Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation
HSP70 proteins are well known as molecular chaperones involved in protein folding and quality control. Whether they also function in gene transcription on chromatin, and if so, how they are regulated, remains elusive. Here we report that HSP70 can also regulate gene transcription through its associa...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 26; pp. E3327 - E3336 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Acad Sciences
30.06.2015
National Academy of Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | HSP70 proteins are well known as molecular chaperones involved in protein folding and quality control. Whether they also function in gene transcription on chromatin, and if so, how they are regulated, remains elusive. Here we report that HSP70 can also regulate gene transcription through its association with chromatin, distinct from its “classic” function as a molecular chaperone. The function of HSP70 in gene transcription is subject to regulation of an arginine methylation on a highly conserved residue in HSP70, which modulates the recruitment of a key component in the pre-initiation complex, and thus transcription initiation. The present study reveals an additional, previously overlooked function of HSP70 chaperone proteins, and links arginine methylation of nonhistone proteins to gene transcriptional regulation.
Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor
β
2 (RAR
β2
) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control. |
---|---|
AbstractList | HSP70 proteins are well known as molecular chaperones involved in protein folding and quality control. Whether they also function in gene transcription on chromatin, and if so, how they are regulated, remains elusive. Here we report that HSP70 can also regulate gene transcription through its association with chromatin, distinct from its “classic” function as a molecular chaperone. The function of HSP70 in gene transcription is subject to regulation of an arginine methylation on a highly conserved residue in HSP70, which modulates the recruitment of a key component in the pre-initiation complex, and thus transcription initiation. The present study reveals an additional, previously overlooked function of HSP70 chaperone proteins, and links arginine methylation of nonhistone proteins to gene transcriptional regulation.
Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor
β
2 (RAR
β2
) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control. Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β 2 (RAR β2 ) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control. Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain-containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70's function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain-containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70's function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control. Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain-containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70's function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control. |
Author | Ming-feng Huang Bing-ling Peng Xiang-zhi Lin Wen Liu Rong-quan Xiao Tao-tao Shi Xiang Gao Wei-wei Gao Jia Yi Xiao-nan Wu Huan-teng Xu Michael G. Rosenfeld Wen-juan Zhang Pieter C. Dorrestein Hai-feng Shen |
Author_xml | – sequence: 1 givenname: Wei-wei surname: Gao fullname: Gao, Wei-wei organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China;, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361105, China – sequence: 2 givenname: Rong-quan surname: Xiao fullname: Xiao, Rong-quan organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 3 givenname: Bing-ling surname: Peng fullname: Peng, Bing-ling organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 4 givenname: Huan-teng surname: Xu fullname: Xu, Huan-teng organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 5 givenname: Hai-feng surname: Shen fullname: Shen, Hai-feng organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 6 givenname: Ming-feng surname: Huang fullname: Huang, Ming-feng organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 7 givenname: Tao-tao surname: Shi fullname: Shi, Tao-tao organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 8 givenname: Jia surname: Yi fullname: Yi, Jia organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 9 givenname: Wen-juan surname: Zhang fullname: Zhang, Wen-juan organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 10 givenname: Xiao-nan surname: Wu fullname: Wu, Xiao-nan organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 11 givenname: Xiang surname: Gao fullname: Gao, Xiang organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 12 givenname: Xiang-zhi surname: Lin fullname: Lin, Xiang-zhi organization: Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005, China – sequence: 13 givenname: Pieter C. surname: Dorrestein fullname: Dorrestein, Pieter C. organization: Department of Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 – sequence: 14 givenname: Michael G. surname: Rosenfeld fullname: Rosenfeld, Michael G. organization: Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093;, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093 – sequence: 15 givenname: Wen surname: Liu fullname: Liu, Wen organization: School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26080448$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctOHDEQtBAoLCRnbmiOuQz4ObYvSCtEAAkJRMLZ8nNxNGtvxrNI_FY-hG_CC8vmcYCT7e6q6nLXHthOOXkADhA8QpCT40XS5QgxKDsmEMJbYIKgRG1HJdwGEwgxbwXFdBfslfITQiiZgJ_ALu6ggJSKCbibDrOYYvLN3I_3j70eY05NDs3F9xsOm8HPlrXmS72NMeXoGm2ja-fexVp2ze309uk3bma-Kmg7xocXgc9gJ-i--C_rcx_cfTv7cXrRXl2fX55Or1pLug631hiEiBMYWS554FR3mFCtHXdGY--1DvXlqeGs4yxQ7AIz0IRgGCPGabIPTl51F0tTLVmfxkH3ajHEuR4eVdZR_dtJ8V7N8oOiVCLOcBX4uhYY8q-lL6Oax2J93-vk87IoJBAXhEoiP4Z2kqzgTFTo4d-2Nn7e1l4Bx68AO-RSBh82EATVKli1Clb9CbYy2H8MG8eXXdd_xf4dXrO2smpspiBczagzQjAnz5lEtDc |
CitedBy_id | crossref_primary_10_1016_j_jbc_2022_102290 crossref_primary_10_1007_s11262_017_1449_8 crossref_primary_10_1111_ajco_14112 crossref_primary_10_1093_nar_gkae329 crossref_primary_10_1038_s41467_024_47689_4 crossref_primary_10_1111_fcp_12523 crossref_primary_10_1371_journal_pone_0216015 crossref_primary_10_3389_fphys_2021_609674 crossref_primary_10_1021_jacs_4c08175 crossref_primary_10_1038_ncomms11974 crossref_primary_10_1073_pnas_2115711119 crossref_primary_10_1073_pnas_2200753119 crossref_primary_10_1016_j_ecoenv_2017_04_003 crossref_primary_10_1038_s42003_024_07183_5 crossref_primary_10_1158_0008_5472_CAN_19_1738 crossref_primary_10_1210_endrev_bnab014 crossref_primary_10_3390_ijms20133322 crossref_primary_10_1016_j_bioorg_2022_106119 crossref_primary_10_1042_CS20200680 crossref_primary_10_1073_pnas_2313370121 crossref_primary_10_1016_j_bbcan_2023_188916 crossref_primary_10_1093_nar_gkw1144 crossref_primary_10_3389_fgene_2017_00032 crossref_primary_10_3892_mmr_2019_10111 crossref_primary_10_1016_j_celrep_2018_08_066 crossref_primary_10_1021_acs_jmedchem_4c02106 crossref_primary_10_1038_s41467_020_16271_z crossref_primary_10_1016_j_celrep_2023_113385 crossref_primary_10_3390_cancers15061903 crossref_primary_10_1128_JVI_00790_17 crossref_primary_10_1074_jbc_M117_800706 crossref_primary_10_1111_pce_14138 crossref_primary_10_1038_s41392_022_01145_1 crossref_primary_10_1021_acs_jproteome_6b00521 crossref_primary_10_1021_acsmedchemlett_9b00264 crossref_primary_10_1016_j_abb_2019_02_014 crossref_primary_10_1007_s13402_024_00943_9 crossref_primary_10_1002_pld3_517 crossref_primary_10_1038_ncomms12882 crossref_primary_10_1074_jbc_REV120_011666 crossref_primary_10_1111_cpr_12747 crossref_primary_10_1158_0008_5472_CAN_15_1989 crossref_primary_10_1016_j_bbcan_2019_04_002 crossref_primary_10_15252_embj_2022112408 crossref_primary_10_1007_s00018_017_2515_z crossref_primary_10_1007_s11033_023_08464_8 crossref_primary_10_1038_s41573_021_00159_8 crossref_primary_10_3892_ijo_2016_3450 crossref_primary_10_1096_fj_201700377R crossref_primary_10_1016_j_ymthe_2021_08_011 crossref_primary_10_1074_jbc_RA119_008693 crossref_primary_10_3390_life11080768 crossref_primary_10_1016_j_molcel_2018_03_006 crossref_primary_10_1016_j_ymeth_2019_09_014 crossref_primary_10_1007_s00018_024_05531_6 crossref_primary_10_1016_j_cytogfr_2020_07_011 crossref_primary_10_18632_oncotarget_11376 crossref_primary_10_3393_ac_2020_00899_0128 crossref_primary_10_1083_jcb_201703037 |
Cites_doi | 10.1093/nar/gkr1122 10.1016/j.cell.2004.12.012 10.1038/nature10317 10.1379/1466-1268(1998)003<0118:DIOPAT>2.3.CO;2 10.1016/0092-8674(95)90202-3 10.1101/gad.177758.111 10.1016/j.bbamcr.2011.07.001 10.1126/science.1101400 10.2174/138920208785133280 10.1016/S0079-6603(08)60825-9 10.1021/bi800639z 10.1016/j.molcel.2009.09.023 10.1016/j.molcel.2005.04.003 10.1016/0003-9861(72)90174-9 10.1210/me.2008-0380 10.1371/journal.pone.0087982 10.1016/S0092-8674(04)00133-3 10.1038/nrc3409 10.1007/s00018-009-0010-x 10.1371/journal.pgen.1003210 10.1016/j.virol.2013.12.040 10.1016/j.gde.2008.01.012 10.1038/ncomms2074 10.1016/j.bbagrm.2014.02.008 10.1093/carcin/bgt111 10.1074/jbc.274.48.34425 10.4161/cc.27353 10.1016/j.jprot.2013.10.008 10.1074/jbc.M112.433284 10.1101/gad.14.2.121 10.1016/j.cell.2007.02.005 10.1007/s00018-004-4464-6 10.1016/S0092-8674(02)00641-4 10.1007/s11427-009-0054-z 10.1016/j.tibs.2013.02.004 10.1093/jmcb/mjr025 10.1038/nature09272 10.1016/j.cell.2011.08.008 10.1093/abbs/gmr100 10.1038/47412 10.1039/C0MB00176G 10.1126/science.1145801 10.1021/bi00889a003 10.1021/ac050102d 10.1016/j.molcel.2005.02.034 10.1042/BJ20101247 10.4161/cc.10.9.15379 10.1126/science.1175865 10.1016/j.cell.2004.08.020 10.1016/j.bbagrm.2013.02.010 10.1074/jbc.M113.483248 10.1038/nrm3327 10.1038/nrg1945 10.1016/j.jmb.2010.05.054 10.1016/j.canlet.2014.05.014 10.1016/j.cell.2013.10.056 10.1006/dbio.1995.1226 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1509658112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Methylation of HSP70 in gene transcription |
EISSN | 1091-6490 |
EndPage | E3336 |
ExternalDocumentID | PMC4491752 26080448 10_1073_pnas_1509658112 112_26_E3327 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: National Natural Science Foundation of China grantid: 31371292 – fundername: National Natural Science Foundation of China grantid: 31422030 – fundername: National Natural Science Foundation of China grantid: 91440112 |
GroupedDBID | - 02 0R 123 1AW 29P 2WC 53G 55 5RE 5VS 85S AAPBV ABBHK ABFLS ABOCM ABPPZ ABPTK ABZEH ACGOD ACIWK ACNCT ACPRK ADACO ADULT ADZLD AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU DZ E3Z EBS EJD F20 F5P FRP GX1 H13 HH5 HYE JLS JPM JSG JSODD JST KM KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQEST PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA WH7 WOQ WOW X X7M XHC Y6R ZA5 --- -DZ -~X .55 0R~ 2AX 2FS 4.4 AACGO AAFWJ AANCE AAYXX ABPLY ABTLG ABXSQ ACHIC ADQXQ AEUPB AEXZC AFOSN AQVQM CITATION IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF W8F XSW YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c3662-cbb113d821c797f74a6234aad7dba2eeaaf4aae4b75675f42df5b0bffb553bda3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:15:03 EDT 2025 Fri Jul 11 05:31:18 EDT 2025 Fri Jul 11 11:55:40 EDT 2025 Thu Apr 03 07:09:18 EDT 2025 Tue Jul 01 01:53:28 EDT 2025 Thu Apr 24 22:51:45 EDT 2025 Wed Nov 11 00:29:41 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | arginine methylation heat-shock proteins gene transcription |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3662-cbb113d821c797f74a6234aad7dba2eeaaf4aae4b75675f42df5b0bffb553bda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: M.G.R. and W.L. designed research; W.-w.G., R.-q.X., B.-l.P., H.-t.X., H.-f.S., M.-f.H., T.-t.S., J.Y., W.-j.Z., X.-n.W., X.G., and W.L. performed research; X.-z.L. and P.C.D. contributed new reagents/analytic tools; W.-w.G., R.-q.X., B.-l.P., H.-t.X., H.-f.S., M.-f.H., T.-t.S., J.Y., W.-j.Z., X.-n.W., X.G., and W.L. analyzed data; and W.L. wrote the paper with contributions from M.G.R. 1R.-q.X. and B.-l.P. contributed equally to this work. Contributed by Michael G. Rosenfeld, May 19, 2015 (sent for review January 21, 2015; reviewed by Michael R. Stallcup) Reviewers included: M.R.S., University of Southern California. |
OpenAccessLink | https://www.pnas.org/content/pnas/112/26/E3327.full.pdf |
PMID | 26080448 |
PQID | 1693181758 |
PQPubID | 23479 |
ParticipantIDs | pubmed_primary_26080448 proquest_miscellaneous_1693181758 crossref_primary_10_1073_pnas_1509658112 crossref_citationtrail_10_1073_pnas_1509658112 proquest_miscellaneous_1817834939 pnas_primary_112_26_E3327 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4491752 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-30 |
PublicationDateYYYYMMDD | 2015-06-30 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Acad Sciences National Academy of Sciences |
Publisher_xml | – name: National Acad Sciences – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 20622854 - Nature. 2010 Jul 22;466(7305):508-12 24561874 - Biochim Biophys Acta. 2014 Dec;1839(12):1395-403 24498420 - PLoS One. 2014;9(2):e87982 15808511 - Mol Cell. 2005 Apr 1;18(1):83-96 15345777 - Science. 2004 Oct 8;306(5694):279-83 15339660 - Cell. 2004 Sep 3;118(5):545-53 22028380 - J Mol Cell Biol. 2011 Oct;3(5):301-8 17320507 - Cell. 2007 Feb 23;128(4):693-705 16013882 - Anal Chem. 2005 Jul 15;77(14):4626-39 7649373 - Dev Biol. 1995 Aug;170(2):420-33 22473470 - Nat Rev Mol Cell Biol. 2012 May;13(5):297-311 15620353 - Cell. 2004 Dec 29;119(7):941-53 21152665 - Mol Biosyst. 2011 Mar;7(3):700-10 5063076 - Arch Biochem Biophys. 1972 Feb;148(2):558-67 9672247 - Cell Stress Chaperones. 1998 Jun;3(2):118-29 21776078 - Nature. 2011 Jul 21;475(7356):324-32 22194010 - Acta Biochim Biophys Sin (Shanghai). 2012 Jan;44(1):14-27 24880080 - Cancer Lett. 2014 Aug 28;351(1):126-33 19300908 - Cell Mol Life Sci. 2009 Jul;66(13):2109-21 24606677 - Virology. 2014 Mar;452-453:1-11 23563090 - Carcinogenesis. 2013 Jun;34(6):1181-8 22241783 - Genes Dev. 2012 Jan 15;26(2):114-9 19164444 - Mol Endocrinol. 2009 Apr;23(4):425-33 9752719 - Prog Nucleic Acid Res Mol Biol. 1998;61:65-131 23459247 - Biochim Biophys Acta. 2013 May;1829(5):443-54 19471609 - Curr Genomics. 2008;9(5):338-248 21781992 - Biochim Biophys Acta. 2012 Jan;1823(1):130-7 20684070 - J Mol Biol. 2010 Aug 13;401(2):211-22 19381457 - Sci China C Life Sci. 2009 Apr;52(4):311-22 19818706 - Mol Cell. 2009 Oct 9;36(1):15-27 15770419 - Cell Mol Life Sci. 2005 Mar;62(6):670-84 17947579 - Science. 2007 Oct 19;318(5849):444-7 10652267 - Genes Dev. 2000 Jan 15;14(2):121-41 22135298 - Nucleic Acids Res. 2012 Jan;40(Database issue):D261-70 14114491 - Biochemistry. 1964 Jan;3:10-5 14980219 - Cell. 2004 Feb 20;116(4):511-26 15866169 - Mol Cell. 2005 Apr 29;18(3):263-72 21445011 - Cell Cycle. 2011 May 1;10(9):1343-4 24296620 - Cell Cycle. 2014;13(1):32-41 23921388 - J Biol Chem. 2013 Sep 27;288(39):27752-63 23349634 - PLoS Genet. 2013;9(1):e1003210 24360279 - Cell. 2013 Dec 19;155(7):1581-95 23303181 - J Biol Chem. 2013 Mar 1;288(9):6053-62 10567422 - J Biol Chem. 1999 Nov 26;274(48):34425-32 18339539 - Curr Opin Genet Dev. 2008 Apr;18(2):152-8 24140279 - J Proteomics. 2014 Apr 4;100:115-24 8521510 - Cell. 1995 Dec 15;83(6):859-69 21231916 - Biochem J. 2011 Apr 1;435(1):127-42 21925322 - Cell. 2011 Sep 16;146(6):1016-28 19574390 - Science. 2009 Jul 3;325(5936):90-3 10638745 - Nature. 2000 Jan 6;403(6765):41-5 23490039 - Trends Biochem Sci. 2013 May;38(5):243-52 16983801 - Nat Rev Genet. 2006 Sep;7(9):715-27 23235912 - Nat Rev Cancer. 2013 Jan;13(1):37-50 18557634 - Biochemistry. 2008 Jul 8;47(27):7001-11 11909518 - Cell. 2002 Feb 22;108(4):465-74 22990868 - Nat Commun. 2012;3:1072 |
References_xml | – ident: e_1_3_3_30_2 doi: 10.1093/nar/gkr1122 – ident: e_1_3_3_5_2 doi: 10.1016/j.cell.2004.12.012 – ident: e_1_3_3_25_2 doi: 10.1038/nature10317 – ident: e_1_3_3_26_2 doi: 10.1379/1466-1268(1998)003<0118:DIOPAT>2.3.CO;2 – ident: e_1_3_3_36_2 doi: 10.1016/0092-8674(95)90202-3 – ident: e_1_3_3_46_2 doi: 10.1101/gad.177758.111 – ident: e_1_3_3_49_2 doi: 10.1016/j.bbamcr.2011.07.001 – ident: e_1_3_3_16_2 doi: 10.1126/science.1101400 – ident: e_1_3_3_23_2 doi: 10.2174/138920208785133280 – ident: e_1_3_3_9_2 doi: 10.1016/S0079-6603(08)60825-9 – ident: e_1_3_3_24_2 doi: 10.1021/bi800639z – ident: e_1_3_3_34_2 doi: 10.1016/j.molcel.2009.09.023 – ident: e_1_3_3_12_2 doi: 10.1016/j.molcel.2005.04.003 – ident: e_1_3_3_3_2 doi: 10.1016/0003-9861(72)90174-9 – ident: e_1_3_3_11_2 doi: 10.1210/me.2008-0380 – ident: e_1_3_3_20_2 doi: 10.1371/journal.pone.0087982 – ident: e_1_3_3_55_2 doi: 10.1016/S0092-8674(04)00133-3 – ident: e_1_3_3_15_2 doi: 10.1038/nrc3409 – ident: e_1_3_3_13_2 doi: 10.1007/s00018-009-0010-x – ident: e_1_3_3_31_2 doi: 10.1371/journal.pgen.1003210 – ident: e_1_3_3_21_2 doi: 10.1016/j.virol.2013.12.040 – ident: e_1_3_3_40_2 doi: 10.1016/j.gde.2008.01.012 – ident: e_1_3_3_33_2 doi: 10.1038/ncomms2074 – ident: e_1_3_3_43_2 doi: 10.1016/j.bbagrm.2014.02.008 – ident: e_1_3_3_54_2 doi: 10.1093/carcin/bgt111 – ident: e_1_3_3_27_2 doi: 10.1074/jbc.274.48.34425 – ident: e_1_3_3_10_2 doi: 10.4161/cc.27353 – ident: e_1_3_3_50_2 doi: 10.1016/j.jprot.2013.10.008 – ident: e_1_3_3_52_2 doi: 10.1074/jbc.M112.433284 – ident: e_1_3_3_38_2 doi: 10.1101/gad.14.2.121 – ident: e_1_3_3_8_2 doi: 10.1016/j.cell.2007.02.005 – ident: e_1_3_3_28_2 doi: 10.1007/s00018-004-4464-6 – ident: e_1_3_3_39_2 doi: 10.1016/S0092-8674(02)00641-4 – ident: e_1_3_3_41_2 doi: 10.1007/s11427-009-0054-z – ident: e_1_3_3_44_2 doi: 10.1016/j.tibs.2013.02.004 – ident: e_1_3_3_45_2 doi: 10.1093/jmcb/mjr025 – ident: e_1_3_3_56_2 doi: 10.1038/nature09272 – ident: e_1_3_3_2_2 doi: 10.1016/j.cell.2011.08.008 – ident: e_1_3_3_42_2 doi: 10.1093/abbs/gmr100 – ident: e_1_3_3_1_2 doi: 10.1038/47412 – ident: e_1_3_3_48_2 doi: 10.1039/C0MB00176G – ident: e_1_3_3_18_2 doi: 10.1126/science.1145801 – ident: e_1_3_3_4_2 doi: 10.1021/bi00889a003 – ident: e_1_3_3_57_2 doi: 10.1021/ac050102d – ident: e_1_3_3_37_2 doi: 10.1016/j.molcel.2005.02.034 – ident: e_1_3_3_22_2 doi: 10.1042/BJ20101247 – ident: e_1_3_3_14_2 doi: 10.4161/cc.10.9.15379 – ident: e_1_3_3_51_2 doi: 10.1126/science.1175865 – ident: e_1_3_3_17_2 doi: 10.1016/j.cell.2004.08.020 – ident: e_1_3_3_29_2 doi: 10.1016/j.bbagrm.2013.02.010 – ident: e_1_3_3_32_2 doi: 10.1074/jbc.M113.483248 – ident: e_1_3_3_7_2 doi: 10.1038/nrm3327 – ident: e_1_3_3_6_2 doi: 10.1038/nrg1945 – ident: e_1_3_3_53_2 doi: 10.1016/j.jmb.2010.05.054 – ident: e_1_3_3_47_2 doi: 10.1016/j.canlet.2014.05.014 – ident: e_1_3_3_19_2 doi: 10.1016/j.cell.2013.10.056 – ident: e_1_3_3_35_2 doi: 10.1006/dbio.1995.1226 – reference: 17320507 - Cell. 2007 Feb 23;128(4):693-705 – reference: 15339660 - Cell. 2004 Sep 3;118(5):545-53 – reference: 24360279 - Cell. 2013 Dec 19;155(7):1581-95 – reference: 18339539 - Curr Opin Genet Dev. 2008 Apr;18(2):152-8 – reference: 11909518 - Cell. 2002 Feb 22;108(4):465-74 – reference: 21231916 - Biochem J. 2011 Apr 1;435(1):127-42 – reference: 24880080 - Cancer Lett. 2014 Aug 28;351(1):126-33 – reference: 18557634 - Biochemistry. 2008 Jul 8;47(27):7001-11 – reference: 9752719 - Prog Nucleic Acid Res Mol Biol. 1998;61:65-131 – reference: 10567422 - J Biol Chem. 1999 Nov 26;274(48):34425-32 – reference: 21776078 - Nature. 2011 Jul 21;475(7356):324-32 – reference: 21781992 - Biochim Biophys Acta. 2012 Jan;1823(1):130-7 – reference: 7649373 - Dev Biol. 1995 Aug;170(2):420-33 – reference: 9672247 - Cell Stress Chaperones. 1998 Jun;3(2):118-29 – reference: 22990868 - Nat Commun. 2012;3:1072 – reference: 19471609 - Curr Genomics. 2008;9(5):338-248 – reference: 20622854 - Nature. 2010 Jul 22;466(7305):508-12 – reference: 17947579 - Science. 2007 Oct 19;318(5849):444-7 – reference: 21925322 - Cell. 2011 Sep 16;146(6):1016-28 – reference: 15866169 - Mol Cell. 2005 Apr 29;18(3):263-72 – reference: 19574390 - Science. 2009 Jul 3;325(5936):90-3 – reference: 23303181 - J Biol Chem. 2013 Mar 1;288(9):6053-62 – reference: 19818706 - Mol Cell. 2009 Oct 9;36(1):15-27 – reference: 10638745 - Nature. 2000 Jan 6;403(6765):41-5 – reference: 22473470 - Nat Rev Mol Cell Biol. 2012 May;13(5):297-311 – reference: 15808511 - Mol Cell. 2005 Apr 1;18(1):83-96 – reference: 23459247 - Biochim Biophys Acta. 2013 May;1829(5):443-54 – reference: 14980219 - Cell. 2004 Feb 20;116(4):511-26 – reference: 15770419 - Cell Mol Life Sci. 2005 Mar;62(6):670-84 – reference: 24561874 - Biochim Biophys Acta. 2014 Dec;1839(12):1395-403 – reference: 22241783 - Genes Dev. 2012 Jan 15;26(2):114-9 – reference: 19164444 - Mol Endocrinol. 2009 Apr;23(4):425-33 – reference: 23235912 - Nat Rev Cancer. 2013 Jan;13(1):37-50 – reference: 24606677 - Virology. 2014 Mar;452-453:1-11 – reference: 8521510 - Cell. 1995 Dec 15;83(6):859-69 – reference: 16013882 - Anal Chem. 2005 Jul 15;77(14):4626-39 – reference: 24498420 - PLoS One. 2014;9(2):e87982 – reference: 21445011 - Cell Cycle. 2011 May 1;10(9):1343-4 – reference: 22028380 - J Mol Cell Biol. 2011 Oct;3(5):301-8 – reference: 15345777 - Science. 2004 Oct 8;306(5694):279-83 – reference: 23349634 - PLoS Genet. 2013;9(1):e1003210 – reference: 10652267 - Genes Dev. 2000 Jan 15;14(2):121-41 – reference: 16983801 - Nat Rev Genet. 2006 Sep;7(9):715-27 – reference: 23490039 - Trends Biochem Sci. 2013 May;38(5):243-52 – reference: 22194010 - Acta Biochim Biophys Sin (Shanghai). 2012 Jan;44(1):14-27 – reference: 24296620 - Cell Cycle. 2014;13(1):32-41 – reference: 14114491 - Biochemistry. 1964 Jan;3:10-5 – reference: 20684070 - J Mol Biol. 2010 Aug 13;401(2):211-22 – reference: 15620353 - Cell. 2004 Dec 29;119(7):941-53 – reference: 24140279 - J Proteomics. 2014 Apr 4;100:115-24 – reference: 21152665 - Mol Biosyst. 2011 Mar;7(3):700-10 – reference: 23563090 - Carcinogenesis. 2013 Jun;34(6):1181-8 – reference: 23921388 - J Biol Chem. 2013 Sep 27;288(39):27752-63 – reference: 19300908 - Cell Mol Life Sci. 2009 Jul;66(13):2109-21 – reference: 19381457 - Sci China C Life Sci. 2009 Apr;52(4):311-22 – reference: 5063076 - Arch Biochem Biophys. 1972 Feb;148(2):558-67 – reference: 22135298 - Nucleic Acids Res. 2012 Jan;40(Database issue):D261-70 |
SSID | ssj0009580 |
Score | 2.432982 |
Snippet | HSP70 proteins are well known as molecular chaperones involved in protein folding and quality control. Whether they also function in gene transcription on... Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates,... Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates,... |
SourceID | pubmedcentral proquest pubmed crossref pnas |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E3327 |
SubjectTerms | Amino Acid Sequence arginine Arginine - metabolism Biological Sciences chromatin Chromatin - metabolism gene activation Gene Expression Regulation genes HEK293 Cells HSP70 Heat-Shock Proteins - chemistry HSP70 Heat-Shock Proteins - metabolism Humans Methylation molecular chaperones Molecular Sequence Data PNAS Plus protein folding quality control Receptors, Retinoic Acid - genetics transcription (genetics) Transcription Factor TFIIH - metabolism Transcription, Genetic Tretinoin - pharmacology |
Title | Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation |
URI | http://www.pnas.org/content/112/26/E3327.abstract https://www.ncbi.nlm.nih.gov/pubmed/26080448 https://www.proquest.com/docview/1693181758 https://www.proquest.com/docview/1817834939 https://pubmed.ncbi.nlm.nih.gov/PMC4491752 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagvPCCGNdyU5CYNFS5JLYTJ4_d1FGhUarSir5FduJ0kap09AKCn8UP4Tdx7MRJOwYavFiNr5XPl3NxfM5B6BXlnEZgdmEK0hqzSEZYCOViEdFEhW4WJcZv7f0wGEzZu5k_ay5kGu-Sjewm36_0K_kfqkId0FV7yf4DZetJoQJ-A32hBApDeS0a91Zznd9BmTzQ3xa19jf4OOJuZ1WmmVf6w8AmL5Z52hFJnmLjLKIVzXFvfHjSPzwmRCdSLuNqfGkoVamso1rEre2FgqE9Qew1_igVk1h3cGc0bLIbvxXmLPaTyvFXldvaWV5Wj5fFHH_eNggdqZL3HMNyeGHFqh6xNUISumLQ8ue7hxWeb2_WNQyYgFBkpdt0zYA9soM0APxFtw_Q4RjKMjrKb3weGJNOTlyIddcrA9jYSfYiag8_xKfTs7N40p9NbqJbBEwJYpj3bmDmsHRTqv6YDf_E6ZtL0-9pLi3deJVVcvly7Y62MrmL7lRmhtMrMXOAbqjiHjqwNHKOqmjjr--jqQWRswMiZ5k5BkRODSLHgsjZA5EDIPr5gzgaQE4DoAdoetqfnAxwlWsDJzQICE6k9DyahsRLeMQzzgToxUyIlKdSEKWEyOBJMcl9MDEzRtLMl67MMun7VKaCPkStYlmox8hxiaQpVTSQYFqQLBGEi0jruW6q7YWwjbp2H-OkCkSv86EsYnMhgtNY723cbHwbHdUDLsoYLH_u2jY1dTePxCSIDZza6KWlVgw8VH8YE4VabmF8EIFoA0U6_EsfaA8pi2jURo9KCterkADsLsZgNN-jfd1Bx3DfbynycxPLnbEI1iVPrrHuU3S7eaWeodZmtVXPQSPeyBcG0r8AZF-1YQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arginine+methylation+of+HSP70+regulates+retinoid+acid-mediated+RAR%CE%B22+gene+activation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gao%2C+Wei-wei&rft.au=Xiao%2C+Rong-quan&rft.au=Peng%2C+Bing-ling&rft.au=Xu%2C+Huan-teng&rft.date=2015-06-30&rft.issn=0027-8424&rft.volume=112&rft.issue=26+p.E3327-E3336&rft_id=info:doi/10.1073%2Fpnas.1509658112&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F26.cover.gif |