Steering the Craft: UI Elements and Visualizations for Supporting Progressive Visual Analytics

Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 36; no. 3; pp. 491 - 502
Main Authors Badam, Sriram Karthik, Elmqvist, Niklas, Fekete, Jean‐Daniel
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2017
Wiley
SeriesEurographics Conference on Visualization (EuroVis 2017)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates provide a convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updating results and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool called InsightsFeed for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploring a Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guiding computational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression.
AbstractList Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates provide a convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updating results and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool called I nsights F eed for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploring a Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guiding computational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression.
Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates provide a convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updating results and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool called InsightsFeed for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploring a Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guiding computational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression.
Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysisis performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts cantherefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates providea convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updatingresults and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool calledI NSIGHTS F EED for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploringa Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guidingcomputational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression.
Author Elmqvist, Niklas
Fekete, Jean‐Daniel
Badam, Sriram Karthik
Author_xml – sequence: 1
  givenname: Sriram Karthik
  surname: Badam
  fullname: Badam, Sriram Karthik
  organization: University of Maryland
– sequence: 2
  givenname: Niklas
  surname: Elmqvist
  fullname: Elmqvist, Niklas
  organization: University of Maryland
– sequence: 3
  givenname: Jean‐Daniel
  surname: Fekete
  fullname: Fekete, Jean‐Daniel
  organization: INRIA
BackLink https://inria.hal.science/hal-01512256$$DView record in HAL
BookMark eNp9kE1LAzEURYNUsK0u_AcBVy5ak8kkmXFXhn5BQaHWpSGTZtqU6aQmaaX-eqcfKAj6NnmEcw-P2wKNylYagFuMurieB7UouphEiF6AJo4Z7ySMpg3QRLjeOaL0CrS8XyGEYs5oE7xNg9bOVAsYlhpmThbhEc7GsF_qta6Ch7Kaw1fjt7I0nzIYW3lYWAen283GunAIPju7cNp7s9NnEvYqWe6DUf4aXBay9Prm_LbBbNB_yUadydNwnPUmHUUYo52CKpkTiUhMU0WVoiRN0kgmMZM0TmUh8zmKOONzhVIS5yzniug0QYgzxpDipA3uT96lLMXGmbV0e2GlEaPeRBz-EKY4iijb4Zq9O7EbZ9-32gexsltXX-wFTjGljGBOf4zKWe-dLr61GIlD1aKuWhyrrtmHX6wy4VhWcNKU_yU-TKn3f6tFNhycEl_owZBX
CitedBy_id crossref_primary_10_1109_TVCG_2023_3326582
crossref_primary_10_1007_s00778_022_00771_z
crossref_primary_10_1109_TVCG_2018_2869149
crossref_primary_10_1109_TVCG_2021_3114880
crossref_primary_10_3390_informatics6010014
crossref_primary_10_1007_s12650_018_0531_1
crossref_primary_10_1109_TVCG_2019_2934537
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1111_cgf_14287
crossref_primary_10_1109_TVCG_2023_3346641
crossref_primary_10_1177_1473871617752910
crossref_primary_10_3390_informatics5030031
crossref_primary_10_1109_TVCG_2019_2962404
crossref_primary_10_1111_cgf_14859
crossref_primary_10_1109_TVCG_2021_3051013
crossref_primary_10_1109_TVCG_2022_3209426
crossref_primary_10_1177_1473871618806555
crossref_primary_10_1145_3531229
crossref_primary_10_1109_TVCG_2023_3278084
Cites_doi 10.1109/TVCG.2007.70539
10.1109/TVCG.2014.2346452
10.3115/1614025.1614037
10.1109/TPAMI.2002.1017616
10.1109/TVCG.2014.2346578
10.1145/2207676.2207741
10.1609/icwsm.v8i1.14550
10.1109/TVCG.2011.185
10.1109/TVCG.2014.2346574
10.1108/eb026526
10.1145/2514.2517
10.1609/aaai.v31i1.10628
10.1145/2556288.2557195
10.1016/S0167-739X(98)00047-8
10.1109/TVCG.2015.2462356
10.1609/icwsm.v4i1.14009
10.1109/INFVIS.2004.60
10.1007/978-3-540-70956-5_7
ContentType Journal Article
Copyright 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2017 The Eurographics Association and John Wiley & Sons Ltd.
Attribution
Copyright_xml – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2017 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Attribution
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1111/cgf.13205
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1467-8659
EndPage 502
ExternalDocumentID oai_HAL_hal_01512256v1
10_1111_cgf_13205
CGF13205
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c3665-f5cab3a03459c5cc539892a846a549afabd02767dc0934b6b7c3e980076660c73
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri May 09 12:20:56 EDT 2025
Fri Jul 25 06:15:08 EDT 2025
Tue Jul 01 02:23:08 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Wed Jan 22 16:28:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3665-f5cab3a03459c5cc539892a846a549afabd02767dc0934b6b7c3e980076660c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3770-8726
OpenAccessLink https://inria.hal.science/hal-01512256
PQID 1915563175
PQPubID 30877
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_01512256v1
proquest_journals_1915563175
crossref_primary_10_1111_cgf_13205
crossref_citationtrail_10_1111_cgf_13205
wiley_primary_10_1111_cgf_13205_CGF13205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2017
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationSeriesTitle Eurographics Conference on Visualization (EuroVis 2017)
PublicationTitle Computer graphics forum
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2010; 10
2012
2010
2009
2008; 9
1997
2008
2007
2005
2011; 12
2004
2002
2011; 17
2007; 13
1972; 28
1999
2014; 20
1977
2007; 28
1984; 16
2002; 24
1999; 15
2015; 22
2017
2016
2014
2004; 2004
1968
Fekete J.‐D. (e_1_2_10_7_2) 2016
Hellerstein J.M. (e_1_2_10_12_2) 1997
e_1_2_10_20_2
e_1_2_10_21_2
Horvitz E. (e_1_2_10_13_2) 1999
Fisher D. (e_1_2_10_8_2) 2012
Pedregosa F. (e_1_2_10_28_2) 2011; 12
Thomas J.J. (e_1_2_10_33_2) 2005
Maaten L. v. d. (e_1_2_10_22_2) 2008; 9
e_1_2_10_19_2
Tumasjan A. (e_1_2_10_34_2) 2010; 10
Brandes U. (e_1_2_10_5_2) 2007
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_36_2
e_1_2_10_6_2
e_1_2_10_9_2
e_1_2_10_11_2
Tukey J.W. (e_1_2_10_35_2) 1977
Yang X. (e_1_2_10_37_2) 2012
Ayres J. (e_1_2_10_2_2) 2002
e_1_2_10_32_2
e_1_2_10_31_2
e_1_2_10_30_2
Miller R.B. (e_1_2_10_23_2) 1968
Bird S. (e_1_2_10_3_2) 2009
Keim D.A. (e_1_2_10_18_2) 2010
Kim H. (e_1_2_10_17_2) 2017
Zgraggen E. (e_1_2_10_38_2) 2016
Horvitz E.J. (e_1_2_10_14_2) 2007; 28
Pezzotti N. (e_1_2_10_26_2) 2016
Hetzler E.G. (e_1_2_10_10_2) 2005
e_1_2_10_29_2
e_1_2_10_27_2
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – volume: 15
  start-page: 119
  issue: 1
  year: 1999
  end-page: 129
  article-title: A survey of computational steering environments
  publication-title: Future Generation Computer Systems
– year: 2017
  article-title: Pive: Per‐iteration visualization environment for real‐time interactions with dimension reduction and clustering
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2009
– start-page: 42
  year: 2007
  end-page: 53
– year: 2010
  publication-title: Mastering the Information Age: Solving Problems with Visual Analytics
– volume: 20
  start-page: 2122
  issue: 12
  year: 2014
  end-page: 2131
  article-title: The effects of interactive latency on exploratory visual analysis
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– start-page: 561
  year: 2014
  end-page: 570
– volume: 17
  start-page: 2301
  issue: 12
  year: 2011
  end-page: 2309
  article-title: D : Data‐driven documents
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2005
– start-page: 171
  year: 1997
  end-page: 182
  article-title: Online aggregation
  publication-title: Proceedings of the ACM Conference on Management of Data
– volume: 10
  start-page: 178
  year: 2010
  end-page: 185
  article-title: Predicting elections with Twitter: What 140 characters reveal about political sentiment
  publication-title: Proceedings of the AAAI Conference on Weblogs and Social Media
– volume: 24
  start-page: 881
  issue: 7
  year: 2002
  end-page: 892
  article-title: An efficient k‐means clustering algorithm: Analysis and implementation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 216
  year: 2014
  end-page: 225
– volume: 22
  start-page: 1830
  issue: 7
  year: 2015
  end-page: 1842
  article-title: An enhanced visualization process model for incremental visualization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 28
  start-page: 11
  issue: 1
  year: 1972
  end-page: 21
  article-title: A statistical interpretation of term specificity and its application in retrieval
  publication-title: Journal of Documentation
– year: 1977
– start-page: 429
  year: 2002
  end-page: 435
  article-title: Sequential pattern mining using a bitmap representation
  publication-title: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining
– volume: 13
  start-page: 1240
  issue: 6
  year: 2007
  end-page: 1247
  article-title: Animated transitions in statistical data graphics
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2012
– year: 2016
  article-title: Progressive analytics: A computation paradigm for exploratory data analysis
  publication-title: ArXiv e‐prints
– volume: 20
  start-page: 1653
  issue: 12
  year: 2014
  end-page: 1662
  article-title: Progressive visual analytics: User‐driven visual exploration of in‐progress analytics
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 57
  year: 2004
  end-page: 64
  article-title: Steerable, progressive multidimensional scaling
  publication-title: Proceedings of the IEEE Symposium on Information Visualization
– volume: 28
  start-page: 3
  issue: 2
  year: 2007
  article-title: Reflections on challenges and promises of mixed‐initiative interaction
  publication-title: AI Magazine
– start-page: 89
  year: 2005
  end-page: 94
– start-page: 1673
  year: 2012
  end-page: 1682
  article-title: Trust me, I'm partially right: incremental visualization lets analysts explore large datasets faster
  publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems
– start-page: 370
  year: 2012
  end-page: 378
  article-title: A framework for summarizing and analyzing Twitter feeds
  publication-title: Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining
– start-page: 267
  year: 1968
  end-page: 277
  article-title: Response time in man‐computer conversational transactions
  publication-title: Proceedings of the ACM Fall Joint Computer Conference
– volume: 2004
  start-page: 38
  year: 2004
  end-page: 41
– start-page: 159
  year: 1999
  end-page: 166
  article-title: Principles of mixed‐initiative user interfaces
  publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems
– year: 2016
  article-title: Approximated and user steerable tSNE for progressive visual analytics
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2016
  article-title: How progressive visualizations affect exploratory analysis
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 473
  year: 2012
  end-page: 482
  article-title: Semantic interaction for visual text analytics
  publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– start-page: 154
  year: 2008
  end-page: 175
– volume: 20
  start-page: 1643
  issue: 12
  year: 2014
  end-page: 1652
  article-title: Opening the black box: Strategies for increased user involvement in existing algorithm implementations
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 16
  start-page: 265
  issue: 3
  year: 1984
  end-page: 285
  article-title: Response time and display rate in human performance with computers
  publication-title: ACM Computing Surveys
– ident: e_1_2_10_15_2
  doi: 10.1109/TVCG.2007.70539
– year: 2016
  ident: e_1_2_10_26_2
  article-title: Approximated and user steerable tSNE for progressive visual analytics
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– ident: e_1_2_10_21_2
  doi: 10.1109/TVCG.2014.2346452
– ident: e_1_2_10_27_2
  doi: 10.3115/1614025.1614037
– start-page: 370
  year: 2012
  ident: e_1_2_10_37_2
  article-title: A framework for summarizing and analyzing Twitter feeds
  publication-title: Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining
– start-page: 42
  volume-title: Eigensolver Methods for Progressive Multidimensional Scaling of Large Data
  year: 2007
  ident: e_1_2_10_5_2
– volume-title: Illuminating the path: The research and development agenda for visual analytics
  year: 2005
  ident: e_1_2_10_33_2
– start-page: 1673
  year: 2012
  ident: e_1_2_10_8_2
  article-title: Trust me, I'm partially right: incremental visualization lets analysts explore large datasets faster
  publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems
– start-page: 89
  volume-title: Proceedings of the IEEE Symposium on Information Visualization
  year: 2005
  ident: e_1_2_10_10_2
– ident: e_1_2_10_20_2
  doi: 10.1109/TPAMI.2002.1017616
– start-page: 171
  year: 1997
  ident: e_1_2_10_12_2
  article-title: Online aggregation
  publication-title: Proceedings of the ACM Conference on Management of Data
– ident: e_1_2_10_24_2
  doi: 10.1109/TVCG.2014.2346578
– ident: e_1_2_10_6_2
  doi: 10.1145/2207676.2207741
– ident: e_1_2_10_11_2
  doi: 10.1609/icwsm.v8i1.14550
– ident: e_1_2_10_4_2
  doi: 10.1109/TVCG.2011.185
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_10_28_2
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– start-page: 267
  year: 1968
  ident: e_1_2_10_23_2
  article-title: Response time in man‐computer conversational transactions
  publication-title: Proceedings of the ACM Fall Joint Computer Conference
– ident: e_1_2_10_19_2
– year: 2010
  ident: e_1_2_10_18_2
  publication-title: Mastering the Information Age: Solving Problems with Visual Analytics
– ident: e_1_2_10_32_2
  doi: 10.1109/TVCG.2014.2346574
– ident: e_1_2_10_31_2
  doi: 10.1108/eb026526
– ident: e_1_2_10_30_2
  doi: 10.1145/2514.2517
– start-page: 429
  year: 2002
  ident: e_1_2_10_2_2
  article-title: Sequential pattern mining using a bitmap representation
  publication-title: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining
– year: 2017
  ident: e_1_2_10_17_2
  article-title: Pive: Per‐iteration visualization environment for real‐time interactions with dimension reduction and clustering
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v31i1.10628
– ident: e_1_2_10_9_2
  doi: 10.1145/2556288.2557195
– ident: e_1_2_10_25_2
  doi: 10.1016/S0167-739X(98)00047-8
– start-page: 159
  year: 1999
  ident: e_1_2_10_13_2
  article-title: Principles of mixed‐initiative user interfaces
  publication-title: Proceedings of the ACM Conference on Human Factors in Computing Systems
– volume-title: Addison‐Wesley series in behavioral science: quantitative methods
  year: 1977
  ident: e_1_2_10_35_2
– ident: e_1_2_10_29_2
  doi: 10.1109/TVCG.2015.2462356
– volume-title: Natural Language Processing with Python
  year: 2009
  ident: e_1_2_10_3_2
– volume: 9
  start-page: 2579
  year: 2008
  ident: e_1_2_10_22_2
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– year: 2016
  ident: e_1_2_10_38_2
  article-title: How progressive visualizations affect exploratory analysis
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 10
  start-page: 178
  year: 2010
  ident: e_1_2_10_34_2
  article-title: Predicting elections with Twitter: What 140 characters reveal about political sentiment
  publication-title: Proceedings of the AAAI Conference on Weblogs and Social Media
  doi: 10.1609/icwsm.v4i1.14009
– year: 2016
  ident: e_1_2_10_7_2
  article-title: Progressive analytics: A computation paradigm for exploratory data analysis
  publication-title: ArXiv e‐prints
– ident: e_1_2_10_36_2
  doi: 10.1109/INFVIS.2004.60
– ident: e_1_2_10_16_2
  doi: 10.1007/978-3-540-70956-5_7
– volume: 28
  start-page: 3
  issue: 2
  year: 2007
  ident: e_1_2_10_14_2
  article-title: Reflections on challenges and promises of mixed‐initiative interaction
  publication-title: AI Magazine
SSID ssj0004765
Score 2.3444557
Snippet Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough...
Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough...
Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysisis performed progressively, rough...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 491
SubjectTerms Analytics
Categories and Subject Descriptors (according to ACM CCS)
Computer Science
Crafts
Data analysis
Decision analysis
Decisions
Estimates
H.5.2 [Information Interfaces]: User Interfaces—GUI
Human-Computer Interaction
Sequential analysis
Social networks
Steering
Systems analysis
Title Steering the Craft: UI Elements and Visualizations for Supporting Progressive Visual Analytics
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13205
https://www.proquest.com/docview/1915563175
https://inria.hal.science/hal-01512256
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zJz34LU6nBPHgpaNtmnTV0xibU1REnewgliRNpyidrN0O_vXm9csqCiK9hPaVpnl5ze-l7_0eQocB89pcEMuwQqoMxw1go4k5UERA6sMkYQDZyJdXbDB0zkd0VEMnRS5Mxg9RbriBZaTfazBwLuKKkctx2IL8X0gwh1gtAEQ3n9RRjstowesNjDE5qxBE8ZR3flmLFp4gErICM6tgNV1t-ivooehnFmTy0poloiXfv1E4_vNFVtFyjkJxJ5s2a6imonW0VOEm3ECPt0nWxBoi4u6Uh8kxHp7hXhZvHmMeBfj-OYakzDyVE2sAjKFM6ASoCcb4GmK_IMx2rnJJnHKgADP0Jhr2e3fdgZEXYzAkYYwaIZVap9wkDvUklZISr-3ZXMMXrl1MHnIRaA-XuYE0PeIIJlxJlNeGP32MmdIlW6geTSK1jbBUTKjQJcIT2juXVJjM1jPGsYXilBPVQEeFWnyZM5VDwYxXv_BY9JD56ZA10EEp-pbRc_wopHVbXgdC7UHnwodzJgAejfrmVgM1C9X7uRnHvgXs-Qwglu5TqsPfn-J3T_tpY-fvorto0QaYkO7qNFE9mc7UngY5idhPZ_MH8hj2QA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIADb8RgQIQ4cOnULk26Ii5obAwYE4INcYEqSdOBQANtHQd-PXEfYyCQEOolal01jZPms2t_BtgLuV8RkjqWEzFtuV6IjibuYhEBZQ6bRiFmI1-0eKPjnt2y2wk4zHNhUn6IkcMNV0byvcYFjg7psVWuulEJE4DZJExjRW9kzj---iSPcj3OcmZv5IzJeIUwjmd065fdaPIBYyHHgOY4XE32m_oC3OU9TcNMnkrDWJbU-zcSx_--yiLMZ0CUHKUzZwkmdG8Z5sboCVfg_jpOm8SgRFLtiyg-IJ1TUktDzgdE9EJy8zjAvMwsm5MYDEywUugLshN0ySWGf2Gk7ZvOJElCg4Lk0KvQqdfa1YaV1WOwFOWcWRFTRq3Cpi7zFVOKUb_il4VBMMJYmSISMjRGLvdCZfvUlVx6imq_gj_7OLeVR9dgqvfS0-tAlOZSRx6VvjQGumLS5mUzadyy1IIJqguwn-slUBlZOdbMeA5yo8UMWZAMWQF2R6KvKUPHj0JGuaPryKndOGoGeM5GzGOA35tTgGKu-yBbyYPAQQJ9jijL9ClR4u9PCaon9aSx8XfRHZhptC-aQfO0db4Js2VEDYmTpwhTcX-otwzmieV2MrU_AFdX-lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_cBNEHv8Xp1CA--NLRLU266pNszs0vRJ34IJYkTaco29g6H_zrzfVjTlEQ6UtorzTN5ZrfpXe_A9gLuFcVkpatcsi05bgBbjRxB4sIKHPYNAwwG_nikjfbzuk9u5-CwywXJuGHGG-4oWXE32s08H4QThi56oQlzP9lOZh2uO1h3Yb69Sd3lONylhF7I2VMSiuEYTzjW78sRrknDIWcwJmTaDVebhoL8JB1NIkyeSmNIllS7984HP_5Joswn8JQcpTMmyWY0t1lmJsgJ1yBx5soaRKDEUltIMLogLRb5DgJOB8S0Q3I3fMQszLTXE5iEDDBOqE95CbokCsM_sI42zedSpKYBAWpoVeh3Ti-rTWttBqDpSjnzAqZMkoVNnWYp5hSjHpVryIMfhHGxxShkIFxcbkbKNujjuTSVVR7VfzVx7mtXLoG-W6vq9eBKM2lDl0qPWncc8WkzStmyjgVqQUTVBdgP1OLr1KqcqyY8epnLosZMj8esgLsjkX7CT_Hj0JGt-PryKjdPDr38ZyNiMfAvrdyAYqZ6v3Ujod-GenzOWIs06dYh78_xa-dNOLGxt9Fd2Dmqt7wz1uXZ5swW0HIEO_wFCEfDUZ6ywCeSG7HE_sDbtr5Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steering+the+Craft%3A+UI+Elements+and+Visualizations+for+Supporting+Progressive+Visual+Analytics&rft.jtitle=Computer+graphics+forum&rft.au=Badam%2C+Sriram+Karthik&rft.au=Elmqvist%2C+Niklas&rft.au=Fekete%2C+Jean-Daniel&rft.date=2017-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=36&rft.issue=3&rft.spage=491&rft_id=info:doi/10.1111%2Fcgf.13205&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon