Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation

HSP70 proteins are well known as molecular chaperones involved in protein folding and quality control. Whether they also function in gene transcription on chromatin, and if so, how they are regulated, remains elusive. Here we report that HSP70 can also regulate gene transcription through its associa...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 26; pp. E3327 - E3336
Main Authors Gao, Wei-wei, Xiao, Rong-quan, Peng, Bing-ling, Xu, Huan-teng, Shen, Hai-feng, Huang, Ming-feng, Shi, Tao-tao, Yi, Jia, Zhang, Wen-juan, Wu, Xiao-nan, Gao, Xiang, Lin, Xiang-zhi, Dorrestein, Pieter C., Rosenfeld, Michael G., Liu, Wen
Format Journal Article
LanguageEnglish
Published United States National Acad Sciences 30.06.2015
National Academy of Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract HSP70 proteins are well known as molecular chaperones involved in protein folding and quality control. Whether they also function in gene transcription on chromatin, and if so, how they are regulated, remains elusive. Here we report that HSP70 can also regulate gene transcription through its association with chromatin, distinct from its “classic” function as a molecular chaperone. The function of HSP70 in gene transcription is subject to regulation of an arginine methylation on a highly conserved residue in HSP70, which modulates the recruitment of a key component in the pre-initiation complex, and thus transcription initiation. The present study reveals an additional, previously overlooked function of HSP70 chaperone proteins, and links arginine methylation of nonhistone proteins to gene transcriptional regulation. Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β 2 (RAR β2 ) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.
AbstractList HSP70 proteins are well known as molecular chaperones involved in protein folding and quality control. Whether they also function in gene transcription on chromatin, and if so, how they are regulated, remains elusive. Here we report that HSP70 can also regulate gene transcription through its association with chromatin, distinct from its “classic” function as a molecular chaperone. The function of HSP70 in gene transcription is subject to regulation of an arginine methylation on a highly conserved residue in HSP70, which modulates the recruitment of a key component in the pre-initiation complex, and thus transcription initiation. The present study reveals an additional, previously overlooked function of HSP70 chaperone proteins, and links arginine methylation of nonhistone proteins to gene transcriptional regulation. Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β 2 (RAR β2 ) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.
Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β 2 (RAR β2 ) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.
Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain-containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70's function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain-containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70's function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.
Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain-containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70's function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.
Author Ming-feng Huang
Bing-ling Peng
Xiang-zhi Lin
Wen Liu
Rong-quan Xiao
Tao-tao Shi
Xiang Gao
Wei-wei Gao
Jia Yi
Xiao-nan Wu
Huan-teng Xu
Michael G. Rosenfeld
Wen-juan Zhang
Pieter C. Dorrestein
Hai-feng Shen
Author_xml – sequence: 1
  givenname: Wei-wei
  surname: Gao
  fullname: Gao, Wei-wei
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China;, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361105, China
– sequence: 2
  givenname: Rong-quan
  surname: Xiao
  fullname: Xiao, Rong-quan
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 3
  givenname: Bing-ling
  surname: Peng
  fullname: Peng, Bing-ling
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 4
  givenname: Huan-teng
  surname: Xu
  fullname: Xu, Huan-teng
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 5
  givenname: Hai-feng
  surname: Shen
  fullname: Shen, Hai-feng
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 6
  givenname: Ming-feng
  surname: Huang
  fullname: Huang, Ming-feng
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 7
  givenname: Tao-tao
  surname: Shi
  fullname: Shi, Tao-tao
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 8
  givenname: Jia
  surname: Yi
  fullname: Yi, Jia
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 9
  givenname: Wen-juan
  surname: Zhang
  fullname: Zhang, Wen-juan
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 10
  givenname: Xiao-nan
  surname: Wu
  fullname: Wu, Xiao-nan
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 11
  givenname: Xiang
  surname: Gao
  fullname: Gao, Xiang
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 12
  givenname: Xiang-zhi
  surname: Lin
  fullname: Lin, Xiang-zhi
  organization: Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005, China
– sequence: 13
  givenname: Pieter C.
  surname: Dorrestein
  fullname: Dorrestein, Pieter C.
  organization: Department of Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
– sequence: 14
  givenname: Michael G.
  surname: Rosenfeld
  fullname: Rosenfeld, Michael G.
  organization: Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093;, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
– sequence: 15
  givenname: Wen
  surname: Liu
  fullname: Liu, Wen
  organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26080448$$D View this record in MEDLINE/PubMed
BookMark eNqFUctOHDEQtBAoLCRnbmiOuQz4ObYvSCtEAAkJRMLZ8nNxNGtvxrNI_FY-hG_CC8vmcYCT7e6q6nLXHthOOXkADhA8QpCT40XS5QgxKDsmEMJbYIKgRG1HJdwGEwgxbwXFdBfslfITQiiZgJ_ALu6ggJSKCbibDrOYYvLN3I_3j70eY05NDs3F9xsOm8HPlrXmS72NMeXoGm2ja-fexVp2ze309uk3bma-Kmg7xocXgc9gJ-i--C_rcx_cfTv7cXrRXl2fX55Or1pLug631hiEiBMYWS554FR3mFCtHXdGY--1DvXlqeGs4yxQ7AIz0IRgGCPGabIPTl51F0tTLVmfxkH3ajHEuR4eVdZR_dtJ8V7N8oOiVCLOcBX4uhYY8q-lL6Oax2J93-vk87IoJBAXhEoiP4Z2kqzgTFTo4d-2Nn7e1l4Bx68AO-RSBh82EATVKli1Clb9CbYy2H8MG8eXXdd_xf4dXrO2smpspiBczagzQjAnz5lEtDc
CitedBy_id crossref_primary_10_1016_j_jbc_2022_102290
crossref_primary_10_1007_s11262_017_1449_8
crossref_primary_10_1111_ajco_14112
crossref_primary_10_1093_nar_gkae329
crossref_primary_10_1038_s41467_024_47689_4
crossref_primary_10_1111_fcp_12523
crossref_primary_10_1371_journal_pone_0216015
crossref_primary_10_3389_fphys_2021_609674
crossref_primary_10_1021_jacs_4c08175
crossref_primary_10_1038_ncomms11974
crossref_primary_10_1073_pnas_2115711119
crossref_primary_10_1073_pnas_2200753119
crossref_primary_10_1016_j_ecoenv_2017_04_003
crossref_primary_10_1038_s42003_024_07183_5
crossref_primary_10_1158_0008_5472_CAN_19_1738
crossref_primary_10_1210_endrev_bnab014
crossref_primary_10_3390_ijms20133322
crossref_primary_10_1016_j_bioorg_2022_106119
crossref_primary_10_1042_CS20200680
crossref_primary_10_1073_pnas_2313370121
crossref_primary_10_1016_j_bbcan_2023_188916
crossref_primary_10_1093_nar_gkw1144
crossref_primary_10_3389_fgene_2017_00032
crossref_primary_10_3892_mmr_2019_10111
crossref_primary_10_1016_j_celrep_2018_08_066
crossref_primary_10_1021_acs_jmedchem_4c02106
crossref_primary_10_1038_s41467_020_16271_z
crossref_primary_10_1016_j_celrep_2023_113385
crossref_primary_10_3390_cancers15061903
crossref_primary_10_1128_JVI_00790_17
crossref_primary_10_1074_jbc_M117_800706
crossref_primary_10_1111_pce_14138
crossref_primary_10_1038_s41392_022_01145_1
crossref_primary_10_1021_acs_jproteome_6b00521
crossref_primary_10_1021_acsmedchemlett_9b00264
crossref_primary_10_1016_j_abb_2019_02_014
crossref_primary_10_1007_s13402_024_00943_9
crossref_primary_10_1002_pld3_517
crossref_primary_10_1038_ncomms12882
crossref_primary_10_1074_jbc_REV120_011666
crossref_primary_10_1111_cpr_12747
crossref_primary_10_1158_0008_5472_CAN_15_1989
crossref_primary_10_1016_j_bbcan_2019_04_002
crossref_primary_10_15252_embj_2022112408
crossref_primary_10_1007_s00018_017_2515_z
crossref_primary_10_1007_s11033_023_08464_8
crossref_primary_10_1038_s41573_021_00159_8
crossref_primary_10_3892_ijo_2016_3450
crossref_primary_10_1096_fj_201700377R
crossref_primary_10_1016_j_ymthe_2021_08_011
crossref_primary_10_1074_jbc_RA119_008693
crossref_primary_10_3390_life11080768
crossref_primary_10_1016_j_molcel_2018_03_006
crossref_primary_10_1016_j_ymeth_2019_09_014
crossref_primary_10_1007_s00018_024_05531_6
crossref_primary_10_1016_j_cytogfr_2020_07_011
crossref_primary_10_18632_oncotarget_11376
crossref_primary_10_3393_ac_2020_00899_0128
crossref_primary_10_1083_jcb_201703037
Cites_doi 10.1093/nar/gkr1122
10.1016/j.cell.2004.12.012
10.1038/nature10317
10.1379/1466-1268(1998)003<0118:DIOPAT>2.3.CO;2
10.1016/0092-8674(95)90202-3
10.1101/gad.177758.111
10.1016/j.bbamcr.2011.07.001
10.1126/science.1101400
10.2174/138920208785133280
10.1016/S0079-6603(08)60825-9
10.1021/bi800639z
10.1016/j.molcel.2009.09.023
10.1016/j.molcel.2005.04.003
10.1016/0003-9861(72)90174-9
10.1210/me.2008-0380
10.1371/journal.pone.0087982
10.1016/S0092-8674(04)00133-3
10.1038/nrc3409
10.1007/s00018-009-0010-x
10.1371/journal.pgen.1003210
10.1016/j.virol.2013.12.040
10.1016/j.gde.2008.01.012
10.1038/ncomms2074
10.1016/j.bbagrm.2014.02.008
10.1093/carcin/bgt111
10.1074/jbc.274.48.34425
10.4161/cc.27353
10.1016/j.jprot.2013.10.008
10.1074/jbc.M112.433284
10.1101/gad.14.2.121
10.1016/j.cell.2007.02.005
10.1007/s00018-004-4464-6
10.1016/S0092-8674(02)00641-4
10.1007/s11427-009-0054-z
10.1016/j.tibs.2013.02.004
10.1093/jmcb/mjr025
10.1038/nature09272
10.1016/j.cell.2011.08.008
10.1093/abbs/gmr100
10.1038/47412
10.1039/C0MB00176G
10.1126/science.1145801
10.1021/bi00889a003
10.1021/ac050102d
10.1016/j.molcel.2005.02.034
10.1042/BJ20101247
10.4161/cc.10.9.15379
10.1126/science.1175865
10.1016/j.cell.2004.08.020
10.1016/j.bbagrm.2013.02.010
10.1074/jbc.M113.483248
10.1038/nrm3327
10.1038/nrg1945
10.1016/j.jmb.2010.05.054
10.1016/j.canlet.2014.05.014
10.1016/j.cell.2013.10.056
10.1006/dbio.1995.1226
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1509658112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Methylation of HSP70 in gene transcription
EISSN 1091-6490
EndPage E3336
ExternalDocumentID PMC4491752
26080448
10_1073_pnas_1509658112
112_26_E3327
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: National Natural Science Foundation of China
  grantid: 31371292
– fundername: National Natural Science Foundation of China
  grantid: 31422030
– fundername: National Natural Science Foundation of China
  grantid: 91440112
GroupedDBID -
02
0R
123
1AW
29P
2WC
53G
55
5RE
5VS
85S
AAPBV
ABBHK
ABFLS
ABOCM
ABPPZ
ABPTK
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACO
ADULT
ADZLD
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
DZ
E3Z
EBS
EJD
F20
F5P
FRP
GX1
H13
HH5
HYE
JLS
JPM
JSG
JSODD
JST
KM
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQEST
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
WH7
WOQ
WOW
X
X7M
XHC
Y6R
ZA5
---
-DZ
-~X
.55
0R~
2AX
2FS
4.4
AACGO
AAFWJ
AANCE
AAYXX
ABPLY
ABTLG
ABXSQ
ACHIC
ADQXQ
AEUPB
AEXZC
AFOSN
AQVQM
CITATION
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
W8F
XSW
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c3662-cbb113d821c797f74a6234aad7dba2eeaaf4aae4b75675f42df5b0bffb553bda3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:15:03 EDT 2025
Fri Jul 11 05:31:18 EDT 2025
Fri Jul 11 11:55:40 EDT 2025
Thu Apr 03 07:09:18 EDT 2025
Tue Jul 01 01:53:28 EDT 2025
Thu Apr 24 22:51:45 EDT 2025
Wed Nov 11 00:29:41 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords arginine methylation
heat-shock proteins
gene transcription
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3662-cbb113d821c797f74a6234aad7dba2eeaaf4aae4b75675f42df5b0bffb553bda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: M.G.R. and W.L. designed research; W.-w.G., R.-q.X., B.-l.P., H.-t.X., H.-f.S., M.-f.H., T.-t.S., J.Y., W.-j.Z., X.-n.W., X.G., and W.L. performed research; X.-z.L. and P.C.D. contributed new reagents/analytic tools; W.-w.G., R.-q.X., B.-l.P., H.-t.X., H.-f.S., M.-f.H., T.-t.S., J.Y., W.-j.Z., X.-n.W., X.G., and W.L. analyzed data; and W.L. wrote the paper with contributions from M.G.R.
1R.-q.X. and B.-l.P. contributed equally to this work.
Contributed by Michael G. Rosenfeld, May 19, 2015 (sent for review January 21, 2015; reviewed by Michael R. Stallcup)
Reviewers included: M.R.S., University of Southern California.
OpenAccessLink https://www.pnas.org/content/pnas/112/26/E3327.full.pdf
PMID 26080448
PQID 1693181758
PQPubID 23479
ParticipantIDs pubmed_primary_26080448
proquest_miscellaneous_1693181758
crossref_primary_10_1073_pnas_1509658112
crossref_citationtrail_10_1073_pnas_1509658112
proquest_miscellaneous_1817834939
pnas_primary_112_26_E3327
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4491752
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-30
PublicationDateYYYYMMDD 2015-06-30
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Acad Sciences
National Academy of Sciences
Publisher_xml – name: National Acad Sciences
– name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
20622854 - Nature. 2010 Jul 22;466(7305):508-12
24561874 - Biochim Biophys Acta. 2014 Dec;1839(12):1395-403
24498420 - PLoS One. 2014;9(2):e87982
15808511 - Mol Cell. 2005 Apr 1;18(1):83-96
15345777 - Science. 2004 Oct 8;306(5694):279-83
15339660 - Cell. 2004 Sep 3;118(5):545-53
22028380 - J Mol Cell Biol. 2011 Oct;3(5):301-8
17320507 - Cell. 2007 Feb 23;128(4):693-705
16013882 - Anal Chem. 2005 Jul 15;77(14):4626-39
7649373 - Dev Biol. 1995 Aug;170(2):420-33
22473470 - Nat Rev Mol Cell Biol. 2012 May;13(5):297-311
15620353 - Cell. 2004 Dec 29;119(7):941-53
21152665 - Mol Biosyst. 2011 Mar;7(3):700-10
5063076 - Arch Biochem Biophys. 1972 Feb;148(2):558-67
9672247 - Cell Stress Chaperones. 1998 Jun;3(2):118-29
21776078 - Nature. 2011 Jul 21;475(7356):324-32
22194010 - Acta Biochim Biophys Sin (Shanghai). 2012 Jan;44(1):14-27
24880080 - Cancer Lett. 2014 Aug 28;351(1):126-33
19300908 - Cell Mol Life Sci. 2009 Jul;66(13):2109-21
24606677 - Virology. 2014 Mar;452-453:1-11
23563090 - Carcinogenesis. 2013 Jun;34(6):1181-8
22241783 - Genes Dev. 2012 Jan 15;26(2):114-9
19164444 - Mol Endocrinol. 2009 Apr;23(4):425-33
9752719 - Prog Nucleic Acid Res Mol Biol. 1998;61:65-131
23459247 - Biochim Biophys Acta. 2013 May;1829(5):443-54
19471609 - Curr Genomics. 2008;9(5):338-248
21781992 - Biochim Biophys Acta. 2012 Jan;1823(1):130-7
20684070 - J Mol Biol. 2010 Aug 13;401(2):211-22
19381457 - Sci China C Life Sci. 2009 Apr;52(4):311-22
19818706 - Mol Cell. 2009 Oct 9;36(1):15-27
15770419 - Cell Mol Life Sci. 2005 Mar;62(6):670-84
17947579 - Science. 2007 Oct 19;318(5849):444-7
10652267 - Genes Dev. 2000 Jan 15;14(2):121-41
22135298 - Nucleic Acids Res. 2012 Jan;40(Database issue):D261-70
14114491 - Biochemistry. 1964 Jan;3:10-5
14980219 - Cell. 2004 Feb 20;116(4):511-26
15866169 - Mol Cell. 2005 Apr 29;18(3):263-72
21445011 - Cell Cycle. 2011 May 1;10(9):1343-4
24296620 - Cell Cycle. 2014;13(1):32-41
23921388 - J Biol Chem. 2013 Sep 27;288(39):27752-63
23349634 - PLoS Genet. 2013;9(1):e1003210
24360279 - Cell. 2013 Dec 19;155(7):1581-95
23303181 - J Biol Chem. 2013 Mar 1;288(9):6053-62
10567422 - J Biol Chem. 1999 Nov 26;274(48):34425-32
18339539 - Curr Opin Genet Dev. 2008 Apr;18(2):152-8
24140279 - J Proteomics. 2014 Apr 4;100:115-24
8521510 - Cell. 1995 Dec 15;83(6):859-69
21231916 - Biochem J. 2011 Apr 1;435(1):127-42
21925322 - Cell. 2011 Sep 16;146(6):1016-28
19574390 - Science. 2009 Jul 3;325(5936):90-3
10638745 - Nature. 2000 Jan 6;403(6765):41-5
23490039 - Trends Biochem Sci. 2013 May;38(5):243-52
16983801 - Nat Rev Genet. 2006 Sep;7(9):715-27
23235912 - Nat Rev Cancer. 2013 Jan;13(1):37-50
18557634 - Biochemistry. 2008 Jul 8;47(27):7001-11
11909518 - Cell. 2002 Feb 22;108(4):465-74
22990868 - Nat Commun. 2012;3:1072
References_xml – ident: e_1_3_3_30_2
  doi: 10.1093/nar/gkr1122
– ident: e_1_3_3_5_2
  doi: 10.1016/j.cell.2004.12.012
– ident: e_1_3_3_25_2
  doi: 10.1038/nature10317
– ident: e_1_3_3_26_2
  doi: 10.1379/1466-1268(1998)003<0118:DIOPAT>2.3.CO;2
– ident: e_1_3_3_36_2
  doi: 10.1016/0092-8674(95)90202-3
– ident: e_1_3_3_46_2
  doi: 10.1101/gad.177758.111
– ident: e_1_3_3_49_2
  doi: 10.1016/j.bbamcr.2011.07.001
– ident: e_1_3_3_16_2
  doi: 10.1126/science.1101400
– ident: e_1_3_3_23_2
  doi: 10.2174/138920208785133280
– ident: e_1_3_3_9_2
  doi: 10.1016/S0079-6603(08)60825-9
– ident: e_1_3_3_24_2
  doi: 10.1021/bi800639z
– ident: e_1_3_3_34_2
  doi: 10.1016/j.molcel.2009.09.023
– ident: e_1_3_3_12_2
  doi: 10.1016/j.molcel.2005.04.003
– ident: e_1_3_3_3_2
  doi: 10.1016/0003-9861(72)90174-9
– ident: e_1_3_3_11_2
  doi: 10.1210/me.2008-0380
– ident: e_1_3_3_20_2
  doi: 10.1371/journal.pone.0087982
– ident: e_1_3_3_55_2
  doi: 10.1016/S0092-8674(04)00133-3
– ident: e_1_3_3_15_2
  doi: 10.1038/nrc3409
– ident: e_1_3_3_13_2
  doi: 10.1007/s00018-009-0010-x
– ident: e_1_3_3_31_2
  doi: 10.1371/journal.pgen.1003210
– ident: e_1_3_3_21_2
  doi: 10.1016/j.virol.2013.12.040
– ident: e_1_3_3_40_2
  doi: 10.1016/j.gde.2008.01.012
– ident: e_1_3_3_33_2
  doi: 10.1038/ncomms2074
– ident: e_1_3_3_43_2
  doi: 10.1016/j.bbagrm.2014.02.008
– ident: e_1_3_3_54_2
  doi: 10.1093/carcin/bgt111
– ident: e_1_3_3_27_2
  doi: 10.1074/jbc.274.48.34425
– ident: e_1_3_3_10_2
  doi: 10.4161/cc.27353
– ident: e_1_3_3_50_2
  doi: 10.1016/j.jprot.2013.10.008
– ident: e_1_3_3_52_2
  doi: 10.1074/jbc.M112.433284
– ident: e_1_3_3_38_2
  doi: 10.1101/gad.14.2.121
– ident: e_1_3_3_8_2
  doi: 10.1016/j.cell.2007.02.005
– ident: e_1_3_3_28_2
  doi: 10.1007/s00018-004-4464-6
– ident: e_1_3_3_39_2
  doi: 10.1016/S0092-8674(02)00641-4
– ident: e_1_3_3_41_2
  doi: 10.1007/s11427-009-0054-z
– ident: e_1_3_3_44_2
  doi: 10.1016/j.tibs.2013.02.004
– ident: e_1_3_3_45_2
  doi: 10.1093/jmcb/mjr025
– ident: e_1_3_3_56_2
  doi: 10.1038/nature09272
– ident: e_1_3_3_2_2
  doi: 10.1016/j.cell.2011.08.008
– ident: e_1_3_3_42_2
  doi: 10.1093/abbs/gmr100
– ident: e_1_3_3_1_2
  doi: 10.1038/47412
– ident: e_1_3_3_48_2
  doi: 10.1039/C0MB00176G
– ident: e_1_3_3_18_2
  doi: 10.1126/science.1145801
– ident: e_1_3_3_4_2
  doi: 10.1021/bi00889a003
– ident: e_1_3_3_57_2
  doi: 10.1021/ac050102d
– ident: e_1_3_3_37_2
  doi: 10.1016/j.molcel.2005.02.034
– ident: e_1_3_3_22_2
  doi: 10.1042/BJ20101247
– ident: e_1_3_3_14_2
  doi: 10.4161/cc.10.9.15379
– ident: e_1_3_3_51_2
  doi: 10.1126/science.1175865
– ident: e_1_3_3_17_2
  doi: 10.1016/j.cell.2004.08.020
– ident: e_1_3_3_29_2
  doi: 10.1016/j.bbagrm.2013.02.010
– ident: e_1_3_3_32_2
  doi: 10.1074/jbc.M113.483248
– ident: e_1_3_3_7_2
  doi: 10.1038/nrm3327
– ident: e_1_3_3_6_2
  doi: 10.1038/nrg1945
– ident: e_1_3_3_53_2
  doi: 10.1016/j.jmb.2010.05.054
– ident: e_1_3_3_47_2
  doi: 10.1016/j.canlet.2014.05.014
– ident: e_1_3_3_19_2
  doi: 10.1016/j.cell.2013.10.056
– ident: e_1_3_3_35_2
  doi: 10.1006/dbio.1995.1226
– reference: 17320507 - Cell. 2007 Feb 23;128(4):693-705
– reference: 15339660 - Cell. 2004 Sep 3;118(5):545-53
– reference: 24360279 - Cell. 2013 Dec 19;155(7):1581-95
– reference: 18339539 - Curr Opin Genet Dev. 2008 Apr;18(2):152-8
– reference: 11909518 - Cell. 2002 Feb 22;108(4):465-74
– reference: 21231916 - Biochem J. 2011 Apr 1;435(1):127-42
– reference: 24880080 - Cancer Lett. 2014 Aug 28;351(1):126-33
– reference: 18557634 - Biochemistry. 2008 Jul 8;47(27):7001-11
– reference: 9752719 - Prog Nucleic Acid Res Mol Biol. 1998;61:65-131
– reference: 10567422 - J Biol Chem. 1999 Nov 26;274(48):34425-32
– reference: 21776078 - Nature. 2011 Jul 21;475(7356):324-32
– reference: 21781992 - Biochim Biophys Acta. 2012 Jan;1823(1):130-7
– reference: 7649373 - Dev Biol. 1995 Aug;170(2):420-33
– reference: 9672247 - Cell Stress Chaperones. 1998 Jun;3(2):118-29
– reference: 22990868 - Nat Commun. 2012;3:1072
– reference: 19471609 - Curr Genomics. 2008;9(5):338-248
– reference: 20622854 - Nature. 2010 Jul 22;466(7305):508-12
– reference: 17947579 - Science. 2007 Oct 19;318(5849):444-7
– reference: 21925322 - Cell. 2011 Sep 16;146(6):1016-28
– reference: 15866169 - Mol Cell. 2005 Apr 29;18(3):263-72
– reference: 19574390 - Science. 2009 Jul 3;325(5936):90-3
– reference: 23303181 - J Biol Chem. 2013 Mar 1;288(9):6053-62
– reference: 19818706 - Mol Cell. 2009 Oct 9;36(1):15-27
– reference: 10638745 - Nature. 2000 Jan 6;403(6765):41-5
– reference: 22473470 - Nat Rev Mol Cell Biol. 2012 May;13(5):297-311
– reference: 15808511 - Mol Cell. 2005 Apr 1;18(1):83-96
– reference: 23459247 - Biochim Biophys Acta. 2013 May;1829(5):443-54
– reference: 14980219 - Cell. 2004 Feb 20;116(4):511-26
– reference: 15770419 - Cell Mol Life Sci. 2005 Mar;62(6):670-84
– reference: 24561874 - Biochim Biophys Acta. 2014 Dec;1839(12):1395-403
– reference: 22241783 - Genes Dev. 2012 Jan 15;26(2):114-9
– reference: 19164444 - Mol Endocrinol. 2009 Apr;23(4):425-33
– reference: 23235912 - Nat Rev Cancer. 2013 Jan;13(1):37-50
– reference: 24606677 - Virology. 2014 Mar;452-453:1-11
– reference: 8521510 - Cell. 1995 Dec 15;83(6):859-69
– reference: 16013882 - Anal Chem. 2005 Jul 15;77(14):4626-39
– reference: 24498420 - PLoS One. 2014;9(2):e87982
– reference: 21445011 - Cell Cycle. 2011 May 1;10(9):1343-4
– reference: 22028380 - J Mol Cell Biol. 2011 Oct;3(5):301-8
– reference: 15345777 - Science. 2004 Oct 8;306(5694):279-83
– reference: 23349634 - PLoS Genet. 2013;9(1):e1003210
– reference: 10652267 - Genes Dev. 2000 Jan 15;14(2):121-41
– reference: 16983801 - Nat Rev Genet. 2006 Sep;7(9):715-27
– reference: 23490039 - Trends Biochem Sci. 2013 May;38(5):243-52
– reference: 22194010 - Acta Biochim Biophys Sin (Shanghai). 2012 Jan;44(1):14-27
– reference: 24296620 - Cell Cycle. 2014;13(1):32-41
– reference: 14114491 - Biochemistry. 1964 Jan;3:10-5
– reference: 20684070 - J Mol Biol. 2010 Aug 13;401(2):211-22
– reference: 15620353 - Cell. 2004 Dec 29;119(7):941-53
– reference: 24140279 - J Proteomics. 2014 Apr 4;100:115-24
– reference: 21152665 - Mol Biosyst. 2011 Mar;7(3):700-10
– reference: 23563090 - Carcinogenesis. 2013 Jun;34(6):1181-8
– reference: 23921388 - J Biol Chem. 2013 Sep 27;288(39):27752-63
– reference: 19300908 - Cell Mol Life Sci. 2009 Jul;66(13):2109-21
– reference: 19381457 - Sci China C Life Sci. 2009 Apr;52(4):311-22
– reference: 5063076 - Arch Biochem Biophys. 1972 Feb;148(2):558-67
– reference: 22135298 - Nucleic Acids Res. 2012 Jan;40(Database issue):D261-70
SSID ssj0009580
Score 2.432982
Snippet HSP70 proteins are well known as molecular chaperones involved in protein folding and quality control. Whether they also function in gene transcription on...
Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates,...
Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates,...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E3327
SubjectTerms Amino Acid Sequence
arginine
Arginine - metabolism
Biological Sciences
chromatin
Chromatin - metabolism
gene activation
Gene Expression Regulation
genes
HEK293 Cells
HSP70 Heat-Shock Proteins - chemistry
HSP70 Heat-Shock Proteins - metabolism
Humans
Methylation
molecular chaperones
Molecular Sequence Data
PNAS Plus
protein folding
quality control
Receptors, Retinoic Acid - genetics
transcription (genetics)
Transcription Factor TFIIH - metabolism
Transcription, Genetic
Tretinoin - pharmacology
Title Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation
URI http://www.pnas.org/content/112/26/E3327.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26080448
https://www.proquest.com/docview/1693181758
https://www.proquest.com/docview/1817834939
https://pubmed.ncbi.nlm.nih.gov/PMC4491752
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagvPCCGNdyU5CYNFS5JLYTJ4_d1FGhUarSir5FduJ0kap09AKCn8UP4Tdx7MRJOwYavFiNr5XPl3NxfM5B6BXlnEZgdmEK0hqzSEZYCOViEdFEhW4WJcZv7f0wGEzZu5k_ay5kGu-Sjewm36_0K_kfqkId0FV7yf4DZetJoQJ-A32hBApDeS0a91Zznd9BmTzQ3xa19jf4OOJuZ1WmmVf6w8AmL5Z52hFJnmLjLKIVzXFvfHjSPzwmRCdSLuNqfGkoVamso1rEre2FgqE9Qew1_igVk1h3cGc0bLIbvxXmLPaTyvFXldvaWV5Wj5fFHH_eNggdqZL3HMNyeGHFqh6xNUISumLQ8ue7hxWeb2_WNQyYgFBkpdt0zYA9soM0APxFtw_Q4RjKMjrKb3weGJNOTlyIddcrA9jYSfYiag8_xKfTs7N40p9NbqJbBEwJYpj3bmDmsHRTqv6YDf_E6ZtL0-9pLi3deJVVcvly7Y62MrmL7lRmhtMrMXOAbqjiHjqwNHKOqmjjr--jqQWRswMiZ5k5BkRODSLHgsjZA5EDIPr5gzgaQE4DoAdoetqfnAxwlWsDJzQICE6k9DyahsRLeMQzzgToxUyIlKdSEKWEyOBJMcl9MDEzRtLMl67MMun7VKaCPkStYlmox8hxiaQpVTSQYFqQLBGEi0jruW6q7YWwjbp2H-OkCkSv86EsYnMhgtNY723cbHwbHdUDLsoYLH_u2jY1dTePxCSIDZza6KWlVgw8VH8YE4VabmF8EIFoA0U6_EsfaA8pi2jURo9KCterkADsLsZgNN-jfd1Bx3DfbynycxPLnbEI1iVPrrHuU3S7eaWeodZmtVXPQSPeyBcG0r8AZF-1YQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arginine+methylation+of+HSP70+regulates+retinoid+acid-mediated+RAR%CE%B22+gene+activation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gao%2C+Wei-wei&rft.au=Xiao%2C+Rong-quan&rft.au=Peng%2C+Bing-ling&rft.au=Xu%2C+Huan-teng&rft.date=2015-06-30&rft.issn=0027-8424&rft.volume=112&rft.issue=26+p.E3327-E3336&rft_id=info:doi/10.1073%2Fpnas.1509658112&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F26.cover.gif