Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network
In this paper, a novel percussion-based bolt looseness monitoring approach using intrinsic multiscale entropy analysis and back propagation (BP) neural network is proposed. The percussion-caused audio signals of bolt connection are decomposed by complete ensemble empirical mode decomposition with ad...
Saved in:
Published in | Smart materials and structures Vol. 28; no. 12; pp. 125001 - 125012 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a novel percussion-based bolt looseness monitoring approach using intrinsic multiscale entropy analysis and back propagation (BP) neural network is proposed. The percussion-caused audio signals of bolt connection are decomposed by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to obtain intrinsic mode functions (IMFs). The IMFs are in order of high-to-low instantaneous frequencies and contain underlying dynamical characteristics of audio signals. Multiscale sample entropy (MSE) is improved by smoothed coarse graining process, and the proposed improved multiscale sample entropy (IMSE) values of certain IMFs are adopted as condition indicators in bolt looseness monitoring. The intrinsic multiscale entropy analysis consisting of CEEDMAN and IMSE extracts underlying dynamical characteristics during percussion-caused audio signal processing to identify bolt looseness conditions. The condition indicators, namely IMSE values at smallest scale factors, are employed as input of BP neural network for training and testing, to achieve accurate and stable bolt looseness condition monitoring. The effectiveness and superiority of the proposed approach have been validated by theoretical derivation and practical experimental researches, and the adaptivity and robustness of the proposed approach are also illustrated. The results of the research in this paper demonstrate the proposed approach is promising in practical applications of bolt looseness monitoring. |
---|---|
AbstractList | In this paper, a novel percussion-based bolt looseness monitoring approach using intrinsic multiscale entropy analysis and back propagation (BP) neural network is proposed. The percussion-caused audio signals of bolt connection are decomposed by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to obtain intrinsic mode functions (IMFs). The IMFs are in order of high-to-low instantaneous frequencies and contain underlying dynamical characteristics of audio signals. Multiscale sample entropy (MSE) is improved by smoothed coarse graining process, and the proposed improved multiscale sample entropy (IMSE) values of certain IMFs are adopted as condition indicators in bolt looseness monitoring. The intrinsic multiscale entropy analysis consisting of CEEDMAN and IMSE extracts underlying dynamical characteristics during percussion-caused audio signal processing to identify bolt looseness conditions. The condition indicators, namely IMSE values at smallest scale factors, are employed as input of BP neural network for training and testing, to achieve accurate and stable bolt looseness condition monitoring. The effectiveness and superiority of the proposed approach have been validated by theoretical derivation and practical experimental researches, and the adaptivity and robustness of the proposed approach are also illustrated. The results of the research in this paper demonstrate the proposed approach is promising in practical applications of bolt looseness monitoring. |
Author | Yuan, Rui Song, Gangbing Kong, Qingzhao Lv, Yong |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0001-9758-5292 surname: Yuan fullname: Yuan, Rui organization: Wuhan University of Science and Technology Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan, 430081, People's Republic of China – sequence: 2 givenname: Yong orcidid: 0000-0002-5571-2043 surname: Lv fullname: Lv, Yong email: lvyong@wust.edu.cn organization: Wuhan University of Science and Technology Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan, 430081, People's Republic of China – sequence: 3 givenname: Qingzhao orcidid: 0000-0001-9577-4540 surname: Kong fullname: Kong, Qingzhao organization: University of Houston Smart Materials and Structure Laboratory, Department of Mechanical Engineering, Houston, TX 77204, United States of America – sequence: 4 givenname: Gangbing orcidid: 0000-0001-5135-5555 surname: Song fullname: Song, Gangbing email: gsong@uh.edu organization: University of Houston Smart Materials and Structure Laboratory, Department of Mechanical Engineering, Houston, TX 77204, United States of America |
BookMark | eNp9kU1LxDAQhoOs4O7q3WOOHqzbNG3aHnXxCxbcg4K3kKapZE2TkkmR_femrHgQWRgymeF9h8yTBZpZZxVClyS9IWlVrQhlJGGseF-Jhja0PkHz39YMzdOa5QkpM3aGFgC7NCWkomSOzFZ5OQJoZ5NGgGpx40zAxjlQVgHg3lkdnNf2A48wndqGWIGWuB9N0CCFUVjFphv2WFhh9qAhXlp8t8VWjV6YmMKX85_n6LQTBtTFT16it4f71_VTsnl5fF7fbhJJGQsJyWpZqZLFqOOLM5Y3qqCkImkjsyprupxRIkUlmrYrKCtLWudF3rGqK-uM0ZouETvMld4BeNVxqYMIccfghTacpHxixidAfALED8yiMf1jHLzuhd8fs1wfLNoNfOdGHwnAMfnVP3LogWdRncUo4t_woe3oN78-jt0 |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1016_j_ndteint_2023_102986 crossref_primary_10_1177_14759217221134050 crossref_primary_10_1002_stc_2899 crossref_primary_10_1088_1361_6501_abdc98 crossref_primary_10_1016_j_measurement_2024_114585 crossref_primary_10_1177_14759217231158540 crossref_primary_10_1177_1475921720976989 crossref_primary_10_1016_j_ymssp_2021_107955 crossref_primary_10_1515_jisys_2024_0079 crossref_primary_10_1115_1_4067540 crossref_primary_10_1007_s13349_020_00457_6 crossref_primary_10_1109_JSEN_2023_3346495 crossref_primary_10_1016_j_autcon_2021_104009 crossref_primary_10_1109_JSEN_2022_3215643 crossref_primary_10_3390_s20010041 crossref_primary_10_1109_JSEN_2023_3271607 crossref_primary_10_1088_1361_665X_ac0f45 crossref_primary_10_1177_14759217221077414 crossref_primary_10_1109_TIM_2022_3216670 crossref_primary_10_1016_j_apacoust_2022_108889 crossref_primary_10_1016_j_ymssp_2023_111013 crossref_primary_10_1016_j_conbuildmat_2025_140171 crossref_primary_10_1016_j_measurement_2024_116318 crossref_primary_10_3390_pr12092037 crossref_primary_10_1111_mice_12602 crossref_primary_10_1177_14759217241241985 crossref_primary_10_1007_s12541_023_00783_x crossref_primary_10_1088_1742_6596_2519_1_012058 crossref_primary_10_1177_14759217241305537 crossref_primary_10_1088_1361_665X_ad5c24 crossref_primary_10_1016_j_ymssp_2021_108652 crossref_primary_10_1177_14759217221091131 crossref_primary_10_1080_10589759_2022_2030735 crossref_primary_10_1177_14759217231159948 crossref_primary_10_1007_s10409_023_22360_x crossref_primary_10_1109_JSEN_2020_3001870 crossref_primary_10_1088_1361_665X_acb4cb crossref_primary_10_1007_s11227_021_04082_y crossref_primary_10_1016_j_jobe_2020_101946 crossref_primary_10_1177_14759217231182305 crossref_primary_10_1088_1361_665X_accd30 crossref_primary_10_1002_stc_2876 crossref_primary_10_1016_j_heliyon_2024_e37772 crossref_primary_10_3390_s24196447 crossref_primary_10_1088_1361_665X_acb2a0 crossref_primary_10_1371_journal_pone_0287433 crossref_primary_10_1016_j_autcon_2020_103266 crossref_primary_10_1007_s11760_024_03752_7 crossref_primary_10_1016_j_measurement_2022_110725 crossref_primary_10_1007_s13349_023_00756_8 crossref_primary_10_1088_1361_665X_ad06e0 crossref_primary_10_1016_j_ultras_2025_107601 crossref_primary_10_1080_10589759_2024_2405884 crossref_primary_10_1115_1_4053799 crossref_primary_10_1016_j_ymssp_2022_109834 crossref_primary_10_3390_s23115345 crossref_primary_10_1177_14759217211049995 crossref_primary_10_1177_1475921720923147 crossref_primary_10_1177_1045389X20906003 crossref_primary_10_1177_14759217211063420 crossref_primary_10_1002_stc_2839 crossref_primary_10_1016_j_measurement_2023_113484 crossref_primary_10_1177_14759217211004243 crossref_primary_10_1016_j_ymssp_2021_108638 crossref_primary_10_3390_su15054531 crossref_primary_10_1088_1742_6596_2184_1_012003 crossref_primary_10_3390_app12189370 crossref_primary_10_3390_chemosensors10090347 crossref_primary_10_1088_1361_6501_ad5199 crossref_primary_10_1007_s00170_021_06965_z crossref_primary_10_1088_1361_665X_acb51a crossref_primary_10_1177_14759217231157069 crossref_primary_10_1002_stc_2741 crossref_primary_10_1080_10589759_2023_2244123 crossref_primary_10_1061__ASCE_AS_1943_5525_0001147 crossref_primary_10_1109_TIM_2022_3214623 crossref_primary_10_1109_TIM_2022_3217855 crossref_primary_10_1177_14759217231153991 crossref_primary_10_1002_ese3_1516 crossref_primary_10_1016_j_jcsr_2020_105956 crossref_primary_10_1177_14759217231219649 crossref_primary_10_1016_j_conbuildmat_2021_124756 crossref_primary_10_3390_mi14010135 crossref_primary_10_1177_14759217231219689 crossref_primary_10_1088_1361_665X_abdc08 crossref_primary_10_1177_1045389X19891534 crossref_primary_10_3390_app9194027 |
Cites_doi | 10.1080/10589759.2012.740042 10.1109/ACCESS.2018.2855693 10.1088/1361-665X/aa6a8e 10.1088/1361-665X/aa9a65 10.1109/TMI.2015.2419711 10.1177/1475921710373298 10.1098/rspa.1998.0193 10.1088/1361-665X/aa7e66 10.1142/S1793536910000422 10.1016/j.tust.2017.03.007 10.3390/s18061727 10.1177/1475921718800363 10.1088/0964-1726/15/1/029 10.1088/0964-1726/22/8/087001 10.1088/0964-1726/18/9/095004 10.1073/pnas.88.6.2297 10.1177/1475921710395810 10.1007/s13349-018-0307-2 10.3390/s18082586 10.1016/j.measurement.2015.12.009 10.1088/0964-1726/25/8/085015 10.1088/0964-1726/23/7/075010 10.1016/j.renene.2017.09.061 10.1088/1361-665X/aadbfb 10.3390/s18041210 10.12989/sss.2015.16.2.281 10.3390/s17020250 10.1109/JSEN.2018.2847308 10.1109/JBHI.2013.2241071 10.3390/app6100298 10.1088/1361-665X/aae54e 10.1007/s11071-017-3336-1 10.1088/0964-1726/20/11/115017 10.1152/ajpheart.2000.278.6.H2039 10.1016/j.ymssp.2016.03.010 10.1016/j.engstruct.2018.05.109 10.1155/2013/871213 10.1115/1.2748821 10.1016/j.measurement.2018.03.026 10.1088/1361-665X/aa6ae8 10.3390/app6110320 10.1098/rsos.172430 10.3390/s17040776 10.2140/jomms.2007.2.43 10.1016/j.bspc.2015.09.002 10.1108/AEAT-01-2013-0006 10.1088/0964-1726/22/9/095022 10.1098/rsos.170616 10.1088/0964-1726/24/12/125040 10.1142/S1793536909000047 10.3390/ma11061009 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd |
Copyright_xml | – notice: 2019 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/ab3b39 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_ab3b39 smsab3b39 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c366t-129c8e76e769726264be531810bc282bf4631ca8abdf5367739454f68f7926393 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Thu Apr 24 23:08:14 EDT 2025 Tue Jul 01 03:38:42 EDT 2025 Wed Aug 21 03:40:37 EDT 2024 Thu Jan 07 13:52:09 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-129c8e76e769726264be531810bc282bf4631ca8abdf5367739454f68f7926393 |
Notes | SMS-108894 |
ORCID | 0000-0002-5571-2043 0000-0001-9758-5292 0000-0001-9577-4540 0000-0001-5135-5555 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1088_1361_665X_ab3b39 iop_journals_10_1088_1361_665X_ab3b39 crossref_citationtrail_10_1088_1361_665X_ab3b39 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 46 47 49 Wu T Y (37) 2009; 18 Torres M E (40) 2011 50 51 52 Razi P (34) 2011; 20 53 10 11 13 14 15 16 Wang T (7) 2013; 22 17 18 19 Sun H (6) 2018; 28 Costa M (48) 2007; 89 Ho S C M (12) 2017; 26 1 2 8 9 20 21 23 24 25 Yan H (26) 2012; 7 Kong Q (27) 2018; 27 28 29 Ompusunggu A P (43) 2017; 9 Parvasi S M (22) 2016; 25 30 Yuan S (54) 2005; 15 32 33 35 36 39 Wang F (5) 2017; 27 Qarib H (31) 2015; 24 Huo L (3) 2017; 26 Ye Z (55) 2017; 26 Chen J (4) 2013; 22 41 42 Si Y (38) 2014; 23 |
References_xml | – ident: 35 doi: 10.1080/10589759.2012.740042 – start-page: 4144 year: 2011 ident: 40 publication-title: IEEE Int. Conf. on Acoustics, Speech and Signal Processing – ident: 18 doi: 10.1109/ACCESS.2018.2855693 – volume: 26 start-page: 057004 issn: 0964-1726 year: 2017 ident: 3 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa6a8e – volume: 27 start-page: 015023 issn: 0964-1726 year: 2017 ident: 5 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa9a65 – ident: 42 doi: 10.1109/TMI.2015.2419711 – ident: 33 doi: 10.1177/1475921710373298 – ident: 30 doi: 10.1098/rspa.1998.0193 – volume: 26 start-page: 095056 issn: 0964-1726 year: 2017 ident: 55 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa7e66 – volume: 9 year: 2017 ident: 43 publication-title: Int. Conf. Surveillance – ident: 39 doi: 10.1142/S1793536910000422 – ident: 13 doi: 10.1016/j.tust.2017.03.007 – ident: 23 doi: 10.3390/s18061727 – ident: 52 doi: 10.1177/1475921718800363 – volume: 15 start-page: 1 issn: 0964-1726 year: 2005 ident: 54 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/15/1/029 – volume: 22 start-page: 087001 issn: 0964-1726 year: 2013 ident: 7 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/8/087001 – volume: 89 start-page: 705 year: 2007 ident: 48 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 095004 issn: 0964-1726 year: 2009 ident: 37 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/9/095004 – ident: 47 doi: 10.1073/pnas.88.6.2297 – ident: 25 doi: 10.1177/1475921710395810 – ident: 19 doi: 10.1007/s13349-018-0307-2 – ident: 14 doi: 10.3390/s18082586 – ident: 24 doi: 10.1016/j.measurement.2015.12.009 – volume: 25 start-page: 085015 issn: 0964-1726 year: 2016 ident: 22 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/8/085015 – volume: 23 start-page: 075010 issn: 0964-1726 year: 2014 ident: 38 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/7/075010 – ident: 50 doi: 10.1016/j.renene.2017.09.061 – volume: 27 issn: 0964-1726 year: 2018 ident: 27 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aadbfb – ident: 29 doi: 10.3390/s18041210 – ident: 10 doi: 10.12989/sss.2015.16.2.281 – ident: 20 doi: 10.3390/s17020250 – ident: 11 doi: 10.1109/JSEN.2018.2847308 – ident: 49 doi: 10.1109/JBHI.2013.2241071 – ident: 17 doi: 10.3390/app6100298 – volume: 28 start-page: 015018 issn: 0964-1726 year: 2018 ident: 6 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aae54e – ident: 2 doi: 10.1007/s11071-017-3336-1 – volume: 20 start-page: 115017 issn: 0964-1726 year: 2011 ident: 34 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/11/115017 – ident: 46 doi: 10.1152/ajpheart.2000.278.6.H2039 – ident: 28 doi: 10.1016/j.ymssp.2016.03.010 – ident: 53 doi: 10.1016/j.engstruct.2018.05.109 – ident: 1 doi: 10.1155/2013/871213 – ident: 15 doi: 10.1115/1.2748821 – ident: 8 doi: 10.1016/j.measurement.2018.03.026 – volume: 26 start-page: 057003 issn: 0964-1726 year: 2017 ident: 12 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa6ae8 – ident: 21 doi: 10.3390/app6110320 – ident: 45 doi: 10.1098/rsos.172430 – ident: 16 doi: 10.3390/s17040776 – ident: 32 doi: 10.2140/jomms.2007.2.43 – ident: 41 doi: 10.1016/j.bspc.2015.09.002 – ident: 9 doi: 10.1108/AEAT-01-2013-0006 – volume: 7 start-page: 1110 year: 2012 ident: 26 publication-title: Mech. Sci. Technol. Aerosp. Eng. – volume: 22 start-page: 095022 issn: 0964-1726 year: 2013 ident: 4 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/9/095022 – ident: 44 doi: 10.1098/rsos.170616 – volume: 24 start-page: 125040 issn: 0964-1726 year: 2015 ident: 31 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/12/125040 – ident: 36 doi: 10.1142/S1793536909000047 – ident: 51 doi: 10.3390/ma11061009 |
SSID | ssj0011831 |
Score | 2.572438 |
Snippet | In this paper, a novel percussion-based bolt looseness monitoring approach using intrinsic multiscale entropy analysis and back propagation (BP) neural network... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 125001 |
SubjectTerms | back propagation (BP) neural network bolt looseness monitoring complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) improved multiscale sample entropy (IMSE) intrinsic mode functions (IMFs) percussion-caused audio signal |
Title | Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/ab3b39 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7WFUEPvsU3EfTgIbt206YJnlQUFdQ9KOxBKE2aiLjbLrZ70F_vpO0uKiIi5JDCJA2Tx0ySL98A7PtKad-zAZVCxBTtcUIFboSosFpxqWXAEnc0cHPLLx_8617Qa8Dx5C1MNqyX_hZmK6LgSoU1IE60PcY9ynnQa8eKKSanYJoJzl34gqu77uQKAcdqGS5Pcp-ilR7fUf5UwxebNIX__WRiLhbgcdy4Clny0hoVqqXfv_E2_rP1izBfu57kpBJdgoZJl2HuEyHhMsyUgFCdr0C_a171yEFkU-osXUJU1i9IP8vycnUkg3IxcMWIw84_kee0wC8sTUqQYo6db4g7O86GbySuuU8wk5DTLnE0mtiWtAKhr8LDxfn92SWtIzNQzTgvKDoJWpiQY5KoWnSqlMHJLLwjpXEPp6zPmadjEavEBoyHIZN-4FsubCg76BOxNWimWWrWgfhewkNlbag8ZyhNzGWMXihWGDpTajagPe6bSNe05S56Rj8qr8-FiJxGI6fRqNLoBhxOSgwryo5fZA-wo6J63ua_yO19kcsHedRBsQ6mAAdbNEzs5h_r2oJZ9LpkhYnZhmbxOjI76NkUarccwR_-CPEm |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BVav2QNstqDzaulI5cPAuWSeOfQTKCvrY7oGV9ubGjo1QQxKR7AF-PeMki6BCq0qVfHCksePMjD1je_INwJdQaxMGLqJSiISiPU6pwI0QFc5oLo2MWOqPBn6O-ek0_DaLZl2e0-ZfmKLslv4-Vlug4JaFXUCcGASMB5TzaDZINNNMDsrUrcKziHHmwfPPfk3urxFQX5uUeZKHFC314p7yqV4e2aVVfPcDMzN6Db8XA2yjS_7057Xum9u_sBv_4wvewHrngpLDlvwtrNi8B68eABP24HkTGGqqd5BN7LWZ-1DZnHqLlxJdZDXJiqJqVkly1SwKvhnxMfQX5DKv8QlbkyZYsUIlsMSfIRflDUk6DBSspORoQjycJo4lb4PRN2A6Ojk_PqVdhgZqGOc1RWfBCBtzLBLZi86VtjipRXCgDe7ltAs5C0wiEp06lE8cMxlGoePCxXKIvhHbhLW8yO17IGGQ8lg7F-vAG0ybcJmgN4odxt6k2i0YLOSjTAdf7rNoZKq5RhdCea4qz1XVcnUL9u9blC10xxLaPRSW6uZvtYTu8yO66qpSQyQbYolQ4RRKcvsf-_oELyZfR-rH2fj7DrxER0y2YTK7sFZfz-0HdHZq_bFR6DtKDfaK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Percussion-based+bolt+looseness+monitoring+using+intrinsic+multiscale+entropy+analysis+and+BP+neural+network&rft.jtitle=Smart+materials+and+structures&rft.au=Yuan%2C+Rui&rft.au=Lv%2C+Yong&rft.au=Kong%2C+Qingzhao&rft.au=Song%2C+Gangbing&rft.date=2019-12-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=28&rft.issue=12&rft_id=info:doi/10.1088%2F1361-665X%2Fab3b39&rft.externalDocID=smsab3b39 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |