improves the position error, but also effectively suppresses the divergence of INS. The algorithm is more robust and can satisfy the requirements of cm-level real-time location services in challenging environments.
Author Jing, Xiaolun
Deng, Lingyu
Ye, Lvyang
Yang, Yikang
Ma, Jiangang
Li, Hengnian
Author_xml – sequence: 1
  givenname: Lvyang
  orcidid: 0000-0003-4587-4249
  surname: Ye
  fullname: Ye, Lvyang
– sequence: 2
  givenname: Yikang
  surname: Yang
  fullname: Yang, Yikang
– sequence: 3
  givenname: Xiaolun
  orcidid: 0000-0002-1159-062X
  surname: Jing
  fullname: Jing, Xiaolun
– sequence: 4
  givenname: Jiangang
  surname: Ma
  fullname: Ma, Jiangang
– sequence: 5
  givenname: Lingyu
  surname: Deng
  fullname: Deng, Lingyu
– sequence: 6
  givenname: Hengnian
  surname: Li
  fullname: Li, Hengnian
BookMark eNptkUtLxDAQx4Mo-Lz4CXoUoZpX281RFx8Lix7Uc5jmUaNtoklW8NvbtaIiziUz__zmPySzizZ98AahQ4JPGBP4NCbCMMcNZhtoh-KGlpwKuvkr30YHKT3hMRgjAvMd5O6c73pT3kE2fe-yKRY-my6OpS5u4M11kF3wxVnfhejy41CcQxqvRuk8BtAteF0sL26LefBpbTHh8zAMK-_UVC2df077aMtCn8zB17mHHi4v7ufX5fL2ajE_W5aK1XUuCbOcVG2Lqa6Vpm3LhdWqorNa1dA2ILi1VNmGYl4Bs401mtEG-CjXum4t20OLyVcHeJIv0Q0Q32UAJz-FEDsJMTvVG2mEwURzowWjvKYWdDMTjdVUa1yRau11NHm9xPC6MinLwSW1fqU3YZUkrSoiBKvwbESPJ1TFkFI09ns0wXK9HvmznhHGf2Dl8udf5Qiu_6_lA-qTlW0
CitedBy_id crossref_primary_10_1002_mop_33217
crossref_primary_10_3390_rs16224151
crossref_primary_10_3390_s22093213
crossref_primary_10_3390_aerospace11120987
crossref_primary_10_3390_drones7010014
crossref_primary_10_3390_drones6090241
crossref_primary_10_1109_LCOMM_2021_3125325
crossref_primary_10_3390_math10101627
crossref_primary_10_3390_app12199486
crossref_primary_10_1016_j_actaastro_2023_05_019
crossref_primary_10_1016_j_jag_2022_102710
crossref_primary_10_3390_rs15071849
crossref_primary_10_3390_electronics12030518
crossref_primary_10_3390_rs13204099
crossref_primary_10_1109_TVT_2023_3328252
crossref_primary_10_3390_drones8050207
crossref_primary_10_1155_2022_3976806
crossref_primary_10_1016_j_asr_2023_10_031
crossref_primary_10_1109_TAES_2023_3234521
crossref_primary_10_3390_rs13163312
crossref_primary_10_3390_aerospace10050411
crossref_primary_10_1109_TAES_2023_3325797
crossref_primary_10_3390_rs14163871
Cites_doi 10.1109/MAES.2004.1346848
10.1109/VTCSpring.2019.8746485
10.1109/78.157301
10.1109/EURONAV.2018.8433242
10.1007/s10291-020-00982-3
10.1109/7.68162
10.1109/ICSPCC.2018.8567800
10.33012/2018.15575
10.1109/TAES.2003.1207254
10.1007/978-981-10-4591-2_39
10.1109/ICSPCC46631.2019.8960832
10.1016/j.actaastro.2019.03.040
10.1109/PLANS.2014.6851486
10.1109/RADAR.2017.7944430
10.1002/navi.234
10.1049/iet-spr.2016.0646
10.1515/aon-2016-0005
10.1109/7.937464
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs13040703
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_e9e01d4ed932462fad7897fd2dd0515f
10_3390_rs13040703
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7S9
L.6
PQGLB
PUEGO
ID FETCH-LOGICAL-c366t-13f415bb02d6cd2bb49fdc5286c6ab7a94ff2cf72045a3f7fed327a44ff6d6bf3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 00:55:50 EDT 2025
Fri Jul 11 08:30:54 EDT 2025
Tue Jul 01 01:58:30 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-13f415bb02d6cd2bb49fdc5286c6ab7a94ff2cf72045a3f7fed327a44ff6d6bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1159-062X
0000-0003-4587-4249
OpenAccessLink https://doaj.org/article/e9e01d4ed932462fad7897fd2dd0515f
PQID 2551993508
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_e9e01d4ed932462fad7897fd2dd0515f
proquest_miscellaneous_2551993508
crossref_primary_10_3390_rs13040703
crossref_citationtrail_10_3390_rs13040703
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Konatowski (ref_23) 2016; 23
ref_13
ref_12
ref_33
ref_32
Li (ref_3) 2017; 42
ref_30
Cui (ref_6) 2013; 11
Fowler (ref_10) 2001; 37
Reid (ref_1) 2018; 65
Caiyong (ref_16) 2016; 32
ref_19
ref_18
Groves (ref_27) 2013; 67
ref_17
ref_15
Ma (ref_8) 2020; 24
Roecker (ref_14) 1991; 27
Del (ref_2) 2019; 159
Brach (ref_31) 2019; 51
Kang (ref_24) 2018; 12
ref_25
ref_22
Wu (ref_11) 2003; 39
ref_21
ref_20
Chan (ref_9) 1992; 40
Risfic (ref_26) 2004; 19
ref_29
ref_28
ref_5
ref_4
ref_7
References_xml – ident: ref_28
– volume: 19
  start-page: 37
  year: 2004
  ident: ref_26
  article-title: Beyond the kalman filter—Book Review
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2004.1346848
– ident: ref_30
– ident: ref_5
– ident: ref_17
  doi: 10.1109/VTCSpring.2019.8746485
– ident: ref_32
– volume: 42
  start-page: 1501
  year: 2017
  ident: ref_3
  article-title: On civil-military integrated space-based real-time information service system
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
– volume: 40
  start-page: 2594
  year: 1992
  ident: ref_9
  article-title: Passive localization from Doppler-shifted frequency measurements
  publication-title: IEEE Trans Signal Process.
  doi: 10.1109/78.157301
– ident: ref_7
  doi: 10.1109/EURONAV.2018.8433242
– volume: 24
  start-page: 1
  year: 2020
  ident: ref_8
  article-title: FH-BOC: Generalized low-ambiguity anti-interference spread spectrum modulation based on frequency-hopping binary offset carrier
  publication-title: GPS Solut.
  doi: 10.1007/s10291-020-00982-3
– volume: 11
  start-page: 4351
  year: 2013
  ident: ref_6
  article-title: Satellite Communication and Navigation Integrated Signal
  publication-title: Telkomnika Indones. J. Electr. Eng.
– volume: 27
  start-page: 175
  year: 1991
  ident: ref_14
  article-title: On combining multidimensional target location ellipsoids
  publication-title: IEEE Trans Aerosp. Electron. Syst.
  doi: 10.1109/7.68162
– ident: ref_15
  doi: 10.1109/ICSPCC.2018.8567800
– ident: ref_4
  doi: 10.33012/2018.15575
– volume: 39
  start-page: 414
  year: 2003
  ident: ref_11
  article-title: Aperture error mitigation via local-state estimation for frequency-based emitter location
  publication-title: IEEE Trans Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2003.1207254
– ident: ref_21
– volume: 51
  start-page: 3
  year: 2019
  ident: ref_31
  article-title: Impacts of forest spatial structure on variation of the multipath phenomenon of navigation satellite signals
  publication-title: Folia For. Pol. Ser. A
– ident: ref_18
  doi: 10.1007/978-981-10-4591-2_39
– ident: ref_20
  doi: 10.1109/ICSPCC46631.2019.8960832
– volume: 159
  start-page: 123
  year: 2019
  ident: ref_2
  article-title: A technical comparison of three low earth orbit satellite constellation systems to provide global broadband
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2019.03.040
– ident: ref_25
– ident: ref_29
– ident: ref_33
– ident: ref_19
  doi: 10.1109/PLANS.2014.6851486
– volume: 32
  start-page: 65
  year: 2016
  ident: ref_16
  article-title: Method of single satellite passive geolocation using spatial sparsity
  publication-title: Telecommun. Sci.
– ident: ref_12
– ident: ref_13
  doi: 10.1109/RADAR.2017.7944430
– volume: 65
  start-page: 205
  year: 2018
  ident: ref_1
  article-title: Broadband LEO Constellations for Navigation
  publication-title: Navigation
  doi: 10.1002/navi.234
– volume: 12
  start-page: 174
  year: 2018
  ident: ref_24
  article-title: Adaptive complex-EKF-based DOA estimation for GPS spoofing detection
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2016.0646
– volume: 23
  start-page: 69
  year: 2016
  ident: ref_23
  article-title: Comparison of Estimation Accuracy of EKF, UKF and PF Filters
  publication-title: Annu. Navig.
  doi: 10.1515/aon-2016-0005
– volume: 37
  start-page: 495
  year: 2001
  ident: ref_10
  article-title: Analysis of single-platform passive emitterlocation with terrain data
  publication-title: IEEE Trans Aerosp. Electron. Syst.
  doi: 10.1109/7.937464
– ident: ref_22
– volume: 67
  start-page: 191
  year: 2013
  ident: ref_27
  article-title: Principles of GNSS, inertial, and multisensor integrated navigation systems
  publication-title: Ind. Robot
SSID ssj0000331904
Score 2.3799002
Snippet With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 703
SubjectTerms aircraft
algorithms
altimeters
clock bias
integrated navigation
LEO
PNTRC
quantitative analysis
satellites
single-satellite positioning
UKF
Title Single-Satellite Integrated Navigation Algorithm Based on Broadband LEO Constellation Communication Links
URI https://www.proquest.com/docview/2551993508
https://doaj.org/article/e9e01d4ed932462fad7897fd2dd0515f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swELZYedhepgGbVjYqo-2Fh4gkduz0sYWWgtqC1iH1LXJyvjGppBMtk_bvd3bS0opJvOwpknVKovPl7j7l_H2MfRUJCKFDEwiIbCALwMDIqAhsqEDEaQjgVSJGYzW4lVfTZLoh9eVmwip64Mpxp7ZtwwikBWo0pIrRgE7bGiEGcPIk6LIv1bwNMOVzsKDQCmXFRyoI158-LChbSxfgWxXIE_U_y8O-uPTfsbd1V8g71dvssR1b7rPXtUD53Z8D9nNCJWZmg4nxDJpLyy9XPA_Ax-a3J8qYl7wz-zEnuH93z7tUnoDTEgFtA7kpgQ9719wJdLpbVOZbx0O4w6WL9-y23_t-NghqlYSgEEo5LXmkIpznYQyqgDjPZRuhSOJUFcrk2rQlYlygE6NJjECNljZBG0nLClSO4gNrlPPSfmRcCRQ6hUgYoSTaJE0j1ASJdGqtQdRNdrLyXFbUFOJOyWKWEZRwXs6evNxkX9a2vyrijH9add0GrC0c2bVfoBDI6hDIXgqBJjtebV9GH4f742FKO39cZISX3IAiNaGH_-NBn9ib2I20-KHtz6yxfHi0R9STLPMWe5X2L1pst3M-Gk7o2u2Nb761fFD-BUpS5dg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Satellite+Integrated+Navigation+Algorithm+Based+on+Broadband+LEO+Constellation+Communication+Links&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lvyang+Ye&rft.au=Yikang+Yang&rft.au=Xiaolun+Jing&rft.au=Jiangang+Ma&rft.date=2021-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=4&rft.spage=703&rft_id=info:doi/10.3390%2Frs13040703&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e9e01d4ed932462fad7897fd2dd0515f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon