Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network

In this paper, a novel percussion-based bolt looseness monitoring approach using intrinsic multiscale entropy analysis and back propagation (BP) neural network is proposed. The percussion-caused audio signals of bolt connection are decomposed by complete ensemble empirical mode decomposition with ad...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 28; no. 12; pp. 125001 - 125012
Main Authors Yuan, Rui, Lv, Yong, Kong, Qingzhao, Song, Gangbing
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a novel percussion-based bolt looseness monitoring approach using intrinsic multiscale entropy analysis and back propagation (BP) neural network is proposed. The percussion-caused audio signals of bolt connection are decomposed by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to obtain intrinsic mode functions (IMFs). The IMFs are in order of high-to-low instantaneous frequencies and contain underlying dynamical characteristics of audio signals. Multiscale sample entropy (MSE) is improved by smoothed coarse graining process, and the proposed improved multiscale sample entropy (IMSE) values of certain IMFs are adopted as condition indicators in bolt looseness monitoring. The intrinsic multiscale entropy analysis consisting of CEEDMAN and IMSE extracts underlying dynamical characteristics during percussion-caused audio signal processing to identify bolt looseness conditions. The condition indicators, namely IMSE values at smallest scale factors, are employed as input of BP neural network for training and testing, to achieve accurate and stable bolt looseness condition monitoring. The effectiveness and superiority of the proposed approach have been validated by theoretical derivation and practical experimental researches, and the adaptivity and robustness of the proposed approach are also illustrated. The results of the research in this paper demonstrate the proposed approach is promising in practical applications of bolt looseness monitoring.
AbstractList In this paper, a novel percussion-based bolt looseness monitoring approach using intrinsic multiscale entropy analysis and back propagation (BP) neural network is proposed. The percussion-caused audio signals of bolt connection are decomposed by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to obtain intrinsic mode functions (IMFs). The IMFs are in order of high-to-low instantaneous frequencies and contain underlying dynamical characteristics of audio signals. Multiscale sample entropy (MSE) is improved by smoothed coarse graining process, and the proposed improved multiscale sample entropy (IMSE) values of certain IMFs are adopted as condition indicators in bolt looseness monitoring. The intrinsic multiscale entropy analysis consisting of CEEDMAN and IMSE extracts underlying dynamical characteristics during percussion-caused audio signal processing to identify bolt looseness conditions. The condition indicators, namely IMSE values at smallest scale factors, are employed as input of BP neural network for training and testing, to achieve accurate and stable bolt looseness condition monitoring. The effectiveness and superiority of the proposed approach have been validated by theoretical derivation and practical experimental researches, and the adaptivity and robustness of the proposed approach are also illustrated. The results of the research in this paper demonstrate the proposed approach is promising in practical applications of bolt looseness monitoring.
Author Yuan, Rui
Song, Gangbing
Kong, Qingzhao
Lv, Yong
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0001-9758-5292
  surname: Yuan
  fullname: Yuan, Rui
  organization: Wuhan University of Science and Technology Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan, 430081, People's Republic of China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0002-5571-2043
  surname: Lv
  fullname: Lv, Yong
  email: lvyong@wust.edu.cn
  organization: Wuhan University of Science and Technology Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan, 430081, People's Republic of China
– sequence: 3
  givenname: Qingzhao
  orcidid: 0000-0001-9577-4540
  surname: Kong
  fullname: Kong, Qingzhao
  organization: University of Houston Smart Materials and Structure Laboratory, Department of Mechanical Engineering, Houston, TX 77204, United States of America
– sequence: 4
  givenname: Gangbing
  orcidid: 0000-0001-5135-5555
  surname: Song
  fullname: Song, Gangbing
  email: gsong@uh.edu
  organization: University of Houston Smart Materials and Structure Laboratory, Department of Mechanical Engineering, Houston, TX 77204, United States of America
BookMark eNp9kU1LxDAQhoOs4O7q3WOOHqzbNG3aHnXxCxbcg4K3kKapZE2TkkmR_femrHgQWRgymeF9h8yTBZpZZxVClyS9IWlVrQhlJGGseF-Jhja0PkHz39YMzdOa5QkpM3aGFgC7NCWkomSOzFZ5OQJoZ5NGgGpx40zAxjlQVgHg3lkdnNf2A48wndqGWIGWuB9N0CCFUVjFphv2WFhh9qAhXlp8t8VWjV6YmMKX85_n6LQTBtTFT16it4f71_VTsnl5fF7fbhJJGQsJyWpZqZLFqOOLM5Y3qqCkImkjsyprupxRIkUlmrYrKCtLWudF3rGqK-uM0ZouETvMld4BeNVxqYMIccfghTacpHxixidAfALED8yiMf1jHLzuhd8fs1wfLNoNfOdGHwnAMfnVP3LogWdRncUo4t_woe3oN78-jt0
CODEN SMSTER
CitedBy_id crossref_primary_10_1016_j_ndteint_2023_102986
crossref_primary_10_1177_14759217221134050
crossref_primary_10_1002_stc_2899
crossref_primary_10_1088_1361_6501_abdc98
crossref_primary_10_1016_j_measurement_2024_114585
crossref_primary_10_1177_14759217231158540
crossref_primary_10_1177_1475921720976989
crossref_primary_10_1016_j_ymssp_2021_107955
crossref_primary_10_1515_jisys_2024_0079
crossref_primary_10_1115_1_4067540
crossref_primary_10_1007_s13349_020_00457_6
crossref_primary_10_1109_JSEN_2023_3346495
crossref_primary_10_1016_j_autcon_2021_104009
crossref_primary_10_1109_JSEN_2022_3215643
crossref_primary_10_3390_s20010041
crossref_primary_10_1109_JSEN_2023_3271607
crossref_primary_10_1088_1361_665X_ac0f45
crossref_primary_10_1177_14759217221077414
crossref_primary_10_1109_TIM_2022_3216670
crossref_primary_10_1016_j_apacoust_2022_108889
crossref_primary_10_1016_j_ymssp_2023_111013
crossref_primary_10_1016_j_conbuildmat_2025_140171
crossref_primary_10_1016_j_measurement_2024_116318
crossref_primary_10_3390_pr12092037
crossref_primary_10_1111_mice_12602
crossref_primary_10_1177_14759217241241985
crossref_primary_10_1007_s12541_023_00783_x
crossref_primary_10_1088_1742_6596_2519_1_012058
crossref_primary_10_1177_14759217241305537
crossref_primary_10_1088_1361_665X_ad5c24
crossref_primary_10_1016_j_ymssp_2021_108652
crossref_primary_10_1177_14759217221091131
crossref_primary_10_1080_10589759_2022_2030735
crossref_primary_10_1177_14759217231159948
crossref_primary_10_1007_s10409_023_22360_x
crossref_primary_10_1109_JSEN_2020_3001870
crossref_primary_10_1088_1361_665X_acb4cb
crossref_primary_10_1007_s11227_021_04082_y
crossref_primary_10_1016_j_jobe_2020_101946
crossref_primary_10_1177_14759217231182305
crossref_primary_10_1088_1361_665X_accd30
crossref_primary_10_1002_stc_2876
crossref_primary_10_1016_j_heliyon_2024_e37772
crossref_primary_10_3390_s24196447
crossref_primary_10_1088_1361_665X_acb2a0
crossref_primary_10_1371_journal_pone_0287433
crossref_primary_10_1016_j_autcon_2020_103266
crossref_primary_10_1007_s11760_024_03752_7
crossref_primary_10_1016_j_measurement_2022_110725
crossref_primary_10_1007_s13349_023_00756_8
crossref_primary_10_1088_1361_665X_ad06e0
crossref_primary_10_1016_j_ultras_2025_107601
crossref_primary_10_1080_10589759_2024_2405884
crossref_primary_10_1115_1_4053799
crossref_primary_10_1016_j_ymssp_2022_109834
crossref_primary_10_3390_s23115345
crossref_primary_10_1177_14759217211049995
crossref_primary_10_1177_1475921720923147
crossref_primary_10_1177_1045389X20906003
crossref_primary_10_1177_14759217211063420
crossref_primary_10_1002_stc_2839
crossref_primary_10_1016_j_measurement_2023_113484
crossref_primary_10_1177_14759217211004243
crossref_primary_10_1016_j_ymssp_2021_108638
crossref_primary_10_3390_su15054531
crossref_primary_10_1088_1742_6596_2184_1_012003
crossref_primary_10_3390_app12189370
crossref_primary_10_3390_chemosensors10090347
crossref_primary_10_1088_1361_6501_ad5199
crossref_primary_10_1007_s00170_021_06965_z
crossref_primary_10_1088_1361_665X_acb51a
crossref_primary_10_1177_14759217231157069
crossref_primary_10_1002_stc_2741
crossref_primary_10_1080_10589759_2023_2244123
crossref_primary_10_1061__ASCE_AS_1943_5525_0001147
crossref_primary_10_1109_TIM_2022_3214623
crossref_primary_10_1109_TIM_2022_3217855
crossref_primary_10_1177_14759217231153991
crossref_primary_10_1002_ese3_1516
crossref_primary_10_1016_j_jcsr_2020_105956
crossref_primary_10_1177_14759217231219649
crossref_primary_10_1016_j_conbuildmat_2021_124756
crossref_primary_10_3390_mi14010135
crossref_primary_10_1177_14759217231219689
crossref_primary_10_1088_1361_665X_abdc08
crossref_primary_10_1177_1045389X19891534
crossref_primary_10_3390_app9194027
Cites_doi 10.1080/10589759.2012.740042
10.1109/ACCESS.2018.2855693
10.1088/1361-665X/aa6a8e
10.1088/1361-665X/aa9a65
10.1109/TMI.2015.2419711
10.1177/1475921710373298
10.1098/rspa.1998.0193
10.1088/1361-665X/aa7e66
10.1142/S1793536910000422
10.1016/j.tust.2017.03.007
10.3390/s18061727
10.1177/1475921718800363
10.1088/0964-1726/15/1/029
10.1088/0964-1726/22/8/087001
10.1088/0964-1726/18/9/095004
10.1073/pnas.88.6.2297
10.1177/1475921710395810
10.1007/s13349-018-0307-2
10.3390/s18082586
10.1016/j.measurement.2015.12.009
10.1088/0964-1726/25/8/085015
10.1088/0964-1726/23/7/075010
10.1016/j.renene.2017.09.061
10.1088/1361-665X/aadbfb
10.3390/s18041210
10.12989/sss.2015.16.2.281
10.3390/s17020250
10.1109/JSEN.2018.2847308
10.1109/JBHI.2013.2241071
10.3390/app6100298
10.1088/1361-665X/aae54e
10.1007/s11071-017-3336-1
10.1088/0964-1726/20/11/115017
10.1152/ajpheart.2000.278.6.H2039
10.1016/j.ymssp.2016.03.010
10.1016/j.engstruct.2018.05.109
10.1155/2013/871213
10.1115/1.2748821
10.1016/j.measurement.2018.03.026
10.1088/1361-665X/aa6ae8
10.3390/app6110320
10.1098/rsos.172430
10.3390/s17040776
10.2140/jomms.2007.2.43
10.1016/j.bspc.2015.09.002
10.1108/AEAT-01-2013-0006
10.1088/0964-1726/22/9/095022
10.1098/rsos.170616
10.1088/0964-1726/24/12/125040
10.1142/S1793536909000047
10.3390/ma11061009
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/ab3b39
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_ab3b39
smsab3b39
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c366t-129c8e76e769726264be531810bc282bf4631ca8abdf5367739454f68f7926393
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Thu Apr 24 23:08:14 EDT 2025
Tue Jul 01 03:38:42 EDT 2025
Wed Aug 21 03:40:37 EDT 2024
Thu Jan 07 13:52:09 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-129c8e76e769726264be531810bc282bf4631ca8abdf5367739454f68f7926393
Notes SMS-108894
ORCID 0000-0002-5571-2043
0000-0001-9758-5292
0000-0001-9577-4540
0000-0001-5135-5555
PageCount 12
ParticipantIDs crossref_primary_10_1088_1361_665X_ab3b39
iop_journals_10_1088_1361_665X_ab3b39
crossref_citationtrail_10_1088_1361_665X_ab3b39
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
49
Wu T Y (37) 2009; 18
Torres M E (40) 2011
50
51
52
Razi P (34) 2011; 20
53
10
11
13
14
15
16
Wang T (7) 2013; 22
17
18
19
Sun H (6) 2018; 28
Costa M (48) 2007; 89
Ho S C M (12) 2017; 26
1
2
8
9
20
21
23
24
25
Yan H (26) 2012; 7
Kong Q (27) 2018; 27
28
29
Ompusunggu A P (43) 2017; 9
Parvasi S M (22) 2016; 25
30
Yuan S (54) 2005; 15
32
33
35
36
39
Wang F (5) 2017; 27
Qarib H (31) 2015; 24
Huo L (3) 2017; 26
Ye Z (55) 2017; 26
Chen J (4) 2013; 22
41
42
Si Y (38) 2014; 23
References_xml – ident: 35
  doi: 10.1080/10589759.2012.740042
– start-page: 4144
  year: 2011
  ident: 40
  publication-title: IEEE Int. Conf. on Acoustics, Speech and Signal Processing
– ident: 18
  doi: 10.1109/ACCESS.2018.2855693
– volume: 26
  start-page: 057004
  issn: 0964-1726
  year: 2017
  ident: 3
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa6a8e
– volume: 27
  start-page: 015023
  issn: 0964-1726
  year: 2017
  ident: 5
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa9a65
– ident: 42
  doi: 10.1109/TMI.2015.2419711
– ident: 33
  doi: 10.1177/1475921710373298
– ident: 30
  doi: 10.1098/rspa.1998.0193
– volume: 26
  start-page: 095056
  issn: 0964-1726
  year: 2017
  ident: 55
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa7e66
– volume: 9
  year: 2017
  ident: 43
  publication-title: Int. Conf. Surveillance
– ident: 39
  doi: 10.1142/S1793536910000422
– ident: 13
  doi: 10.1016/j.tust.2017.03.007
– ident: 23
  doi: 10.3390/s18061727
– ident: 52
  doi: 10.1177/1475921718800363
– volume: 15
  start-page: 1
  issn: 0964-1726
  year: 2005
  ident: 54
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/15/1/029
– volume: 22
  start-page: 087001
  issn: 0964-1726
  year: 2013
  ident: 7
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/8/087001
– volume: 89
  start-page: 705
  year: 2007
  ident: 48
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 095004
  issn: 0964-1726
  year: 2009
  ident: 37
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/9/095004
– ident: 47
  doi: 10.1073/pnas.88.6.2297
– ident: 25
  doi: 10.1177/1475921710395810
– ident: 19
  doi: 10.1007/s13349-018-0307-2
– ident: 14
  doi: 10.3390/s18082586
– ident: 24
  doi: 10.1016/j.measurement.2015.12.009
– volume: 25
  start-page: 085015
  issn: 0964-1726
  year: 2016
  ident: 22
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/8/085015
– volume: 23
  start-page: 075010
  issn: 0964-1726
  year: 2014
  ident: 38
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/7/075010
– ident: 50
  doi: 10.1016/j.renene.2017.09.061
– volume: 27
  issn: 0964-1726
  year: 2018
  ident: 27
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aadbfb
– ident: 29
  doi: 10.3390/s18041210
– ident: 10
  doi: 10.12989/sss.2015.16.2.281
– ident: 20
  doi: 10.3390/s17020250
– ident: 11
  doi: 10.1109/JSEN.2018.2847308
– ident: 49
  doi: 10.1109/JBHI.2013.2241071
– ident: 17
  doi: 10.3390/app6100298
– volume: 28
  start-page: 015018
  issn: 0964-1726
  year: 2018
  ident: 6
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aae54e
– ident: 2
  doi: 10.1007/s11071-017-3336-1
– volume: 20
  start-page: 115017
  issn: 0964-1726
  year: 2011
  ident: 34
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/20/11/115017
– ident: 46
  doi: 10.1152/ajpheart.2000.278.6.H2039
– ident: 28
  doi: 10.1016/j.ymssp.2016.03.010
– ident: 53
  doi: 10.1016/j.engstruct.2018.05.109
– ident: 1
  doi: 10.1155/2013/871213
– ident: 15
  doi: 10.1115/1.2748821
– ident: 8
  doi: 10.1016/j.measurement.2018.03.026
– volume: 26
  start-page: 057003
  issn: 0964-1726
  year: 2017
  ident: 12
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa6ae8
– ident: 21
  doi: 10.3390/app6110320
– ident: 45
  doi: 10.1098/rsos.172430
– ident: 16
  doi: 10.3390/s17040776
– ident: 32
  doi: 10.2140/jomms.2007.2.43
– ident: 41
  doi: 10.1016/j.bspc.2015.09.002
– ident: 9
  doi: 10.1108/AEAT-01-2013-0006
– volume: 7
  start-page: 1110
  year: 2012
  ident: 26
  publication-title: Mech. Sci. Technol. Aerosp. Eng.
– volume: 22
  start-page: 095022
  issn: 0964-1726
  year: 2013
  ident: 4
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/9/095022
– ident: 44
  doi: 10.1098/rsos.170616
– volume: 24
  start-page: 125040
  issn: 0964-1726
  year: 2015
  ident: 31
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/12/125040
– ident: 36
  doi: 10.1142/S1793536909000047
– ident: 51
  doi: 10.3390/ma11061009
SSID ssj0011831
Score 2.572438
Snippet In this paper, a novel percussion-based bolt looseness monitoring approach using intrinsic multiscale entropy analysis and back propagation (BP) neural network...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 125001
SubjectTerms back propagation (BP) neural network
bolt looseness monitoring
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
improved multiscale sample entropy (IMSE)
intrinsic mode functions (IMFs)
percussion-caused audio signal
Title Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network
URI https://iopscience.iop.org/article/10.1088/1361-665X/ab3b39
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7WFUEPvsU3EfTgIbt206YJnlQUFdQ9KOxBKE2aiLjbLrZ70F_vpO0uKiIi5JDCJA2Tx0ySL98A7PtKad-zAZVCxBTtcUIFboSosFpxqWXAEnc0cHPLLx_8617Qa8Dx5C1MNqyX_hZmK6LgSoU1IE60PcY9ynnQa8eKKSanYJoJzl34gqu77uQKAcdqGS5Pcp-ilR7fUf5UwxebNIX__WRiLhbgcdy4Clny0hoVqqXfv_E2_rP1izBfu57kpBJdgoZJl2HuEyHhMsyUgFCdr0C_a171yEFkU-osXUJU1i9IP8vycnUkg3IxcMWIw84_kee0wC8sTUqQYo6db4g7O86GbySuuU8wk5DTLnE0mtiWtAKhr8LDxfn92SWtIzNQzTgvKDoJWpiQY5KoWnSqlMHJLLwjpXEPp6zPmadjEavEBoyHIZN-4FsubCg76BOxNWimWWrWgfhewkNlbag8ZyhNzGWMXihWGDpTajagPe6bSNe05S56Rj8qr8-FiJxGI6fRqNLoBhxOSgwryo5fZA-wo6J63ua_yO19kcsHedRBsQ6mAAdbNEzs5h_r2oJZ9LpkhYnZhmbxOjI76NkUarccwR_-CPEm
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BVav2QNstqDzaulI5cPAuWSeOfQTKCvrY7oGV9ubGjo1QQxKR7AF-PeMki6BCq0qVfHCksePMjD1je_INwJdQaxMGLqJSiISiPU6pwI0QFc5oLo2MWOqPBn6O-ek0_DaLZl2e0-ZfmKLslv4-Vlug4JaFXUCcGASMB5TzaDZINNNMDsrUrcKziHHmwfPPfk3urxFQX5uUeZKHFC314p7yqV4e2aVVfPcDMzN6Db8XA2yjS_7057Xum9u_sBv_4wvewHrngpLDlvwtrNi8B68eABP24HkTGGqqd5BN7LWZ-1DZnHqLlxJdZDXJiqJqVkly1SwKvhnxMfQX5DKv8QlbkyZYsUIlsMSfIRflDUk6DBSspORoQjycJo4lb4PRN2A6Ojk_PqVdhgZqGOc1RWfBCBtzLBLZi86VtjipRXCgDe7ltAs5C0wiEp06lE8cMxlGoePCxXKIvhHbhLW8yO17IGGQ8lg7F-vAG0ybcJmgN4odxt6k2i0YLOSjTAdf7rNoZKq5RhdCea4qz1XVcnUL9u9blC10xxLaPRSW6uZvtYTu8yO66qpSQyQbYolQ4RRKcvsf-_oELyZfR-rH2fj7DrxER0y2YTK7sFZfz-0HdHZq_bFR6DtKDfaK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Percussion-based+bolt+looseness+monitoring+using+intrinsic+multiscale+entropy+analysis+and+BP+neural+network&rft.jtitle=Smart+materials+and+structures&rft.au=Yuan%2C+Rui&rft.au=Lv%2C+Yong&rft.au=Kong%2C+Qingzhao&rft.au=Song%2C+Gangbing&rft.date=2019-12-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=28&rft.issue=12&rft_id=info:doi/10.1088%2F1361-665X%2Fab3b39&rft.externalDocID=smsab3b39
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon