Investigating the impact of data normalization on classification performance

Data normalization is one of the pre-processing approaches where the data is either scaled or transformed to make an equal contribution of each feature. The success of machine learning algorithms depends upon the quality of the data to obtain a generalized predictive model of the classification prob...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 97; p. 105524
Main Authors Singh, Dalwinder, Singh, Birmohan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data normalization is one of the pre-processing approaches where the data is either scaled or transformed to make an equal contribution of each feature. The success of machine learning algorithms depends upon the quality of the data to obtain a generalized predictive model of the classification problem. The importance of data normalization for improving data quality and subsequently the performance of machine learning algorithms has been presented in many studies. But, the work lacks for the feature selection and feature weighting approaches, a current research trend in machine learning for improving performance. Therefore, this study aims to investigate the impact of fourteen data normalization methods on classification performance considering full feature set, feature selection, and feature weighting. In this paper, we also present a modified Ant Lion optimization that search feature subsets and the best feature weights along with the parameter of Nearest Neighbor Classifier. Experiments are performed on 21 publicly available real and synthetic datasets, and results are analyzed based on the accuracy, the percentage of feature reduced and runtime. It has been observed from the results that no single method outperforms others. Therefore, we have suggested a set of the best and the worst methods combining the normalization procedure and empirical analysis of results. The better performers are z-Score and Pareto Scaling for the full feature set and feature selection, and tanh and its variant for feature weighting. The worst performers are Mean Centered, Variable Stability Scaling and Median and Median Absolute Deviation methods along with un-normalized data. •The impact of data normalization on classification performance is investigated empirically.•Full feature set, feature selection and feature weighting are used for empirical analysis.•A modified Ant Lion Optimization algorithm is presented for searching optimal solutions.•A set of best and worst normalization methods are identified and recommended.
AbstractList Data normalization is one of the pre-processing approaches where the data is either scaled or transformed to make an equal contribution of each feature. The success of machine learning algorithms depends upon the quality of the data to obtain a generalized predictive model of the classification problem. The importance of data normalization for improving data quality and subsequently the performance of machine learning algorithms has been presented in many studies. But, the work lacks for the feature selection and feature weighting approaches, a current research trend in machine learning for improving performance. Therefore, this study aims to investigate the impact of fourteen data normalization methods on classification performance considering full feature set, feature selection, and feature weighting. In this paper, we also present a modified Ant Lion optimization that search feature subsets and the best feature weights along with the parameter of Nearest Neighbor Classifier. Experiments are performed on 21 publicly available real and synthetic datasets, and results are analyzed based on the accuracy, the percentage of feature reduced and runtime. It has been observed from the results that no single method outperforms others. Therefore, we have suggested a set of the best and the worst methods combining the normalization procedure and empirical analysis of results. The better performers are z-Score and Pareto Scaling for the full feature set and feature selection, and tanh and its variant for feature weighting. The worst performers are Mean Centered, Variable Stability Scaling and Median and Median Absolute Deviation methods along with un-normalized data. •The impact of data normalization on classification performance is investigated empirically.•Full feature set, feature selection and feature weighting are used for empirical analysis.•A modified Ant Lion Optimization algorithm is presented for searching optimal solutions.•A set of best and worst normalization methods are identified and recommended.
ArticleNumber 105524
Author Singh, Dalwinder
Singh, Birmohan
Author_xml – sequence: 1
  givenname: Dalwinder
  surname: Singh
  fullname: Singh, Dalwinder
  email: dalwindercheema@outlook.com
– sequence: 2
  givenname: Birmohan
  surname: Singh
  fullname: Singh, Birmohan
  email: birmohansingh@sliet.ac.in
BookMark eNp9kEFLAzEQhYNUsK3-AU_7B7Ym2d1sAl6kqC0UvOg5zGaTmrJNShIK-uvNup48FAZmeLxv4L0FmjnvNEL3BK8IJuzhsILo1YpiIrLQNLS-QnPCW1oKxsks3w3jZS1qdoMWMR5whgTlc7TburOOye4hWbcv0qcu7PEEKhXeFD0kKJwPRxjsdzZ4V-RRA8RojVWTctLBjBan9C26NjBEffe3l-jj5fl9vSl3b6_b9dOuVBVjqSS4qg2lDet414q2IqbGXJG2Y6JrFTQCugYUo0IJXmsGnPekJwIIJboXBldLRKe_KvgYgzbyFOwRwpckWI59yIMc-5BjH3LqI0P8H6Rs-o2QAtjhMvo4oTqHOlsdZFRW58C9DVol2Xt7Cf8BaaV-sA
CitedBy_id crossref_primary_10_4108_eetsis_3325
crossref_primary_10_1109_ACCESS_2024_3412975
crossref_primary_10_1007_s40899_024_01064_9
crossref_primary_10_1007_s00414_022_02899_7
crossref_primary_10_1002_mp_16277
crossref_primary_10_1038_s41598_024_52796_9
crossref_primary_10_1364_AO_455779
crossref_primary_10_3390_iot5030022
crossref_primary_10_1007_s11831_022_09786_9
crossref_primary_10_1016_j_buildenv_2024_111962
crossref_primary_10_3390_min10100847
crossref_primary_10_2147_CIA_S488890
crossref_primary_10_1007_s10040_022_02567_5
crossref_primary_10_1007_s44196_022_00080_x
crossref_primary_10_17341_gazimmfd_1023147
crossref_primary_10_3390_bioengineering12010073
crossref_primary_10_1016_j_enbuild_2024_114681
crossref_primary_10_1016_j_measen_2022_100518
crossref_primary_10_3390_s22239542
crossref_primary_10_3390_app122312173
crossref_primary_10_1016_j_autcon_2024_105793
crossref_primary_10_1016_j_knosys_2022_109536
crossref_primary_10_3103_S1060992X24700838
crossref_primary_10_35377_saucis___1223054
crossref_primary_10_1061_JCCEE5_CPENG_5548
crossref_primary_10_1007_s13762_023_05452_0
crossref_primary_10_1016_j_jpdc_2023_03_001
crossref_primary_10_1016_j_engappai_2023_107465
crossref_primary_10_1016_j_compbiomed_2022_105939
crossref_primary_10_3390_math10111942
crossref_primary_10_1186_s12911_024_02598_w
crossref_primary_10_1016_j_wasman_2025_02_040
crossref_primary_10_1007_s11042_022_13613_5
crossref_primary_10_1190_INT_2023_0020_1
crossref_primary_10_1007_s00542_022_05252_5
crossref_primary_10_1007_s10967_020_07533_7
crossref_primary_10_1007_s11042_024_19742_3
crossref_primary_10_1016_j_gsf_2023_101657
crossref_primary_10_1007_s10064_024_03775_x
crossref_primary_10_1038_s41698_024_00617_7
crossref_primary_10_3389_fenvs_2025_1513325
crossref_primary_10_1016_j_egyai_2021_100073
crossref_primary_10_3390_pr13010278
crossref_primary_10_1016_j_bspc_2023_105506
crossref_primary_10_1016_j_conbuildmat_2023_132596
crossref_primary_10_1016_j_istruc_2024_107363
crossref_primary_10_1038_s41598_023_45915_5
crossref_primary_10_1002_cjce_25247
crossref_primary_10_1016_j_bbe_2022_07_004
crossref_primary_10_1016_j_jag_2024_104116
crossref_primary_10_1016_j_scitotenv_2024_176558
crossref_primary_10_1016_j_array_2023_100324
crossref_primary_10_1145_3446636
crossref_primary_10_4236_acs_2024_144023
crossref_primary_10_1111_jcmm_18292
crossref_primary_10_1061__ASCE_CO_1943_7862_0002406
crossref_primary_10_1007_s11042_024_19078_y
crossref_primary_10_1177_13694332241268243
crossref_primary_10_2478_ijcss_2021_0009
crossref_primary_10_1371_journal_pone_0300296
crossref_primary_10_1109_TNET_2023_3293098
crossref_primary_10_3389_fgene_2022_1081842
crossref_primary_10_1061_JCEMD4_COENG_12367
crossref_primary_10_33364_algoritma_v_21_1_1598
crossref_primary_10_1007_s10922_024_09813_z
crossref_primary_10_3390_genes14030574
crossref_primary_10_1080_0952813X_2022_2153278
crossref_primary_10_3390_app132312592
crossref_primary_10_1002_cpe_7807
crossref_primary_10_3390_app11199296
crossref_primary_10_3390_app12188974
crossref_primary_10_1016_j_jhydrol_2024_130955
crossref_primary_10_1016_j_aej_2023_09_070
crossref_primary_10_1002_acs_3798
crossref_primary_10_1016_j_compbiomed_2024_109421
crossref_primary_10_1051_e3sconf_202346502040
crossref_primary_10_1016_j_compbiomed_2024_108698
crossref_primary_10_1016_j_mser_2023_100746
crossref_primary_10_1007_s00607_024_01315_9
crossref_primary_10_1109_ACCESS_2022_3197200
crossref_primary_10_1007_s10668_021_01743_z
crossref_primary_10_1109_ACCESS_2024_3423425
crossref_primary_10_3389_fnins_2023_1219133
crossref_primary_10_1016_j_epsr_2024_111090
crossref_primary_10_1016_j_ejrh_2025_102191
crossref_primary_10_3390_app13158808
crossref_primary_10_1016_j_imu_2023_101197
crossref_primary_10_1038_s41586_024_08397_7
crossref_primary_10_1021_acsomega_4c09603
crossref_primary_10_3390_sports10010003
crossref_primary_10_3390_rs15123133
crossref_primary_10_1016_j_engappai_2023_106205
crossref_primary_10_1039_D4DD00101J
crossref_primary_10_1080_19490976_2023_2244139
crossref_primary_10_1109_JSEN_2024_3375072
crossref_primary_10_1016_j_jenvman_2024_121851
crossref_primary_10_1007_s43762_024_00116_2
crossref_primary_10_3390_math11163603
crossref_primary_10_1016_j_bspc_2020_101878
crossref_primary_10_1007_s10639_023_11831_4
crossref_primary_10_3390_ani14060863
crossref_primary_10_1109_JSEN_2021_3136790
crossref_primary_10_3390_jcm10215021
crossref_primary_10_1007_s10708_021_10502_6
crossref_primary_10_1007_s13246_023_01274_z
crossref_primary_10_1016_j_jag_2025_104412
crossref_primary_10_1186_s13065_024_01349_2
crossref_primary_10_3390_math11020398
crossref_primary_10_1016_j_ecolind_2021_108517
crossref_primary_10_1016_j_procs_2024_09_670
crossref_primary_10_1108_ECAM_01_2024_0020
crossref_primary_10_1016_j_compbiomed_2022_105620
crossref_primary_10_1111_1750_3841_70003
crossref_primary_10_1038_s41598_024_81271_8
crossref_primary_10_1007_s13369_021_06484_9
crossref_primary_10_1109_ACCESS_2020_3048018
crossref_primary_10_1590_1806_9061_2023_1895
crossref_primary_10_4081_jae_2022_1389
crossref_primary_10_3390_rs14225870
crossref_primary_10_1109_ACCESS_2023_3304328
crossref_primary_10_1109_ACCESS_2022_3183077
crossref_primary_10_3390_su151713043
crossref_primary_10_1016_j_jrmge_2024_09_013
crossref_primary_10_1109_JSEN_2024_3377247
crossref_primary_10_32604_cmc_2024_057213
crossref_primary_10_1007_s11277_022_09493_5
crossref_primary_10_1038_s41598_023_43943_9
crossref_primary_10_1109_ACCESS_2025_3538566
crossref_primary_10_1016_j_eswa_2022_118173
crossref_primary_10_1002_joc_8708
crossref_primary_10_1109_TAP_2022_3140214
crossref_primary_10_2196_44081
crossref_primary_10_1016_j_jer_2025_01_001
crossref_primary_10_1016_j_amar_2024_100333
crossref_primary_10_1109_ACCESS_2024_3397040
crossref_primary_10_22399_ijcesen_788
crossref_primary_10_1016_j_mtcomm_2024_108141
crossref_primary_10_1080_10916466_2022_2092637
crossref_primary_10_3390_ma15249029
crossref_primary_10_3390_electronics12071558
crossref_primary_10_3390_brainsci12111449
crossref_primary_10_32568_jfce_1470334
crossref_primary_10_1016_j_mechmat_2023_104639
crossref_primary_10_1016_j_apor_2024_104166
crossref_primary_10_1021_acs_energyfuels_2c03033
crossref_primary_10_1155_2022_8250234
crossref_primary_10_3390_app12147228
crossref_primary_10_3390_sym15010140
crossref_primary_10_1109_ACCESS_2024_3441034
crossref_primary_10_1007_s10044_022_01077_0
crossref_primary_10_1016_j_cesys_2024_100188
crossref_primary_10_1016_j_ijsolstr_2023_112334
crossref_primary_10_1016_j_uclim_2021_100872
crossref_primary_10_3390_s24051568
crossref_primary_10_1016_j_anl_2024_04_003
crossref_primary_10_1016_j_jisa_2023_103509
crossref_primary_10_1063_5_0255786
crossref_primary_10_1155_2023_9713905
crossref_primary_10_32604_csse_2023_037812
crossref_primary_10_1016_j_compag_2025_109997
crossref_primary_10_1016_j_oreoa_2024_100065
crossref_primary_10_1186_s40537_024_00944_3
crossref_primary_10_3390_buildings14113465
crossref_primary_10_3390_f13050787
crossref_primary_10_2166_wcc_2023_052
crossref_primary_10_1016_j_measurement_2024_114992
crossref_primary_10_1088_2632_959X_ad4c80
crossref_primary_10_1007_s00521_024_09780_1
crossref_primary_10_1007_s10845_022_02017_9
crossref_primary_10_1016_j_ijepes_2022_108149
crossref_primary_10_1016_j_isatra_2022_05_039
crossref_primary_10_1038_s41598_024_82420_9
crossref_primary_10_1016_j_eswa_2023_119660
crossref_primary_10_1098_rsta_2022_0392
crossref_primary_10_3390_s21020405
crossref_primary_10_1080_10447318_2023_2301264
crossref_primary_10_1088_1361_665X_acf256
crossref_primary_10_1016_j_knosys_2024_112196
crossref_primary_10_1021_acsestwater_3c00020
crossref_primary_10_4018_IJSIR_309939
crossref_primary_10_1007_s11042_021_11747_6
crossref_primary_10_1016_j_wasman_2025_02_016
crossref_primary_10_1007_s10489_024_05838_8
crossref_primary_10_3390_ijerph18189873
crossref_primary_10_1371_journal_pone_0316493
crossref_primary_10_3390_atmos15050553
crossref_primary_10_3390_info15120777
crossref_primary_10_1007_s11709_024_1125_8
crossref_primary_10_1016_j_epsr_2022_108887
crossref_primary_10_1002_ente_202400432
crossref_primary_10_1002_ett_4443
crossref_primary_10_1016_j_dib_2024_111194
crossref_primary_10_1016_j_seta_2021_101191
crossref_primary_10_1109_ACCESS_2023_3304242
crossref_primary_10_1002_prep_202200265
crossref_primary_10_1109_JSEN_2024_3408323
crossref_primary_10_34288_jri_v6i4_350
crossref_primary_10_1029_2023JB026729
crossref_primary_10_1016_j_jhydrol_2024_132626
crossref_primary_10_3233_IDT_240479
crossref_primary_10_3390_rs14194837
crossref_primary_10_1016_j_neucom_2023_126886
crossref_primary_10_1016_j_eswa_2023_121677
crossref_primary_10_1016_j_ceramint_2023_05_215
crossref_primary_10_1007_s00521_024_10737_7
crossref_primary_10_1016_j_csl_2023_101599
crossref_primary_10_3390_w15081625
crossref_primary_10_1016_j_ecoinf_2023_102084
crossref_primary_10_1016_j_atech_2024_100508
crossref_primary_10_3390_asi8020035
crossref_primary_10_1155_2024_9411326
crossref_primary_10_1007_s12083_023_01513_w
crossref_primary_10_1109_JLT_2023_3241187
crossref_primary_10_1016_j_energy_2024_131898
crossref_primary_10_3390_diagnostics15030319
crossref_primary_10_4108_eetiot_v9i3_3030
crossref_primary_10_3390_atmos12121571
crossref_primary_10_1109_ACCESS_2022_3232490
crossref_primary_10_1177_0734242X211008526
crossref_primary_10_1016_j_eswa_2023_121325
crossref_primary_10_3390_su16083151
crossref_primary_10_1016_j_compgeo_2024_106915
crossref_primary_10_3390_app13137622
crossref_primary_10_3390_s21123991
crossref_primary_10_1007_s00530_024_01399_5
crossref_primary_10_1016_j_ibmed_2023_100111
crossref_primary_10_3390_w17050756
crossref_primary_10_1109_JBHI_2022_3225330
crossref_primary_10_1109_TIFS_2023_3272862
crossref_primary_10_1016_j_egyr_2022_11_020
crossref_primary_10_1016_j_trgeo_2025_101492
crossref_primary_10_1007_s12145_024_01413_4
crossref_primary_10_1016_j_csite_2024_104330
crossref_primary_10_1007_s12652_020_02629_0
crossref_primary_10_1007_s10668_024_05287_w
crossref_primary_10_3390_app12178769
crossref_primary_10_3390_info12040150
crossref_primary_10_3390_math12162542
crossref_primary_10_1111_exsy_13038
crossref_primary_10_1016_j_eij_2024_100476
crossref_primary_10_3390_rs12203357
crossref_primary_10_1109_TSE_2024_3503723
crossref_primary_10_12677_airr_2025_141005
crossref_primary_10_1016_j_imavis_2024_105333
crossref_primary_10_3390_app13095675
crossref_primary_10_1016_j_tws_2025_112942
crossref_primary_10_1016_j_jss_2024_111973
crossref_primary_10_1016_j_msea_2024_147381
crossref_primary_10_1016_j_oceaneng_2024_119018
crossref_primary_10_1016_j_ijepes_2024_110106
crossref_primary_10_32628_IJSRST52411130
crossref_primary_10_1016_j_rico_2024_100407
crossref_primary_10_3390_plants14060960
crossref_primary_10_1109_ACCESS_2020_2994222
crossref_primary_10_1371_journal_pone_0299386
crossref_primary_10_3390_nano11071774
crossref_primary_10_1007_s40808_024_01970_z
crossref_primary_10_1364_OE_489449
crossref_primary_10_1007_s40692_023_00291_x
crossref_primary_10_1080_17512549_2022_2108142
crossref_primary_10_1049_bsb2_12085
crossref_primary_10_1016_j_heliyon_2023_e19274
crossref_primary_10_3390_diagnostics12020499
crossref_primary_10_51646_jsesd_v14iFICTS_2024_446
crossref_primary_10_1016_j_advwatres_2023_104569
crossref_primary_10_1016_j_eswa_2021_114787
crossref_primary_10_3390_fi16090331
crossref_primary_10_1186_s12859_023_05465_z
crossref_primary_10_1002_mp_17532
crossref_primary_10_1002_jssc_202100864
crossref_primary_10_3389_fphys_2023_1225636
crossref_primary_10_1016_j_segan_2023_101025
crossref_primary_10_1038_s41598_024_55217_z
crossref_primary_10_3390_en17092113
crossref_primary_10_1007_s11227_020_03544_z
crossref_primary_10_1007_s13198_021_01259_9
crossref_primary_10_1007_s42241_024_0079_6
crossref_primary_10_1109_ACCESS_2022_3208587
crossref_primary_10_3390_s22072517
crossref_primary_10_3390_s21051607
crossref_primary_10_3390_s22093368
crossref_primary_10_1038_s41598_023_33754_3
crossref_primary_10_3390_app15052540
crossref_primary_10_1109_JSEN_2023_3293156
crossref_primary_10_35940_ijrte_E5255_039621
crossref_primary_10_1002_ese3_1450
crossref_primary_10_1016_j_atech_2024_100411
crossref_primary_10_1016_j_energy_2024_130419
crossref_primary_10_1016_j_eswa_2024_124908
crossref_primary_10_3390_computers11080121
crossref_primary_10_1007_s00216_023_04516_x
crossref_primary_10_1111_jfpp_15703
crossref_primary_10_1063_5_0214890
crossref_primary_10_1029_2023GL106278
crossref_primary_10_1016_j_hazadv_2024_100523
crossref_primary_10_1080_00207543_2025_2452386
crossref_primary_10_1007_s10040_023_02677_8
crossref_primary_10_1109_ACCESS_2023_3305249
crossref_primary_10_3390_diagnostics14192214
crossref_primary_10_1007_s11042_023_14409_x
crossref_primary_10_1016_j_knosys_2024_111835
crossref_primary_10_3390_s24082421
crossref_primary_10_1007_s12665_022_10216_z
crossref_primary_10_1109_JSEN_2022_3227475
crossref_primary_10_1016_j_scitotenv_2024_171094
crossref_primary_10_1007_s00170_024_13351_y
crossref_primary_10_3390_aerospace11030235
crossref_primary_10_1016_j_triboint_2023_109083
crossref_primary_10_1021_acs_iecr_4c03042
crossref_primary_10_1016_j_compag_2025_110211
crossref_primary_10_3390_make6020046
crossref_primary_10_1016_j_scs_2024_105570
crossref_primary_10_1109_ACCESS_2023_3316019
crossref_primary_10_3390_atmos15060731
crossref_primary_10_1007_s00445_022_01600_5
crossref_primary_10_3934_math_2024331
crossref_primary_10_1142_S1756973724500021
crossref_primary_10_3390_app14020856
crossref_primary_10_1007_s43503_024_00025_7
crossref_primary_10_1007_s11227_024_06631_7
crossref_primary_10_1007_s41230_024_3090_1
crossref_primary_10_1016_j_rsase_2025_101489
crossref_primary_10_3390_app112411965
crossref_primary_10_3390_app11052218
crossref_primary_10_3390_data8120185
crossref_primary_10_1016_j_scitotenv_2024_176758
crossref_primary_10_1109_TIM_2024_3369152
crossref_primary_10_3390_su131810239
crossref_primary_10_3390_su15075882
crossref_primary_10_1007_s11063_023_11355_5
crossref_primary_10_3390_machines11090854
crossref_primary_10_1016_j_jclepro_2024_141559
crossref_primary_10_1055_a_2500_7594
crossref_primary_10_3390_ijerph182010971
crossref_primary_10_1016_j_procs_2024_06_080
crossref_primary_10_1016_j_atech_2023_100240
crossref_primary_10_3390_en16207094
crossref_primary_10_1007_s12540_023_01601_9
crossref_primary_10_1007_s12652_021_03669_w
crossref_primary_10_1016_j_trb_2025_103194
crossref_primary_10_1007_s42979_024_02828_y
crossref_primary_10_1007_s00170_024_14543_2
crossref_primary_10_1016_j_energy_2022_123977
crossref_primary_10_1155_2022_6792716
crossref_primary_10_1371_journal_pone_0312046
crossref_primary_10_3390_make6020052
crossref_primary_10_1016_j_chemosphere_2024_142222
crossref_primary_10_3390_rs16122202
crossref_primary_10_1016_j_jfca_2024_106824
crossref_primary_10_3390_ai5040116
crossref_primary_10_3390_geohazards5030044
crossref_primary_10_3390_agronomy12071504
crossref_primary_10_1016_j_asej_2024_103060
crossref_primary_10_3390_info13060282
crossref_primary_10_3390_rs16163077
crossref_primary_10_1002_sd_2788
crossref_primary_10_1016_j_engappai_2023_106715
crossref_primary_10_1038_s41598_023_28325_5
crossref_primary_10_1016_j_ndteint_2025_103360
crossref_primary_10_1109_TAES_2023_3328318
crossref_primary_10_1016_j_fuel_2025_135094
crossref_primary_10_1055_a_2420_0413
crossref_primary_10_1016_j_wroa_2024_100291
crossref_primary_10_3390_land13030377
crossref_primary_10_2139_ssrn_4010487
crossref_primary_10_1007_s10531_025_03015_y
crossref_primary_10_1038_s41598_025_93447_x
crossref_primary_10_1080_17538947_2024_2436494
crossref_primary_10_1038_s42256_024_00928_1
crossref_primary_10_1007_s10489_024_06007_7
crossref_primary_10_3390_en16247985
crossref_primary_10_1016_j_jvoice_2022_11_001
crossref_primary_10_1021_acs_jchemed_2c00850
crossref_primary_10_1155_2022_5864545
crossref_primary_10_3390_agriculture13010095
crossref_primary_10_3390_bioengineering10020245
crossref_primary_10_1007_s13580_023_00559_2
crossref_primary_10_3390_brainsci12081048
crossref_primary_10_1016_j_bspc_2024_106458
crossref_primary_10_1016_j_cmpb_2023_107944
crossref_primary_10_1093_bfgp_elad002
crossref_primary_10_1016_j_jisa_2021_102954
crossref_primary_10_1109_ACCESS_2024_3428401
crossref_primary_10_1109_ACCESS_2024_3462434
crossref_primary_10_1016_j_smhl_2021_100262
crossref_primary_10_1155_2023_8583210
crossref_primary_10_1002_ange_202410308
crossref_primary_10_1016_j_eij_2024_100537
crossref_primary_10_1016_j_istruc_2023_105593
crossref_primary_10_3390_life13020357
crossref_primary_10_1109_ACCESS_2024_3407827
crossref_primary_10_3390_rs13193940
crossref_primary_10_1016_j_apenergy_2024_123238
crossref_primary_10_1016_j_enpol_2025_114503
crossref_primary_10_1007_s10694_024_01593_x
crossref_primary_10_1080_14606925_2025_2482556
crossref_primary_10_1016_j_watres_2023_121092
crossref_primary_10_1007_s10518_024_02003_x
crossref_primary_10_3390_s24175646
crossref_primary_10_1007_s12145_024_01592_0
crossref_primary_10_1371_journal_pone_0289982
crossref_primary_10_3390_math10060965
crossref_primary_10_1109_ACCESS_2023_3333895
crossref_primary_10_1007_s11042_024_19233_5
crossref_primary_10_1021_acs_jafc_3c05462
crossref_primary_10_1007_s11517_022_02612_1
crossref_primary_10_1016_j_compag_2022_107181
crossref_primary_10_1080_10429247_2024_2383855
crossref_primary_10_3390_aerospace11110897
crossref_primary_10_1007_s13762_024_05805_3
crossref_primary_10_1007_s44163_025_00241_9
crossref_primary_10_1109_TLT_2023_3336541
crossref_primary_10_3390_mps7030036
crossref_primary_10_1080_23270012_2021_1961318
crossref_primary_10_1002_int_22557
crossref_primary_10_1080_10255842_2023_2245516
crossref_primary_10_3390_s23031331
crossref_primary_10_1016_j_bbe_2019_12_004
crossref_primary_10_1016_j_ijrefrig_2022_12_027
crossref_primary_10_1016_j_ijthermalsci_2023_108293
crossref_primary_10_1016_j_jclepro_2022_134203
crossref_primary_10_1109_JBHI_2023_3308529
crossref_primary_10_1016_j_geoen_2024_213545
crossref_primary_10_3390_diagnostics12061396
crossref_primary_10_1016_j_chemosphere_2025_144238
crossref_primary_10_1016_j_applthermaleng_2022_119269
crossref_primary_10_1080_10106049_2021_1983034
crossref_primary_10_1007_s11042_022_13556_x
crossref_primary_10_3390_agriculture14122317
crossref_primary_10_1002_stc_2915
crossref_primary_10_1038_s41545_024_00429_z
crossref_primary_10_1007_s10664_023_10300_3
crossref_primary_10_1109_ACCESS_2024_3369487
crossref_primary_10_3390_rs13153024
crossref_primary_10_1080_01969722_2025_2459959
crossref_primary_10_1155_2022_8161917
crossref_primary_10_1088_1361_6501_ac8a65
crossref_primary_10_1186_s12859_023_05155_w
crossref_primary_10_1080_01446193_2024_2403553
crossref_primary_10_1109_TIFS_2024_3433372
crossref_primary_10_3390_bdcc9020021
crossref_primary_10_1016_j_compbiomed_2022_105284
crossref_primary_10_1016_j_mtcomm_2024_108991
crossref_primary_10_1016_j_jhazmat_2024_134208
crossref_primary_10_1371_journal_pone_0295182
crossref_primary_10_1049_ipr2_12503
crossref_primary_10_7717_peerj_cs_1370
crossref_primary_10_1007_s00477_021_01982_6
crossref_primary_10_3390_jsan11010018
crossref_primary_10_3390_cancers16244225
crossref_primary_10_2139_ssrn_4702406
crossref_primary_10_1038_s41467_022_29681_y
crossref_primary_10_1016_j_istruc_2024_106618
crossref_primary_10_1016_j_ijrefrig_2025_02_019
crossref_primary_10_1103_PhysRevAccelBeams_27_074602
crossref_primary_10_1007_s12517_025_12204_6
crossref_primary_10_1186_s12931_024_02753_x
crossref_primary_10_3390_app14177534
crossref_primary_10_1016_j_comnet_2023_110072
crossref_primary_10_1016_j_sigpro_2024_109680
crossref_primary_10_1016_j_eng_2024_04_024
crossref_primary_10_56741_jnest_v2i03_393
crossref_primary_10_1016_j_eswa_2023_122357
crossref_primary_10_1016_j_eswa_2025_127166
crossref_primary_10_3390_asi7050091
crossref_primary_10_1016_j_compag_2023_108432
crossref_primary_10_3390_su16072846
crossref_primary_10_1016_j_heliyon_2024_e39205
crossref_primary_10_1136_ebmental_2021_300404
crossref_primary_10_1016_j_conengprac_2024_106045
crossref_primary_10_3390_w15020262
crossref_primary_10_35848_1347_4065_ad3834
crossref_primary_10_1177_03611981231189741
crossref_primary_10_1007_s10668_024_05015_4
crossref_primary_10_1007_s12530_022_09419_3
crossref_primary_10_1016_j_ijhydene_2024_08_204
crossref_primary_10_1177_1357633X231160039
crossref_primary_10_1007_s41748_024_00447_4
crossref_primary_10_1111_coin_70020
crossref_primary_10_3390_diagnostics14131352
crossref_primary_10_1142_S0217595921400170
crossref_primary_10_1007_s11277_024_11257_2
crossref_primary_10_1016_j_heliyon_2023_e20597
crossref_primary_10_1111_exsy_13294
crossref_primary_10_1016_j_egyai_2024_100384
crossref_primary_10_1109_TII_2024_3495787
crossref_primary_10_1109_JSEN_2024_3404558
crossref_primary_10_3389_fnbot_2023_1155826
crossref_primary_10_1109_JSTARS_2022_3223198
crossref_primary_10_1109_ACCESS_2022_3206954
crossref_primary_10_1142_S0219622023500037
crossref_primary_10_1007_s40313_022_00923_0
crossref_primary_10_1177_14727978251322052
crossref_primary_10_1007_s00366_024_02048_1
crossref_primary_10_1016_j_dsx_2023_102919
crossref_primary_10_3390_informatics8030047
crossref_primary_10_3389_fpubh_2024_1413031
crossref_primary_10_1007_s12065_021_00634_6
crossref_primary_10_1016_j_sandf_2024_101517
crossref_primary_10_1016_j_mfglet_2023_08_094
crossref_primary_10_1049_tje2_12412
crossref_primary_10_3390_su152416593
crossref_primary_10_1016_j_atech_2024_100709
crossref_primary_10_3390_electronics11132073
crossref_primary_10_1080_03091902_2025_2463574
crossref_primary_10_51583_IJLTEMAS_2024_131022
crossref_primary_10_1016_j_asoc_2024_112098
crossref_primary_10_3390_data8060105
crossref_primary_10_1016_j_uclim_2020_100661
crossref_primary_10_1111_coin_70036
crossref_primary_10_1016_j_adhoc_2024_103613
crossref_primary_10_1038_s41598_022_22614_1
crossref_primary_10_1109_ACCESS_2022_3232299
crossref_primary_10_3389_fgene_2022_954024
crossref_primary_10_1007_s40030_025_00867_z
crossref_primary_10_1080_19439962_2024_2353658
crossref_primary_10_1016_j_est_2024_113176
crossref_primary_10_3390_telecom4030028
crossref_primary_10_1016_j_scs_2021_102923
crossref_primary_10_1016_j_snb_2024_135879
crossref_primary_10_1186_s12911_024_02655_4
crossref_primary_10_3390_su15032578
crossref_primary_10_1109_ACCESS_2024_3450520
crossref_primary_10_1016_j_heliyon_2023_e22878
crossref_primary_10_1016_j_heliyon_2023_e22637
crossref_primary_10_1016_j_ress_2024_110382
crossref_primary_10_3390_f14071345
crossref_primary_10_54097_hset_v47i_8170
crossref_primary_10_1016_j_jhazmat_2021_127344
crossref_primary_10_1016_j_eswa_2024_124404
crossref_primary_10_1016_j_rsase_2024_101208
crossref_primary_10_1016_j_eswa_2024_123559
crossref_primary_10_3390_app12042242
crossref_primary_10_3389_fdata_2023_1241899
crossref_primary_10_1109_ACCESS_2024_3425472
crossref_primary_10_1002_anie_202410308
crossref_primary_10_1016_j_solmat_2024_112826
crossref_primary_10_11648_j_ajese_20240803_13
crossref_primary_10_32604_csse_2023_036293
crossref_primary_10_1016_j_srs_2025_100205
crossref_primary_10_1007_s12145_023_01135_z
crossref_primary_10_1061_NHREFO_NHENG_1681
crossref_primary_10_1016_j_segan_2023_101178
crossref_primary_10_3390_su151914320
crossref_primary_10_1016_j_asoc_2023_111108
crossref_primary_10_48175_IJARSCT_2269M
crossref_primary_10_1016_j_matdes_2023_112086
crossref_primary_10_1007_s11540_024_09728_x
crossref_primary_10_3390_appliedmath3010011
crossref_primary_10_1016_j_cma_2024_116940
crossref_primary_10_1002_cpe_7310
crossref_primary_10_1016_j_egyr_2023_09_016
crossref_primary_10_1016_j_jobe_2024_108766
crossref_primary_10_1109_ACCESS_2023_3333876
crossref_primary_10_3390_jpm14040410
crossref_primary_10_1021_acssuschemeng_2c03136
crossref_primary_10_3390_su16166979
crossref_primary_10_1016_j_procs_2021_12_036
crossref_primary_10_1016_j_cie_2022_108825
crossref_primary_10_1007_s12145_024_01385_5
crossref_primary_10_18267_j_polek_1405
crossref_primary_10_1088_1674_4527_ac977b
crossref_primary_10_1016_j_aei_2024_102665
crossref_primary_10_1016_j_engappai_2024_109452
crossref_primary_10_1155_2024_4616609
crossref_primary_10_1016_j_patcog_2021_108307
crossref_primary_10_3390_s23218741
crossref_primary_10_1080_01969722_2022_2080338
crossref_primary_10_3390_sym12030454
crossref_primary_10_3390_e23040440
crossref_primary_10_1016_j_geoen_2024_213608
crossref_primary_10_7717_peerj_cs_2016
crossref_primary_10_1109_JIOT_2024_3386889
crossref_primary_10_7717_peerj_cs_2254
crossref_primary_10_3390_econometrics12040034
crossref_primary_10_1088_1741_2552_acb96e
crossref_primary_10_1016_j_jclepro_2023_137036
crossref_primary_10_1016_j_ijcip_2022_100547
crossref_primary_10_3390_math11051134
crossref_primary_10_1016_j_jcp_2023_112683
crossref_primary_10_1186_s13244_023_01575_7
crossref_primary_10_1007_s13369_021_06313_z
crossref_primary_10_1016_j_engfracmech_2023_109331
crossref_primary_10_1016_j_nut_2024_112674
crossref_primary_10_4108_eetsis_5102
crossref_primary_10_3390_rs13204080
crossref_primary_10_1002_cctc_202101046
crossref_primary_10_3390_pr12040664
crossref_primary_10_5004_dwt_2021_27691
crossref_primary_10_1016_j_bspc_2024_106730
crossref_primary_10_1016_j_icheatmasstransfer_2024_107271
crossref_primary_10_1016_j_bdr_2023_100407
crossref_primary_10_3390_app14177726
crossref_primary_10_1109_ACCESS_2024_3367325
crossref_primary_10_3390_futuretransp5010017
crossref_primary_10_1021_acs_jpcc_4c02939
crossref_primary_10_3389_fcvm_2022_754609
crossref_primary_10_1038_s41598_024_59334_7
crossref_primary_10_1109_LSP_2024_3449852
crossref_primary_10_3389_fnut_2023_1165854
crossref_primary_10_3389_fvets_2022_822621
crossref_primary_10_1016_j_apacoust_2023_109245
crossref_primary_10_1016_j_compbiomed_2025_109985
crossref_primary_10_3847_1538_4365_ad7c4a
crossref_primary_10_1051_e3sconf_202450101023
crossref_primary_10_3390_land11040453
crossref_primary_10_1016_j_applthermaleng_2024_123255
crossref_primary_10_1016_j_semcancer_2023_09_005
crossref_primary_10_1016_j_energy_2022_125425
crossref_primary_10_1007_s00128_020_03084_5
crossref_primary_10_1016_j_egyai_2023_100230
crossref_primary_10_3390_bioengineering11101021
crossref_primary_10_3390_jimaging10100245
crossref_primary_10_3390_math11143257
crossref_primary_10_1016_j_ijhydene_2023_08_002
crossref_primary_10_1016_j_dwt_2024_100912
crossref_primary_10_1002_ett_4622
crossref_primary_10_3390_agriculture12010025
crossref_primary_10_37661_1816_0301_2021_18_3_83_96
crossref_primary_10_1016_j_fuel_2025_134534
crossref_primary_10_1094_PDIS_12_22_2908_RE
crossref_primary_10_21595_jme_2023_23452
crossref_primary_10_1016_j_sna_2024_115978
crossref_primary_10_3390_jcm11216264
crossref_primary_10_1016_j_tsep_2023_102070
crossref_primary_10_1155_2022_8412895
crossref_primary_10_1016_j_asoc_2023_110183
crossref_primary_10_3390_metabo15010044
crossref_primary_10_1016_j_autcon_2024_105721
crossref_primary_10_1186_s12871_024_02840_y
crossref_primary_10_1016_j_jmapro_2025_02_015
crossref_primary_10_1186_s13007_024_01169_4
crossref_primary_10_1109_TII_2021_3130248
crossref_primary_10_1109_JSTARS_2022_3184355
crossref_primary_10_1155_2023_1675867
crossref_primary_10_1016_j_bspc_2024_106703
crossref_primary_10_1016_j_biosystemseng_2024_08_003
crossref_primary_10_1016_j_parco_2022_102942
crossref_primary_10_1109_JMMCT_2023_3236946
crossref_primary_10_1371_journal_pcbi_1010718
crossref_primary_10_1109_ACCESS_2021_3094529
crossref_primary_10_1109_JSEN_2020_2975201
crossref_primary_10_1121_10_0034831
crossref_primary_10_3390_bioengineering11101016
crossref_primary_10_1007_s11416_021_00385_z
crossref_primary_10_3233_IDA_230140
crossref_primary_10_1016_j_energy_2024_133011
crossref_primary_10_3233_JIFS_213570
crossref_primary_10_1016_j_matdes_2024_112634
crossref_primary_10_1190_geo2024_0150_1
crossref_primary_10_1021_acsabm_3c00054
crossref_primary_10_1021_acsestengg_3c00043
crossref_primary_10_1155_2023_6341259
crossref_primary_10_1016_j_ins_2023_119236
crossref_primary_10_1021_acs_iecr_4c00397
crossref_primary_10_3390_land11081344
crossref_primary_10_3389_fphys_2023_1153268
crossref_primary_10_3390_pr11020629
crossref_primary_10_1016_j_ecoinf_2021_101348
crossref_primary_10_1016_j_heliyon_2024_e25215
crossref_primary_10_1109_LWC_2024_3499970
crossref_primary_10_1016_j_ijfatigue_2024_108418
crossref_primary_10_1093_mnras_stad3603
crossref_primary_10_1109_TNNLS_2024_3366615
crossref_primary_10_1007_s11156_022_01099_z
crossref_primary_10_1016_j_est_2024_114245
crossref_primary_10_1088_1742_6596_1808_1_012025
crossref_primary_10_1080_21642583_2024_2331074
crossref_primary_10_2196_25110
crossref_primary_10_3390_app10196648
crossref_primary_10_1016_j_jvoice_2024_11_002
crossref_primary_10_1017_eds_2024_20
crossref_primary_10_1016_j_chaos_2022_112818
crossref_primary_10_1038_s41598_023_50742_9
crossref_primary_10_1016_j_jobe_2023_107605
crossref_primary_10_3390_s21217115
crossref_primary_10_1016_j_ijmecsci_2024_109672
crossref_primary_10_1016_j_talo_2023_100267
crossref_primary_10_1016_j_aei_2023_101907
crossref_primary_10_1016_j_neuroimage_2023_119960
crossref_primary_10_1016_j_asoc_2022_109924
crossref_primary_10_1109_ACCESS_2023_3335985
crossref_primary_10_1093_bib_bbab178
crossref_primary_10_1007_s11524_024_00920_5
crossref_primary_10_1016_j_jaecs_2023_100231
crossref_primary_10_1007_s40747_024_01619_5
crossref_primary_10_1109_ACCESS_2024_3488743
crossref_primary_10_1016_j_engstruct_2024_118946
crossref_primary_10_1016_j_datak_2024_102339
crossref_primary_10_3390_biomedicines9111733
crossref_primary_10_1016_j_compag_2023_108002
crossref_primary_10_1016_j_engappai_2023_106056
crossref_primary_10_3390_jlpea13020039
crossref_primary_10_3389_frai_2024_1466321
crossref_primary_10_3389_fneur_2022_886477
crossref_primary_10_1016_j_geomorph_2021_107888
crossref_primary_10_1016_j_atmosres_2024_107761
crossref_primary_10_1016_j_est_2023_108926
crossref_primary_10_1051_0004_6361_202245770
crossref_primary_10_1063_5_0253626
crossref_primary_10_1016_j_jnca_2024_104034
crossref_primary_10_1016_j_cmpb_2021_106549
crossref_primary_10_32604_fhmt_2024_047428
crossref_primary_10_1016_j_asoc_2024_112493
crossref_primary_10_28979_jarnas_981202
crossref_primary_10_1007_s00500_021_06424_7
crossref_primary_10_3390_agriengineering6040238
crossref_primary_10_1016_j_memsci_2024_123256
crossref_primary_10_1108_SSMT_08_2023_0045
crossref_primary_10_1038_s41598_024_75320_5
crossref_primary_10_1155_vib_5590157
crossref_primary_10_1016_j_compbiomed_2023_107498
crossref_primary_10_3346_jkms_2024_39_e53
crossref_primary_10_1002_aur_2721
crossref_primary_10_1016_j_egyai_2024_100414
crossref_primary_10_1002_mnfr_202300605
crossref_primary_10_1049_ipr2_12936
crossref_primary_10_3390_bios15010020
crossref_primary_10_1016_j_jpcs_2024_112526
crossref_primary_10_1038_s41598_024_79972_1
crossref_primary_10_3390_data10030027
crossref_primary_10_1088_1741_2552_abbff2
crossref_primary_10_1007_s11666_024_01776_6
crossref_primary_10_1016_j_eiar_2024_107600
crossref_primary_10_3390_electronics13050905
crossref_primary_10_1007_s41060_025_00715_0
crossref_primary_10_1007_s00170_024_14858_0
crossref_primary_10_1007_s12065_024_00982_z
crossref_primary_10_1186_s12904_024_01392_9
crossref_primary_10_1007_s11356_023_27248_y
crossref_primary_10_1016_j_ijmedinf_2024_105631
crossref_primary_10_1109_TIM_2023_3282656
crossref_primary_10_3390_sym15122185
crossref_primary_10_4081_btvb_2023_105
crossref_primary_10_3390_diagnostics13111948
crossref_primary_10_3390_su16219483
crossref_primary_10_3390_s21103333
crossref_primary_10_2478_ijcss_2022_0007
crossref_primary_10_1061__ASCE_PS_1949_1204_0000637
crossref_primary_10_1002_cpe_7832
crossref_primary_10_1016_j_energy_2024_132122
crossref_primary_10_3389_fenvs_2023_1184517
crossref_primary_10_3390_diagnostics12122980
crossref_primary_10_1007_s11517_023_02890_3
crossref_primary_10_1089_ees_2024_0116
crossref_primary_10_1109_ACCESS_2025_3548309
crossref_primary_10_1109_ACCESS_2024_3358452
crossref_primary_10_3390_pr11020434
crossref_primary_10_1016_j_conbuildmat_2024_138135
crossref_primary_10_1115_1_4066293
crossref_primary_10_1016_j_bspc_2024_106518
crossref_primary_10_1021_acs_iecr_1c04631
crossref_primary_10_1155_2023_2871769
crossref_primary_10_1109_ACCESS_2021_3080180
crossref_primary_10_1016_j_imu_2023_101275
Cites_doi 10.1016/j.molstruc.2007.12.026
10.1016/j.patrec.2006.08.016
10.1109/TKDE.2008.238
10.1109/TKDE.2011.181
10.1109/TIFS.2008.2011089
10.1016/S1672-6529(11)60020-6
10.1109/TIT.1967.1053964
10.1016/j.eswa.2005.09.024
10.1109/TPAMI.2007.1093
10.1109/TNNLS.2017.2673241
10.1016/j.proenv.2011.12.040
10.1109/TEVC.2015.2504420
10.1016/j.advengsoft.2015.01.010
10.1109/TEVC.2004.826069
10.1016/j.eswa.2011.09.073
10.1109/TPAMI.2006.145
10.1016/j.renene.2016.09.023
10.1016/j.eswa.2007.08.088
10.1016/j.eswa.2008.07.026
10.1016/j.asoc.2015.07.046
10.1049/iet-smt.2014.0204
10.1016/j.ins.2017.08.047
10.1023/A:1006593614256
10.1214/aoms/1177731944
10.1080/01621459.1993.10476408
10.1109/TNNLS.2015.2506821
10.1016/j.asoc.2011.01.037
10.1109/TMECH.2013.2260865
10.1021/ac0519312
10.1093/bioinformatics/bti124
10.1016/j.eswa.2015.08.017
10.1289/ehp.5758
10.1145/7902.7906
10.1016/j.cmpb.2013.10.007
10.1109/TPAMI.2005.57
10.1016/j.eswa.2011.04.057
10.1016/j.patcog.2005.01.012
10.1109/23.589532
10.1021/ac00073a010
10.1007/s10916-011-9815-x
10.1109/TSMCB.2012.2191953
10.2307/3001968
10.1080/00401706.1969.10490657
10.1145/135226.135228
10.1016/j.asoc.2007.10.007
10.1109/TSMCB.2011.2164245
10.1016/j.neucom.2012.09.049
10.1186/1471-2105-6-191
10.1016/S0167-8655(00)00112-4
10.1186/1471-2164-7-142
10.1109/TITB.2011.2119322
10.1109/TCSVT.2014.2358031
10.1109/TPAMI.2005.159
10.1016/j.asoc.2017.05.007
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105524
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105524
S1568494619302947
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-1034f2256b8b79731f408c17b69b7ca59ab5ac629c984e6a88d1d19a121ed9f03
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:03 EDT 2025
Thu Apr 24 22:58:38 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
k-NN classifier
Data normalization
Ant lion optimization
Feature weighting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-1034f2256b8b79731f408c17b69b7ca59ab5ac629c984e6a88d1d19a121ed9f03
ParticipantIDs crossref_primary_10_1016_j_asoc_2019_105524
crossref_citationtrail_10_1016_j_asoc_2019_105524
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lin, Ying, Chen, Lee (b26) 2008; 35
Wu, Xing, Myers, Mian, Bissell (b15) 2005; 6
Kabir, Shahjahan, Murase (b52) 2012; 39
Noda (b31) 2008; 883
Asuncion, Newman (b76) 2007
Nickabadi, Ebadzadeh, Safabakhsh (b66) 2011; 11
Eshelman, Schaffer (b71) 1993
li, Liu (b16) 2011; 11
Sun (b43) 2007; 29
Su, Wang, Wang, Liu (b17) 2016
Yamany, Tharwat, Hassanin, Gaber, Hassanien, Kim (b68) 2015
Peng, Long, Ding (b46) 2005; 27
Inbarani, Azar, Jothi (b45) 2014; 113
Wilcoxon (b79) 1945; 1
Kardan, Kavian, Esmaeili (b58) 2013
Zhang, Li, Zong, Zhu, Wang (b64) 2018; 29
Ali, Elazim, Abdelaziz (b69) 2017; 101
Fukunaga (b29) 2013
Wang, Huang (b14) 2009; 36
Stanfill, Waltz (b47) 1986; 29
Van den Bergh, Engelbrecht (b65) 2004; 8
Wettschereck, Aha, Mohri (b18) 1997; 11
Ekenel, Stiefelhagen (b21) 2006
Sarle (b4) 1997
Rousseeuw, Croux (b82) 1993; 88
Kvalheim, Brakstad, Liang (b33) 1994; 66
Creecy, Masand, Smith, Waltz (b48) 1992; 35
Subhashini, Satapathy (b70) 2017; 59
Li, Guimarães, Lowther (b73) 2015; 9
Huang, Dun (b23) 2008; 8
Zhang, Gong, Hu, Zhang (b74) 2015; 148
Eriksson, Jaworska, Worth, Cronin, McDowell, Gramatica (b32) 2003; 111
Kelly Jr, Davis (b55) 1991
Han, Pei, Kamber (b34) 2011
Jayalakshmi, Santhakumaran (b7) 2011; 3
Theodoridis, Koutroumbas (b37) 2008
Grubbs (b77) 1969; 11
Friedman (b81) 1940; 11
Pan, Zhuang, Fong (b12) 2016
Chuang, Tsai, Yang (b62) 2011; 38
Tahir, Bouridane, Kurugollu (b57) 2007; 28
Chen, Liu, Chai, Bao (b54) 2009; 21
He, Zhang, Sun, Dong (b50) 2009
Pérez-Rodríguez, Arroyo-Peña, García-Pedrajas (b39) 2015; 37
Dougherty (b1) 2012
Sola, Sevilla (b5) 1997; 44
Acharya, Dua, Du, Chua (b8) 2011; 15
Satapathy, Naik, Parvathi (b51) 2013; 3
Liu, Chen, Yang, Lv, Li, Liu (b78) 2012; 36
Liu, Wang, Chen, Dong, Zhu, Wang (b49) 2011; 8
García-Pedrajas, del Castillo, Cerruela-García (b63) 2017; 28
Cover, Hart (b61) 1967; 13
García, Luengo, Herrera (b2) 2015
Al Shalabi, Shaaban (b25) 2006
van den Berg, Hoefsloot, Westerhuis, Smilde, van der Werf (b27) 2006; 7
Jain, Nandakumar, Ross (b19) 2005; 38
Ciornei, Kyriakides (b72) 2012; 42
Craig, Cloarec, Holmes, Nicholson, Lindon (b28) 2006; 78
Mirjalili (b67) 2015; 83
Hampel, Ronchetti, Rousseeuw, Stahel (b35) 2011
Xue, Zhang, Browne, Yao (b53) 2016; 20
Paredes, Vidal (b60) 2006
Derrac, Triguero, García, Herrera (b38) 2012; 42
Giraldo, Delgado, Castellanos (b56) 2007
Kumar, Ravikanth (b22) 2009; 4
Huang, Wang (b24) 2006; 31
Demšar (b80) 2006; 7
Priddy, Keller (b36) 2005
Barros, Cavalcanti (b59) 2008
Esfahani, Wang, Sundararajan (b11) 2014; 19
Guyon, Elisseeff (b42) 2003; 3
Reverter, Barris, Mcwilliam, Byrne, Wang, Tan, Hudson, Dalrymple (b30) 2004; 21
Song, Ni, Wang (b44) 2013; 25
Aksoy, Haralick (b3) 2001; 22
Weston, Mukherjee, Chapelle, Pontil, Poggio, Vapnik (b41) 2001
Ross, Govindarajan (b20) 2005
Hsu, Chang, Lin (b6) 2003
Mateos-García, García-Gutiérrez, Riquelme-Santos (b40) 2016; 43
Zhang, Song, Gong (b75) 2017; 418
Snelick, Uludag, Mink, Indovina, Jain (b9) 2005; 27
Wen, Shao, Fang, Xue (b10) 2015; 25
Kadir, Nugroho, Susanto, Santosa (b13) 2011; 2
Hsu (10.1016/j.asoc.2019.105524_b6) 2003
Liu (10.1016/j.asoc.2019.105524_b78) 2012; 36
Demšar (10.1016/j.asoc.2019.105524_b80) 2006; 7
Giraldo (10.1016/j.asoc.2019.105524_b56) 2007
Ross (10.1016/j.asoc.2019.105524_b20) 2005
Theodoridis (10.1016/j.asoc.2019.105524_b37) 2008
Kardan (10.1016/j.asoc.2019.105524_b58) 2013
Van den Bergh (10.1016/j.asoc.2019.105524_b65) 2004; 8
Inbarani (10.1016/j.asoc.2019.105524_b45) 2014; 113
Dougherty (10.1016/j.asoc.2019.105524_b1) 2012
Kadir (10.1016/j.asoc.2019.105524_b13) 2011; 2
Liu (10.1016/j.asoc.2019.105524_b49) 2011; 8
Zhang (10.1016/j.asoc.2019.105524_b64) 2018; 29
Jain (10.1016/j.asoc.2019.105524_b19) 2005; 38
Kumar (10.1016/j.asoc.2019.105524_b22) 2009; 4
Su (10.1016/j.asoc.2019.105524_b17) 2016
Zhang (10.1016/j.asoc.2019.105524_b74) 2015; 148
Ali (10.1016/j.asoc.2019.105524_b69) 2017; 101
Chuang (10.1016/j.asoc.2019.105524_b62) 2011; 38
Guyon (10.1016/j.asoc.2019.105524_b42) 2003; 3
Esfahani (10.1016/j.asoc.2019.105524_b11) 2014; 19
Rousseeuw (10.1016/j.asoc.2019.105524_b82) 1993; 88
Jayalakshmi (10.1016/j.asoc.2019.105524_b7) 2011; 3
Wilcoxon (10.1016/j.asoc.2019.105524_b79) 1945; 1
Chen (10.1016/j.asoc.2019.105524_b54) 2009; 21
Weston (10.1016/j.asoc.2019.105524_b41) 2001
Pérez-Rodríguez (10.1016/j.asoc.2019.105524_b39) 2015; 37
Huang (10.1016/j.asoc.2019.105524_b24) 2006; 31
Sarle (10.1016/j.asoc.2019.105524_b4) 1997
Song (10.1016/j.asoc.2019.105524_b44) 2013; 25
Peng (10.1016/j.asoc.2019.105524_b46) 2005; 27
Hampel (10.1016/j.asoc.2019.105524_b35) 2011
Zhang (10.1016/j.asoc.2019.105524_b75) 2017; 418
Wu (10.1016/j.asoc.2019.105524_b15) 2005; 6
Wettschereck (10.1016/j.asoc.2019.105524_b18) 1997; 11
Ciornei (10.1016/j.asoc.2019.105524_b72) 2012; 42
García (10.1016/j.asoc.2019.105524_b2) 2015
Yamany (10.1016/j.asoc.2019.105524_b68) 2015
Subhashini (10.1016/j.asoc.2019.105524_b70) 2017; 59
Pan (10.1016/j.asoc.2019.105524_b12) 2016
Friedman (10.1016/j.asoc.2019.105524_b81) 1940; 11
Kvalheim (10.1016/j.asoc.2019.105524_b33) 1994; 66
Tahir (10.1016/j.asoc.2019.105524_b57) 2007; 28
Cover (10.1016/j.asoc.2019.105524_b61) 1967; 13
Fukunaga (10.1016/j.asoc.2019.105524_b29) 2013
Mateos-García (10.1016/j.asoc.2019.105524_b40) 2016; 43
Snelick (10.1016/j.asoc.2019.105524_b9) 2005; 27
Nickabadi (10.1016/j.asoc.2019.105524_b66) 2011; 11
Paredes (10.1016/j.asoc.2019.105524_b60) 2006
Eshelman (10.1016/j.asoc.2019.105524_b71) 1993
Stanfill (10.1016/j.asoc.2019.105524_b47) 1986; 29
Al Shalabi (10.1016/j.asoc.2019.105524_b25) 2006
Lin (10.1016/j.asoc.2019.105524_b26) 2008; 35
Wang (10.1016/j.asoc.2019.105524_b14) 2009; 36
Satapathy (10.1016/j.asoc.2019.105524_b51) 2013; 3
Asuncion (10.1016/j.asoc.2019.105524_b76) 2007
Barros (10.1016/j.asoc.2019.105524_b59) 2008
Wen (10.1016/j.asoc.2019.105524_b10) 2015; 25
Han (10.1016/j.asoc.2019.105524_b34) 2011
Creecy (10.1016/j.asoc.2019.105524_b48) 1992; 35
Ekenel (10.1016/j.asoc.2019.105524_b21) 2006
Sun (10.1016/j.asoc.2019.105524_b43) 2007; 29
Acharya (10.1016/j.asoc.2019.105524_b8) 2011; 15
Noda (10.1016/j.asoc.2019.105524_b31) 2008; 883
Xue (10.1016/j.asoc.2019.105524_b53) 2016; 20
Reverter (10.1016/j.asoc.2019.105524_b30) 2004; 21
Li (10.1016/j.asoc.2019.105524_b73) 2015; 9
Grubbs (10.1016/j.asoc.2019.105524_b77) 1969; 11
van den Berg (10.1016/j.asoc.2019.105524_b27) 2006; 7
Derrac (10.1016/j.asoc.2019.105524_b38) 2012; 42
Kelly Jr (10.1016/j.asoc.2019.105524_b55) 1991
li (10.1016/j.asoc.2019.105524_b16) 2011; 11
Huang (10.1016/j.asoc.2019.105524_b23) 2008; 8
Priddy (10.1016/j.asoc.2019.105524_b36) 2005
Sola (10.1016/j.asoc.2019.105524_b5) 1997; 44
He (10.1016/j.asoc.2019.105524_b50) 2009
Kabir (10.1016/j.asoc.2019.105524_b52) 2012; 39
García-Pedrajas (10.1016/j.asoc.2019.105524_b63) 2017; 28
Craig (10.1016/j.asoc.2019.105524_b28) 2006; 78
Aksoy (10.1016/j.asoc.2019.105524_b3) 2001; 22
Eriksson (10.1016/j.asoc.2019.105524_b32) 2003; 111
Mirjalili (10.1016/j.asoc.2019.105524_b67) 2015; 83
References_xml – year: 2003
  ident: b6
  article-title: A practical guide to support vector classification
– volume: 88
  start-page: 1273
  year: 1993
  end-page: 1283
  ident: b82
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Statist. Associat.
– year: 2015
  ident: b2
  article-title: Data Preprocessing in Data Mining
– start-page: 1100
  year: 2006
  end-page: 1110
  ident: b60
  article-title: Learning weighted metrics to minimize nearest-neighbor classification error
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 416
  year: 2015
  end-page: 443
  ident: b39
  article-title: Simultaneous instance and feature selection and weighting using evolutionary computation: Proposal and study
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 606
  year: 2016
  end-page: 626
  ident: b53
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
– volume: 31
  start-page: 231
  year: 2006
  end-page: 240
  ident: b24
  article-title: A GA-based feature selection and parameters optimization for support vector machines
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 191
  year: 2005
  ident: b15
  article-title: Evaluation of normalization methods for cDNA microarray data by
  publication-title: BMC Bioinform.
– start-page: 691
  year: 2016
  end-page: 698
  ident: b17
  article-title: Anomadroid: Profiling android applications’ behaviors for identifying unknown malapps
  publication-title: Proceedings of IEEE Trustcom/BigDataSE/ISPA
– volume: 113
  start-page: 175
  year: 2014
  end-page: 185
  ident: b45
  article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
  publication-title: Comput. Method. Progr. Biomed.
– volume: 29
  start-page: 1213
  year: 1986
  end-page: 1228
  ident: b47
  article-title: Toward memory-based reasoning
  publication-title: Commun. ACM
– volume: 11
  start-page: 256
  year: 2011
  end-page: 262
  ident: b16
  article-title: A method of SVM with normalization in intrusion detection
  publication-title: Procedia Environ. Sci.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b42
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 66
  start-page: 43
  year: 1994
  end-page: 51
  ident: b33
  article-title: Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise
  publication-title: Anal. Chem.
– volume: 29
  start-page: 1774
  year: 2018
  end-page: 1785
  ident: b64
  article-title: Efficient knn classification with different numbers of nearest neighbors
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 3
  start-page: 1793
  year: 2011
  end-page: 8201
  ident: b7
  article-title: Statistical normalization and back propagation for classification
  publication-title: Int. J. Comput. Theory Eng.
– volume: 3
  start-page: 27
  year: 2013
  end-page: 42
  ident: b51
  article-title: Rough set and teaching learning based optimization technique for optimal features selection
  publication-title: Central Eur. J. Comput. Sci.
– volume: 111
  start-page: 1361
  year: 2003
  ident: b32
  article-title: Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs
  publication-title: Environ. Health Perspect.
– volume: 22
  start-page: 563
  year: 2001
  end-page: 582
  ident: b3
  article-title: Feature normalization and likelihood-based similarity measures for image retrieval
  publication-title: Pattern Recognit. Lett.
– volume: 38
  start-page: 2270
  year: 2005
  end-page: 2285
  ident: b19
  article-title: Score normalization in multimodal biometric systems
  publication-title: Patter. Recog.
– year: 2011
  ident: b35
  article-title: Robust statistics: the approach based on influence functions, vol. 196
– volume: 21
  start-page: 1475
  year: 2009
  end-page: 1488
  ident: b54
  article-title: Large margin feature weighting method via linear programming
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 11
  start-page: 273
  year: 1997
  end-page: 314
  ident: b18
  article-title: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
  publication-title: Artif. Intell. Rev.
– year: 1997
  ident: b4
  article-title: Neural Network FAQ, periodic posting to the Usenet newsgroup comp. ai.neural-nets
– volume: 8
  start-page: 191
  year: 2011
  end-page: 200
  ident: b49
  article-title: An improved particle swarm optimization for feature selection
  publication-title: J. Bionic Eng.
– volume: 883
  start-page: 216
  year: 2008
  end-page: 227
  ident: b31
  article-title: Scaling techniques to enhance two-dimensional correlation spectra
  publication-title: J. Molecul. Struct.
– volume: 11
  start-page: 1
  year: 1969
  end-page: 21
  ident: b77
  article-title: Procedures for detecting outlying observations in samples
  publication-title: Technometrics
– start-page: 3518
  year: 2008
  end-page: 3523
  ident: b59
  article-title: Combining global optimization algorithms with a simple adaptive distance for feature selection and weighting
  publication-title: IEEE International Joint Conference on Neural Networks
– volume: 15
  start-page: 449
  year: 2011
  end-page: 455
  ident: b8
  article-title: Automated diagnosis of glaucoma using texture and higher order spectra features
  publication-title: IEEE Trans. Inform. Technol. Biomed.
– year: 2008
  ident: b37
  publication-title: Pattern Recognition
– volume: 35
  start-page: 48
  year: 1992
  end-page: 64
  ident: b48
  article-title: Trading MIPS and memory for knowledge engineering
  publication-title: Commun. ACM
– year: 2006
  ident: b21
  article-title: Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization
  publication-title: Conference on Computer Vision and Pattern Recognition Workshop
– volume: 8
  start-page: 1381
  year: 2008
  end-page: 1391
  ident: b23
  article-title: A distributed PSO-SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
– volume: 27
  start-page: 450
  year: 2005
  end-page: 455
  ident: b9
  article-title: Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 25
  start-page: 508
  year: 2015
  end-page: 517
  ident: b10
  article-title: Efficient feature selection and classification for vehicle detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 257
  year: 2007
  end-page: 260
  ident: b56
  article-title: Feature weighting and selection using a hybrid approach based on rademacher complexity model selection
  publication-title: Computers in Cardiology
– volume: 25
  start-page: 1
  year: 2013
  end-page: 14
  ident: b44
  article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b46
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 59
  start-page: 153
  year: 2017
  end-page: 173
  ident: b70
  article-title: Development of an enhanced ant lion optimization algorithm and its application in antenna array synthesis
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 1112
  year: 2004
  end-page: 1120
  ident: b30
  article-title: Validation of alternative methods of data normalization in gene co-expression studies
  publication-title: Bioinformatics
– start-page: 668
  year: 2001
  end-page: 674
  ident: b41
  article-title: Feature selection for SVMs
  publication-title: Advances in Neural Information Processing Systems
– volume: 4
  start-page: 98
  year: 2009
  end-page: 110
  ident: b22
  article-title: Personal authentication using finger knuckle surface
  publication-title: IEEE Trans. Inform. Forensics Secur.
– year: 2012
  ident: b1
  article-title: Pattern Recognition and Classification: an Introduction
– volume: 7
  start-page: 142
  year: 2006
  ident: b27
  article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data
  publication-title: BMC Genomics
– year: 2011
  ident: b34
  article-title: Data mining: concepts and techniques
– volume: 418
  start-page: 561
  year: 2017
  end-page: 574
  ident: b75
  article-title: A return-cost-based binary firefly algorithm for feature selection
  publication-title: Inform. Sci.
– volume: 28
  start-page: 470
  year: 2017
  end-page: 475
  ident: b63
  article-title: A proposal for local
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 9
  start-page: 218
  year: 2015
  end-page: 223
  ident: b73
  article-title: Competitive co-evolutionary algorithm for constrained robust design
  publication-title: IET Sci., Measur. Technol.
– volume: 39
  start-page: 3747
  year: 2012
  end-page: 3763
  ident: b52
  article-title: A new hybrid ant colony optimization algorithm for feature selection
  publication-title: Expert Syst. Appl.
– start-page: 349
  year: 2013
  end-page: 354
  ident: b58
  article-title: Simultaneous feature selection and feature weighting with k selection for KNN classification using BBO algorithm
  publication-title: IEEE 5th Conference on Information and Knowledge Technology
– volume: 101
  start-page: 1311
  year: 2017
  end-page: 1324
  ident: b69
  article-title: Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations
  publication-title: Renew. Energy
– volume: 42
  start-page: 1383
  year: 2012
  end-page: 1397
  ident: b38
  article-title: Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 8
  start-page: 225
  year: 2004
  end-page: 239
  ident: b65
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evolu. Comput.
– volume: 28
  start-page: 438
  year: 2007
  end-page: 446
  ident: b57
  article-title: Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier
  publication-title: Pattern Recognit. Lett.
– year: 2013
  ident: b29
  article-title: Introduction to Statistical Pattern Recognition
– volume: 35
  start-page: 1817
  year: 2008
  end-page: 1824
  ident: b26
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Syst. Appl.
– start-page: 72
  year: 2016
  end-page: 88
  ident: b12
  article-title: The impact of data normalization on stock market prediction: using svm and technical indicators
  publication-title: International Conference on Soft Computing in Data Science
– start-page: 645
  year: 1991
  end-page: 650
  ident: b55
  article-title: A Hybrid Genetic Algorithm for Classification, vol. 91
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b80
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b67
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
– year: 2007
  ident: b76
  article-title: UCI Machine learning repository
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: b79
  article-title: Individual comparisons by ranking methods
  publication-title: Biomet. Bull.
– volume: 44
  start-page: 1464
  year: 1997
  end-page: 1468
  ident: b5
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 38
  start-page: 12699
  year: 2011
  end-page: 12707
  ident: b62
  article-title: Improved binary particle swarm optimization using catfish effect for feature selection
  publication-title: Expert Syst. Appl.
– volume: 148
  start-page: 150
  year: 2015
  end-page: 157
  ident: b74
  article-title: Feature selection algorithm based on bare bones particle swarm optimization
  publication-title: Neurocomputing
– year: 2005
  ident: b36
  article-title: Artificial neural networks: an introduction, vol. 68
– volume: 36
  start-page: 3243
  year: 2012
  end-page: 3254
  ident: b78
  article-title: Design of an enhanced fuzzy
  publication-title: J. Med. Syst.
– volume: 2
  start-page: 225
  year: 2011
  end-page: 230
  ident: b13
  article-title: Leaf classification using shape, color, and texture features
  publication-title: Int. J. Comput. Trends Technol.
– volume: 29
  year: 2007
  ident: b43
  article-title: Iterative RELIEF for feature weighting: algorithms, theories, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 40
  year: 2015
  end-page: 45
  ident: b68
  article-title: A new multi-layer perceptrons trainer based on ant lion optimization algorithm
  publication-title: 2015 Fourth International Conference on Information Science and Industrial Applications (ISI)
– volume: 36
  start-page: 5900
  year: 2009
  end-page: 5908
  ident: b14
  article-title: Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 3658
  year: 2011
  end-page: 3670
  ident: b66
  article-title: A novel particle swarm optimization algorithm with adaptive inertia weight
  publication-title: Appl. Soft Comput.
– start-page: 196
  year: 2005
  end-page: 205
  ident: b20
  article-title: Feature level fusion of hand and face biometrics
  publication-title: Biometric Technology for Human Identification II, vol. 5779
– volume: 19
  start-page: 818
  year: 2014
  end-page: 826
  ident: b11
  article-title: Multisensor wireless system for eccentricity and bearing fault detection in induction motors
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: b81
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
– volume: 78
  start-page: 2262
  year: 2006
  end-page: 2267
  ident: b28
  article-title: Scaling and normalization effects in NMR spectroscopic metabonomic data sets
  publication-title: Anal. Chem.
– volume: 42
  start-page: 234
  year: 2012
  end-page: 245
  ident: b72
  article-title: Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b61
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
– start-page: 207
  year: 2006
  end-page: 214
  ident: b25
  article-title: Normalization as a preprocessing engine for data mining and the approach of preference matrix
  publication-title: International Conference on Dependability of Computer Systems
– volume: 43
  start-page: 9
  year: 2016
  end-page: 14
  ident: b40
  article-title: An evolutionary voting for
  publication-title: Expert Syst. Appl.
– start-page: 187
  year: 1993
  end-page: 202
  ident: b71
  article-title: Real-coded genetic algorithms and interval-schemata
  publication-title: Foundations of Genetic Algorithms, vol. 2
– start-page: 327
  year: 2009
  end-page: 330
  ident: b50
  article-title: Feature selection with discrete binary differential evolution
  publication-title: IEEE International Conference on Artificial Intelligence and Computational Intelligence, vol. 4
– start-page: 187
  year: 1993
  ident: 10.1016/j.asoc.2019.105524_b71
  article-title: Real-coded genetic algorithms and interval-schemata
– start-page: 72
  year: 2016
  ident: 10.1016/j.asoc.2019.105524_b12
  article-title: The impact of data normalization on stock market prediction: using svm and technical indicators
– volume: 883
  start-page: 216
  year: 2008
  ident: 10.1016/j.asoc.2019.105524_b31
  article-title: Scaling techniques to enhance two-dimensional correlation spectra
  publication-title: J. Molecul. Struct.
  doi: 10.1016/j.molstruc.2007.12.026
– start-page: 196
  year: 2005
  ident: 10.1016/j.asoc.2019.105524_b20
  article-title: Feature level fusion of hand and face biometrics
– volume: 28
  start-page: 438
  issue: 4
  year: 2007
  ident: 10.1016/j.asoc.2019.105524_b57
  article-title: Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2006.08.016
– volume: 21
  start-page: 1475
  issue: 10
  year: 2009
  ident: 10.1016/j.asoc.2019.105524_b54
  article-title: Large margin feature weighting method via linear programming
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.238
– volume: 25
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2019.105524_b44
  article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.181
– volume: 4
  start-page: 98
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2019.105524_b22
  article-title: Personal authentication using finger knuckle surface
  publication-title: IEEE Trans. Inform. Forensics Secur.
  doi: 10.1109/TIFS.2008.2011089
– year: 2013
  ident: 10.1016/j.asoc.2019.105524_b29
– volume: 8
  start-page: 191
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2019.105524_b49
  article-title: An improved particle swarm optimization for feature selection
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(11)60020-6
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.asoc.2019.105524_b61
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1967.1053964
– start-page: 327
  year: 2009
  ident: 10.1016/j.asoc.2019.105524_b50
  article-title: Feature selection with discrete binary differential evolution
– year: 2008
  ident: 10.1016/j.asoc.2019.105524_b37
– volume: 31
  start-page: 231
  issue: 2
  year: 2006
  ident: 10.1016/j.asoc.2019.105524_b24
  article-title: A GA-based feature selection and parameters optimization for support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.024
– volume: 29
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2019.105524_b43
  article-title: Iterative RELIEF for feature weighting: algorithms, theories, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1093
– volume: 29
  start-page: 1774
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2019.105524_b64
  article-title: Efficient knn classification with different numbers of nearest neighbors
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2673241
– volume: 11
  start-page: 256
  year: 2011
  ident: 10.1016/j.asoc.2019.105524_b16
  article-title: A method of SVM with normalization in intrusion detection
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2011.12.040
– volume: 20
  start-page: 606
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2019.105524_b53
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504420
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.asoc.2019.105524_b67
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2019.105524_b65
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evolu. Comput.
  doi: 10.1109/TEVC.2004.826069
– volume: 39
  start-page: 3747
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2019.105524_b52
  article-title: A new hybrid ant colony optimization algorithm for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.073
– start-page: 691
  year: 2016
  ident: 10.1016/j.asoc.2019.105524_b17
  article-title: Anomadroid: Profiling android applications’ behaviors for identifying unknown malapps
– start-page: 257
  year: 2007
  ident: 10.1016/j.asoc.2019.105524_b56
  article-title: Feature weighting and selection using a hybrid approach based on rademacher complexity model selection
– start-page: 645
  year: 1991
  ident: 10.1016/j.asoc.2019.105524_b55
– start-page: 1100
  issue: 7
  year: 2006
  ident: 10.1016/j.asoc.2019.105524_b60
  article-title: Learning weighted metrics to minimize nearest-neighbor classification error
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.145
– year: 2015
  ident: 10.1016/j.asoc.2019.105524_b2
– year: 2003
  ident: 10.1016/j.asoc.2019.105524_b6
– volume: 101
  start-page: 1311
  year: 2017
  ident: 10.1016/j.asoc.2019.105524_b69
  article-title: Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.09.023
– volume: 35
  start-page: 1817
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2019.105524_b26
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.088
– start-page: 40
  year: 2015
  ident: 10.1016/j.asoc.2019.105524_b68
  article-title: A new multi-layer perceptrons trainer based on ant lion optimization algorithm
– volume: 36
  start-page: 5900
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2019.105524_b14
  article-title: Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.026
– volume: 37
  start-page: 416
  year: 2015
  ident: 10.1016/j.asoc.2019.105524_b39
  article-title: Simultaneous instance and feature selection and weighting using evolutionary computation: Proposal and study
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.046
– volume: 9
  start-page: 218
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2019.105524_b73
  article-title: Competitive co-evolutionary algorithm for constrained robust design
  publication-title: IET Sci., Measur. Technol.
  doi: 10.1049/iet-smt.2014.0204
– volume: 418
  start-page: 561
  year: 2017
  ident: 10.1016/j.asoc.2019.105524_b75
  article-title: A return-cost-based binary firefly algorithm for feature selection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.08.047
– volume: 11
  start-page: 273
  issue: 1–5
  year: 1997
  ident: 10.1016/j.asoc.2019.105524_b18
  article-title: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006593614256
– year: 2011
  ident: 10.1016/j.asoc.2019.105524_b35
– start-page: 3518
  year: 2008
  ident: 10.1016/j.asoc.2019.105524_b59
  article-title: Combining global optimization algorithms with a simple adaptive distance for feature selection and weighting
– volume: 7
  start-page: 1
  issue: Jan
  year: 2006
  ident: 10.1016/j.asoc.2019.105524_b80
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 10.1016/j.asoc.2019.105524_b42
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.asoc.2019.105524_b81
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– volume: 88
  start-page: 1273
  issue: 424
  year: 1993
  ident: 10.1016/j.asoc.2019.105524_b82
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Statist. Associat.
  doi: 10.1080/01621459.1993.10476408
– year: 1997
  ident: 10.1016/j.asoc.2019.105524_b4
– volume: 28
  start-page: 470
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2019.105524_b63
  article-title: A proposal for local k values for k-nearest neighbor rule
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2506821
– volume: 11
  start-page: 3658
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2019.105524_b66
  article-title: A novel particle swarm optimization algorithm with adaptive inertia weight
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.01.037
– volume: 19
  start-page: 818
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2019.105524_b11
  article-title: Multisensor wireless system for eccentricity and bearing fault detection in induction motors
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2013.2260865
– volume: 78
  start-page: 2262
  issue: 7
  year: 2006
  ident: 10.1016/j.asoc.2019.105524_b28
  article-title: Scaling and normalization effects in NMR spectroscopic metabonomic data sets
  publication-title: Anal. Chem.
  doi: 10.1021/ac0519312
– volume: 21
  start-page: 1112
  issue: 7
  year: 2004
  ident: 10.1016/j.asoc.2019.105524_b30
  article-title: Validation of alternative methods of data normalization in gene co-expression studies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti124
– year: 2005
  ident: 10.1016/j.asoc.2019.105524_b36
– year: 2011
  ident: 10.1016/j.asoc.2019.105524_b34
– volume: 3
  start-page: 1793
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2019.105524_b7
  article-title: Statistical normalization and back propagation for classification
  publication-title: Int. J. Comput. Theory Eng.
– volume: 43
  start-page: 9
  year: 2016
  ident: 10.1016/j.asoc.2019.105524_b40
  article-title: An evolutionary voting for k-nearest neighbours
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.08.017
– volume: 111
  start-page: 1361
  issue: 10
  year: 2003
  ident: 10.1016/j.asoc.2019.105524_b32
  article-title: Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.5758
– volume: 29
  start-page: 1213
  issue: 12
  year: 1986
  ident: 10.1016/j.asoc.2019.105524_b47
  article-title: Toward memory-based reasoning
  publication-title: Commun. ACM
  doi: 10.1145/7902.7906
– volume: 113
  start-page: 175
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.105524_b45
  article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
  publication-title: Comput. Method. Progr. Biomed.
  doi: 10.1016/j.cmpb.2013.10.007
– volume: 27
  start-page: 450
  issue: 3
  year: 2005
  ident: 10.1016/j.asoc.2019.105524_b9
  article-title: Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.57
– volume: 2
  start-page: 225
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2019.105524_b13
  article-title: Leaf classification using shape, color, and texture features
  publication-title: Int. J. Comput. Trends Technol.
– year: 2006
  ident: 10.1016/j.asoc.2019.105524_b21
  article-title: Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization
– year: 2012
  ident: 10.1016/j.asoc.2019.105524_b1
– volume: 38
  start-page: 12699
  issue: 10
  year: 2011
  ident: 10.1016/j.asoc.2019.105524_b62
  article-title: Improved binary particle swarm optimization using catfish effect for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.057
– volume: 38
  start-page: 2270
  issue: 12
  year: 2005
  ident: 10.1016/j.asoc.2019.105524_b19
  article-title: Score normalization in multimodal biometric systems
  publication-title: Patter. Recog.
  doi: 10.1016/j.patcog.2005.01.012
– volume: 44
  start-page: 1464
  issue: 3
  year: 1997
  ident: 10.1016/j.asoc.2019.105524_b5
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.589532
– volume: 66
  start-page: 43
  issue: 1
  year: 1994
  ident: 10.1016/j.asoc.2019.105524_b33
  article-title: Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise
  publication-title: Anal. Chem.
  doi: 10.1021/ac00073a010
– volume: 36
  start-page: 3243
  issue: 5
  year: 2012
  ident: 10.1016/j.asoc.2019.105524_b78
  article-title: Design of an enhanced fuzzy k-nearest neighbor classifier based computer aided diagnostic system for thyroid disease
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9815-x
– volume: 42
  start-page: 1383
  issue: 5
  year: 2012
  ident: 10.1016/j.asoc.2019.105524_b38
  article-title: Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2012.2191953
– start-page: 349
  year: 2013
  ident: 10.1016/j.asoc.2019.105524_b58
  article-title: Simultaneous feature selection and feature weighting with k selection for KNN classification using BBO algorithm
– start-page: 207
  year: 2006
  ident: 10.1016/j.asoc.2019.105524_b25
  article-title: Normalization as a preprocessing engine for data mining and the approach of preference matrix
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.asoc.2019.105524_b79
  article-title: Individual comparisons by ranking methods
  publication-title: Biomet. Bull.
  doi: 10.2307/3001968
– volume: 3
  start-page: 27
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2019.105524_b51
  article-title: Rough set and teaching learning based optimization technique for optimal features selection
  publication-title: Central Eur. J. Comput. Sci.
– volume: 11
  start-page: 1
  issue: 1
  year: 1969
  ident: 10.1016/j.asoc.2019.105524_b77
  article-title: Procedures for detecting outlying observations in samples
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490657
– volume: 35
  start-page: 48
  issue: 8
  year: 1992
  ident: 10.1016/j.asoc.2019.105524_b48
  article-title: Trading MIPS and memory for knowledge engineering
  publication-title: Commun. ACM
  doi: 10.1145/135226.135228
– volume: 8
  start-page: 1381
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2019.105524_b23
  article-title: A distributed PSO-SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.10.007
– volume: 42
  start-page: 234
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2019.105524_b72
  article-title: Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2011.2164245
– volume: 148
  start-page: 150
  year: 2015
  ident: 10.1016/j.asoc.2019.105524_b74
  article-title: Feature selection algorithm based on bare bones particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.049
– volume: 6
  start-page: 191
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2019.105524_b15
  article-title: Evaluation of normalization methods for cDNA microarray data by k-NN classification
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-6-191
– volume: 22
  start-page: 563
  issue: 5
  year: 2001
  ident: 10.1016/j.asoc.2019.105524_b3
  article-title: Feature normalization and likelihood-based similarity measures for image retrieval
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(00)00112-4
– start-page: 668
  year: 2001
  ident: 10.1016/j.asoc.2019.105524_b41
  article-title: Feature selection for SVMs
– year: 2007
  ident: 10.1016/j.asoc.2019.105524_b76
– volume: 7
  start-page: 142
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2019.105524_b27
  article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-142
– volume: 15
  start-page: 449
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2019.105524_b8
  article-title: Automated diagnosis of glaucoma using texture and higher order spectra features
  publication-title: IEEE Trans. Inform. Technol. Biomed.
  doi: 10.1109/TITB.2011.2119322
– volume: 25
  start-page: 508
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2019.105524_b10
  article-title: Efficient feature selection and classification for vehicle detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2014.2358031
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.asoc.2019.105524_b46
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 59
  start-page: 153
  year: 2017
  ident: 10.1016/j.asoc.2019.105524_b70
  article-title: Development of an enhanced ant lion optimization algorithm and its application in antenna array synthesis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.007
SSID ssj0016928
Score 2.7130213
Snippet Data normalization is one of the pre-processing approaches where the data is either scaled or transformed to make an equal contribution of each feature. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105524
SubjectTerms Ant lion optimization
Data normalization
Feature selection
Feature weighting
k-NN classifier
Title Investigating the impact of data normalization on classification performance
URI https://dx.doi.org/10.1016/j.asoc.2019.105524
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OBN1m528zyWYqlai6iF3pZsmkilbIvUq7_dzG62VhAPwrILYQaWL5OZCXwzg9Alk8omSky98QoRUedopF3iX0o6Q4ixcdlL72HEB2N6N2GTBurVtTBAqwy-v_LppbcOK52AZmc5m3We_c1DUkX9DSCNE0WhopxSAVZ-_bmmeRCuyvmqIByBdCicqThe2iMA9C4F425ZQn8PThsBp7-HdkKmiLvVz-yjhi0O0G49hQGHQ3mIhhutMopX7BM6XJU-4oXDQADFBeSl81Bwif1jIGUGjlC1svwuHjhC4_7NS28QhRkJkUk5X3kvmlLnzyTPZS5gDJWjsTRE5FzlwmimdM604YkySlLLtZRTMiVKk4TYqXJxeoyaxaKwJwhbH6us0GmqFaFWs5xyv22SMWm4VkK3EKnByUxoIA5zLOZZzRR7ywDQDADNKkBb6Gqts6zaZ_wpzWrMsx9GkHn__ofe6T_1ztB2Atfnkp1yjpqr9w974XOMVd4ujaiNtrq9p-EjfG_vB6MvajjR_g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BOMClvFWglD20p8oku97noQdEG4WS5FKQuJn1Zo1SIScqQYgLf4o_yKy9BipVOSAhWT6svNb682ge0jfzAXwR2nhm1AiNV6mEFwVPbMHwZnThKHW-U83SGwxl75z_uhAXC_DY9MIEWmX0_bVPr7x1XGlHNNvT8bj9GysPzQ3HCiDtMMNVZFae-vs7rNtuvp_8wJ_8lbHuz7PjXhKlBRKXSjlD55PyAk1Z5jpXQb2p4B3tqMqlyZWzwthcWCeZcUZzL63WIzqixlJG_cgUnRTfuwhLHN1FkE04fHjmlVBpKkHXcLokHC926tSkMouQBz6ZCfq6gvH_R8NXEa67Bh9iakqO6q9fhwVfbsBqI_tAohfYhP6r2RzlFcEMktS9lmRSkMA4JWVIhK9jhyfBy4UcPZCS6pXpS7fCFpy_C3Lb0Conpf8IxGNw9MqmqTWUeytyLtFOtBDaSWuU3QHagJO5OLE8CGdcZw017U8WAM0CoFkN6A58e94zred1zH1aNJhn_1hdhgFlzr7dN-47gOXe2aCf9U-Gp3uwwkLtXlFjPkFr9vfW72OCM8s_VwZF4PK9LfgJPlQLNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+impact+of+data+normalization+on+classification+performance&rft.jtitle=Applied+soft+computing&rft.au=Singh%2C+Dalwinder&rft.au=Singh%2C+Birmohan&rft.date=2020-12-01&rft.issn=1568-4946&rft.volume=97&rft.spage=105524&rft_id=info:doi/10.1016%2Fj.asoc.2019.105524&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon