Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH archetypes

CD4 + effector lymphocytes (T eff ) are traditionally classified by the cytokines they produce. To determine the states that T eff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic T eff cells in germ-free or conventional mice o...

Full description

Saved in:
Bibliographic Details
Published inNature immunology Vol. 22; no. 2; pp. 216 - 228
Main Authors Kiner, Evgeny, Willie, Elijah, Vijaykumar, Brinda, Chowdhary, Kaitavjeet, Schmutz, Hugo, Chandler, Jodie, Schnell, Alexandra, Thakore, Pratiksha I., LeGros, Graham, Mostafavi, Sara, Mathis, Diane, Benoist, Christophe
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.02.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CD4 + effector lymphocytes (T eff ) are traditionally classified by the cytokines they produce. To determine the states that T eff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic T eff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (T H ) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as T H markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ. Helper T cell subsets are characterized functionally by the cytokines they produce. Benoist and colleagues demonstrate that in vivo helper T cells do not manifest as discrete helper subsets but rather form a continuum shaped by microbial exposure.
AbstractList CD4 + effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff actually adopt in frontline tissues in vivo , we applied single-cell transcriptome and chromatin analysis on colonic Teff cells, in germ-free or conventional mice, or after challenge with a range of phenotypically biasing microbes. Subsets were marked by expression of interferon-signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic T H subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as T H markers distributed in a polarized continuum, which was also functionally validated. Clones derived from single progenitors gave rise to both IFN-γ and IL17-producing cells. Most transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activity of AP1 and IRF transcription factor families, not the canonical subset master regulators T-bet, GATA3, RORγ.
CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic Teff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (TH) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as TH markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ.Helper T cell subsets are characterized functionally by the cytokines they produce. Benoist and colleagues demonstrate that in vivo helper T cells do not manifest as discrete helper subsets but rather form a continuum shaped by microbial exposure.
CD4 + effector lymphocytes (T eff ) are traditionally classified by the cytokines they produce. To determine the states that T eff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic T eff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (T H ) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as T H markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ. Helper T cell subsets are characterized functionally by the cytokines they produce. Benoist and colleagues demonstrate that in vivo helper T cells do not manifest as discrete helper subsets but rather form a continuum shaped by microbial exposure.
CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic Teff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (TH) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as TH markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ.CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic Teff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (TH) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as TH markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ.
Author Schmutz, Hugo
Vijaykumar, Brinda
Chowdhary, Kaitavjeet
Schnell, Alexandra
Benoist, Christophe
Willie, Elijah
Thakore, Pratiksha I.
Mostafavi, Sara
LeGros, Graham
Mathis, Diane
Kiner, Evgeny
Chandler, Jodie
AuthorAffiliation 4 Malaghan Institute of Medical Research, Wellington, New Zealand
3 Bioinformatics Program, University of British Columbia, Vancouver, Canada
7 Canadian Institute for Advanced Research, Toronto, Canada
6 Departments of Statistics and Medical Genetics, University of British Columbia, Vancouver, Canada
2 Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
8 Vector Institute, Toronto, Canada
1 Department of Immunology, Harvard Medical School
5 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, USA
9 Present Address: Immunai, New York, NY, USA
AuthorAffiliation_xml – name: 2 Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
– name: 1 Department of Immunology, Harvard Medical School
– name: 3 Bioinformatics Program, University of British Columbia, Vancouver, Canada
– name: 7 Canadian Institute for Advanced Research, Toronto, Canada
– name: 8 Vector Institute, Toronto, Canada
– name: 9 Present Address: Immunai, New York, NY, USA
– name: 5 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, USA
– name: 6 Departments of Statistics and Medical Genetics, University of British Columbia, Vancouver, Canada
– name: 4 Malaghan Institute of Medical Research, Wellington, New Zealand
Author_xml – sequence: 1
  givenname: Evgeny
  surname: Kiner
  fullname: Kiner, Evgeny
  organization: Department of Immunology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Immunai
– sequence: 2
  givenname: Elijah
  surname: Willie
  fullname: Willie, Elijah
  organization: Bioinformatics Program, University of British Columbia
– sequence: 3
  givenname: Brinda
  surname: Vijaykumar
  fullname: Vijaykumar, Brinda
  organization: Department of Immunology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
– sequence: 4
  givenname: Kaitavjeet
  surname: Chowdhary
  fullname: Chowdhary, Kaitavjeet
  organization: Department of Immunology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
– sequence: 5
  givenname: Hugo
  surname: Schmutz
  fullname: Schmutz, Hugo
  organization: Department of Immunology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
– sequence: 6
  givenname: Jodie
  surname: Chandler
  fullname: Chandler, Jodie
  organization: Malaghan Institute of Medical Research
– sequence: 7
  givenname: Alexandra
  surname: Schnell
  fullname: Schnell, Alexandra
  organization: Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
– sequence: 8
  givenname: Pratiksha I.
  surname: Thakore
  fullname: Thakore, Pratiksha I.
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard
– sequence: 9
  givenname: Graham
  surname: LeGros
  fullname: LeGros, Graham
  organization: Malaghan Institute of Medical Research
– sequence: 10
  givenname: Sara
  surname: Mostafavi
  fullname: Mostafavi, Sara
  organization: Departments of Statistics and Medical Genetics, University of British Columbia, Canadian Institute for Advanced Research, Vector Institute
– sequence: 11
  givenname: Diane
  orcidid: 0000-0002-6110-4626
  surname: Mathis
  fullname: Mathis, Diane
  email: cbdm@hms.harvard.edu
  organization: Department of Immunology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
– sequence: 12
  givenname: Christophe
  orcidid: 0000-0003-1172-6555
  surname: Benoist
  fullname: Benoist, Christophe
  email: cbdm@hms.harvard.edu
  organization: Department of Immunology, Harvard Medical School, Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
BookMark eNp9kUtv3CAUhVGVqnn1D3SFlE2k1i2PC9ibSNG0TSpF6iLTNcIYZ4hsmIAdaf59cSZt1SyyQCD4zuHee47RQYjBIfSBks-U8PpLBioaUhFWFqm5rNQbdEQFayrWUHnw90zqQ3Sc8z0hFJSEd-iQc5AMBByh26t5wquv8BGvsXXDgLcbF-K027qMTXLYYBvD5MM8j3iMQ-c63O7w6G2KrcufcGGXi_V1oe3GPQlP0dveDNm9f95P0K_v39ar6-rm59WP1eVNZbmUqgIQDbMgbdvJXnQdBQqMtcCMBaOYEMyqvpOtUIwZXmq3ba-cEq2kTCkq-Am62Ptu53Z0nXVhSmbQ2-RHk3Y6Gq__fwl-o-_io1Y1bziFYnD-bJDiw-zypEeflymY4OKcNQPVEOC8kQU9e4HexzmF0l6haiJAAV8qqvdUGU_OyfXa-slMPi7_-0FTopfk9D45XZLTT8lpVaTshfRPH6-K-F6UCxzuXPpX1Suq36LlqgE
CitedBy_id crossref_primary_10_1038_s41590_020_00858_1
crossref_primary_10_1016_j_chom_2022_05_004
crossref_primary_10_1038_s43018_023_00521_2
crossref_primary_10_3390_microorganisms12122575
crossref_primary_10_1002_eji_202249829
crossref_primary_10_1093_emph_eoac009
crossref_primary_10_3389_fcell_2021_715901
crossref_primary_10_3389_fimmu_2025_1545605
crossref_primary_10_1093_bjd_ljae110
crossref_primary_10_1016_j_cels_2023_12_005
crossref_primary_10_1126_sciimmunol_adi0672
crossref_primary_10_1016_j_immuni_2021_08_014
crossref_primary_10_1038_s41586_023_06431_8
crossref_primary_10_1084_jem_20221911
crossref_primary_10_1016_j_celrep_2022_110891
crossref_primary_10_1126_science_adk1679
crossref_primary_10_1016_j_jnutbio_2023_109508
crossref_primary_10_1371_journal_ppat_1010296
crossref_primary_10_1038_s41467_022_33488_2
crossref_primary_10_1016_j_jaci_2022_04_027
crossref_primary_10_1186_s13045_024_01541_w
crossref_primary_10_1016_j_isci_2022_104934
crossref_primary_10_3390_nu13082852
crossref_primary_10_1038_s41586_022_04916_6
crossref_primary_10_1073_pnas_2316957120
crossref_primary_10_1038_s41590_021_00948_8
crossref_primary_10_1371_journal_pcbi_1012386
crossref_primary_10_3390_ijms222312712
crossref_primary_10_1016_j_jaci_2022_10_011
crossref_primary_10_1016_j_immuni_2021_08_020
crossref_primary_10_3389_fimmu_2021_671331
crossref_primary_10_1126_sciimmunol_adi9066
crossref_primary_10_1016_j_jaci_2022_08_010
crossref_primary_10_1016_j_immuni_2024_05_018
crossref_primary_10_1002_cti2_1508
crossref_primary_10_1038_s41590_021_01009_w
crossref_primary_10_1016_j_isci_2023_107588
crossref_primary_10_1038_s41467_021_22727_7
crossref_primary_10_1146_annurev_immunol_101320_025949
crossref_primary_10_3390_jcm14020383
crossref_primary_10_1038_s41587_023_01782_z
crossref_primary_10_1016_j_jaut_2024_103206
crossref_primary_10_3389_fimmu_2021_769534
crossref_primary_10_1016_j_smim_2022_101673
crossref_primary_10_1136_rmdopen_2023_003693
crossref_primary_10_1007_s10067_022_06202_2
crossref_primary_10_1038_s41385_021_00470_y
crossref_primary_10_1038_s41467_023_41364_w
crossref_primary_10_1002_1873_3468_14998
crossref_primary_10_1016_j_jaci_2022_08_023
crossref_primary_10_1038_s41577_024_01008_6
crossref_primary_10_1172_jci_insight_156048
crossref_primary_10_2139_ssrn_3919948
crossref_primary_10_1371_journal_ppat_1009602
crossref_primary_10_4049_immunohorizons_2300072
crossref_primary_10_1073_pnas_2204254119
crossref_primary_10_3389_fimmu_2021_741934
crossref_primary_10_1016_j_immuni_2022_04_007
crossref_primary_10_1016_j_mib_2021_06_006
crossref_primary_10_1111_imr_13369
crossref_primary_10_1016_j_celrep_2022_110710
crossref_primary_10_1016_j_xpro_2024_103409
crossref_primary_10_1016_j_it_2021_06_003
crossref_primary_10_1186_s13619_022_00127_6
crossref_primary_10_1016_j_immuni_2022_07_005
crossref_primary_10_1016_j_it_2022_01_005
crossref_primary_10_1007_s00441_021_03466_z
crossref_primary_10_1038_s41590_021_00935_z
crossref_primary_10_4110_in_2023_23_e4
crossref_primary_10_1084_jem_20232067
crossref_primary_10_1111_imr_13358
crossref_primary_10_1126_sciimmunol_abq6352
crossref_primary_10_7554_eLife_74636
crossref_primary_10_1016_j_cca_2024_119889
crossref_primary_10_3389_fmed_2021_664045
crossref_primary_10_1371_journal_ppat_1011983
crossref_primary_10_1161_CIRCULATIONAHA_121_055763
crossref_primary_10_1016_j_mucimm_2022_12_005
crossref_primary_10_3389_fitd_2023_1127022
crossref_primary_10_1038_s41385_022_00532_9
crossref_primary_10_1038_s41590_024_01882_1
crossref_primary_10_1084_jem_20231028
crossref_primary_10_3390_ijms24086930
crossref_primary_10_1126_sciimmunol_adp9841
crossref_primary_10_1038_s41389_024_00513_6
crossref_primary_10_1073_pnas_2209624119
crossref_primary_10_1016_j_neulet_2022_136741
crossref_primary_10_1038_s41577_022_00718_z
crossref_primary_10_1016_j_jtos_2024_06_005
crossref_primary_10_3389_fimmu_2023_1233261
crossref_primary_10_3389_fimmu_2024_1388366
crossref_primary_10_1016_j_celrep_2022_110747
crossref_primary_10_1038_s41467_022_35126_3
crossref_primary_10_1038_s41590_024_01909_7
crossref_primary_10_1038_s41385_021_00433_3
crossref_primary_10_1038_s41586_022_04713_1
crossref_primary_10_1016_j_cell_2021_11_018
crossref_primary_10_1038_s41467_023_38588_1
crossref_primary_10_2139_ssrn_3863579
crossref_primary_10_3389_fimmu_2022_1104943
crossref_primary_10_1016_j_immuni_2022_05_001
crossref_primary_10_1016_j_imlet_2022_04_006
crossref_primary_10_3389_fmicb_2023_1264356
crossref_primary_10_3389_fimmu_2021_655590
crossref_primary_10_1002_eji_202350529
crossref_primary_10_1073_pnas_2204269120
crossref_primary_10_1016_j_immuni_2023_01_033
crossref_primary_10_1084_jem_20231487
crossref_primary_10_1093_discim_kyae008
Cites_doi 10.1016/j.cell.2018.05.060
10.1016/j.immuni.2019.03.004
10.1016/0167-5699(95)80004-2
10.1126/science.1260668
10.1038/nature11981
10.1038/ncomms11627
10.1126/science.aaa1934
10.4049/jimmunol.114.2_Part_2.747
10.4049/jimmunol.138.6.1674
10.1038/nature14590
10.1016/j.coi.2012.02.001
10.1038/nrmicro3315
10.1038/nmeth.4401
10.4049/jimmunol.136.7.2348
10.1214/aos/1176346577
10.1093/bioinformatics/bty491
10.1038/nature09447
10.1016/j.cell.2018.12.036
10.1016/j.cell.2015.12.032
10.1016/j.immuni.2019.01.001
10.1093/bioinformatics/bty430
10.1016/j.immuni.2019.03.009
10.1038/ni.2416
10.1016/j.immuni.2008.05.009
10.1073/pnas.1311557110
10.4049/jimmunol.0903505
10.1146/annurev.immunol.021908.132710
10.1016/j.cell.2019.08.006
10.1016/j.cell.2018.05.061
10.1038/ni.3247
10.1038/s41590-019-0398-x
10.1016/j.immuni.2015.01.013
10.1016/j.immuni.2019.05.004
10.1038/nbt.4096
10.1016/j.immuni.2011.09.019
10.1146/annurev.immunol.18.1.451
10.1038/s41586-018-0414-6
10.1038/nri3365
10.4049/jimmunol.156.9.3321
10.1093/bioinformatics/btv325
10.1038/s41586-020-2056-8
10.1101/gr.192237.115
10.1093/bioinformatics/btr406
10.1016/0092-8674(91)90448-8
10.1038/s41467-020-15543-y
10.1186/s13059-018-1603-1
10.1038/nmeth.4380
10.1126/science.aaa9420
10.1146/annurev-immunol-031210-101400
10.1126/science.1178334
10.1038/ni.1899
10.1182/blood-2008-05-078154
10.3389/fimmu.2014.00630
10.1038/ni1539
10.1038/s41586-018-0436-0
10.1016/0167-5699(88)91308-4
10.1016/j.cell.2012.09.016
10.1016/j.cell.2018.11.043
10.1126/science.aan6828
10.1016/j.immuni.2019.05.014
10.1101/461228
10.1002/0471142735.im1912s55
10.1101/2020.01.23.911966
10.1002/cyto.a.24027
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021.
CorporateAuthor The Immunological Genome Project Consortium
CorporateAuthor_xml – name: The Immunological Genome Project Consortium
DBID AAYXX
CITATION
3V.
7QP
7QR
7T5
7TK
7TM
7U9
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41590-020-00836-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1529-2916
EndPage 228
ExternalDocumentID PMC7839314
10_1038_s41590_020_00836_7
GrantInformation_xml – fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
  grantid: AI125603; AI073072; AI125603; AI073072
  funderid: https://doi.org/10.13039/100006492
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: T32GM007753
  funderid: https://doi.org/10.13039/100000057
– fundername: Harvard University | Harvard Stem Cell Institute (HSCI)
  grantid: NA
  funderid: https://doi.org/10.13039/100008035
– fundername: Boehringer Ingelheim Fonds (Stiftung für medizinische Grundlagenforschung)
  grantid: NA
  funderid: https://doi.org/10.13039/501100001645
GroupedDBID ---
.55
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABOCM
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ISR
ITC
L-9
LK8
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WH7
X7M
Y6R
ZXP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7QP
7QR
7T5
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c3667-44592c46cbd6f5dd141422b42ac4a72552c7fd6b5722a3014cbf7e75b61277153
IEDL.DBID 7X7
ISSN 1529-2908
1529-2916
IngestDate Thu Aug 21 18:10:48 EDT 2025
Fri Jul 11 10:55:35 EDT 2025
Fri Jul 25 08:53:23 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Tue Jul 01 01:02:32 EDT 2025
Fri Feb 21 02:39:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3667-44592c46cbd6f5dd141422b42ac4a72552c7fd6b5722a3014cbf7e75b61277153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
CONTRIBUTIONS
E.K. and E.W. performed experiments. E.K., B.V., K.C., H.S., S.M. and C.B. analysed and interpreted data. A.S., P.I.T., J.C. and G.L. provided data or reagents. E.K., S.M., D.M. and C.B. designed the study and wrote the manuscript.
ORCID 0000-0002-6110-4626
0000-0003-1172-6555
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7839314
PMID 33462454
PQID 2480547435
PQPubID 45782
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7839314
proquest_miscellaneous_2479043396
proquest_journals_2480547435
crossref_citationtrail_10_1038_s41590_020_00836_7
crossref_primary_10_1038_s41590_020_00836_7
springer_journals_10_1038_s41590_020_00836_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Nature immunology
PublicationTitleAbbrev Nat Immunol
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Korn, Bettelli, Oukka, Kuchroo (CR5) 2009; 27
Arazi (CR33) 2019; 20
Alexander (CR37) 2018; 562
Stoeckius (CR34) 2017; 14
Collins (CR53) 2014; 12
Araneo, Marrack, Kappler (CR1) 1975; 114
Jabeen, Kaplan (CR6) 2012; 24
Zilionis (CR47) 2019; 50
Omenetti (CR24) 2019; 51
Stubbington, Rozenblatt-Rosen, Regev, Teichmann (CR15) 2017; 358
Kowalczyk (CR62) 2015; 25
Kelso (CR12) 1995; 16
CR35
Mostafavi (CR50) 2016; 164
Becattini (CR42) 2015; 347
Wu (CR46) 2020; 579
Miragaia (CR16) 2019; 50
Priceman (CR38) 2013; 110
Haghverdi, Buettner, Theis (CR56) 2015; 31
Tibbitt (CR32) 2019; 51
La Manno (CR41) 2018; 560
Butler (CR55) 2018; 36
CR48
Muranski (CR59) 2011; 35
Sefik (CR51) 2015; 349
Wei (CR43) 2019; 50
Stoeckius (CR18) 2018; 19
Yosef (CR19) 2013; 496
Cano-Gamez (CR49) 2020; 11
Bodenhofer, Kothmeier, Hochreiter (CR63) 2011; 27
Baron (CR31) 2019; 179
Ghoreschi (CR23) 2010; 467
Yusuf (CR61) 2010; 185
Lee (CR22) 2012; 13
Spits (CR11) 2013; 13
Krausgruber (CR40) 2016; 7
Bottomly (CR2) 1988; 9
Crotty (CR7) 2011; 29
Ciofani (CR58) 2012; 151
Killar (CR4) 1987; 138
Aghaeepour (CR29) 2018; 34
O’Shea, Paul (CR9) 2010; 327
McGeachy (CR39) 2007; 8
Geginat (CR14) 2014; 5
Azizi (CR45) 2018; 174
Camberis, Le, Urban (CR54) 2003; 55
Zeisel (CR64) 2015; 347
van Dijk (CR57) 2018; 174
Li (CR44) 2019; 176
Zhu, Paul (CR10) 2008; 112
Murphy (CR8) 2000; 18
Cosgrove (CR36) 1991; 66
Lee (CR17) 2015; 42
Murphy, Stockinger (CR13) 2010; 11
Hartigan, Hartigan (CR20) 1985; 13
Becht (CR30) 2019; 35
Pavlidis, Hofmeyr, Tasoulis (CR21) 2016; 17
Schep, Wu, Buenrostro, Greenleaf (CR28) 2017; 14
Hess, Ladel, Miko, Kaufmann (CR52) 1996; 156
CR65
Mosmann (CR3) 1986; 136
Buenrostro (CR26) 2015; 523
Nurieva (CR60) 2008; 29
Meredith, Zemmour, Mathis, Benoist (CR25) 2015; 16
Yoshida (CR27) 2019; 176
J Hess (836_CR52) 1996; 156
S Omenetti (836_CR24) 2019; 51
JJ O’Shea (836_CR9) 2010; 327
JW Collins (836_CR53) 2014; 12
H Spits (836_CR11) 2013; 13
JA Hartigan (836_CR20) 1985; 13
CS Baron (836_CR31) 2019; 179
SC Wei (836_CR43) 2019; 50
K Ghoreschi (836_CR23) 2010; 467
836_CR65
M Stoeckius (836_CR34) 2017; 14
RI Nurieva (836_CR60) 2008; 29
N Yosef (836_CR19) 2013; 496
SJ Priceman (836_CR38) 2013; 110
TR Mosmann (836_CR3) 1986; 136
M Meredith (836_CR25) 2015; 16
K Bottomly (836_CR2) 1988; 9
S Crotty (836_CR7) 2011; 29
L Killar (836_CR4) 1987; 138
E Becht (836_CR30) 2019; 35
J Geginat (836_CR14) 2014; 5
RJ Miragaia (836_CR16) 2019; 50
S Becattini (836_CR42) 2015; 347
S Mostafavi (836_CR50) 2016; 164
H Yoshida (836_CR27) 2019; 176
T Krausgruber (836_CR40) 2016; 7
P Muranski (836_CR59) 2011; 35
836_CR35
AN Schep (836_CR28) 2017; 14
R Zilionis (836_CR47) 2019; 50
NG Pavlidis (836_CR21) 2016; 17
E Cano-Gamez (836_CR49) 2020; 11
MS Kowalczyk (836_CR62) 2015; 25
A Kelso (836_CR12) 1995; 16
MJ McGeachy (836_CR39) 2007; 8
H Li (836_CR44) 2019; 176
N Aghaeepour (836_CR29) 2018; 34
A Zeisel (836_CR64) 2015; 347
836_CR48
R Jabeen (836_CR6) 2012; 24
T Korn (836_CR5) 2009; 27
E Sefik (836_CR51) 2015; 349
CA Tibbitt (836_CR32) 2019; 51
L Haghverdi (836_CR56) 2015; 31
U Bodenhofer (836_CR63) 2011; 27
G La Manno (836_CR41) 2018; 560
M Camberis (836_CR54) 2003; 55
D Cosgrove (836_CR36) 1991; 66
BA Araneo (836_CR1) 1975; 114
JY Lee (836_CR17) 2015; 42
J Zhu (836_CR10) 2008; 112
MJT Stubbington (836_CR15) 2017; 358
I Yusuf (836_CR61) 2010; 185
TD Wu (836_CR46) 2020; 579
TB Alexander (836_CR37) 2018; 562
M Ciofani (836_CR58) 2012; 151
Y Lee (836_CR22) 2012; 13
A Butler (836_CR55) 2018; 36
D van Dijk (836_CR57) 2018; 174
JD Buenrostro (836_CR26) 2015; 523
A Arazi (836_CR33) 2019; 20
KM Murphy (836_CR8) 2000; 18
KM Murphy (836_CR13) 2010; 11
M Stoeckius (836_CR18) 2018; 19
E Azizi (836_CR45) 2018; 174
References_xml – volume: 174
  start-page: 1293
  year: 2018
  end-page: 1308
  ident: CR45
  article-title: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.060
– volume: 50
  start-page: 1084
  year: 2019
  end-page: 1098
  ident: CR43
  article-title: Negative co-stimulation constrains T cell differentiation by imposing boundaries on possible cell states
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.004
– volume: 16
  start-page: 374
  year: 1995
  end-page: 379
  ident: CR12
  article-title: T 1 and T 2 subsets: paradigms lost?
  publication-title: Immunol. Today
  doi: 10.1016/0167-5699(95)80004-2
– volume: 347
  start-page: 400
  year: 2015
  end-page: 406
  ident: CR42
  article-title: Functional heterogeneity of human memory CD4 T cell clones primed by pathogens or vaccines
  publication-title: Science
  doi: 10.1126/science.1260668
– volume: 496
  start-page: 461
  year: 2013
  end-page: 468
  ident: CR19
  article-title: Dynamic regulatory network controlling T 17 cell differentiation
  publication-title: Nature
  doi: 10.1038/nature11981
– volume: 17
  start-page: 5414
  year: 2016
  end-page: 5446
  ident: CR21
  article-title: Minimum density hyperplanes
  publication-title: J. Mach. Learn. Res.
– volume: 7
  year: 2016
  ident: CR40
  article-title: T-bet is a key modulator of IL-23-driven pathogenic CD4 T cell responses in the intestine
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11627
– volume: 347
  start-page: 1138
  year: 2015
  end-page: 1142
  ident: CR64
  article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 114
  start-page: 747
  year: 1975
  end-page: 751
  ident: CR1
  article-title: Functional heterogeneity among the T-derived lymphocytes of the mouse. II. Sensitivity of subpopulations to anti-thymocyte serum
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.114.2_Part_2.747
– ident: CR35
– volume: 138
  start-page: 1674
  year: 1987
  end-page: 1679
  ident: CR4
  article-title: Cloned, Ia-restricted T cells that do not produce interleukin 4 (IL-4)/B cell stimulatory factor 1 (BSF-1) fail to help antigen-specific B cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.138.6.1674
– volume: 523
  start-page: 486
  year: 2015
  end-page: 490
  ident: CR26
  article-title: Single-cell chromatin accessibility reveals principles of regulatory variation
  publication-title: Nature
  doi: 10.1038/nature14590
– volume: 24
  start-page: 303
  year: 2012
  end-page: 307
  ident: CR6
  article-title: The symphony of the ninth: the development and function of T 9 cells
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2012.02.001
– volume: 55
  start-page: 19.12.1
  year: 2003
  end-page: 19.12.27
  ident: CR54
  article-title: Animal model of and
  publication-title: Curr. Protoc. Immunol.
– volume: 12
  start-page: 612
  year: 2014
  end-page: 623
  ident: CR53
  article-title: : infection, inflammation and the microbiota
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3315
– volume: 14
  start-page: 975
  year: 2017
  end-page: 978
  ident: CR28
  article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4401
– volume: 136
  start-page: 2348
  year: 1986
  end-page: 2357
  ident: CR3
  article-title: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.136.7.2348
– volume: 13
  start-page: 70
  year: 1985
  end-page: 84
  ident: CR20
  article-title: The dip test of unimodality
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346577
– volume: 35
  start-page: 301
  year: 2019
  end-page: 308
  ident: CR30
  article-title: Reverse-engineering flow-cytometry gating strategies for phenotypic labelling and high-performance cell sorting
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty491
– volume: 467
  start-page: 967
  year: 2010
  end-page: 971
  ident: CR23
  article-title: Generation of pathogenic T 17 cells in the absence of TGF-β signalling
  publication-title: Nature
  doi: 10.1038/nature09447
– volume: 176
  start-page: 897
  year: 2019
  end-page: 912
  ident: CR27
  article-title: The -regulatory atlas of the mouse immune system
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.036
– volume: 164
  start-page: 564
  year: 2016
  end-page: 578
  ident: CR50
  article-title: Parsing the interferon transcriptional network and its disease associations
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.032
– volume: 50
  start-page: 493
  year: 2019
  end-page: 504
  ident: CR16
  article-title: Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.01.001
– volume: 34
  start-page: 4131
  year: 2018
  end-page: 4133
  ident: CR29
  article-title: GateFinder: projection-based gating strategy optimization for flow and mass cytometry
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty430
– volume: 50
  start-page: 1317
  year: 2019
  end-page: 1334
  ident: CR47
  article-title: Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.009
– volume: 13
  start-page: 991
  year: 2012
  end-page: 999
  ident: CR22
  article-title: Induction and molecular signature of pathogenic T 17 cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2416
– volume: 29
  start-page: 138
  year: 2008
  end-page: 149
  ident: CR60
  article-title: Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.05.009
– volume: 110
  start-page: 13079
  year: 2013
  end-page: 13084
  ident: CR38
  article-title: Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1311557110
– volume: 185
  start-page: 190
  year: 2010
  end-page: 202
  ident: CR61
  article-title: Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150)
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0903505
– volume: 27
  start-page: 485
  year: 2009
  end-page: 517
  ident: CR5
  article-title: IL-17 and T 17 cells
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.021908.132710
– volume: 179
  start-page: 527
  year: 2019
  end-page: 542
  ident: CR31
  article-title: Cell type purification by single-cell transcriptome-trained sorting
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.006
– volume: 174
  start-page: 716
  year: 2018
  end-page: 729
  ident: CR57
  article-title: Recovering gene interactions from single-cell data using data diffusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– volume: 16
  start-page: 942
  year: 2015
  end-page: 949
  ident: CR25
  article-title: Aire controls gene expression in the thymic epithelium with ordered stochasticity
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3247
– volume: 20
  start-page: 902
  year: 2019
  end-page: 914
  ident: CR33
  article-title: The immune cell landscape in kidneys of patients with lupus nephritis
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0398-x
– volume: 42
  start-page: 252
  year: 2015
  end-page: 264
  ident: CR17
  article-title: The transcription factor KLF2 restrains CD4 T follicular helper cell differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.01.013
– volume: 51
  start-page: 77
  year: 2019
  end-page: 89
  ident: CR24
  article-title: The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory T 17 cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.05.004
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: CR55
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 35
  start-page: 972
  year: 2011
  end-page: 985
  ident: CR59
  article-title: T 17 cells are long lived and retain a stem cell-like molecular signature
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.09.019
– volume: 18
  start-page: 451
  year: 2000
  end-page: 494
  ident: CR8
  article-title: Signaling and transcription in T helper development
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.18.1.451
– volume: 560
  start-page: 494
  year: 2018
  end-page: 498
  ident: CR41
  article-title: RNA velocity of single cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0414-6
– volume: 13
  start-page: 145
  year: 2013
  end-page: 149
  ident: CR11
  article-title: Innate lymphoid cells—a proposal for uniform nomenclature
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3365
– volume: 156
  start-page: 3321
  year: 1996
  end-page: 3326
  ident: CR52
  article-title: infection in gene-targeted immunodeficient mice: major role of CD4 TCR-αβ cells and IFN-γ in bacterial clearance independent of intracellular location
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.156.9.3321
– volume: 31
  start-page: 2989
  year: 2015
  end-page: 2998
  ident: CR56
  article-title: Diffusion maps for high-dimensional single-cell analysis of differentiation data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv325
– volume: 579
  start-page: 274
  year: 2020
  end-page: 278
  ident: CR46
  article-title: Peripheral T cell expansion predicts tumour infiltration and clinical response
  publication-title: Nature
  doi: 10.1038/s41586-020-2056-8
– volume: 25
  start-page: 1860
  year: 2015
  end-page: 1872
  ident: CR62
  article-title: Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells
  publication-title: Genome Res.
  doi: 10.1101/gr.192237.115
– volume: 27
  start-page: 2463
  year: 2011
  end-page: 2464
  ident: CR63
  article-title: APCluster: an R package for affinity propagation clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr406
– volume: 66
  start-page: 1051
  year: 1991
  end-page: 1066
  ident: CR36
  article-title: Mice lacking MHC class II molecules
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90448-8
– volume: 11
  year: 2020
  ident: CR49
  article-title: Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4 T cells to cytokines
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15543-y
– ident: CR48
– volume: 19
  year: 2018
  ident: CR18
  article-title: Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1603-1
– ident: CR65
– volume: 14
  start-page: 865
  year: 2017
  end-page: 868
  ident: CR34
  article-title: Simultaneous epitope and transcriptome measurement in single cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4380
– volume: 349
  start-page: 993
  year: 2015
  end-page: 997
  ident: CR51
  article-title: Individual intestinal symbionts induce a distinct population of RORγ regulatory T cells
  publication-title: Science
  doi: 10.1126/science.aaa9420
– volume: 29
  start-page: 621
  year: 2011
  end-page: 663
  ident: CR7
  article-title: Follicular helper CD4 T cells (T )
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-031210-101400
– volume: 327
  start-page: 1098
  year: 2010
  end-page: 1102
  ident: CR9
  article-title: Mechanisms underlying lineage commitment and plasticity of helper CD4 T cells
  publication-title: Science
  doi: 10.1126/science.1178334
– volume: 11
  start-page: 674
  year: 2010
  end-page: 680
  ident: CR13
  article-title: Effector T cell plasticity: flexibility in the face of changing circumstances
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1899
– volume: 112
  start-page: 1557
  year: 2008
  end-page: 1569
  ident: CR10
  article-title: CD4 T cells: fates, functions, and faults
  publication-title: Blood
  doi: 10.1182/blood-2008-05-078154
– volume: 5
  start-page: 630
  year: 2014
  ident: CR14
  article-title: Plasticity of human CD4 T cell subsets
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00630
– volume: 8
  start-page: 1390
  year: 2007
  end-page: 1397
  ident: CR39
  article-title: TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T -17 cell-mediated pathology
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1539
– volume: 562
  start-page: 373
  year: 2018
  end-page: 379
  ident: CR37
  article-title: The genetic basis and cell of origin of mixed phenotype acute leukaemia
  publication-title: Nature
  doi: 10.1038/s41586-018-0436-0
– volume: 9
  start-page: 268
  year: 1988
  end-page: 274
  ident: CR2
  article-title: A functional dichotomy in CD4 T lymphocytes
  publication-title: Immunol. Today
  doi: 10.1016/0167-5699(88)91308-4
– volume: 151
  start-page: 289
  year: 2012
  end-page: 303
  ident: CR58
  article-title: A validated regulatory network for T 17 cell specification
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.016
– volume: 176
  start-page: 775
  year: 2019
  end-page: 789
  ident: CR44
  article-title: Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.043
– volume: 358
  start-page: 58
  year: 2017
  end-page: 63
  ident: CR15
  article-title: Single-cell transcriptomics to explore the immune system in health and disease
  publication-title: Science
  doi: 10.1126/science.aan6828
– volume: 51
  start-page: 169
  year: 2019
  end-page: 184
  ident: CR32
  article-title: Single-cell RNA sequencing of the T helper cell response to house dust mites defines a distinct gene expression signature in airway T 2 cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.05.014
– volume: 7
  year: 2016
  ident: 836_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11627
– volume: 50
  start-page: 493
  year: 2019
  ident: 836_CR16
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.01.001
– volume: 467
  start-page: 967
  year: 2010
  ident: 836_CR23
  publication-title: Nature
  doi: 10.1038/nature09447
– volume: 560
  start-page: 494
  year: 2018
  ident: 836_CR41
  publication-title: Nature
  doi: 10.1038/s41586-018-0414-6
– volume: 50
  start-page: 1317
  year: 2019
  ident: 836_CR47
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.009
– volume: 16
  start-page: 374
  year: 1995
  ident: 836_CR12
  publication-title: Immunol. Today
  doi: 10.1016/0167-5699(95)80004-2
– volume: 174
  start-page: 1293
  year: 2018
  ident: 836_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.060
– volume: 51
  start-page: 169
  year: 2019
  ident: 836_CR32
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.05.014
– volume: 349
  start-page: 993
  year: 2015
  ident: 836_CR51
  publication-title: Science
  doi: 10.1126/science.aaa9420
– volume: 18
  start-page: 451
  year: 2000
  ident: 836_CR8
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.18.1.451
– volume: 327
  start-page: 1098
  year: 2010
  ident: 836_CR9
  publication-title: Science
  doi: 10.1126/science.1178334
– ident: 836_CR48
  doi: 10.1101/461228
– volume: 13
  start-page: 70
  year: 1985
  ident: 836_CR20
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346577
– volume: 16
  start-page: 942
  year: 2015
  ident: 836_CR25
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3247
– volume: 496
  start-page: 461
  year: 2013
  ident: 836_CR19
  publication-title: Nature
  doi: 10.1038/nature11981
– volume: 17
  start-page: 5414
  year: 2016
  ident: 836_CR21
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 485
  year: 2009
  ident: 836_CR5
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.021908.132710
– volume: 112
  start-page: 1557
  year: 2008
  ident: 836_CR10
  publication-title: Blood
  doi: 10.1182/blood-2008-05-078154
– volume: 8
  start-page: 1390
  year: 2007
  ident: 836_CR39
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1539
– volume: 50
  start-page: 1084
  year: 2019
  ident: 836_CR43
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.004
– volume: 19
  year: 2018
  ident: 836_CR18
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1603-1
– volume: 562
  start-page: 373
  year: 2018
  ident: 836_CR37
  publication-title: Nature
  doi: 10.1038/s41586-018-0436-0
– volume: 185
  start-page: 190
  year: 2010
  ident: 836_CR61
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0903505
– volume: 42
  start-page: 252
  year: 2015
  ident: 836_CR17
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.01.013
– volume: 176
  start-page: 897
  year: 2019
  ident: 836_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.036
– volume: 29
  start-page: 138
  year: 2008
  ident: 836_CR60
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.05.009
– volume: 5
  start-page: 630
  year: 2014
  ident: 836_CR14
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00630
– volume: 31
  start-page: 2989
  year: 2015
  ident: 836_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv325
– volume: 14
  start-page: 975
  year: 2017
  ident: 836_CR28
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4401
– volume: 138
  start-page: 1674
  year: 1987
  ident: 836_CR4
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.138.6.1674
– volume: 358
  start-page: 58
  year: 2017
  ident: 836_CR15
  publication-title: Science
  doi: 10.1126/science.aan6828
– volume: 51
  start-page: 77
  year: 2019
  ident: 836_CR24
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.05.004
– volume: 176
  start-page: 775
  year: 2019
  ident: 836_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.043
– volume: 14
  start-page: 865
  year: 2017
  ident: 836_CR34
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4380
– volume: 27
  start-page: 2463
  year: 2011
  ident: 836_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr406
– volume: 34
  start-page: 4131
  year: 2018
  ident: 836_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty430
– volume: 20
  start-page: 902
  year: 2019
  ident: 836_CR33
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0398-x
– volume: 66
  start-page: 1051
  year: 1991
  ident: 836_CR36
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90448-8
– volume: 523
  start-page: 486
  year: 2015
  ident: 836_CR26
  publication-title: Nature
  doi: 10.1038/nature14590
– volume: 11
  year: 2020
  ident: 836_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15543-y
– volume: 55
  start-page: 19.12.1
  year: 2003
  ident: 836_CR54
  publication-title: Curr. Protoc. Immunol.
  doi: 10.1002/0471142735.im1912s55
– volume: 151
  start-page: 289
  year: 2012
  ident: 836_CR58
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.016
– volume: 13
  start-page: 991
  year: 2012
  ident: 836_CR22
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2416
– volume: 347
  start-page: 400
  year: 2015
  ident: 836_CR42
  publication-title: Science
  doi: 10.1126/science.1260668
– volume: 35
  start-page: 972
  year: 2011
  ident: 836_CR59
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.09.019
– volume: 24
  start-page: 303
  year: 2012
  ident: 836_CR6
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2012.02.001
– volume: 35
  start-page: 301
  year: 2019
  ident: 836_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty491
– volume: 11
  start-page: 674
  year: 2010
  ident: 836_CR13
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1899
– volume: 114
  start-page: 747
  year: 1975
  ident: 836_CR1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.114.2_Part_2.747
– volume: 136
  start-page: 2348
  year: 1986
  ident: 836_CR3
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.136.7.2348
– ident: 836_CR65
  doi: 10.1101/2020.01.23.911966
– volume: 36
  start-page: 411
  year: 2018
  ident: 836_CR55
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 25
  start-page: 1860
  year: 2015
  ident: 836_CR62
  publication-title: Genome Res.
  doi: 10.1101/gr.192237.115
– volume: 174
  start-page: 716
  year: 2018
  ident: 836_CR57
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– volume: 579
  start-page: 274
  year: 2020
  ident: 836_CR46
  publication-title: Nature
  doi: 10.1038/s41586-020-2056-8
– ident: 836_CR35
  doi: 10.1002/cyto.a.24027
– volume: 110
  start-page: 13079
  year: 2013
  ident: 836_CR38
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1311557110
– volume: 13
  start-page: 145
  year: 2013
  ident: 836_CR11
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3365
– volume: 179
  start-page: 527
  year: 2019
  ident: 836_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.006
– volume: 9
  start-page: 268
  year: 1988
  ident: 836_CR2
  publication-title: Immunol. Today
  doi: 10.1016/0167-5699(88)91308-4
– volume: 156
  start-page: 3321
  year: 1996
  ident: 836_CR52
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.156.9.3321
– volume: 29
  start-page: 621
  year: 2011
  ident: 836_CR7
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-031210-101400
– volume: 164
  start-page: 564
  year: 2016
  ident: 836_CR50
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.032
– volume: 347
  start-page: 1138
  year: 2015
  ident: 836_CR64
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 12
  start-page: 612
  year: 2014
  ident: 836_CR53
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3315
SSID ssj0014764
Score 2.6360357
Snippet CD4 + effector lymphocytes (T eff ) are traditionally classified by the cytokines they produce. To determine the states that T eff cells actually adopt in...
CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in...
CD4 + effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff actually adopt in frontline...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 216
SubjectTerms 631/250
631/250/2152
631/337
Biomedical and Life Sciences
Biomedicine
CD4 antigen
Chromatin
Cytokines
GATA-3 protein
Gene expression
Germfree
Immunology
Infectious Diseases
Lymphocytes
Lymphocytes T
Microorganisms
Phenotypes
Transcriptomes
γ-Interferon
Title Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH archetypes
URI https://link.springer.com/article/10.1038/s41590-020-00836-7
https://www.proquest.com/docview/2480547435
https://www.proquest.com/docview/2479043396
https://pubmed.ncbi.nlm.nih.gov/PMC7839314
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgE4gXBANEx5iMxNtmLXGcXPyEoGxUSJsQdFLfIttxxKQ1GUvzsP9-d67bqpPYSx5iO7bOP-678-U7xj6npQapnBcmr5VQumlEWYAUxoJtbKJN4cg1cH5RTC7Vz1k-iw63PoZVrs7EcFDXnSMf-YlUJaIL1Hf5l5t_grJG0e1qTKHxlO0SdRmtapitDa5UQaCPQhWlhdRJGX-aSbLypEfFpRNBxhOhkELAtmLaoM2HsZIPLkyDHjp7xV5GAMm_Lmf8NXvi2z32bJlS8m6PPT-Pl-Vv2J8fw4KPv6sjPuXkn-cUztWRz7Xn5tZzwylO_aodhjmfd9e1r7m943OK0LO-P-ZYl15MJzwQfoSGb9nl2el0PBExh4JwWUGU5irX0qnC2bpo8rpOFTl9rJLGKQNoT0gHTV3YHKQ0ZF4524CH3CLyAcDj8B3babvWv2ccsaLF08g2XjuVKWkhsQiYjLX4WZPDiKUrAVYuEoxTnovrKlx0Z2W1FHqFQq-C0Ctsc7Ruc7Ok13i09sFqXqq41fpqszBG7NO6GDcJSda0vhuoDmhiatPFiMHWfK57JZrt7ZL26m-g2wbEkFmqRux4NfObzv8_1v3Hx_qBvZAUHRPivw_YzuJ28B8R3izsYVjD-CzH6SHb_XZ68ev3Pc-99lc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYQqD8X1NJW3QKtK7UnsEgcJ44PFaqW0qWwXLpI3FLbcVQkNgGyUbUv1WfsjJPsapHKjWtsx9bYM_N5ZjxDyKcwVZIL65iOc8GEKgqWJpIzbaQpTKB0YtE0MD5PRhfix2V8uUb-9m9hMKyyl4leUOeVRRv5ARcpoAvQd_HhzS3DqlHoXe1LaLTH4tTN_8CVrf5ycgT7-5nz42-T4Yh1VQWYjRJM8i1ixa1IrMmTIs7zUKAZxAiurdASEDa3ssgTE0vONV44rCmkk7EBLCBliFUiQORviAhYE1-mDxchJaGQPl0VqETFuArS7pFOEKUHNShKFTC8rCHqSZhcVYRLdHs_NvOeg9brveMXZLMDrPRre8JekjVXbpEnbQnL-RZ5Ou6c86_Iz-_NjA6PxB6dUPQHUAwfq9DGW1N956imGBd_VTbNlE6r69zl1MzpFCMCjav3KfTFD5MR9QlG_MDX5OJRqPuGrJdV6d4SCtjUgPQzhVNWRIIbGRgAaNoY-K2O5YCEPQEz2yU0x7oa15l3rEdp1hI9A6JnnugZjNlbjLlp03k82Hun35esY-06Wx7EAfm4aAamRMrq0lUN9pEKM8OpZEDkyn4uZsW03qst5dVvn95bAmaNQjEg-_3OLyf__1rfPbzWD-TZaDI-y85Ozk-3yXOOkTk-9nyHrM_uGrcL0Gpm3vvzTMmvx2agf-WGLrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELamISZe0BggCgOMBE-b1cRx4vgBIdRSOsYmJDppb8F2HDFpTbalEepf49dx5yStOom97TWxY-t85_vs-3JHyPswVZIL65iOc8GEKgqWJpIzbaQpTKB0YvFq4OQ0mZ6Jb-fx-Rb52_8Lg7TKfk_0G3VeWbwjH3KRAroAfxcPi44W8WM8-XR1zbCCFEZa-3IarYocu-UfOL7VH4_GsNYfOJ98mY2mrKswwGyUYMJvEStuRWJNnhRxnocCr0SM4NoKLQFtcyuLPDGx5Fzj4cOaQjoZG8AFUoZYMQK2_wcykinaWDpa0UtCIX3qKnCPinEVpN0PO0GUDmtwmipgeHBDBJQwuekU10j3Nk_zVrDW-8DJLnncgVf6udW2J2TLlXvkYVvOcrlHdk66QP1T8vNrs6CjsTigM4qxAYpUsgrve2uqbxzVFDnyF2XTzOm8usxdTs2SzpEdaFx9SKEtPphNqU824js-I2f3It3nZLusSveCUMCpBnZCUzhlRSS4kYEBsKaNgc_qWA5I2Asws11yc6yxcZn5IHuUZq3QMxB65oWeQZ-DVZ-rNrXHna33-3XJOjOvs7VSDsi71WswUJSsLl3VYBupMEucSgZEbqznalRM8b35prz47VN9g16pKBQDctiv_Hrw_8_15d1zfUt2wHSy70enx6_II44kHU9D3yfbi5vGvQaUtTBvvDpT8uu-7ecfRxcy7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+CD4%2B+T+cell+phenotypes+are+a+continuum+molded+by+microbes%2C+not+by+TH+archetypes&rft.jtitle=Nature+immunology&rft.au=Kiner%2C+Evgeny&rft.au=Willie%2C+Elijah&rft.au=Vijaykumar%2C+Brinda&rft.au=Chowdhary%2C+Kaitavjeet&rft.date=2021-02-01&rft.issn=1529-2916&rft.eissn=1529-2916&rft.volume=22&rft.issue=2&rft.spage=216&rft_id=info:doi/10.1038%2Fs41590-020-00836-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon