Steering the Craft: UI Elements and Visualizations for Supporting Progressive Visual Analytics
Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results...
Saved in:
Published in | Computer graphics forum Vol. 36; no. 3; pp. 491 - 502 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2017
Wiley |
Series | Eurographics Conference on Visualization (EuroVis 2017) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates provide a convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updating results and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool called InsightsFeed for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploring a Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guiding computational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression. |
---|---|
AbstractList | Progressive visual analytics
(PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates provide a convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updating results and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool called
I
nsights
F
eed
for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploring a Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guiding computational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression. Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates provide a convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updating results and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool called InsightsFeed for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploring a Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guiding computational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression. Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysisis performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts cantherefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates providea convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updatingresults and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool calledI NSIGHTS F EED for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploringa Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guidingcomputational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression. |
Author | Elmqvist, Niklas Fekete, Jean‐Daniel Badam, Sriram Karthik |
Author_xml | – sequence: 1 givenname: Sriram Karthik surname: Badam fullname: Badam, Sriram Karthik organization: University of Maryland – sequence: 2 givenname: Niklas surname: Elmqvist fullname: Elmqvist, Niklas organization: University of Maryland – sequence: 3 givenname: Jean‐Daniel surname: Fekete fullname: Fekete, Jean‐Daniel organization: INRIA |
BackLink | https://inria.hal.science/hal-01512256$$DView record in HAL |
BookMark | eNp9kE1LAzEURYNUsK0u_AcBVy5ak8kkmXFXhn5BQaHWpSGTZtqU6aQmaaX-eqcfKAj6NnmEcw-P2wKNylYagFuMurieB7UouphEiF6AJo4Z7ySMpg3QRLjeOaL0CrS8XyGEYs5oE7xNg9bOVAsYlhpmThbhEc7GsF_qta6Ch7Kaw1fjt7I0nzIYW3lYWAen283GunAIPju7cNp7s9NnEvYqWe6DUf4aXBay9Prm_LbBbNB_yUadydNwnPUmHUUYo52CKpkTiUhMU0WVoiRN0kgmMZM0TmUh8zmKOONzhVIS5yzniug0QYgzxpDipA3uT96lLMXGmbV0e2GlEaPeRBz-EKY4iijb4Zq9O7EbZ9-32gexsltXX-wFTjGljGBOf4zKWe-dLr61GIlD1aKuWhyrrtmHX6wy4VhWcNKU_yU-TKn3f6tFNhycEl_owZBX |
CitedBy_id | crossref_primary_10_1109_TVCG_2023_3326582 crossref_primary_10_1007_s00778_022_00771_z crossref_primary_10_1109_TVCG_2018_2869149 crossref_primary_10_1109_TVCG_2021_3114880 crossref_primary_10_3390_informatics6010014 crossref_primary_10_1007_s12650_018_0531_1 crossref_primary_10_1109_TVCG_2019_2934537 crossref_primary_10_1111_cgf_14034 crossref_primary_10_1111_cgf_14287 crossref_primary_10_1109_TVCG_2023_3346641 crossref_primary_10_1177_1473871617752910 crossref_primary_10_3390_informatics5030031 crossref_primary_10_1109_TVCG_2019_2962404 crossref_primary_10_1111_cgf_14859 crossref_primary_10_1109_TVCG_2021_3051013 crossref_primary_10_1109_TVCG_2022_3209426 crossref_primary_10_1177_1473871618806555 crossref_primary_10_1145_3531229 crossref_primary_10_1109_TVCG_2023_3278084 |
Cites_doi | 10.1109/TVCG.2007.70539 10.1109/TVCG.2014.2346452 10.3115/1614025.1614037 10.1109/TPAMI.2002.1017616 10.1109/TVCG.2014.2346578 10.1145/2207676.2207741 10.1609/icwsm.v8i1.14550 10.1109/TVCG.2011.185 10.1109/TVCG.2014.2346574 10.1108/eb026526 10.1145/2514.2517 10.1609/aaai.v31i1.10628 10.1145/2556288.2557195 10.1016/S0167-739X(98)00047-8 10.1109/TVCG.2015.2462356 10.1609/icwsm.v4i1.14009 10.1109/INFVIS.2004.60 10.1007/978-3-540-70956-5_7 |
ContentType | Journal Article |
Copyright | 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2017 The Eurographics Association and John Wiley & Sons Ltd. Attribution |
Copyright_xml | – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2017 The Eurographics Association and John Wiley & Sons Ltd. – notice: Attribution |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1111/cgf.13205 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1467-8659 |
EndPage | 502 |
ExternalDocumentID | oai_HAL_hal_01512256v1 10_1111_cgf_13205 CGF13205 |
Genre | article |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c3665-f5cab3a03459c5cc539892a846a549afabd02767dc0934b6b7c3e980076660c73 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Fri May 09 12:20:56 EDT 2025 Fri Jul 25 06:15:08 EDT 2025 Tue Jul 01 02:23:08 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Wed Jan 22 16:28:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3665-f5cab3a03459c5cc539892a846a549afabd02767dc0934b6b7c3e980076660c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3770-8726 |
OpenAccessLink | https://inria.hal.science/hal-01512256 |
PQID | 1915563175 |
PQPubID | 30877 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_01512256v1 proquest_journals_1915563175 crossref_primary_10_1111_cgf_13205 crossref_citationtrail_10_1111_cgf_13205 wiley_primary_10_1111_cgf_13205_CGF13205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationSeriesTitle | Eurographics Conference on Visualization (EuroVis 2017) |
PublicationTitle | Computer graphics forum |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | 2010; 10 2012 2010 2009 2008; 9 1997 2008 2007 2005 2011; 12 2004 2002 2011; 17 2007; 13 1972; 28 1999 2014; 20 1977 2007; 28 1984; 16 2002; 24 1999; 15 2015; 22 2017 2016 2014 2004; 2004 1968 Fekete J.‐D. (e_1_2_10_7_2) 2016 Hellerstein J.M. (e_1_2_10_12_2) 1997 e_1_2_10_20_2 e_1_2_10_21_2 Horvitz E. (e_1_2_10_13_2) 1999 Fisher D. (e_1_2_10_8_2) 2012 Pedregosa F. (e_1_2_10_28_2) 2011; 12 Thomas J.J. (e_1_2_10_33_2) 2005 Maaten L. v. d. (e_1_2_10_22_2) 2008; 9 e_1_2_10_19_2 Tumasjan A. (e_1_2_10_34_2) 2010; 10 Brandes U. (e_1_2_10_5_2) 2007 e_1_2_10_15_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_36_2 e_1_2_10_6_2 e_1_2_10_9_2 e_1_2_10_11_2 Tukey J.W. (e_1_2_10_35_2) 1977 Yang X. (e_1_2_10_37_2) 2012 Ayres J. (e_1_2_10_2_2) 2002 e_1_2_10_32_2 e_1_2_10_31_2 e_1_2_10_30_2 Miller R.B. (e_1_2_10_23_2) 1968 Bird S. (e_1_2_10_3_2) 2009 Keim D.A. (e_1_2_10_18_2) 2010 Kim H. (e_1_2_10_17_2) 2017 Zgraggen E. (e_1_2_10_38_2) 2016 Horvitz E.J. (e_1_2_10_14_2) 2007; 28 Pezzotti N. (e_1_2_10_26_2) 2016 Hetzler E.G. (e_1_2_10_10_2) 2005 e_1_2_10_29_2 e_1_2_10_27_2 e_1_2_10_24_2 e_1_2_10_25_2 |
References_xml | – volume: 15 start-page: 119 issue: 1 year: 1999 end-page: 129 article-title: A survey of computational steering environments publication-title: Future Generation Computer Systems – year: 2017 article-title: Pive: Per‐iteration visualization environment for real‐time interactions with dimension reduction and clustering publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2009 – start-page: 42 year: 2007 end-page: 53 – year: 2010 publication-title: Mastering the Information Age: Solving Problems with Visual Analytics – volume: 20 start-page: 2122 issue: 12 year: 2014 end-page: 2131 article-title: The effects of interactive latency on exploratory visual analysis publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: Machine learning in Python publication-title: Journal of Machine Learning Research – start-page: 561 year: 2014 end-page: 570 – volume: 17 start-page: 2301 issue: 12 year: 2011 end-page: 2309 article-title: D : Data‐driven documents publication-title: IEEE Transactions on Visualization and Computer Graphics – year: 2005 – start-page: 171 year: 1997 end-page: 182 article-title: Online aggregation publication-title: Proceedings of the ACM Conference on Management of Data – volume: 10 start-page: 178 year: 2010 end-page: 185 article-title: Predicting elections with Twitter: What 140 characters reveal about political sentiment publication-title: Proceedings of the AAAI Conference on Weblogs and Social Media – volume: 24 start-page: 881 issue: 7 year: 2002 end-page: 892 article-title: An efficient k‐means clustering algorithm: Analysis and implementation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 216 year: 2014 end-page: 225 – volume: 22 start-page: 1830 issue: 7 year: 2015 end-page: 1842 article-title: An enhanced visualization process model for incremental visualization publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 28 start-page: 11 issue: 1 year: 1972 end-page: 21 article-title: A statistical interpretation of term specificity and its application in retrieval publication-title: Journal of Documentation – year: 1977 – start-page: 429 year: 2002 end-page: 435 article-title: Sequential pattern mining using a bitmap representation publication-title: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining – volume: 13 start-page: 1240 issue: 6 year: 2007 end-page: 1247 article-title: Animated transitions in statistical data graphics publication-title: IEEE Transactions on Visualization and Computer Graphics – year: 2012 – year: 2016 article-title: Progressive analytics: A computation paradigm for exploratory data analysis publication-title: ArXiv e‐prints – volume: 20 start-page: 1653 issue: 12 year: 2014 end-page: 1662 article-title: Progressive visual analytics: User‐driven visual exploration of in‐progress analytics publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 57 year: 2004 end-page: 64 article-title: Steerable, progressive multidimensional scaling publication-title: Proceedings of the IEEE Symposium on Information Visualization – volume: 28 start-page: 3 issue: 2 year: 2007 article-title: Reflections on challenges and promises of mixed‐initiative interaction publication-title: AI Magazine – start-page: 89 year: 2005 end-page: 94 – start-page: 1673 year: 2012 end-page: 1682 article-title: Trust me, I'm partially right: incremental visualization lets analysts explore large datasets faster publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems – start-page: 370 year: 2012 end-page: 378 article-title: A framework for summarizing and analyzing Twitter feeds publication-title: Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining – start-page: 267 year: 1968 end-page: 277 article-title: Response time in man‐computer conversational transactions publication-title: Proceedings of the ACM Fall Joint Computer Conference – volume: 2004 start-page: 38 year: 2004 end-page: 41 – start-page: 159 year: 1999 end-page: 166 article-title: Principles of mixed‐initiative user interfaces publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems – year: 2016 article-title: Approximated and user steerable tSNE for progressive visual analytics publication-title: IEEE Transactions on Visualization and Computer Graphics – year: 2016 article-title: How progressive visualizations affect exploratory analysis publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 473 year: 2012 end-page: 482 article-title: Semantic interaction for visual text analytics publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems – volume: 9 start-page: 2579 year: 2008 end-page: 2605 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – start-page: 154 year: 2008 end-page: 175 – volume: 20 start-page: 1643 issue: 12 year: 2014 end-page: 1652 article-title: Opening the black box: Strategies for increased user involvement in existing algorithm implementations publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 16 start-page: 265 issue: 3 year: 1984 end-page: 285 article-title: Response time and display rate in human performance with computers publication-title: ACM Computing Surveys – ident: e_1_2_10_15_2 doi: 10.1109/TVCG.2007.70539 – year: 2016 ident: e_1_2_10_26_2 article-title: Approximated and user steerable tSNE for progressive visual analytics publication-title: IEEE Transactions on Visualization and Computer Graphics – ident: e_1_2_10_21_2 doi: 10.1109/TVCG.2014.2346452 – ident: e_1_2_10_27_2 doi: 10.3115/1614025.1614037 – start-page: 370 year: 2012 ident: e_1_2_10_37_2 article-title: A framework for summarizing and analyzing Twitter feeds publication-title: Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining – start-page: 42 volume-title: Eigensolver Methods for Progressive Multidimensional Scaling of Large Data year: 2007 ident: e_1_2_10_5_2 – volume-title: Illuminating the path: The research and development agenda for visual analytics year: 2005 ident: e_1_2_10_33_2 – start-page: 1673 year: 2012 ident: e_1_2_10_8_2 article-title: Trust me, I'm partially right: incremental visualization lets analysts explore large datasets faster publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems – start-page: 89 volume-title: Proceedings of the IEEE Symposium on Information Visualization year: 2005 ident: e_1_2_10_10_2 – ident: e_1_2_10_20_2 doi: 10.1109/TPAMI.2002.1017616 – start-page: 171 year: 1997 ident: e_1_2_10_12_2 article-title: Online aggregation publication-title: Proceedings of the ACM Conference on Management of Data – ident: e_1_2_10_24_2 doi: 10.1109/TVCG.2014.2346578 – ident: e_1_2_10_6_2 doi: 10.1145/2207676.2207741 – ident: e_1_2_10_11_2 doi: 10.1609/icwsm.v8i1.14550 – ident: e_1_2_10_4_2 doi: 10.1109/TVCG.2011.185 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_10_28_2 article-title: Scikit‐learn: Machine learning in Python publication-title: Journal of Machine Learning Research – start-page: 267 year: 1968 ident: e_1_2_10_23_2 article-title: Response time in man‐computer conversational transactions publication-title: Proceedings of the ACM Fall Joint Computer Conference – ident: e_1_2_10_19_2 – year: 2010 ident: e_1_2_10_18_2 publication-title: Mastering the Information Age: Solving Problems with Visual Analytics – ident: e_1_2_10_32_2 doi: 10.1109/TVCG.2014.2346574 – ident: e_1_2_10_31_2 doi: 10.1108/eb026526 – ident: e_1_2_10_30_2 doi: 10.1145/2514.2517 – start-page: 429 year: 2002 ident: e_1_2_10_2_2 article-title: Sequential pattern mining using a bitmap representation publication-title: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining – year: 2017 ident: e_1_2_10_17_2 article-title: Pive: Per‐iteration visualization environment for real‐time interactions with dimension reduction and clustering publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v31i1.10628 – ident: e_1_2_10_9_2 doi: 10.1145/2556288.2557195 – ident: e_1_2_10_25_2 doi: 10.1016/S0167-739X(98)00047-8 – start-page: 159 year: 1999 ident: e_1_2_10_13_2 article-title: Principles of mixed‐initiative user interfaces publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems – volume-title: Addison‐Wesley series in behavioral science: quantitative methods year: 1977 ident: e_1_2_10_35_2 – ident: e_1_2_10_29_2 doi: 10.1109/TVCG.2015.2462356 – volume-title: Natural Language Processing with Python year: 2009 ident: e_1_2_10_3_2 – volume: 9 start-page: 2579 year: 2008 ident: e_1_2_10_22_2 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – year: 2016 ident: e_1_2_10_38_2 article-title: How progressive visualizations affect exploratory analysis publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 10 start-page: 178 year: 2010 ident: e_1_2_10_34_2 article-title: Predicting elections with Twitter: What 140 characters reveal about political sentiment publication-title: Proceedings of the AAAI Conference on Weblogs and Social Media doi: 10.1609/icwsm.v4i1.14009 – year: 2016 ident: e_1_2_10_7_2 article-title: Progressive analytics: A computation paradigm for exploratory data analysis publication-title: ArXiv e‐prints – ident: e_1_2_10_36_2 doi: 10.1109/INFVIS.2004.60 – ident: e_1_2_10_16_2 doi: 10.1007/978-3-540-70956-5_7 – volume: 28 start-page: 3 issue: 2 year: 2007 ident: e_1_2_10_14_2 article-title: Reflections on challenges and promises of mixed‐initiative interaction publication-title: AI Magazine |
SSID | ssj0004765 |
Score | 2.3444557 |
Snippet | Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough... Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough... Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysisis performed progressively, rough... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 491 |
SubjectTerms | Analytics Categories and Subject Descriptors (according to ACM CCS) Computer Science Crafts Data analysis Decision analysis Decisions Estimates H.5.2 [Information Interfaces]: User Interfaces—GUI Human-Computer Interaction Sequential analysis Social networks Steering Systems analysis |
Title | Steering the Craft: UI Elements and Visualizations for Supporting Progressive Visual Analytics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13205 https://www.proquest.com/docview/1915563175 https://inria.hal.science/hal-01512256 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zJz34LU6nBPHgpaNtmnTV0xibU1REnewgliRNpyidrN0O_vXm9csqCiK9hPaVpnl5ze-l7_0eQocB89pcEMuwQqoMxw1go4k5UERA6sMkYQDZyJdXbDB0zkd0VEMnRS5Mxg9RbriBZaTfazBwLuKKkctx2IL8X0gwh1gtAEQ3n9RRjstowesNjDE5qxBE8ZR3flmLFp4gErICM6tgNV1t-ivooehnFmTy0poloiXfv1E4_vNFVtFyjkJxJ5s2a6imonW0VOEm3ECPt0nWxBoi4u6Uh8kxHp7hXhZvHmMeBfj-OYakzDyVE2sAjKFM6ASoCcb4GmK_IMx2rnJJnHKgADP0Jhr2e3fdgZEXYzAkYYwaIZVap9wkDvUklZISr-3ZXMMXrl1MHnIRaA-XuYE0PeIIJlxJlNeGP32MmdIlW6geTSK1jbBUTKjQJcIT2juXVJjM1jPGsYXilBPVQEeFWnyZM5VDwYxXv_BY9JD56ZA10EEp-pbRc_wopHVbXgdC7UHnwodzJgAejfrmVgM1C9X7uRnHvgXs-Qwglu5TqsPfn-J3T_tpY-fvorto0QaYkO7qNFE9mc7UngY5idhPZ_MH8hj2QA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIADb8RgQIQ4cOnULk26Ii5obAwYE4INcYEqSdOBQANtHQd-PXEfYyCQEOolal01jZPms2t_BtgLuV8RkjqWEzFtuV6IjibuYhEBZQ6bRiFmI1-0eKPjnt2y2wk4zHNhUn6IkcMNV0byvcYFjg7psVWuulEJE4DZJExjRW9kzj---iSPcj3OcmZv5IzJeIUwjmd065fdaPIBYyHHgOY4XE32m_oC3OU9TcNMnkrDWJbU-zcSx_--yiLMZ0CUHKUzZwkmdG8Z5sboCVfg_jpOm8SgRFLtiyg-IJ1TUktDzgdE9EJy8zjAvMwsm5MYDEywUugLshN0ySWGf2Gk7ZvOJElCg4Lk0KvQqdfa1YaV1WOwFOWcWRFTRq3Cpi7zFVOKUb_il4VBMMJYmSISMjRGLvdCZfvUlVx6imq_gj_7OLeVR9dgqvfS0-tAlOZSRx6VvjQGumLS5mUzadyy1IIJqguwn-slUBlZOdbMeA5yo8UMWZAMWQF2R6KvKUPHj0JGuaPryKndOGoGeM5GzGOA35tTgGKu-yBbyYPAQQJ9jijL9ClR4u9PCaon9aSx8XfRHZhptC-aQfO0db4Js2VEDYmTpwhTcX-otwzmieV2MrU_AFdX-lw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_cBNEHv8Xp1CA--NLRLU266pNszs0vRJ34IJYkTaco29g6H_zrzfVjTlEQ6UtorzTN5ZrfpXe_A9gLuFcVkpatcsi05bgBbjRxB4sIKHPYNAwwG_nikjfbzuk9u5-CwywXJuGHGG-4oWXE32s08H4QThi56oQlzP9lOZh2uO1h3Yb69Sd3lONylhF7I2VMSiuEYTzjW78sRrknDIWcwJmTaDVebhoL8JB1NIkyeSmNIllS7984HP_5Joswn8JQcpTMmyWY0t1lmJsgJ1yBx5soaRKDEUltIMLogLRb5DgJOB8S0Q3I3fMQszLTXE5iEDDBOqE95CbokCsM_sI42zedSpKYBAWpoVeh3Ti-rTWttBqDpSjnzAqZMkoVNnWYp5hSjHpVryIMfhHGxxShkIFxcbkbKNujjuTSVVR7VfzVx7mtXLoG-W6vq9eBKM2lDl0qPWncc8WkzStmyjgVqQUTVBdgP1OLr1KqcqyY8epnLosZMj8esgLsjkX7CT_Hj0JGt-PryKjdPDr38ZyNiMfAvrdyAYqZ6v3Ujod-GenzOWIs06dYh78_xa-dNOLGxt9Fd2Dmqt7wz1uXZ5swW0HIEO_wFCEfDUZ6ywCeSG7HE_sDbtr5Cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steering+the+Craft%3A+UI+Elements+and+Visualizations+for+Supporting+Progressive+Visual+Analytics&rft.jtitle=Computer+graphics+forum&rft.au=Badam%2C+Sriram+Karthik&rft.au=Elmqvist%2C+Niklas&rft.au=Fekete%2C+Jean-Daniel&rft.date=2017-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=36&rft.issue=3&rft.spage=491&rft_id=info:doi/10.1111%2Fcgf.13205&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |