Probe ultrasonification of egg yolk plasma forms low-density lipoprotein nanoparticles that efficiently protect canine semen during cryofreezing

Around the world, many couples have turned to in vitro fertilization as a viable solution to fertility issues. Low-density lipoprotein (LDL) is a protein best known for transporting fat molecules throughout the body, but it has also been shown to protect sperm cells during cryopreservation due to it...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 298; no. 7; p. 101975
Main Authors Anastácio da Silva, Edenara, Corcini, Carine Dahl, de Assis Araújo Camelo Junior, Francisco, Martins, Diego, Meneghello Gheller, Stela Mari, Hädrich, Gabriela, Dora, Cristiana Lima, Varela Junior, Antonio Sergio
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2022
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Around the world, many couples have turned to in vitro fertilization as a viable solution to fertility issues. Low-density lipoprotein (LDL) is a protein best known for transporting fat molecules throughout the body, but it has also been shown to protect sperm cells during cryopreservation due to its micellar structure. In the present study, we aimed to evaluate different protocols for the preparation of nanoparticles from egg yolk plasma (EYP) containing LDL to improve the viability of cryopreserved canine semen. EYP was subjected to three distinct treatments: ultrasonification in an ultrasound bath at 40 kHz for 30 min (LDL-B); ultrasonification via an ultrasound probe at 50% amplitude for 30 min (LDL-P); and high-pressure homogenization at 10,000 PSI for six cycles (LDL-H). Sperm quality was assessed after thawing using computer-assisted sperm analysis and flow cytometry. The results revealed that compared to the EYP control, the LDL-P formulation presented significantly higher efficiency (p < 0.05) in maintaining total and progressive sperm motility, sperm membrane integrity and fluidity, and levels of intracellular reactive oxygen species. The LDL-P nanoparticles had an average size of approximately 250 nm, a polydispersity index value of 0.3, and −1.15 mV of zeta potential, which are very important because it is an indicator of the stability of a colloidal dispersion. Therefore, we conclude that ultrasonication of EYP using a probe is an efficient method for the preparation of LDL nanoparticles that would enhance the cryoprotection of semen during freezing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/j.jbc.2022.101975