Investigating the impact of data normalization on classification performance
Data normalization is one of the pre-processing approaches where the data is either scaled or transformed to make an equal contribution of each feature. The success of machine learning algorithms depends upon the quality of the data to obtain a generalized predictive model of the classification prob...
Saved in:
Published in | Applied soft computing Vol. 97; p. 105524 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data normalization is one of the pre-processing approaches where the data is either scaled or transformed to make an equal contribution of each feature. The success of machine learning algorithms depends upon the quality of the data to obtain a generalized predictive model of the classification problem. The importance of data normalization for improving data quality and subsequently the performance of machine learning algorithms has been presented in many studies. But, the work lacks for the feature selection and feature weighting approaches, a current research trend in machine learning for improving performance. Therefore, this study aims to investigate the impact of fourteen data normalization methods on classification performance considering full feature set, feature selection, and feature weighting. In this paper, we also present a modified Ant Lion optimization that search feature subsets and the best feature weights along with the parameter of Nearest Neighbor Classifier. Experiments are performed on 21 publicly available real and synthetic datasets, and results are analyzed based on the accuracy, the percentage of feature reduced and runtime. It has been observed from the results that no single method outperforms others. Therefore, we have suggested a set of the best and the worst methods combining the normalization procedure and empirical analysis of results. The better performers are z-Score and Pareto Scaling for the full feature set and feature selection, and tanh and its variant for feature weighting. The worst performers are Mean Centered, Variable Stability Scaling and Median and Median Absolute Deviation methods along with un-normalized data.
•The impact of data normalization on classification performance is investigated empirically.•Full feature set, feature selection and feature weighting are used for empirical analysis.•A modified Ant Lion Optimization algorithm is presented for searching optimal solutions.•A set of best and worst normalization methods are identified and recommended. |
---|---|
AbstractList | Data normalization is one of the pre-processing approaches where the data is either scaled or transformed to make an equal contribution of each feature. The success of machine learning algorithms depends upon the quality of the data to obtain a generalized predictive model of the classification problem. The importance of data normalization for improving data quality and subsequently the performance of machine learning algorithms has been presented in many studies. But, the work lacks for the feature selection and feature weighting approaches, a current research trend in machine learning for improving performance. Therefore, this study aims to investigate the impact of fourteen data normalization methods on classification performance considering full feature set, feature selection, and feature weighting. In this paper, we also present a modified Ant Lion optimization that search feature subsets and the best feature weights along with the parameter of Nearest Neighbor Classifier. Experiments are performed on 21 publicly available real and synthetic datasets, and results are analyzed based on the accuracy, the percentage of feature reduced and runtime. It has been observed from the results that no single method outperforms others. Therefore, we have suggested a set of the best and the worst methods combining the normalization procedure and empirical analysis of results. The better performers are z-Score and Pareto Scaling for the full feature set and feature selection, and tanh and its variant for feature weighting. The worst performers are Mean Centered, Variable Stability Scaling and Median and Median Absolute Deviation methods along with un-normalized data.
•The impact of data normalization on classification performance is investigated empirically.•Full feature set, feature selection and feature weighting are used for empirical analysis.•A modified Ant Lion Optimization algorithm is presented for searching optimal solutions.•A set of best and worst normalization methods are identified and recommended. |
ArticleNumber | 105524 |
Author | Singh, Dalwinder Singh, Birmohan |
Author_xml | – sequence: 1 givenname: Dalwinder surname: Singh fullname: Singh, Dalwinder email: dalwindercheema@outlook.com – sequence: 2 givenname: Birmohan surname: Singh fullname: Singh, Birmohan email: birmohansingh@sliet.ac.in |
BookMark | eNp9kEFLAzEQhYNUsK3-AU_7B7Ym2d1sAl6kqC0UvOg5zGaTmrJNShIK-uvNup48FAZmeLxv4L0FmjnvNEL3BK8IJuzhsILo1YpiIrLQNLS-QnPCW1oKxsks3w3jZS1qdoMWMR5whgTlc7TburOOye4hWbcv0qcu7PEEKhXeFD0kKJwPRxjsdzZ4V-RRA8RojVWTctLBjBan9C26NjBEffe3l-jj5fl9vSl3b6_b9dOuVBVjqSS4qg2lDet414q2IqbGXJG2Y6JrFTQCugYUo0IJXmsGnPekJwIIJboXBldLRKe_KvgYgzbyFOwRwpckWI59yIMc-5BjH3LqI0P8H6Rs-o2QAtjhMvo4oTqHOlsdZFRW58C9DVol2Xt7Cf8BaaV-sA |
CitedBy_id | crossref_primary_10_4108_eetsis_3325 crossref_primary_10_1109_ACCESS_2024_3412975 crossref_primary_10_1007_s40899_024_01064_9 crossref_primary_10_1007_s00414_022_02899_7 crossref_primary_10_1002_mp_16277 crossref_primary_10_1038_s41598_024_52796_9 crossref_primary_10_1364_AO_455779 crossref_primary_10_3390_iot5030022 crossref_primary_10_1007_s11831_022_09786_9 crossref_primary_10_1016_j_buildenv_2024_111962 crossref_primary_10_3390_min10100847 crossref_primary_10_2147_CIA_S488890 crossref_primary_10_1007_s10040_022_02567_5 crossref_primary_10_1007_s44196_022_00080_x crossref_primary_10_17341_gazimmfd_1023147 crossref_primary_10_3390_bioengineering12010073 crossref_primary_10_1016_j_enbuild_2024_114681 crossref_primary_10_1016_j_measen_2022_100518 crossref_primary_10_3390_s22239542 crossref_primary_10_3390_app122312173 crossref_primary_10_1016_j_autcon_2024_105793 crossref_primary_10_1016_j_knosys_2022_109536 crossref_primary_10_3103_S1060992X24700838 crossref_primary_10_35377_saucis___1223054 crossref_primary_10_1061_JCCEE5_CPENG_5548 crossref_primary_10_1007_s13762_023_05452_0 crossref_primary_10_1016_j_jpdc_2023_03_001 crossref_primary_10_1016_j_engappai_2023_107465 crossref_primary_10_1016_j_compbiomed_2022_105939 crossref_primary_10_3390_math10111942 crossref_primary_10_1186_s12911_024_02598_w crossref_primary_10_1016_j_wasman_2025_02_040 crossref_primary_10_1007_s11042_022_13613_5 crossref_primary_10_1190_INT_2023_0020_1 crossref_primary_10_1007_s00542_022_05252_5 crossref_primary_10_1007_s10967_020_07533_7 crossref_primary_10_1007_s11042_024_19742_3 crossref_primary_10_1016_j_gsf_2023_101657 crossref_primary_10_1007_s10064_024_03775_x crossref_primary_10_1038_s41698_024_00617_7 crossref_primary_10_3389_fenvs_2025_1513325 crossref_primary_10_1016_j_egyai_2021_100073 crossref_primary_10_3390_pr13010278 crossref_primary_10_1016_j_bspc_2023_105506 crossref_primary_10_1016_j_conbuildmat_2023_132596 crossref_primary_10_1016_j_istruc_2024_107363 crossref_primary_10_1038_s41598_023_45915_5 crossref_primary_10_1002_cjce_25247 crossref_primary_10_1016_j_bbe_2022_07_004 crossref_primary_10_1016_j_jag_2024_104116 crossref_primary_10_1016_j_scitotenv_2024_176558 crossref_primary_10_1016_j_array_2023_100324 crossref_primary_10_1145_3446636 crossref_primary_10_4236_acs_2024_144023 crossref_primary_10_1111_jcmm_18292 crossref_primary_10_1061__ASCE_CO_1943_7862_0002406 crossref_primary_10_1007_s11042_024_19078_y crossref_primary_10_1177_13694332241268243 crossref_primary_10_2478_ijcss_2021_0009 crossref_primary_10_1371_journal_pone_0300296 crossref_primary_10_1109_TNET_2023_3293098 crossref_primary_10_3389_fgene_2022_1081842 crossref_primary_10_1061_JCEMD4_COENG_12367 crossref_primary_10_33364_algoritma_v_21_1_1598 crossref_primary_10_1007_s10922_024_09813_z crossref_primary_10_3390_genes14030574 crossref_primary_10_1080_0952813X_2022_2153278 crossref_primary_10_3390_app132312592 crossref_primary_10_1002_cpe_7807 crossref_primary_10_3390_app11199296 crossref_primary_10_3390_app12188974 crossref_primary_10_1016_j_jhydrol_2024_130955 crossref_primary_10_1016_j_aej_2023_09_070 crossref_primary_10_1002_acs_3798 crossref_primary_10_1016_j_compbiomed_2024_109421 crossref_primary_10_1051_e3sconf_202346502040 crossref_primary_10_1016_j_compbiomed_2024_108698 crossref_primary_10_1016_j_mser_2023_100746 crossref_primary_10_1007_s00607_024_01315_9 crossref_primary_10_1109_ACCESS_2022_3197200 crossref_primary_10_1007_s10668_021_01743_z crossref_primary_10_1109_ACCESS_2024_3423425 crossref_primary_10_3389_fnins_2023_1219133 crossref_primary_10_1016_j_epsr_2024_111090 crossref_primary_10_1016_j_ejrh_2025_102191 crossref_primary_10_3390_app13158808 crossref_primary_10_1016_j_imu_2023_101197 crossref_primary_10_1038_s41586_024_08397_7 crossref_primary_10_1021_acsomega_4c09603 crossref_primary_10_3390_sports10010003 crossref_primary_10_3390_rs15123133 crossref_primary_10_1016_j_engappai_2023_106205 crossref_primary_10_1039_D4DD00101J crossref_primary_10_1080_19490976_2023_2244139 crossref_primary_10_1109_JSEN_2024_3375072 crossref_primary_10_1016_j_jenvman_2024_121851 crossref_primary_10_1007_s43762_024_00116_2 crossref_primary_10_3390_math11163603 crossref_primary_10_1016_j_bspc_2020_101878 crossref_primary_10_1007_s10639_023_11831_4 crossref_primary_10_3390_ani14060863 crossref_primary_10_1109_JSEN_2021_3136790 crossref_primary_10_3390_jcm10215021 crossref_primary_10_1007_s10708_021_10502_6 crossref_primary_10_1007_s13246_023_01274_z crossref_primary_10_1016_j_jag_2025_104412 crossref_primary_10_1186_s13065_024_01349_2 crossref_primary_10_3390_math11020398 crossref_primary_10_1016_j_ecolind_2021_108517 crossref_primary_10_1016_j_procs_2024_09_670 crossref_primary_10_1108_ECAM_01_2024_0020 crossref_primary_10_1016_j_compbiomed_2022_105620 crossref_primary_10_1111_1750_3841_70003 crossref_primary_10_1038_s41598_024_81271_8 crossref_primary_10_1007_s13369_021_06484_9 crossref_primary_10_1109_ACCESS_2020_3048018 crossref_primary_10_1590_1806_9061_2023_1895 crossref_primary_10_4081_jae_2022_1389 crossref_primary_10_3390_rs14225870 crossref_primary_10_1109_ACCESS_2023_3304328 crossref_primary_10_1109_ACCESS_2022_3183077 crossref_primary_10_3390_su151713043 crossref_primary_10_1016_j_jrmge_2024_09_013 crossref_primary_10_1109_JSEN_2024_3377247 crossref_primary_10_32604_cmc_2024_057213 crossref_primary_10_1007_s11277_022_09493_5 crossref_primary_10_1038_s41598_023_43943_9 crossref_primary_10_1109_ACCESS_2025_3538566 crossref_primary_10_1016_j_eswa_2022_118173 crossref_primary_10_1002_joc_8708 crossref_primary_10_1109_TAP_2022_3140214 crossref_primary_10_2196_44081 crossref_primary_10_1016_j_jer_2025_01_001 crossref_primary_10_1016_j_amar_2024_100333 crossref_primary_10_1109_ACCESS_2024_3397040 crossref_primary_10_22399_ijcesen_788 crossref_primary_10_1016_j_mtcomm_2024_108141 crossref_primary_10_1080_10916466_2022_2092637 crossref_primary_10_3390_ma15249029 crossref_primary_10_3390_electronics12071558 crossref_primary_10_3390_brainsci12111449 crossref_primary_10_32568_jfce_1470334 crossref_primary_10_1016_j_mechmat_2023_104639 crossref_primary_10_1016_j_apor_2024_104166 crossref_primary_10_1021_acs_energyfuels_2c03033 crossref_primary_10_1155_2022_8250234 crossref_primary_10_3390_app12147228 crossref_primary_10_3390_sym15010140 crossref_primary_10_1109_ACCESS_2024_3441034 crossref_primary_10_1007_s10044_022_01077_0 crossref_primary_10_1016_j_cesys_2024_100188 crossref_primary_10_1016_j_ijsolstr_2023_112334 crossref_primary_10_1016_j_uclim_2021_100872 crossref_primary_10_3390_s24051568 crossref_primary_10_1016_j_anl_2024_04_003 crossref_primary_10_1016_j_jisa_2023_103509 crossref_primary_10_1063_5_0255786 crossref_primary_10_1155_2023_9713905 crossref_primary_10_32604_csse_2023_037812 crossref_primary_10_1016_j_compag_2025_109997 crossref_primary_10_1016_j_oreoa_2024_100065 crossref_primary_10_1186_s40537_024_00944_3 crossref_primary_10_3390_buildings14113465 crossref_primary_10_3390_f13050787 crossref_primary_10_2166_wcc_2023_052 crossref_primary_10_1016_j_measurement_2024_114992 crossref_primary_10_1088_2632_959X_ad4c80 crossref_primary_10_1007_s00521_024_09780_1 crossref_primary_10_1007_s10845_022_02017_9 crossref_primary_10_1016_j_ijepes_2022_108149 crossref_primary_10_1016_j_isatra_2022_05_039 crossref_primary_10_1038_s41598_024_82420_9 crossref_primary_10_1016_j_eswa_2023_119660 crossref_primary_10_1098_rsta_2022_0392 crossref_primary_10_3390_s21020405 crossref_primary_10_1080_10447318_2023_2301264 crossref_primary_10_1088_1361_665X_acf256 crossref_primary_10_1016_j_knosys_2024_112196 crossref_primary_10_1021_acsestwater_3c00020 crossref_primary_10_4018_IJSIR_309939 crossref_primary_10_1007_s11042_021_11747_6 crossref_primary_10_1016_j_wasman_2025_02_016 crossref_primary_10_1007_s10489_024_05838_8 crossref_primary_10_3390_ijerph18189873 crossref_primary_10_1371_journal_pone_0316493 crossref_primary_10_3390_atmos15050553 crossref_primary_10_3390_info15120777 crossref_primary_10_1007_s11709_024_1125_8 crossref_primary_10_1016_j_epsr_2022_108887 crossref_primary_10_1002_ente_202400432 crossref_primary_10_1002_ett_4443 crossref_primary_10_1016_j_dib_2024_111194 crossref_primary_10_1016_j_seta_2021_101191 crossref_primary_10_1109_ACCESS_2023_3304242 crossref_primary_10_1002_prep_202200265 crossref_primary_10_1109_JSEN_2024_3408323 crossref_primary_10_34288_jri_v6i4_350 crossref_primary_10_1029_2023JB026729 crossref_primary_10_1016_j_jhydrol_2024_132626 crossref_primary_10_3233_IDT_240479 crossref_primary_10_3390_rs14194837 crossref_primary_10_1016_j_neucom_2023_126886 crossref_primary_10_1016_j_eswa_2023_121677 crossref_primary_10_1016_j_ceramint_2023_05_215 crossref_primary_10_1007_s00521_024_10737_7 crossref_primary_10_1016_j_csl_2023_101599 crossref_primary_10_3390_w15081625 crossref_primary_10_1016_j_ecoinf_2023_102084 crossref_primary_10_1016_j_atech_2024_100508 crossref_primary_10_3390_asi8020035 crossref_primary_10_1155_2024_9411326 crossref_primary_10_1007_s12083_023_01513_w crossref_primary_10_1109_JLT_2023_3241187 crossref_primary_10_1016_j_energy_2024_131898 crossref_primary_10_3390_diagnostics15030319 crossref_primary_10_4108_eetiot_v9i3_3030 crossref_primary_10_3390_atmos12121571 crossref_primary_10_1109_ACCESS_2022_3232490 crossref_primary_10_1177_0734242X211008526 crossref_primary_10_1016_j_eswa_2023_121325 crossref_primary_10_3390_su16083151 crossref_primary_10_1016_j_compgeo_2024_106915 crossref_primary_10_3390_app13137622 crossref_primary_10_3390_s21123991 crossref_primary_10_1007_s00530_024_01399_5 crossref_primary_10_1016_j_ibmed_2023_100111 crossref_primary_10_3390_w17050756 crossref_primary_10_1109_JBHI_2022_3225330 crossref_primary_10_1109_TIFS_2023_3272862 crossref_primary_10_1016_j_egyr_2022_11_020 crossref_primary_10_1016_j_trgeo_2025_101492 crossref_primary_10_1007_s12145_024_01413_4 crossref_primary_10_1016_j_csite_2024_104330 crossref_primary_10_1007_s12652_020_02629_0 crossref_primary_10_1007_s10668_024_05287_w crossref_primary_10_3390_app12178769 crossref_primary_10_3390_info12040150 crossref_primary_10_3390_math12162542 crossref_primary_10_1111_exsy_13038 crossref_primary_10_1016_j_eij_2024_100476 crossref_primary_10_3390_rs12203357 crossref_primary_10_1109_TSE_2024_3503723 crossref_primary_10_12677_airr_2025_141005 crossref_primary_10_1016_j_imavis_2024_105333 crossref_primary_10_3390_app13095675 crossref_primary_10_1016_j_tws_2025_112942 crossref_primary_10_1016_j_jss_2024_111973 crossref_primary_10_1016_j_msea_2024_147381 crossref_primary_10_1016_j_oceaneng_2024_119018 crossref_primary_10_1016_j_ijepes_2024_110106 crossref_primary_10_32628_IJSRST52411130 crossref_primary_10_1016_j_rico_2024_100407 crossref_primary_10_3390_plants14060960 crossref_primary_10_1109_ACCESS_2020_2994222 crossref_primary_10_1371_journal_pone_0299386 crossref_primary_10_3390_nano11071774 crossref_primary_10_1007_s40808_024_01970_z crossref_primary_10_1364_OE_489449 crossref_primary_10_1007_s40692_023_00291_x crossref_primary_10_1080_17512549_2022_2108142 crossref_primary_10_1049_bsb2_12085 crossref_primary_10_1016_j_heliyon_2023_e19274 crossref_primary_10_3390_diagnostics12020499 crossref_primary_10_51646_jsesd_v14iFICTS_2024_446 crossref_primary_10_1016_j_advwatres_2023_104569 crossref_primary_10_1016_j_eswa_2021_114787 crossref_primary_10_3390_fi16090331 crossref_primary_10_1186_s12859_023_05465_z crossref_primary_10_1002_mp_17532 crossref_primary_10_1002_jssc_202100864 crossref_primary_10_3389_fphys_2023_1225636 crossref_primary_10_1016_j_segan_2023_101025 crossref_primary_10_1038_s41598_024_55217_z crossref_primary_10_3390_en17092113 crossref_primary_10_1007_s11227_020_03544_z crossref_primary_10_1007_s13198_021_01259_9 crossref_primary_10_1007_s42241_024_0079_6 crossref_primary_10_1109_ACCESS_2022_3208587 crossref_primary_10_3390_s22072517 crossref_primary_10_3390_s21051607 crossref_primary_10_3390_s22093368 crossref_primary_10_1038_s41598_023_33754_3 crossref_primary_10_3390_app15052540 crossref_primary_10_1109_JSEN_2023_3293156 crossref_primary_10_35940_ijrte_E5255_039621 crossref_primary_10_1002_ese3_1450 crossref_primary_10_1016_j_atech_2024_100411 crossref_primary_10_1016_j_energy_2024_130419 crossref_primary_10_1016_j_eswa_2024_124908 crossref_primary_10_3390_computers11080121 crossref_primary_10_1007_s00216_023_04516_x crossref_primary_10_1111_jfpp_15703 crossref_primary_10_1063_5_0214890 crossref_primary_10_1029_2023GL106278 crossref_primary_10_1016_j_hazadv_2024_100523 crossref_primary_10_1080_00207543_2025_2452386 crossref_primary_10_1007_s10040_023_02677_8 crossref_primary_10_1109_ACCESS_2023_3305249 crossref_primary_10_3390_diagnostics14192214 crossref_primary_10_1007_s11042_023_14409_x crossref_primary_10_1016_j_knosys_2024_111835 crossref_primary_10_3390_s24082421 crossref_primary_10_1007_s12665_022_10216_z crossref_primary_10_1109_JSEN_2022_3227475 crossref_primary_10_1016_j_scitotenv_2024_171094 crossref_primary_10_1007_s00170_024_13351_y crossref_primary_10_3390_aerospace11030235 crossref_primary_10_1016_j_triboint_2023_109083 crossref_primary_10_1021_acs_iecr_4c03042 crossref_primary_10_1016_j_compag_2025_110211 crossref_primary_10_3390_make6020046 crossref_primary_10_1016_j_scs_2024_105570 crossref_primary_10_1109_ACCESS_2023_3316019 crossref_primary_10_3390_atmos15060731 crossref_primary_10_1007_s00445_022_01600_5 crossref_primary_10_3934_math_2024331 crossref_primary_10_1142_S1756973724500021 crossref_primary_10_3390_app14020856 crossref_primary_10_1007_s43503_024_00025_7 crossref_primary_10_1007_s11227_024_06631_7 crossref_primary_10_1007_s41230_024_3090_1 crossref_primary_10_1016_j_rsase_2025_101489 crossref_primary_10_3390_app112411965 crossref_primary_10_3390_app11052218 crossref_primary_10_3390_data8120185 crossref_primary_10_1016_j_scitotenv_2024_176758 crossref_primary_10_1109_TIM_2024_3369152 crossref_primary_10_3390_su131810239 crossref_primary_10_3390_su15075882 crossref_primary_10_1007_s11063_023_11355_5 crossref_primary_10_3390_machines11090854 crossref_primary_10_1016_j_jclepro_2024_141559 crossref_primary_10_1055_a_2500_7594 crossref_primary_10_3390_ijerph182010971 crossref_primary_10_1016_j_procs_2024_06_080 crossref_primary_10_1016_j_atech_2023_100240 crossref_primary_10_3390_en16207094 crossref_primary_10_1007_s12540_023_01601_9 crossref_primary_10_1007_s12652_021_03669_w crossref_primary_10_1016_j_trb_2025_103194 crossref_primary_10_1007_s42979_024_02828_y crossref_primary_10_1007_s00170_024_14543_2 crossref_primary_10_1016_j_energy_2022_123977 crossref_primary_10_1155_2022_6792716 crossref_primary_10_1371_journal_pone_0312046 crossref_primary_10_3390_make6020052 crossref_primary_10_1016_j_chemosphere_2024_142222 crossref_primary_10_3390_rs16122202 crossref_primary_10_1016_j_jfca_2024_106824 crossref_primary_10_3390_ai5040116 crossref_primary_10_3390_geohazards5030044 crossref_primary_10_3390_agronomy12071504 crossref_primary_10_1016_j_asej_2024_103060 crossref_primary_10_3390_info13060282 crossref_primary_10_3390_rs16163077 crossref_primary_10_1002_sd_2788 crossref_primary_10_1016_j_engappai_2023_106715 crossref_primary_10_1038_s41598_023_28325_5 crossref_primary_10_1016_j_ndteint_2025_103360 crossref_primary_10_1109_TAES_2023_3328318 crossref_primary_10_1016_j_fuel_2025_135094 crossref_primary_10_1055_a_2420_0413 crossref_primary_10_1016_j_wroa_2024_100291 crossref_primary_10_3390_land13030377 crossref_primary_10_2139_ssrn_4010487 crossref_primary_10_1007_s10531_025_03015_y crossref_primary_10_1038_s41598_025_93447_x crossref_primary_10_1080_17538947_2024_2436494 crossref_primary_10_1038_s42256_024_00928_1 crossref_primary_10_1007_s10489_024_06007_7 crossref_primary_10_3390_en16247985 crossref_primary_10_1016_j_jvoice_2022_11_001 crossref_primary_10_1021_acs_jchemed_2c00850 crossref_primary_10_1155_2022_5864545 crossref_primary_10_3390_agriculture13010095 crossref_primary_10_3390_bioengineering10020245 crossref_primary_10_1007_s13580_023_00559_2 crossref_primary_10_3390_brainsci12081048 crossref_primary_10_1016_j_bspc_2024_106458 crossref_primary_10_1016_j_cmpb_2023_107944 crossref_primary_10_1093_bfgp_elad002 crossref_primary_10_1016_j_jisa_2021_102954 crossref_primary_10_1109_ACCESS_2024_3428401 crossref_primary_10_1109_ACCESS_2024_3462434 crossref_primary_10_1016_j_smhl_2021_100262 crossref_primary_10_1155_2023_8583210 crossref_primary_10_1002_ange_202410308 crossref_primary_10_1016_j_eij_2024_100537 crossref_primary_10_1016_j_istruc_2023_105593 crossref_primary_10_3390_life13020357 crossref_primary_10_1109_ACCESS_2024_3407827 crossref_primary_10_3390_rs13193940 crossref_primary_10_1016_j_apenergy_2024_123238 crossref_primary_10_1016_j_enpol_2025_114503 crossref_primary_10_1007_s10694_024_01593_x crossref_primary_10_1080_14606925_2025_2482556 crossref_primary_10_1016_j_watres_2023_121092 crossref_primary_10_1007_s10518_024_02003_x crossref_primary_10_3390_s24175646 crossref_primary_10_1007_s12145_024_01592_0 crossref_primary_10_1371_journal_pone_0289982 crossref_primary_10_3390_math10060965 crossref_primary_10_1109_ACCESS_2023_3333895 crossref_primary_10_1007_s11042_024_19233_5 crossref_primary_10_1021_acs_jafc_3c05462 crossref_primary_10_1007_s11517_022_02612_1 crossref_primary_10_1016_j_compag_2022_107181 crossref_primary_10_1080_10429247_2024_2383855 crossref_primary_10_3390_aerospace11110897 crossref_primary_10_1007_s13762_024_05805_3 crossref_primary_10_1007_s44163_025_00241_9 crossref_primary_10_1109_TLT_2023_3336541 crossref_primary_10_3390_mps7030036 crossref_primary_10_1080_23270012_2021_1961318 crossref_primary_10_1002_int_22557 crossref_primary_10_1080_10255842_2023_2245516 crossref_primary_10_3390_s23031331 crossref_primary_10_1016_j_bbe_2019_12_004 crossref_primary_10_1016_j_ijrefrig_2022_12_027 crossref_primary_10_1016_j_ijthermalsci_2023_108293 crossref_primary_10_1016_j_jclepro_2022_134203 crossref_primary_10_1109_JBHI_2023_3308529 crossref_primary_10_1016_j_geoen_2024_213545 crossref_primary_10_3390_diagnostics12061396 crossref_primary_10_1016_j_chemosphere_2025_144238 crossref_primary_10_1016_j_applthermaleng_2022_119269 crossref_primary_10_1080_10106049_2021_1983034 crossref_primary_10_1007_s11042_022_13556_x crossref_primary_10_3390_agriculture14122317 crossref_primary_10_1002_stc_2915 crossref_primary_10_1038_s41545_024_00429_z crossref_primary_10_1007_s10664_023_10300_3 crossref_primary_10_1109_ACCESS_2024_3369487 crossref_primary_10_3390_rs13153024 crossref_primary_10_1080_01969722_2025_2459959 crossref_primary_10_1155_2022_8161917 crossref_primary_10_1088_1361_6501_ac8a65 crossref_primary_10_1186_s12859_023_05155_w crossref_primary_10_1080_01446193_2024_2403553 crossref_primary_10_1109_TIFS_2024_3433372 crossref_primary_10_3390_bdcc9020021 crossref_primary_10_1016_j_compbiomed_2022_105284 crossref_primary_10_1016_j_mtcomm_2024_108991 crossref_primary_10_1016_j_jhazmat_2024_134208 crossref_primary_10_1371_journal_pone_0295182 crossref_primary_10_1049_ipr2_12503 crossref_primary_10_7717_peerj_cs_1370 crossref_primary_10_1007_s00477_021_01982_6 crossref_primary_10_3390_jsan11010018 crossref_primary_10_3390_cancers16244225 crossref_primary_10_2139_ssrn_4702406 crossref_primary_10_1038_s41467_022_29681_y crossref_primary_10_1016_j_istruc_2024_106618 crossref_primary_10_1016_j_ijrefrig_2025_02_019 crossref_primary_10_1103_PhysRevAccelBeams_27_074602 crossref_primary_10_1007_s12517_025_12204_6 crossref_primary_10_1186_s12931_024_02753_x crossref_primary_10_3390_app14177534 crossref_primary_10_1016_j_comnet_2023_110072 crossref_primary_10_1016_j_sigpro_2024_109680 crossref_primary_10_1016_j_eng_2024_04_024 crossref_primary_10_56741_jnest_v2i03_393 crossref_primary_10_1016_j_eswa_2023_122357 crossref_primary_10_1016_j_eswa_2025_127166 crossref_primary_10_3390_asi7050091 crossref_primary_10_1016_j_compag_2023_108432 crossref_primary_10_3390_su16072846 crossref_primary_10_1016_j_heliyon_2024_e39205 crossref_primary_10_1136_ebmental_2021_300404 crossref_primary_10_1016_j_conengprac_2024_106045 crossref_primary_10_3390_w15020262 crossref_primary_10_35848_1347_4065_ad3834 crossref_primary_10_1177_03611981231189741 crossref_primary_10_1007_s10668_024_05015_4 crossref_primary_10_1007_s12530_022_09419_3 crossref_primary_10_1016_j_ijhydene_2024_08_204 crossref_primary_10_1177_1357633X231160039 crossref_primary_10_1007_s41748_024_00447_4 crossref_primary_10_1111_coin_70020 crossref_primary_10_3390_diagnostics14131352 crossref_primary_10_1142_S0217595921400170 crossref_primary_10_1007_s11277_024_11257_2 crossref_primary_10_1016_j_heliyon_2023_e20597 crossref_primary_10_1111_exsy_13294 crossref_primary_10_1016_j_egyai_2024_100384 crossref_primary_10_1109_TII_2024_3495787 crossref_primary_10_1109_JSEN_2024_3404558 crossref_primary_10_3389_fnbot_2023_1155826 crossref_primary_10_1109_JSTARS_2022_3223198 crossref_primary_10_1109_ACCESS_2022_3206954 crossref_primary_10_1142_S0219622023500037 crossref_primary_10_1007_s40313_022_00923_0 crossref_primary_10_1177_14727978251322052 crossref_primary_10_1007_s00366_024_02048_1 crossref_primary_10_1016_j_dsx_2023_102919 crossref_primary_10_3390_informatics8030047 crossref_primary_10_3389_fpubh_2024_1413031 crossref_primary_10_1007_s12065_021_00634_6 crossref_primary_10_1016_j_sandf_2024_101517 crossref_primary_10_1016_j_mfglet_2023_08_094 crossref_primary_10_1049_tje2_12412 crossref_primary_10_3390_su152416593 crossref_primary_10_1016_j_atech_2024_100709 crossref_primary_10_3390_electronics11132073 crossref_primary_10_1080_03091902_2025_2463574 crossref_primary_10_51583_IJLTEMAS_2024_131022 crossref_primary_10_1016_j_asoc_2024_112098 crossref_primary_10_3390_data8060105 crossref_primary_10_1016_j_uclim_2020_100661 crossref_primary_10_1111_coin_70036 crossref_primary_10_1016_j_adhoc_2024_103613 crossref_primary_10_1038_s41598_022_22614_1 crossref_primary_10_1109_ACCESS_2022_3232299 crossref_primary_10_3389_fgene_2022_954024 crossref_primary_10_1007_s40030_025_00867_z crossref_primary_10_1080_19439962_2024_2353658 crossref_primary_10_1016_j_est_2024_113176 crossref_primary_10_3390_telecom4030028 crossref_primary_10_1016_j_scs_2021_102923 crossref_primary_10_1016_j_snb_2024_135879 crossref_primary_10_1186_s12911_024_02655_4 crossref_primary_10_3390_su15032578 crossref_primary_10_1109_ACCESS_2024_3450520 crossref_primary_10_1016_j_heliyon_2023_e22878 crossref_primary_10_1016_j_heliyon_2023_e22637 crossref_primary_10_1016_j_ress_2024_110382 crossref_primary_10_3390_f14071345 crossref_primary_10_54097_hset_v47i_8170 crossref_primary_10_1016_j_jhazmat_2021_127344 crossref_primary_10_1016_j_eswa_2024_124404 crossref_primary_10_1016_j_rsase_2024_101208 crossref_primary_10_1016_j_eswa_2024_123559 crossref_primary_10_3390_app12042242 crossref_primary_10_3389_fdata_2023_1241899 crossref_primary_10_1109_ACCESS_2024_3425472 crossref_primary_10_1002_anie_202410308 crossref_primary_10_1016_j_solmat_2024_112826 crossref_primary_10_11648_j_ajese_20240803_13 crossref_primary_10_32604_csse_2023_036293 crossref_primary_10_1016_j_srs_2025_100205 crossref_primary_10_1007_s12145_023_01135_z crossref_primary_10_1061_NHREFO_NHENG_1681 crossref_primary_10_1016_j_segan_2023_101178 crossref_primary_10_3390_su151914320 crossref_primary_10_1016_j_asoc_2023_111108 crossref_primary_10_48175_IJARSCT_2269M crossref_primary_10_1016_j_matdes_2023_112086 crossref_primary_10_1007_s11540_024_09728_x crossref_primary_10_3390_appliedmath3010011 crossref_primary_10_1016_j_cma_2024_116940 crossref_primary_10_1002_cpe_7310 crossref_primary_10_1016_j_egyr_2023_09_016 crossref_primary_10_1016_j_jobe_2024_108766 crossref_primary_10_1109_ACCESS_2023_3333876 crossref_primary_10_3390_jpm14040410 crossref_primary_10_1021_acssuschemeng_2c03136 crossref_primary_10_3390_su16166979 crossref_primary_10_1016_j_procs_2021_12_036 crossref_primary_10_1016_j_cie_2022_108825 crossref_primary_10_1007_s12145_024_01385_5 crossref_primary_10_18267_j_polek_1405 crossref_primary_10_1088_1674_4527_ac977b crossref_primary_10_1016_j_aei_2024_102665 crossref_primary_10_1016_j_engappai_2024_109452 crossref_primary_10_1155_2024_4616609 crossref_primary_10_1016_j_patcog_2021_108307 crossref_primary_10_3390_s23218741 crossref_primary_10_1080_01969722_2022_2080338 crossref_primary_10_3390_sym12030454 crossref_primary_10_3390_e23040440 crossref_primary_10_1016_j_geoen_2024_213608 crossref_primary_10_7717_peerj_cs_2016 crossref_primary_10_1109_JIOT_2024_3386889 crossref_primary_10_7717_peerj_cs_2254 crossref_primary_10_3390_econometrics12040034 crossref_primary_10_1088_1741_2552_acb96e crossref_primary_10_1016_j_jclepro_2023_137036 crossref_primary_10_1016_j_ijcip_2022_100547 crossref_primary_10_3390_math11051134 crossref_primary_10_1016_j_jcp_2023_112683 crossref_primary_10_1186_s13244_023_01575_7 crossref_primary_10_1007_s13369_021_06313_z crossref_primary_10_1016_j_engfracmech_2023_109331 crossref_primary_10_1016_j_nut_2024_112674 crossref_primary_10_4108_eetsis_5102 crossref_primary_10_3390_rs13204080 crossref_primary_10_1002_cctc_202101046 crossref_primary_10_3390_pr12040664 crossref_primary_10_5004_dwt_2021_27691 crossref_primary_10_1016_j_bspc_2024_106730 crossref_primary_10_1016_j_icheatmasstransfer_2024_107271 crossref_primary_10_1016_j_bdr_2023_100407 crossref_primary_10_3390_app14177726 crossref_primary_10_1109_ACCESS_2024_3367325 crossref_primary_10_3390_futuretransp5010017 crossref_primary_10_1021_acs_jpcc_4c02939 crossref_primary_10_3389_fcvm_2022_754609 crossref_primary_10_1038_s41598_024_59334_7 crossref_primary_10_1109_LSP_2024_3449852 crossref_primary_10_3389_fnut_2023_1165854 crossref_primary_10_3389_fvets_2022_822621 crossref_primary_10_1016_j_apacoust_2023_109245 crossref_primary_10_1016_j_compbiomed_2025_109985 crossref_primary_10_3847_1538_4365_ad7c4a crossref_primary_10_1051_e3sconf_202450101023 crossref_primary_10_3390_land11040453 crossref_primary_10_1016_j_applthermaleng_2024_123255 crossref_primary_10_1016_j_semcancer_2023_09_005 crossref_primary_10_1016_j_energy_2022_125425 crossref_primary_10_1007_s00128_020_03084_5 crossref_primary_10_1016_j_egyai_2023_100230 crossref_primary_10_3390_bioengineering11101021 crossref_primary_10_3390_jimaging10100245 crossref_primary_10_3390_math11143257 crossref_primary_10_1016_j_ijhydene_2023_08_002 crossref_primary_10_1016_j_dwt_2024_100912 crossref_primary_10_1002_ett_4622 crossref_primary_10_3390_agriculture12010025 crossref_primary_10_37661_1816_0301_2021_18_3_83_96 crossref_primary_10_1016_j_fuel_2025_134534 crossref_primary_10_1094_PDIS_12_22_2908_RE crossref_primary_10_21595_jme_2023_23452 crossref_primary_10_1016_j_sna_2024_115978 crossref_primary_10_3390_jcm11216264 crossref_primary_10_1016_j_tsep_2023_102070 crossref_primary_10_1155_2022_8412895 crossref_primary_10_1016_j_asoc_2023_110183 crossref_primary_10_3390_metabo15010044 crossref_primary_10_1016_j_autcon_2024_105721 crossref_primary_10_1186_s12871_024_02840_y crossref_primary_10_1016_j_jmapro_2025_02_015 crossref_primary_10_1186_s13007_024_01169_4 crossref_primary_10_1109_TII_2021_3130248 crossref_primary_10_1109_JSTARS_2022_3184355 crossref_primary_10_1155_2023_1675867 crossref_primary_10_1016_j_bspc_2024_106703 crossref_primary_10_1016_j_biosystemseng_2024_08_003 crossref_primary_10_1016_j_parco_2022_102942 crossref_primary_10_1109_JMMCT_2023_3236946 crossref_primary_10_1371_journal_pcbi_1010718 crossref_primary_10_1109_ACCESS_2021_3094529 crossref_primary_10_1109_JSEN_2020_2975201 crossref_primary_10_1121_10_0034831 crossref_primary_10_3390_bioengineering11101016 crossref_primary_10_1007_s11416_021_00385_z crossref_primary_10_3233_IDA_230140 crossref_primary_10_1016_j_energy_2024_133011 crossref_primary_10_3233_JIFS_213570 crossref_primary_10_1016_j_matdes_2024_112634 crossref_primary_10_1190_geo2024_0150_1 crossref_primary_10_1021_acsabm_3c00054 crossref_primary_10_1021_acsestengg_3c00043 crossref_primary_10_1155_2023_6341259 crossref_primary_10_1016_j_ins_2023_119236 crossref_primary_10_1021_acs_iecr_4c00397 crossref_primary_10_3390_land11081344 crossref_primary_10_3389_fphys_2023_1153268 crossref_primary_10_3390_pr11020629 crossref_primary_10_1016_j_ecoinf_2021_101348 crossref_primary_10_1016_j_heliyon_2024_e25215 crossref_primary_10_1109_LWC_2024_3499970 crossref_primary_10_1016_j_ijfatigue_2024_108418 crossref_primary_10_1093_mnras_stad3603 crossref_primary_10_1109_TNNLS_2024_3366615 crossref_primary_10_1007_s11156_022_01099_z crossref_primary_10_1016_j_est_2024_114245 crossref_primary_10_1088_1742_6596_1808_1_012025 crossref_primary_10_1080_21642583_2024_2331074 crossref_primary_10_2196_25110 crossref_primary_10_3390_app10196648 crossref_primary_10_1016_j_jvoice_2024_11_002 crossref_primary_10_1017_eds_2024_20 crossref_primary_10_1016_j_chaos_2022_112818 crossref_primary_10_1038_s41598_023_50742_9 crossref_primary_10_1016_j_jobe_2023_107605 crossref_primary_10_3390_s21217115 crossref_primary_10_1016_j_ijmecsci_2024_109672 crossref_primary_10_1016_j_talo_2023_100267 crossref_primary_10_1016_j_aei_2023_101907 crossref_primary_10_1016_j_neuroimage_2023_119960 crossref_primary_10_1016_j_asoc_2022_109924 crossref_primary_10_1109_ACCESS_2023_3335985 crossref_primary_10_1093_bib_bbab178 crossref_primary_10_1007_s11524_024_00920_5 crossref_primary_10_1016_j_jaecs_2023_100231 crossref_primary_10_1007_s40747_024_01619_5 crossref_primary_10_1109_ACCESS_2024_3488743 crossref_primary_10_1016_j_engstruct_2024_118946 crossref_primary_10_1016_j_datak_2024_102339 crossref_primary_10_3390_biomedicines9111733 crossref_primary_10_1016_j_compag_2023_108002 crossref_primary_10_1016_j_engappai_2023_106056 crossref_primary_10_3390_jlpea13020039 crossref_primary_10_3389_frai_2024_1466321 crossref_primary_10_3389_fneur_2022_886477 crossref_primary_10_1016_j_geomorph_2021_107888 crossref_primary_10_1016_j_atmosres_2024_107761 crossref_primary_10_1016_j_est_2023_108926 crossref_primary_10_1051_0004_6361_202245770 crossref_primary_10_1063_5_0253626 crossref_primary_10_1016_j_jnca_2024_104034 crossref_primary_10_1016_j_cmpb_2021_106549 crossref_primary_10_32604_fhmt_2024_047428 crossref_primary_10_1016_j_asoc_2024_112493 crossref_primary_10_28979_jarnas_981202 crossref_primary_10_1007_s00500_021_06424_7 crossref_primary_10_3390_agriengineering6040238 crossref_primary_10_1016_j_memsci_2024_123256 crossref_primary_10_1108_SSMT_08_2023_0045 crossref_primary_10_1038_s41598_024_75320_5 crossref_primary_10_1155_vib_5590157 crossref_primary_10_1016_j_compbiomed_2023_107498 crossref_primary_10_3346_jkms_2024_39_e53 crossref_primary_10_1002_aur_2721 crossref_primary_10_1016_j_egyai_2024_100414 crossref_primary_10_1002_mnfr_202300605 crossref_primary_10_1049_ipr2_12936 crossref_primary_10_3390_bios15010020 crossref_primary_10_1016_j_jpcs_2024_112526 crossref_primary_10_1038_s41598_024_79972_1 crossref_primary_10_3390_data10030027 crossref_primary_10_1088_1741_2552_abbff2 crossref_primary_10_1007_s11666_024_01776_6 crossref_primary_10_1016_j_eiar_2024_107600 crossref_primary_10_3390_electronics13050905 crossref_primary_10_1007_s41060_025_00715_0 crossref_primary_10_1007_s00170_024_14858_0 crossref_primary_10_1007_s12065_024_00982_z crossref_primary_10_1186_s12904_024_01392_9 crossref_primary_10_1007_s11356_023_27248_y crossref_primary_10_1016_j_ijmedinf_2024_105631 crossref_primary_10_1109_TIM_2023_3282656 crossref_primary_10_3390_sym15122185 crossref_primary_10_4081_btvb_2023_105 crossref_primary_10_3390_diagnostics13111948 crossref_primary_10_3390_su16219483 crossref_primary_10_3390_s21103333 crossref_primary_10_2478_ijcss_2022_0007 crossref_primary_10_1061__ASCE_PS_1949_1204_0000637 crossref_primary_10_1002_cpe_7832 crossref_primary_10_1016_j_energy_2024_132122 crossref_primary_10_3389_fenvs_2023_1184517 crossref_primary_10_3390_diagnostics12122980 crossref_primary_10_1007_s11517_023_02890_3 crossref_primary_10_1089_ees_2024_0116 crossref_primary_10_1109_ACCESS_2025_3548309 crossref_primary_10_1109_ACCESS_2024_3358452 crossref_primary_10_3390_pr11020434 crossref_primary_10_1016_j_conbuildmat_2024_138135 crossref_primary_10_1115_1_4066293 crossref_primary_10_1016_j_bspc_2024_106518 crossref_primary_10_1021_acs_iecr_1c04631 crossref_primary_10_1155_2023_2871769 crossref_primary_10_1109_ACCESS_2021_3080180 crossref_primary_10_1016_j_imu_2023_101275 |
Cites_doi | 10.1016/j.molstruc.2007.12.026 10.1016/j.patrec.2006.08.016 10.1109/TKDE.2008.238 10.1109/TKDE.2011.181 10.1109/TIFS.2008.2011089 10.1016/S1672-6529(11)60020-6 10.1109/TIT.1967.1053964 10.1016/j.eswa.2005.09.024 10.1109/TPAMI.2007.1093 10.1109/TNNLS.2017.2673241 10.1016/j.proenv.2011.12.040 10.1109/TEVC.2015.2504420 10.1016/j.advengsoft.2015.01.010 10.1109/TEVC.2004.826069 10.1016/j.eswa.2011.09.073 10.1109/TPAMI.2006.145 10.1016/j.renene.2016.09.023 10.1016/j.eswa.2007.08.088 10.1016/j.eswa.2008.07.026 10.1016/j.asoc.2015.07.046 10.1049/iet-smt.2014.0204 10.1016/j.ins.2017.08.047 10.1023/A:1006593614256 10.1214/aoms/1177731944 10.1080/01621459.1993.10476408 10.1109/TNNLS.2015.2506821 10.1016/j.asoc.2011.01.037 10.1109/TMECH.2013.2260865 10.1021/ac0519312 10.1093/bioinformatics/bti124 10.1016/j.eswa.2015.08.017 10.1289/ehp.5758 10.1145/7902.7906 10.1016/j.cmpb.2013.10.007 10.1109/TPAMI.2005.57 10.1016/j.eswa.2011.04.057 10.1016/j.patcog.2005.01.012 10.1109/23.589532 10.1021/ac00073a010 10.1007/s10916-011-9815-x 10.1109/TSMCB.2012.2191953 10.2307/3001968 10.1080/00401706.1969.10490657 10.1145/135226.135228 10.1016/j.asoc.2007.10.007 10.1109/TSMCB.2011.2164245 10.1016/j.neucom.2012.09.049 10.1186/1471-2105-6-191 10.1016/S0167-8655(00)00112-4 10.1186/1471-2164-7-142 10.1109/TITB.2011.2119322 10.1109/TCSVT.2014.2358031 10.1109/TPAMI.2005.159 10.1016/j.asoc.2017.05.007 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.105524 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2019_105524 S1568494619302947 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-1034f2256b8b79731f408c17b69b7ca59ab5ac629c984e6a88d1d19a121ed9f03 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:03 EDT 2025 Thu Apr 24 22:58:38 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Feature selection k-NN classifier Data normalization Ant lion optimization Feature weighting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-1034f2256b8b79731f408c17b69b7ca59ab5ac629c984e6a88d1d19a121ed9f03 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2019_105524 crossref_citationtrail_10_1016_j_asoc_2019_105524 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105524 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lin, Ying, Chen, Lee (b26) 2008; 35 Wu, Xing, Myers, Mian, Bissell (b15) 2005; 6 Kabir, Shahjahan, Murase (b52) 2012; 39 Noda (b31) 2008; 883 Asuncion, Newman (b76) 2007 Nickabadi, Ebadzadeh, Safabakhsh (b66) 2011; 11 Eshelman, Schaffer (b71) 1993 li, Liu (b16) 2011; 11 Sun (b43) 2007; 29 Su, Wang, Wang, Liu (b17) 2016 Yamany, Tharwat, Hassanin, Gaber, Hassanien, Kim (b68) 2015 Peng, Long, Ding (b46) 2005; 27 Inbarani, Azar, Jothi (b45) 2014; 113 Wilcoxon (b79) 1945; 1 Kardan, Kavian, Esmaeili (b58) 2013 Zhang, Li, Zong, Zhu, Wang (b64) 2018; 29 Ali, Elazim, Abdelaziz (b69) 2017; 101 Fukunaga (b29) 2013 Wang, Huang (b14) 2009; 36 Stanfill, Waltz (b47) 1986; 29 Van den Bergh, Engelbrecht (b65) 2004; 8 Wettschereck, Aha, Mohri (b18) 1997; 11 Ekenel, Stiefelhagen (b21) 2006 Sarle (b4) 1997 Rousseeuw, Croux (b82) 1993; 88 Kvalheim, Brakstad, Liang (b33) 1994; 66 Creecy, Masand, Smith, Waltz (b48) 1992; 35 Subhashini, Satapathy (b70) 2017; 59 Li, Guimarães, Lowther (b73) 2015; 9 Huang, Dun (b23) 2008; 8 Zhang, Gong, Hu, Zhang (b74) 2015; 148 Eriksson, Jaworska, Worth, Cronin, McDowell, Gramatica (b32) 2003; 111 Kelly Jr, Davis (b55) 1991 Han, Pei, Kamber (b34) 2011 Jayalakshmi, Santhakumaran (b7) 2011; 3 Theodoridis, Koutroumbas (b37) 2008 Grubbs (b77) 1969; 11 Friedman (b81) 1940; 11 Pan, Zhuang, Fong (b12) 2016 Chuang, Tsai, Yang (b62) 2011; 38 Tahir, Bouridane, Kurugollu (b57) 2007; 28 Chen, Liu, Chai, Bao (b54) 2009; 21 He, Zhang, Sun, Dong (b50) 2009 Pérez-Rodríguez, Arroyo-Peña, García-Pedrajas (b39) 2015; 37 Dougherty (b1) 2012 Sola, Sevilla (b5) 1997; 44 Acharya, Dua, Du, Chua (b8) 2011; 15 Satapathy, Naik, Parvathi (b51) 2013; 3 Liu, Chen, Yang, Lv, Li, Liu (b78) 2012; 36 Liu, Wang, Chen, Dong, Zhu, Wang (b49) 2011; 8 García-Pedrajas, del Castillo, Cerruela-García (b63) 2017; 28 Cover, Hart (b61) 1967; 13 García, Luengo, Herrera (b2) 2015 Al Shalabi, Shaaban (b25) 2006 van den Berg, Hoefsloot, Westerhuis, Smilde, van der Werf (b27) 2006; 7 Jain, Nandakumar, Ross (b19) 2005; 38 Ciornei, Kyriakides (b72) 2012; 42 Craig, Cloarec, Holmes, Nicholson, Lindon (b28) 2006; 78 Mirjalili (b67) 2015; 83 Hampel, Ronchetti, Rousseeuw, Stahel (b35) 2011 Xue, Zhang, Browne, Yao (b53) 2016; 20 Paredes, Vidal (b60) 2006 Derrac, Triguero, García, Herrera (b38) 2012; 42 Giraldo, Delgado, Castellanos (b56) 2007 Kumar, Ravikanth (b22) 2009; 4 Huang, Wang (b24) 2006; 31 Demšar (b80) 2006; 7 Priddy, Keller (b36) 2005 Barros, Cavalcanti (b59) 2008 Esfahani, Wang, Sundararajan (b11) 2014; 19 Guyon, Elisseeff (b42) 2003; 3 Reverter, Barris, Mcwilliam, Byrne, Wang, Tan, Hudson, Dalrymple (b30) 2004; 21 Song, Ni, Wang (b44) 2013; 25 Aksoy, Haralick (b3) 2001; 22 Weston, Mukherjee, Chapelle, Pontil, Poggio, Vapnik (b41) 2001 Ross, Govindarajan (b20) 2005 Hsu, Chang, Lin (b6) 2003 Mateos-García, García-Gutiérrez, Riquelme-Santos (b40) 2016; 43 Zhang, Song, Gong (b75) 2017; 418 Snelick, Uludag, Mink, Indovina, Jain (b9) 2005; 27 Wen, Shao, Fang, Xue (b10) 2015; 25 Kadir, Nugroho, Susanto, Santosa (b13) 2011; 2 Hsu (10.1016/j.asoc.2019.105524_b6) 2003 Liu (10.1016/j.asoc.2019.105524_b78) 2012; 36 Demšar (10.1016/j.asoc.2019.105524_b80) 2006; 7 Giraldo (10.1016/j.asoc.2019.105524_b56) 2007 Ross (10.1016/j.asoc.2019.105524_b20) 2005 Theodoridis (10.1016/j.asoc.2019.105524_b37) 2008 Kardan (10.1016/j.asoc.2019.105524_b58) 2013 Van den Bergh (10.1016/j.asoc.2019.105524_b65) 2004; 8 Inbarani (10.1016/j.asoc.2019.105524_b45) 2014; 113 Dougherty (10.1016/j.asoc.2019.105524_b1) 2012 Kadir (10.1016/j.asoc.2019.105524_b13) 2011; 2 Liu (10.1016/j.asoc.2019.105524_b49) 2011; 8 Zhang (10.1016/j.asoc.2019.105524_b64) 2018; 29 Jain (10.1016/j.asoc.2019.105524_b19) 2005; 38 Kumar (10.1016/j.asoc.2019.105524_b22) 2009; 4 Su (10.1016/j.asoc.2019.105524_b17) 2016 Zhang (10.1016/j.asoc.2019.105524_b74) 2015; 148 Ali (10.1016/j.asoc.2019.105524_b69) 2017; 101 Chuang (10.1016/j.asoc.2019.105524_b62) 2011; 38 Guyon (10.1016/j.asoc.2019.105524_b42) 2003; 3 Esfahani (10.1016/j.asoc.2019.105524_b11) 2014; 19 Rousseeuw (10.1016/j.asoc.2019.105524_b82) 1993; 88 Jayalakshmi (10.1016/j.asoc.2019.105524_b7) 2011; 3 Wilcoxon (10.1016/j.asoc.2019.105524_b79) 1945; 1 Chen (10.1016/j.asoc.2019.105524_b54) 2009; 21 Weston (10.1016/j.asoc.2019.105524_b41) 2001 Pérez-Rodríguez (10.1016/j.asoc.2019.105524_b39) 2015; 37 Huang (10.1016/j.asoc.2019.105524_b24) 2006; 31 Sarle (10.1016/j.asoc.2019.105524_b4) 1997 Song (10.1016/j.asoc.2019.105524_b44) 2013; 25 Peng (10.1016/j.asoc.2019.105524_b46) 2005; 27 Hampel (10.1016/j.asoc.2019.105524_b35) 2011 Zhang (10.1016/j.asoc.2019.105524_b75) 2017; 418 Wu (10.1016/j.asoc.2019.105524_b15) 2005; 6 Wettschereck (10.1016/j.asoc.2019.105524_b18) 1997; 11 Ciornei (10.1016/j.asoc.2019.105524_b72) 2012; 42 García (10.1016/j.asoc.2019.105524_b2) 2015 Yamany (10.1016/j.asoc.2019.105524_b68) 2015 Subhashini (10.1016/j.asoc.2019.105524_b70) 2017; 59 Pan (10.1016/j.asoc.2019.105524_b12) 2016 Friedman (10.1016/j.asoc.2019.105524_b81) 1940; 11 Kvalheim (10.1016/j.asoc.2019.105524_b33) 1994; 66 Tahir (10.1016/j.asoc.2019.105524_b57) 2007; 28 Cover (10.1016/j.asoc.2019.105524_b61) 1967; 13 Fukunaga (10.1016/j.asoc.2019.105524_b29) 2013 Mateos-García (10.1016/j.asoc.2019.105524_b40) 2016; 43 Snelick (10.1016/j.asoc.2019.105524_b9) 2005; 27 Nickabadi (10.1016/j.asoc.2019.105524_b66) 2011; 11 Paredes (10.1016/j.asoc.2019.105524_b60) 2006 Eshelman (10.1016/j.asoc.2019.105524_b71) 1993 Stanfill (10.1016/j.asoc.2019.105524_b47) 1986; 29 Al Shalabi (10.1016/j.asoc.2019.105524_b25) 2006 Lin (10.1016/j.asoc.2019.105524_b26) 2008; 35 Wang (10.1016/j.asoc.2019.105524_b14) 2009; 36 Satapathy (10.1016/j.asoc.2019.105524_b51) 2013; 3 Asuncion (10.1016/j.asoc.2019.105524_b76) 2007 Barros (10.1016/j.asoc.2019.105524_b59) 2008 Wen (10.1016/j.asoc.2019.105524_b10) 2015; 25 Han (10.1016/j.asoc.2019.105524_b34) 2011 Creecy (10.1016/j.asoc.2019.105524_b48) 1992; 35 Ekenel (10.1016/j.asoc.2019.105524_b21) 2006 Sun (10.1016/j.asoc.2019.105524_b43) 2007; 29 Acharya (10.1016/j.asoc.2019.105524_b8) 2011; 15 Noda (10.1016/j.asoc.2019.105524_b31) 2008; 883 Xue (10.1016/j.asoc.2019.105524_b53) 2016; 20 Reverter (10.1016/j.asoc.2019.105524_b30) 2004; 21 Li (10.1016/j.asoc.2019.105524_b73) 2015; 9 Grubbs (10.1016/j.asoc.2019.105524_b77) 1969; 11 van den Berg (10.1016/j.asoc.2019.105524_b27) 2006; 7 Derrac (10.1016/j.asoc.2019.105524_b38) 2012; 42 Kelly Jr (10.1016/j.asoc.2019.105524_b55) 1991 li (10.1016/j.asoc.2019.105524_b16) 2011; 11 Huang (10.1016/j.asoc.2019.105524_b23) 2008; 8 Priddy (10.1016/j.asoc.2019.105524_b36) 2005 Sola (10.1016/j.asoc.2019.105524_b5) 1997; 44 He (10.1016/j.asoc.2019.105524_b50) 2009 Kabir (10.1016/j.asoc.2019.105524_b52) 2012; 39 García-Pedrajas (10.1016/j.asoc.2019.105524_b63) 2017; 28 Craig (10.1016/j.asoc.2019.105524_b28) 2006; 78 Aksoy (10.1016/j.asoc.2019.105524_b3) 2001; 22 Eriksson (10.1016/j.asoc.2019.105524_b32) 2003; 111 Mirjalili (10.1016/j.asoc.2019.105524_b67) 2015; 83 |
References_xml | – year: 2003 ident: b6 article-title: A practical guide to support vector classification – volume: 88 start-page: 1273 year: 1993 end-page: 1283 ident: b82 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Statist. Associat. – year: 2015 ident: b2 article-title: Data Preprocessing in Data Mining – start-page: 1100 year: 2006 end-page: 1110 ident: b60 article-title: Learning weighted metrics to minimize nearest-neighbor classification error publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 37 start-page: 416 year: 2015 end-page: 443 ident: b39 article-title: Simultaneous instance and feature selection and weighting using evolutionary computation: Proposal and study publication-title: Appl. Soft Comput. – volume: 20 start-page: 606 year: 2016 end-page: 626 ident: b53 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput. – volume: 31 start-page: 231 year: 2006 end-page: 240 ident: b24 article-title: A GA-based feature selection and parameters optimization for support vector machines publication-title: Expert Syst. Appl. – volume: 6 start-page: 191 year: 2005 ident: b15 article-title: Evaluation of normalization methods for cDNA microarray data by publication-title: BMC Bioinform. – start-page: 691 year: 2016 end-page: 698 ident: b17 article-title: Anomadroid: Profiling android applications’ behaviors for identifying unknown malapps publication-title: Proceedings of IEEE Trustcom/BigDataSE/ISPA – volume: 113 start-page: 175 year: 2014 end-page: 185 ident: b45 article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis publication-title: Comput. Method. Progr. Biomed. – volume: 29 start-page: 1213 year: 1986 end-page: 1228 ident: b47 article-title: Toward memory-based reasoning publication-title: Commun. ACM – volume: 11 start-page: 256 year: 2011 end-page: 262 ident: b16 article-title: A method of SVM with normalization in intrusion detection publication-title: Procedia Environ. Sci. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: b42 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 66 start-page: 43 year: 1994 end-page: 51 ident: b33 article-title: Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise publication-title: Anal. Chem. – volume: 29 start-page: 1774 year: 2018 end-page: 1785 ident: b64 article-title: Efficient knn classification with different numbers of nearest neighbors publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 3 start-page: 1793 year: 2011 end-page: 8201 ident: b7 article-title: Statistical normalization and back propagation for classification publication-title: Int. J. Comput. Theory Eng. – volume: 3 start-page: 27 year: 2013 end-page: 42 ident: b51 article-title: Rough set and teaching learning based optimization technique for optimal features selection publication-title: Central Eur. J. Comput. Sci. – volume: 111 start-page: 1361 year: 2003 ident: b32 article-title: Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs publication-title: Environ. Health Perspect. – volume: 22 start-page: 563 year: 2001 end-page: 582 ident: b3 article-title: Feature normalization and likelihood-based similarity measures for image retrieval publication-title: Pattern Recognit. Lett. – volume: 38 start-page: 2270 year: 2005 end-page: 2285 ident: b19 article-title: Score normalization in multimodal biometric systems publication-title: Patter. Recog. – year: 2011 ident: b35 article-title: Robust statistics: the approach based on influence functions, vol. 196 – volume: 21 start-page: 1475 year: 2009 end-page: 1488 ident: b54 article-title: Large margin feature weighting method via linear programming publication-title: IEEE Trans. Knowl. Data Eng. – volume: 11 start-page: 273 year: 1997 end-page: 314 ident: b18 article-title: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms publication-title: Artif. Intell. Rev. – year: 1997 ident: b4 article-title: Neural Network FAQ, periodic posting to the Usenet newsgroup comp. ai.neural-nets – volume: 8 start-page: 191 year: 2011 end-page: 200 ident: b49 article-title: An improved particle swarm optimization for feature selection publication-title: J. Bionic Eng. – volume: 883 start-page: 216 year: 2008 end-page: 227 ident: b31 article-title: Scaling techniques to enhance two-dimensional correlation spectra publication-title: J. Molecul. Struct. – volume: 11 start-page: 1 year: 1969 end-page: 21 ident: b77 article-title: Procedures for detecting outlying observations in samples publication-title: Technometrics – start-page: 3518 year: 2008 end-page: 3523 ident: b59 article-title: Combining global optimization algorithms with a simple adaptive distance for feature selection and weighting publication-title: IEEE International Joint Conference on Neural Networks – volume: 15 start-page: 449 year: 2011 end-page: 455 ident: b8 article-title: Automated diagnosis of glaucoma using texture and higher order spectra features publication-title: IEEE Trans. Inform. Technol. Biomed. – year: 2008 ident: b37 publication-title: Pattern Recognition – volume: 35 start-page: 48 year: 1992 end-page: 64 ident: b48 article-title: Trading MIPS and memory for knowledge engineering publication-title: Commun. ACM – year: 2006 ident: b21 article-title: Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization publication-title: Conference on Computer Vision and Pattern Recognition Workshop – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: b23 article-title: A distributed PSO-SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. – volume: 27 start-page: 450 year: 2005 end-page: 455 ident: b9 article-title: Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 25 start-page: 508 year: 2015 end-page: 517 ident: b10 article-title: Efficient feature selection and classification for vehicle detection publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 257 year: 2007 end-page: 260 ident: b56 article-title: Feature weighting and selection using a hybrid approach based on rademacher complexity model selection publication-title: Computers in Cardiology – volume: 25 start-page: 1 year: 2013 end-page: 14 ident: b44 article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b46 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 59 start-page: 153 year: 2017 end-page: 173 ident: b70 article-title: Development of an enhanced ant lion optimization algorithm and its application in antenna array synthesis publication-title: Appl. Soft Comput. – volume: 21 start-page: 1112 year: 2004 end-page: 1120 ident: b30 article-title: Validation of alternative methods of data normalization in gene co-expression studies publication-title: Bioinformatics – start-page: 668 year: 2001 end-page: 674 ident: b41 article-title: Feature selection for SVMs publication-title: Advances in Neural Information Processing Systems – volume: 4 start-page: 98 year: 2009 end-page: 110 ident: b22 article-title: Personal authentication using finger knuckle surface publication-title: IEEE Trans. Inform. Forensics Secur. – year: 2012 ident: b1 article-title: Pattern Recognition and Classification: an Introduction – volume: 7 start-page: 142 year: 2006 ident: b27 article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data publication-title: BMC Genomics – year: 2011 ident: b34 article-title: Data mining: concepts and techniques – volume: 418 start-page: 561 year: 2017 end-page: 574 ident: b75 article-title: A return-cost-based binary firefly algorithm for feature selection publication-title: Inform. Sci. – volume: 28 start-page: 470 year: 2017 end-page: 475 ident: b63 article-title: A proposal for local publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 9 start-page: 218 year: 2015 end-page: 223 ident: b73 article-title: Competitive co-evolutionary algorithm for constrained robust design publication-title: IET Sci., Measur. Technol. – volume: 39 start-page: 3747 year: 2012 end-page: 3763 ident: b52 article-title: A new hybrid ant colony optimization algorithm for feature selection publication-title: Expert Syst. Appl. – start-page: 349 year: 2013 end-page: 354 ident: b58 article-title: Simultaneous feature selection and feature weighting with k selection for KNN classification using BBO algorithm publication-title: IEEE 5th Conference on Information and Knowledge Technology – volume: 101 start-page: 1311 year: 2017 end-page: 1324 ident: b69 article-title: Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations publication-title: Renew. Energy – volume: 42 start-page: 1383 year: 2012 end-page: 1397 ident: b38 article-title: Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 8 start-page: 225 year: 2004 end-page: 239 ident: b65 article-title: A cooperative approach to particle swarm optimization publication-title: IEEE Trans. Evolu. Comput. – volume: 28 start-page: 438 year: 2007 end-page: 446 ident: b57 article-title: Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier publication-title: Pattern Recognit. Lett. – year: 2013 ident: b29 article-title: Introduction to Statistical Pattern Recognition – volume: 35 start-page: 1817 year: 2008 end-page: 1824 ident: b26 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Syst. Appl. – start-page: 72 year: 2016 end-page: 88 ident: b12 article-title: The impact of data normalization on stock market prediction: using svm and technical indicators publication-title: International Conference on Soft Computing in Data Science – start-page: 645 year: 1991 end-page: 650 ident: b55 article-title: A Hybrid Genetic Algorithm for Classification, vol. 91 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b80 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b67 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. – year: 2007 ident: b76 article-title: UCI Machine learning repository – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: b79 article-title: Individual comparisons by ranking methods publication-title: Biomet. Bull. – volume: 44 start-page: 1464 year: 1997 end-page: 1468 ident: b5 article-title: Importance of input data normalization for the application of neural networks to complex industrial problems publication-title: IEEE Trans. Nucl. Sci. – volume: 38 start-page: 12699 year: 2011 end-page: 12707 ident: b62 article-title: Improved binary particle swarm optimization using catfish effect for feature selection publication-title: Expert Syst. Appl. – volume: 148 start-page: 150 year: 2015 end-page: 157 ident: b74 article-title: Feature selection algorithm based on bare bones particle swarm optimization publication-title: Neurocomputing – year: 2005 ident: b36 article-title: Artificial neural networks: an introduction, vol. 68 – volume: 36 start-page: 3243 year: 2012 end-page: 3254 ident: b78 article-title: Design of an enhanced fuzzy publication-title: J. Med. Syst. – volume: 2 start-page: 225 year: 2011 end-page: 230 ident: b13 article-title: Leaf classification using shape, color, and texture features publication-title: Int. J. Comput. Trends Technol. – volume: 29 year: 2007 ident: b43 article-title: Iterative RELIEF for feature weighting: algorithms, theories, and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 40 year: 2015 end-page: 45 ident: b68 article-title: A new multi-layer perceptrons trainer based on ant lion optimization algorithm publication-title: 2015 Fourth International Conference on Information Science and Industrial Applications (ISI) – volume: 36 start-page: 5900 year: 2009 end-page: 5908 ident: b14 article-title: Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data publication-title: Expert Syst. Appl. – volume: 11 start-page: 3658 year: 2011 end-page: 3670 ident: b66 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. – start-page: 196 year: 2005 end-page: 205 ident: b20 article-title: Feature level fusion of hand and face biometrics publication-title: Biometric Technology for Human Identification II, vol. 5779 – volume: 19 start-page: 818 year: 2014 end-page: 826 ident: b11 article-title: Multisensor wireless system for eccentricity and bearing fault detection in induction motors publication-title: IEEE/ASME Trans. Mechatronics – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: b81 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. – volume: 78 start-page: 2262 year: 2006 end-page: 2267 ident: b28 article-title: Scaling and normalization effects in NMR spectroscopic metabonomic data sets publication-title: Anal. Chem. – volume: 42 start-page: 234 year: 2012 end-page: 245 ident: b72 article-title: Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: b61 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory – start-page: 207 year: 2006 end-page: 214 ident: b25 article-title: Normalization as a preprocessing engine for data mining and the approach of preference matrix publication-title: International Conference on Dependability of Computer Systems – volume: 43 start-page: 9 year: 2016 end-page: 14 ident: b40 article-title: An evolutionary voting for publication-title: Expert Syst. Appl. – start-page: 187 year: 1993 end-page: 202 ident: b71 article-title: Real-coded genetic algorithms and interval-schemata publication-title: Foundations of Genetic Algorithms, vol. 2 – start-page: 327 year: 2009 end-page: 330 ident: b50 article-title: Feature selection with discrete binary differential evolution publication-title: IEEE International Conference on Artificial Intelligence and Computational Intelligence, vol. 4 – start-page: 187 year: 1993 ident: 10.1016/j.asoc.2019.105524_b71 article-title: Real-coded genetic algorithms and interval-schemata – start-page: 72 year: 2016 ident: 10.1016/j.asoc.2019.105524_b12 article-title: The impact of data normalization on stock market prediction: using svm and technical indicators – volume: 883 start-page: 216 year: 2008 ident: 10.1016/j.asoc.2019.105524_b31 article-title: Scaling techniques to enhance two-dimensional correlation spectra publication-title: J. Molecul. Struct. doi: 10.1016/j.molstruc.2007.12.026 – start-page: 196 year: 2005 ident: 10.1016/j.asoc.2019.105524_b20 article-title: Feature level fusion of hand and face biometrics – volume: 28 start-page: 438 issue: 4 year: 2007 ident: 10.1016/j.asoc.2019.105524_b57 article-title: Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2006.08.016 – volume: 21 start-page: 1475 issue: 10 year: 2009 ident: 10.1016/j.asoc.2019.105524_b54 article-title: Large margin feature weighting method via linear programming publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.238 – volume: 25 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.asoc.2019.105524_b44 article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.181 – volume: 4 start-page: 98 issue: 1 year: 2009 ident: 10.1016/j.asoc.2019.105524_b22 article-title: Personal authentication using finger knuckle surface publication-title: IEEE Trans. Inform. Forensics Secur. doi: 10.1109/TIFS.2008.2011089 – year: 2013 ident: 10.1016/j.asoc.2019.105524_b29 – volume: 8 start-page: 191 issue: 2 year: 2011 ident: 10.1016/j.asoc.2019.105524_b49 article-title: An improved particle swarm optimization for feature selection publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(11)60020-6 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.asoc.2019.105524_b61 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1967.1053964 – start-page: 327 year: 2009 ident: 10.1016/j.asoc.2019.105524_b50 article-title: Feature selection with discrete binary differential evolution – year: 2008 ident: 10.1016/j.asoc.2019.105524_b37 – volume: 31 start-page: 231 issue: 2 year: 2006 ident: 10.1016/j.asoc.2019.105524_b24 article-title: A GA-based feature selection and parameters optimization for support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.024 – volume: 29 issue: 6 year: 2007 ident: 10.1016/j.asoc.2019.105524_b43 article-title: Iterative RELIEF for feature weighting: algorithms, theories, and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1093 – volume: 29 start-page: 1774 issue: 5 year: 2018 ident: 10.1016/j.asoc.2019.105524_b64 article-title: Efficient knn classification with different numbers of nearest neighbors publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2673241 – volume: 11 start-page: 256 year: 2011 ident: 10.1016/j.asoc.2019.105524_b16 article-title: A method of SVM with normalization in intrusion detection publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2011.12.040 – volume: 20 start-page: 606 issue: 4 year: 2016 ident: 10.1016/j.asoc.2019.105524_b53 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2504420 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.asoc.2019.105524_b67 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 8 start-page: 225 issue: 3 year: 2004 ident: 10.1016/j.asoc.2019.105524_b65 article-title: A cooperative approach to particle swarm optimization publication-title: IEEE Trans. Evolu. Comput. doi: 10.1109/TEVC.2004.826069 – volume: 39 start-page: 3747 issue: 3 year: 2012 ident: 10.1016/j.asoc.2019.105524_b52 article-title: A new hybrid ant colony optimization algorithm for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.073 – start-page: 691 year: 2016 ident: 10.1016/j.asoc.2019.105524_b17 article-title: Anomadroid: Profiling android applications’ behaviors for identifying unknown malapps – start-page: 257 year: 2007 ident: 10.1016/j.asoc.2019.105524_b56 article-title: Feature weighting and selection using a hybrid approach based on rademacher complexity model selection – start-page: 645 year: 1991 ident: 10.1016/j.asoc.2019.105524_b55 – start-page: 1100 issue: 7 year: 2006 ident: 10.1016/j.asoc.2019.105524_b60 article-title: Learning weighted metrics to minimize nearest-neighbor classification error publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.145 – year: 2015 ident: 10.1016/j.asoc.2019.105524_b2 – year: 2003 ident: 10.1016/j.asoc.2019.105524_b6 – volume: 101 start-page: 1311 year: 2017 ident: 10.1016/j.asoc.2019.105524_b69 article-title: Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations publication-title: Renew. Energy doi: 10.1016/j.renene.2016.09.023 – volume: 35 start-page: 1817 issue: 4 year: 2008 ident: 10.1016/j.asoc.2019.105524_b26 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.088 – start-page: 40 year: 2015 ident: 10.1016/j.asoc.2019.105524_b68 article-title: A new multi-layer perceptrons trainer based on ant lion optimization algorithm – volume: 36 start-page: 5900 issue: 3 year: 2009 ident: 10.1016/j.asoc.2019.105524_b14 article-title: Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.07.026 – volume: 37 start-page: 416 year: 2015 ident: 10.1016/j.asoc.2019.105524_b39 article-title: Simultaneous instance and feature selection and weighting using evolutionary computation: Proposal and study publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.046 – volume: 9 start-page: 218 issue: 2 year: 2015 ident: 10.1016/j.asoc.2019.105524_b73 article-title: Competitive co-evolutionary algorithm for constrained robust design publication-title: IET Sci., Measur. Technol. doi: 10.1049/iet-smt.2014.0204 – volume: 418 start-page: 561 year: 2017 ident: 10.1016/j.asoc.2019.105524_b75 article-title: A return-cost-based binary firefly algorithm for feature selection publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.08.047 – volume: 11 start-page: 273 issue: 1–5 year: 1997 ident: 10.1016/j.asoc.2019.105524_b18 article-title: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006593614256 – year: 2011 ident: 10.1016/j.asoc.2019.105524_b35 – start-page: 3518 year: 2008 ident: 10.1016/j.asoc.2019.105524_b59 article-title: Combining global optimization algorithms with a simple adaptive distance for feature selection and weighting – volume: 7 start-page: 1 issue: Jan year: 2006 ident: 10.1016/j.asoc.2019.105524_b80 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 1157 issue: Mar year: 2003 ident: 10.1016/j.asoc.2019.105524_b42 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 10.1016/j.asoc.2019.105524_b81 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – volume: 88 start-page: 1273 issue: 424 year: 1993 ident: 10.1016/j.asoc.2019.105524_b82 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Statist. Associat. doi: 10.1080/01621459.1993.10476408 – year: 1997 ident: 10.1016/j.asoc.2019.105524_b4 – volume: 28 start-page: 470 issue: 2 year: 2017 ident: 10.1016/j.asoc.2019.105524_b63 article-title: A proposal for local k values for k-nearest neighbor rule publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2506821 – volume: 11 start-page: 3658 issue: 4 year: 2011 ident: 10.1016/j.asoc.2019.105524_b66 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.01.037 – volume: 19 start-page: 818 issue: 3 year: 2014 ident: 10.1016/j.asoc.2019.105524_b11 article-title: Multisensor wireless system for eccentricity and bearing fault detection in induction motors publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2013.2260865 – volume: 78 start-page: 2262 issue: 7 year: 2006 ident: 10.1016/j.asoc.2019.105524_b28 article-title: Scaling and normalization effects in NMR spectroscopic metabonomic data sets publication-title: Anal. Chem. doi: 10.1021/ac0519312 – volume: 21 start-page: 1112 issue: 7 year: 2004 ident: 10.1016/j.asoc.2019.105524_b30 article-title: Validation of alternative methods of data normalization in gene co-expression studies publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti124 – year: 2005 ident: 10.1016/j.asoc.2019.105524_b36 – year: 2011 ident: 10.1016/j.asoc.2019.105524_b34 – volume: 3 start-page: 1793 issue: 1 year: 2011 ident: 10.1016/j.asoc.2019.105524_b7 article-title: Statistical normalization and back propagation for classification publication-title: Int. J. Comput. Theory Eng. – volume: 43 start-page: 9 year: 2016 ident: 10.1016/j.asoc.2019.105524_b40 article-title: An evolutionary voting for k-nearest neighbours publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.08.017 – volume: 111 start-page: 1361 issue: 10 year: 2003 ident: 10.1016/j.asoc.2019.105524_b32 article-title: Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs publication-title: Environ. Health Perspect. doi: 10.1289/ehp.5758 – volume: 29 start-page: 1213 issue: 12 year: 1986 ident: 10.1016/j.asoc.2019.105524_b47 article-title: Toward memory-based reasoning publication-title: Commun. ACM doi: 10.1145/7902.7906 – volume: 113 start-page: 175 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.105524_b45 article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis publication-title: Comput. Method. Progr. Biomed. doi: 10.1016/j.cmpb.2013.10.007 – volume: 27 start-page: 450 issue: 3 year: 2005 ident: 10.1016/j.asoc.2019.105524_b9 article-title: Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.57 – volume: 2 start-page: 225 issue: 1 year: 2011 ident: 10.1016/j.asoc.2019.105524_b13 article-title: Leaf classification using shape, color, and texture features publication-title: Int. J. Comput. Trends Technol. – year: 2006 ident: 10.1016/j.asoc.2019.105524_b21 article-title: Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization – year: 2012 ident: 10.1016/j.asoc.2019.105524_b1 – volume: 38 start-page: 12699 issue: 10 year: 2011 ident: 10.1016/j.asoc.2019.105524_b62 article-title: Improved binary particle swarm optimization using catfish effect for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.057 – volume: 38 start-page: 2270 issue: 12 year: 2005 ident: 10.1016/j.asoc.2019.105524_b19 article-title: Score normalization in multimodal biometric systems publication-title: Patter. Recog. doi: 10.1016/j.patcog.2005.01.012 – volume: 44 start-page: 1464 issue: 3 year: 1997 ident: 10.1016/j.asoc.2019.105524_b5 article-title: Importance of input data normalization for the application of neural networks to complex industrial problems publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.589532 – volume: 66 start-page: 43 issue: 1 year: 1994 ident: 10.1016/j.asoc.2019.105524_b33 article-title: Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise publication-title: Anal. Chem. doi: 10.1021/ac00073a010 – volume: 36 start-page: 3243 issue: 5 year: 2012 ident: 10.1016/j.asoc.2019.105524_b78 article-title: Design of an enhanced fuzzy k-nearest neighbor classifier based computer aided diagnostic system for thyroid disease publication-title: J. Med. Syst. doi: 10.1007/s10916-011-9815-x – volume: 42 start-page: 1383 issue: 5 year: 2012 ident: 10.1016/j.asoc.2019.105524_b38 article-title: Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2012.2191953 – start-page: 349 year: 2013 ident: 10.1016/j.asoc.2019.105524_b58 article-title: Simultaneous feature selection and feature weighting with k selection for KNN classification using BBO algorithm – start-page: 207 year: 2006 ident: 10.1016/j.asoc.2019.105524_b25 article-title: Normalization as a preprocessing engine for data mining and the approach of preference matrix – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.asoc.2019.105524_b79 article-title: Individual comparisons by ranking methods publication-title: Biomet. Bull. doi: 10.2307/3001968 – volume: 3 start-page: 27 issue: 1 year: 2013 ident: 10.1016/j.asoc.2019.105524_b51 article-title: Rough set and teaching learning based optimization technique for optimal features selection publication-title: Central Eur. J. Comput. Sci. – volume: 11 start-page: 1 issue: 1 year: 1969 ident: 10.1016/j.asoc.2019.105524_b77 article-title: Procedures for detecting outlying observations in samples publication-title: Technometrics doi: 10.1080/00401706.1969.10490657 – volume: 35 start-page: 48 issue: 8 year: 1992 ident: 10.1016/j.asoc.2019.105524_b48 article-title: Trading MIPS and memory for knowledge engineering publication-title: Commun. ACM doi: 10.1145/135226.135228 – volume: 8 start-page: 1381 issue: 4 year: 2008 ident: 10.1016/j.asoc.2019.105524_b23 article-title: A distributed PSO-SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.10.007 – volume: 42 start-page: 234 issue: 1 year: 2012 ident: 10.1016/j.asoc.2019.105524_b72 article-title: Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2011.2164245 – volume: 148 start-page: 150 year: 2015 ident: 10.1016/j.asoc.2019.105524_b74 article-title: Feature selection algorithm based on bare bones particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.049 – volume: 6 start-page: 191 issue: 1 year: 2005 ident: 10.1016/j.asoc.2019.105524_b15 article-title: Evaluation of normalization methods for cDNA microarray data by k-NN classification publication-title: BMC Bioinform. doi: 10.1186/1471-2105-6-191 – volume: 22 start-page: 563 issue: 5 year: 2001 ident: 10.1016/j.asoc.2019.105524_b3 article-title: Feature normalization and likelihood-based similarity measures for image retrieval publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(00)00112-4 – start-page: 668 year: 2001 ident: 10.1016/j.asoc.2019.105524_b41 article-title: Feature selection for SVMs – year: 2007 ident: 10.1016/j.asoc.2019.105524_b76 – volume: 7 start-page: 142 issue: 1 year: 2006 ident: 10.1016/j.asoc.2019.105524_b27 article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data publication-title: BMC Genomics doi: 10.1186/1471-2164-7-142 – volume: 15 start-page: 449 issue: 3 year: 2011 ident: 10.1016/j.asoc.2019.105524_b8 article-title: Automated diagnosis of glaucoma using texture and higher order spectra features publication-title: IEEE Trans. Inform. Technol. Biomed. doi: 10.1109/TITB.2011.2119322 – volume: 25 start-page: 508 issue: 3 year: 2015 ident: 10.1016/j.asoc.2019.105524_b10 article-title: Efficient feature selection and classification for vehicle detection publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2014.2358031 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.asoc.2019.105524_b46 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 59 start-page: 153 year: 2017 ident: 10.1016/j.asoc.2019.105524_b70 article-title: Development of an enhanced ant lion optimization algorithm and its application in antenna array synthesis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.007 |
SSID | ssj0016928 |
Score | 2.7130213 |
Snippet | Data normalization is one of the pre-processing approaches where the data is either scaled or transformed to make an equal contribution of each feature. The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105524 |
SubjectTerms | Ant lion optimization Data normalization Feature selection Feature weighting k-NN classifier |
Title | Investigating the impact of data normalization on classification performance |
URI | https://dx.doi.org/10.1016/j.asoc.2019.105524 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OBN1m528zyWYqlai6iF3pZsmkilbIvUq7_dzG62VhAPwrILYQaWL5OZCXwzg9Alk8omSky98QoRUedopF3iX0o6Q4ixcdlL72HEB2N6N2GTBurVtTBAqwy-v_LppbcOK52AZmc5m3We_c1DUkX9DSCNE0WhopxSAVZ-_bmmeRCuyvmqIByBdCicqThe2iMA9C4F425ZQn8PThsBp7-HdkKmiLvVz-yjhi0O0G49hQGHQ3mIhhutMopX7BM6XJU-4oXDQADFBeSl81Bwif1jIGUGjlC1svwuHjhC4_7NS28QhRkJkUk5X3kvmlLnzyTPZS5gDJWjsTRE5FzlwmimdM604YkySlLLtZRTMiVKk4TYqXJxeoyaxaKwJwhbH6us0GmqFaFWs5xyv22SMWm4VkK3EKnByUxoIA5zLOZZzRR7ywDQDADNKkBb6Gqts6zaZ_wpzWrMsx9GkHn__ofe6T_1ztB2Atfnkp1yjpqr9w974XOMVd4ujaiNtrq9p-EjfG_vB6MvajjR_g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BOMClvFWglD20p8oku97noQdEG4WS5FKQuJn1Zo1SIScqQYgLf4o_yKy9BipVOSAhWT6svNb682ge0jfzAXwR2nhm1AiNV6mEFwVPbMHwZnThKHW-U83SGwxl75z_uhAXC_DY9MIEWmX0_bVPr7x1XGlHNNvT8bj9GysPzQ3HCiDtMMNVZFae-vs7rNtuvp_8wJ_8lbHuz7PjXhKlBRKXSjlD55PyAk1Z5jpXQb2p4B3tqMqlyZWzwthcWCeZcUZzL63WIzqixlJG_cgUnRTfuwhLHN1FkE04fHjmlVBpKkHXcLokHC926tSkMouQBz6ZCfq6gvH_R8NXEa67Bh9iakqO6q9fhwVfbsBqI_tAohfYhP6r2RzlFcEMktS9lmRSkMA4JWVIhK9jhyfBy4UcPZCS6pXpS7fCFpy_C3Lb0Conpf8IxGNw9MqmqTWUeytyLtFOtBDaSWuU3QHagJO5OLE8CGdcZw017U8WAM0CoFkN6A58e94zred1zH1aNJhn_1hdhgFlzr7dN-47gOXe2aCf9U-Gp3uwwkLtXlFjPkFr9vfW72OCM8s_VwZF4PK9LfgJPlQLNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+impact+of+data+normalization+on+classification+performance&rft.jtitle=Applied+soft+computing&rft.au=Singh%2C+Dalwinder&rft.au=Singh%2C+Birmohan&rft.date=2020-12-01&rft.issn=1568-4946&rft.volume=97&rft.spage=105524&rft_id=info:doi/10.1016%2Fj.asoc.2019.105524&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105524 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |