Catalytic and structural insights into a stereospecific and thermostable Class II aldolase HpaI from Acinetobacter baumannii
Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter bau...
Saved in:
Published in | The Journal of biological chemistry Vol. 297; no. 5; p. 101280 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2021
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications. |
---|---|
AbstractList | Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn
by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M
) cofactors, except Ca
, for catalysis. We found that Zn
yielded the highest enzyme complex thermostability (T
of 87 °C) and solvent tolerance. All AbHpaI•M
complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn
displaying the highest R/S stereoselectivity ratio (sixfold higher than other M
cofactors). For the aldol condensation reaction, AbHpaI•M
only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M
and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M
cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn
-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca
binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn
is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications. Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p -hydroxyphenylacetate degradation pathway in Acinetobacter baumannii , 4-hydroxy-2-keto-heptane-1,7-dioate aldolase ( Ab HpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn 2+ by Ab HpaI as a native cofactor is distinct from other enzymes in this class. Ab HpaI can also use other metal ion (M 2+ ) cofactors, except Ca 2+ , for catalysis. We found that Zn 2+ yielded the highest enzyme complex thermostability ( T m of 87 °C) and solvent tolerance. All Ab HpaI•M 2+ complexes demonstrated preferential cleavage of (4 R )-2-keto-3-deoxy-D-galactonate ((4 R )-KDGal) over (4 S )-2-keto-3-deoxy-D-gluconate ((4 S )-KDGlu), with Ab HpaI•Zn 2+ displaying the highest R / S stereoselectivity ratio (sixfold higher than other M 2+ cofactors). For the aldol condensation reaction, Ab HpaI•M 2+ only specifically forms (4 R )-KDGal and not (4 S )-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of Ab HpaI complexed with M 2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M 2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn 2+ -bound form governs the stereoselectivity/stereospecificity of Ab HpaI. X-ray structures also show that Ca 2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that Ab HpaI•Zn 2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications. Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications. Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications. |
ArticleNumber | 101280 |
Author | Binlaeh, Asweena Chuaboon, Litavadee Phonbuppha, Jittima Jaruwat, Aritsara Maenpuen, Somchart Chaiyen, Pimchai Tinikul, Ruchanok Tantipisit, Jirawat Chitnumsub, Penchit Lawan, Narin Watthaisong, Pratchaya Jaroensuk, Juthamas |
Author_xml | – sequence: 1 givenname: Pratchaya surname: Watthaisong fullname: Watthaisong, Pratchaya organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 2 givenname: Asweena surname: Binlaeh fullname: Binlaeh, Asweena organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 3 givenname: Aritsara surname: Jaruwat fullname: Jaruwat, Aritsara organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand – sequence: 4 givenname: Narin surname: Lawan fullname: Lawan, Narin organization: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand – sequence: 5 givenname: Jirawat surname: Tantipisit fullname: Tantipisit, Jirawat organization: Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand – sequence: 6 givenname: Juthamas surname: Jaroensuk fullname: Jaroensuk, Juthamas organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 7 givenname: Litavadee surname: Chuaboon fullname: Chuaboon, Litavadee organization: School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand – sequence: 8 givenname: Jittima surname: Phonbuppha fullname: Phonbuppha, Jittima organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 9 givenname: Ruchanok surname: Tinikul fullname: Tinikul, Ruchanok organization: Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand – sequence: 10 givenname: Pimchai orcidid: 0000-0002-8533-1604 surname: Chaiyen fullname: Chaiyen, Pimchai organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 11 givenname: Penchit orcidid: 0000-0001-5920-3708 surname: Chitnumsub fullname: Chitnumsub, Penchit email: penchit@biotec.or.th organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand – sequence: 12 givenname: Somchart orcidid: 0000-0001-7770-4178 surname: Maenpuen fullname: Maenpuen, Somchart email: somchart@go.buu.ac.th organization: Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34624314$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1r3DAQFSWl2aT9Ab0UHXvZrWR5bZlCISxtsxDopYXexHg8zmqxpa0kBwL58ZXZTWh6iC4aMe8DvXfBzpx3xNh7KVZSyOrTfrVvcVWIQs7vQotXbCGFVku1lr_P2ELkzbIp1vqcXcS4F_mUjXzDzlVZFaWS5YI9bCDBcJ8scnAdjylMmKYAA7cu2ttdinlInkNeUSAfD4S2P6HTjsLoY4J2IL4ZIEa-3XIYOp9n4tcH2PI--JFfoXWUfAuYRXgL0wjOWfuWve5hiPTudF-yX9--_txcL29-fN9urm6WqKpKLEnrVtXUlyWuO4llQ52qdYVKVT3oTqpC1aLuKi1aUIhCQi9KjYUsi14ANeqSfTnqHqZ2pA7JpfxDcwh2hHBvPFjzfOPsztz6O6PXlWiaWeDjSSD4PxPFZEYbkYYBHPkpmhyxqEVOvsjQD_96PZk8Rp4B9RGAwccYqDdoEyTrZ2s7GCnMXK7Zm1yumcs1x3IzU_7HfBR_ifP5yKGc752lYCJackidDYTJdN6-wP4LeWO-gA |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2022_12_150 crossref_primary_10_1016_j_biotno_2023_02_003 crossref_primary_10_1002_cbic_202300170 crossref_primary_10_1016_j_abb_2023_109768 crossref_primary_10_1002_anie_202213338 crossref_primary_10_1002_ange_202213338 |
Cites_doi | 10.1016/j.cbpa.2016.12.029 10.1021/acscatal.9b05512 10.1016/S0076-6879(97)76066-X 10.1021/cr100299p 10.1021/bi100251u 10.1107/S0907444911001314 10.1016/j.carres.2017.10.009 10.1021/bi800943g 10.1021/bi9001166 10.1351/pac196920010093 10.1016/j.bbapap.2007.07.010 10.1016/j.mcat.2020.111131 10.1021/acscatal.6b00758 10.1002/cbic.201800135 10.1002/adsc.201900205 10.1021/jp973084f 10.1016/j.febslet.2008.08.032 10.1107/S0907444910007493 10.1107/S0021889892009944 10.1006/jmbi.1999.2609 10.1107/S0907444910045749 10.1039/D0CS00763C 10.1016/j.cbpa.2013.12.010 10.1002/anie.201711289 10.1107/S2059798316018210 10.1002/adsc.201100236 10.1016/j.cogsc.2021.100476 10.1021/ja00193a025 10.1016/j.procbio.2017.08.001 10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J 10.1016/j.molcatb.2016.09.003 10.1107/S0021889807021206 10.1021/acscatal.1c00210 10.1016/j.copbio.2011.07.002 10.1074/jbc.M112.400705 10.1021/acscatal.7b03398 10.1002/adsc.201900128 10.1093/nar/gkm276 10.1002/prot.340040208 10.1093/bioinformatics/btm404 10.1039/C6GC02652D 10.1074/jbc.RA119.007454 10.1007/s00253-018-9392-8 10.1074/jbc.RA117.001098 10.1016/bs.accb.2018.09.001 10.1055/s-1996-5691 10.1111/febs.14696 10.1021/ja208754r 10.1093/nar/gkh381 10.1016/j.jmb.2007.05.022 10.1016/j.jmb.2007.06.048 10.1002/anie.199622191 10.1016/S0969-2126(96)00138-4 10.1107/S0907444904026460 10.1107/S0907444909052925 10.1107/S0907444904011679 10.3389/fmolb.2019.00004 10.1021/bi101947g 10.1093/emboj/19.15.3849 10.1073/pnas.181342398 10.1073/pnas.1236794100 10.1016/j.cbpa.2009.11.029 10.1021/ic401072d 10.1002/anie.201906805 10.1021/bi050607y 10.1093/nar/gku316 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jbc.2021.101280 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
ExternalDocumentID | PMC8560999 34624314 10_1016_j_jbc_2021_101280 S0021925821010838 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM PKN Z5M 7X8 5PM |
ID | FETCH-LOGICAL-c3660-e88b37ef44c5d1c49ed3786c336fa8d1323707d680ba3cc01af048c2142f0ae93 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 14:02:30 EDT 2025 Fri Jul 11 08:29:20 EDT 2025 Wed Feb 19 02:27:47 EST 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 01 04:33:27 EDT 2025 Fri Feb 23 02:43:11 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | (4S)-KDGlu MPD PPA AbHpaI LC-ESI-QTOF-MS DTT M2 HBA PDB metal-dependent enzyme solvent-tolerant enzyme BSA LDH NADH MD HOPA Tm stereospecificity HKHD ICP-OES (NH4)2SO4 FPLC SSA (4R)-KDGal thermostable enzyme PYR enzyme catalysis MW QM/MM HNO3 DHAP EDTA p-hydroxyphenylacetate degradation pathway OAA EGTA SEC stereoselectivity PEI PMSF HEPES crystal structure NaCl EcHpaI pyruvate-specific Class II metal aldolase structure–function |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3660-e88b37ef44c5d1c49ed3786c336fa8d1323707d680ba3cc01af048c2142f0ae93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-7770-4178 0000-0001-5920-3708 0000-0002-8533-1604 |
OpenAccessLink | http://dx.doi.org/10.1016/j.jbc.2021.101280 |
PMID | 34624314 |
PQID | 2580700832 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8560999 proquest_miscellaneous_2580700832 pubmed_primary_34624314 crossref_citationtrail_10_1016_j_jbc_2021_101280 crossref_primary_10_1016_j_jbc_2021_101280 elsevier_sciencedirect_doi_10_1016_j_jbc_2021_101280 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2021 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Hernández, Szekrenyi, Clapés (bib5) 2018; 19 Liang, Han, Tan, Ding, Li (bib6) 2019; 6 Schüttelkopf, van Aalten (bib57) 2004; 60 Coincon, Wang, Sygusch, Seah (bib39) 2012; 287 Krissinel, Henrick (bib62) 2007; 72 Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam, Valentin, Wallace, Wilm, Lopez, Thompson, Gibson, Higgins (bib65) 2007; 23 Li, Cai, Chen, Wang, Wang, Nakanishi, Gao, Li (bib18) 2017; 452 Laitaoja, Valjakka, Jänis (bib45) 2013; 52 Laurent, Uzel, Hélaine, Nauton, Traïkia, Gefflaut, Salanoubat, de Berardinis, Lemaire, Guérard-Hélaine (bib21) 2019; 361 Patel, Kumar, Durani (bib44) 2007; 1774 Krissinel, Henrick (bib59) 2004; 60 Von der Osten, Sinskey, Barbas, Pederson, Wang, Wong (bib19) 1989; 111 Huang, Yu (bib40) 2017; 7 Cooper, Leonard, McSweeney, Thompson, Naismith, Qamar, Plater, Berry, Hunter (bib43) 1996; 4 Ubonprasert, Jaroensuk, Pornthanakasem, Kamonsutthipaijit, Wongpituk, Mee- Udorn, Rungrotmongkol, Ketchart, Chitnumsub, Leartsakulpanich, Chaiyen, Maenpuen (bib50) 2019; 294 Dolinsky, Nielsen, McCammon, Baker (bib68) 2004; 32 Wang, Baker, Seah (bib23) 2010; 49 Winn, Ballard, Cowtan, Dodson, Emsley, Evans, Keegan, Krissinel, Leslie, McCoy, McNicholas, Murshudov, Pannu, Potterton, Powell (bib54) 2011; 67 Schmidt, Eger, Kroutil (bib10) 2016; 6 Schauer, Kamerling (bib17) 2018; 75 Baker, Sept, Joseph, Holst, McCammon (bib61) 2001; 98 Murshudov, Skubák, Lebedev, Pannu, Steiner, Nicholls, Winn, Long, Vagin (bib56) 2011; 67 Laskowski, MacArthur, Moss, Thornton (bib58) 1993; 26 Galkin, Li, Li, Kulakova, Pal, Dunaway-Mariano, Herzberg (bib37) 2009; 48 McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib53) 2007; 40 Moreno, Hernández, Charnok, Gittings, Bolte, Joglar, Bujons, Parella, Clapés (bib11) 2021; 11 Laurent, Gourbeyre, Uzel, Hélaine, Nauton, Traïkia, de Berardinis, Salanoubat, Gefflaut, Lemaire, Guérard-Hélaine (bib22) 2020; 10 Fang, Hait, Head-Gordon, Chang (bib13) 2019; 58 Wang, Seah (bib27) 2008; 582 Brovetto, Gamenara, Méndez, Seoane (bib2) 2011; 111 Hall, Leonard, Reed, Watt, Berry, Hunter, W (bib36) 1999; 287 Clapés (bib4) 2016 Fei, Zheng, Liu, Li (bib15) 2017; 63 Emsley, Lohkamp, Scott, Cowtan (bib55) 2010 Slagman, Fessner (bib12) 2021; 50 Dolinsky, Czodrowski, Li, Nielsen, Jensen, Klebe, Baker (bib60) 2007; 35 (bib51) 2017 Otwinowski, Minor (bib52) 1997; 276 Rea, Fülöp, Bugg, Roper (bib30) 2007 Fessner (bib3) 2012 MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, Joseph-McCarthy, Kuchnir, Kuczera, Lau, Mattos (bib69) 1998; 102 Hernández, Joglar, Bujons, Parella, Clapés (bib25) 2018; 57 Liebschner, Afonine, Moriarty, Poon, Sobolev, Terwilliger, Adams (bib63) 2017; 73 Izard, Blackwell (bib28) 2000; 19 Haridas, Abdelraheem, Hanefeld (bib16) 2018; 102 Clapés, Garraboua (bib14) 2011; 353 Robert, Gouet (bib66) 2014; 42 Shimizu, Yoshida, Mikami (bib48) 1996; 1996 Pickl (bib49) 2021; 30 Brünger, Karplus (bib67) 1988; 4 Machajewski, Wong (bib35) 2000; 39 Jacques, Coinçon, Sygusch (bib46) 2018; 293 Clapés, Fessner, Sprenger, Samland (bib1) 2010; 14 de Berardinis, Guérard-Hélaine, Darii, Bastard, Hélaine, Mariage, Petit, Poupard, Sanchez-Moreno, Stam, Gefflaut, Salanoubat, Lemaire (bib20) 2017; 9 Baker, Seah (bib24) 2012; 134 Wang, Seah (bib26) 2005; 44 Fessner, Schneider, Held, Sinerius, Walter, Hixon, Schloss (bib34) 1996; 35 Diebler, Eigen, Ilgenfritz, Maass, Winkler (bib38) 1969; 20 Rea, Hovington, Rakus, Gerlt, Fülöp, Bugg, Roper (bib31) 2008; 4 Windle, Berry, Nelson (bib9) 2017; 37 Manjasetty, Powlowski, Vrielink (bib29) 2003; 100 Marsden, Mestrom, Bento, Hagedoorn, McMillan, Hanefeld (bib33) 2019; 361 Magnusson, Szekrenyi, Joosten, Finnigan, Charnock, Fessner (bib42) 2019; 286 Baker, Carere, Seah (bib32) 2011; 50 Rigual, Cantero, Risso, Rodríguez, Rodríguez, Paulino, Gamenara, Veig (bib47) 2020; 495 Windle, Müller, Nelson, Berry (bib8) 2014; 1 Zheng, Xu (bib7) 2011; 22 Thotsaporn, Tinikul, Maenpuen, Phonbuppha, Watthaisong, Chenprakhon, Chaiyen (bib41) 2016; 134 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve, McCoy, Moriarty, Oeffner, Read, Richardson (bib64) 2010; 66 Larkin (10.1016/j.jbc.2021.101280_bib65) 2007; 23 Brovetto (10.1016/j.jbc.2021.101280_bib2) 2011; 111 Fessner (10.1016/j.jbc.2021.101280_bib3) 2012 MacKerell (10.1016/j.jbc.2021.101280_bib69) 1998; 102 Marsden (10.1016/j.jbc.2021.101280_bib33) 2019; 361 Ubonprasert (10.1016/j.jbc.2021.101280_bib50) 2019; 294 Patel (10.1016/j.jbc.2021.101280_bib44) 2007; 1774 Fang (10.1016/j.jbc.2021.101280_bib13) 2019; 58 Wang (10.1016/j.jbc.2021.101280_bib26) 2005; 44 Magnusson (10.1016/j.jbc.2021.101280_bib42) 2019; 286 Schüttelkopf (10.1016/j.jbc.2021.101280_bib57) 2004; 60 Zheng (10.1016/j.jbc.2021.101280_bib7) 2011; 22 Fessner (10.1016/j.jbc.2021.101280_bib34) 1996; 35 Huang (10.1016/j.jbc.2021.101280_bib40) 2017; 7 Emsley (10.1016/j.jbc.2021.101280_bib55) 2010; 66 Dolinsky (10.1016/j.jbc.2021.101280_bib60) 2007; 35 Laurent (10.1016/j.jbc.2021.101280_bib22) 2020; 10 Baker (10.1016/j.jbc.2021.101280_bib61) 2001; 98 McCoy (10.1016/j.jbc.2021.101280_bib53) 2007; 40 Dolinsky (10.1016/j.jbc.2021.101280_bib68) 2004; 32 Izard (10.1016/j.jbc.2021.101280_bib28) 2000; 19 Fei (10.1016/j.jbc.2021.101280_bib15) 2017; 63 Galkin (10.1016/j.jbc.2021.101280_bib37) 2009; 48 Pickl (10.1016/j.jbc.2021.101280_bib49) 2021; 30 Wang (10.1016/j.jbc.2021.101280_bib27) 2008; 582 Moreno (10.1016/j.jbc.2021.101280_bib11) 2021; 11 Cooper (10.1016/j.jbc.2021.101280_bib43) 1996; 4 Laitaoja (10.1016/j.jbc.2021.101280_bib45) 2013; 52 Rea (10.1016/j.jbc.2021.101280_bib30) 2007; 373 Hernández (10.1016/j.jbc.2021.101280_bib5) 2018; 19 Manjasetty (10.1016/j.jbc.2021.101280_bib29) 2003; 100 Murshudov (10.1016/j.jbc.2021.101280_bib56) 2011; 67 Li (10.1016/j.jbc.2021.101280_bib18) 2017; 452 (10.1016/j.jbc.2021.101280_bib51) 2017 Hall (10.1016/j.jbc.2021.101280_bib36) 1999; 287 Krissinel (10.1016/j.jbc.2021.101280_bib62) 2007; 372 Krissinel (10.1016/j.jbc.2021.101280_bib59) 2004; 60 Rigual (10.1016/j.jbc.2021.101280_bib47) 2020; 495 Laskowski (10.1016/j.jbc.2021.101280_bib58) 1993; 26 Slagman (10.1016/j.jbc.2021.101280_bib12) 2021; 50 Schauer (10.1016/j.jbc.2021.101280_bib17) 2018; 75 Schmidt (10.1016/j.jbc.2021.101280_bib10) 2016; 6 Windle (10.1016/j.jbc.2021.101280_bib8) 2014; 19 Clapés (10.1016/j.jbc.2021.101280_bib4) 2016 Windle (10.1016/j.jbc.2021.101280_bib9) 2017; 37 Brünger (10.1016/j.jbc.2021.101280_bib67) 1988; 4 Haridas (10.1016/j.jbc.2021.101280_bib16) 2018; 102 Robert (10.1016/j.jbc.2021.101280_bib66) 2014; 42 Laurent (10.1016/j.jbc.2021.101280_bib21) 2019; 361 Liebschner (10.1016/j.jbc.2021.101280_bib63) 2017; 73 Coincon (10.1016/j.jbc.2021.101280_bib39) 2012; 287 Adams (10.1016/j.jbc.2021.101280_bib64) 2010; 66 Baker (10.1016/j.jbc.2021.101280_bib32) 2011; 50 Von der Osten (10.1016/j.jbc.2021.101280_bib19) 1989; 111 Clapés (10.1016/j.jbc.2021.101280_bib14) 2011; 353 Diebler (10.1016/j.jbc.2021.101280_bib38) 1969; 20 Thotsaporn (10.1016/j.jbc.2021.101280_bib41) 2016; 134 Winn (10.1016/j.jbc.2021.101280_bib54) 2011; 67 Shimizu (10.1016/j.jbc.2021.101280_bib48) 1996; 1996 Clapés (10.1016/j.jbc.2021.101280_bib1) 2010; 14 Liang (10.1016/j.jbc.2021.101280_bib6) 2019; 6 Machajewski (10.1016/j.jbc.2021.101280_bib35) 2000; 39 Hernández (10.1016/j.jbc.2021.101280_bib25) 2018; 57 Jacques (10.1016/j.jbc.2021.101280_bib46) 2018; 293 Otwinowski (10.1016/j.jbc.2021.101280_bib52) 1997; 276 Rea (10.1016/j.jbc.2021.101280_bib31) 2008; 47 Baker (10.1016/j.jbc.2021.101280_bib24) 2012; 134 Wang (10.1016/j.jbc.2021.101280_bib23) 2010; 49 de Berardinis (10.1016/j.jbc.2021.101280_bib20) 2017; 9 |
References_xml | – volume: 111 start-page: 4346 year: 2011 end-page: 4403 ident: bib2 article-title: C-C bond-forming lyases in organic synthesis publication-title: Chem. Rev. – volume: 11 start-page: 4660 year: 2021 end-page: 4669 ident: bib11 article-title: Synthesis of γ-hydroxy-α-amino acid derivatives by enzymatic tandem aldol addition-transamination reactions publication-title: ACS Catal. – volume: 48 start-page: 3186 year: 2009 end-page: 3196 ident: bib37 article-title: Structural insights into the substrate binding and stereoselectivity of publication-title: Biochemistry – volume: 4 start-page: 1303 year: 1996 end-page: 1315 ident: bib43 article-title: The crystal structure of a class II fructose-1,6- bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold publication-title: Structure – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib64 article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – year: 2017 ident: bib51 publication-title: DOC-M86-EXX242 PROTEUM3 Software User Manual – volume: 9 start-page: 519 year: 2017 end-page: 526 ident: bib20 article-title: Expanding the reaction space of aldolases using hydroxypyruvate as a nucleophilic substrate publication-title: Green Chem. – volume: 7 start-page: 8130 year: 2017 end-page: 8133 ident: bib40 article-title: Catalytic roles of histidine and arginine in pyruvate class II aldolase: A perspective from QM/MM metadynamics publication-title: ACS Catal. – volume: 39 start-page: 1352 year: 2000 end-page: 1374 ident: bib35 article-title: The catalytic asymmetric aldol reaction publication-title: Angew. Chem. Int. Ed. Engl. – volume: 50 start-page: 1968 year: 2021 end-page: 2009 ident: bib12 article-title: Biocatalytic routes to anti-viral agents and their synthetic intermediates publication-title: Chem. Soc. Rev. – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: bib53 article-title: Phaser crystallographic software publication-title: J. Appl. Crystallogr. – volume: 50 start-page: 3559 year: 2011 end-page: 3569 ident: bib32 article-title: Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI publication-title: Biochemistry – volume: 102 start-page: 3586 year: 1998 end-page: 3616 ident: bib69 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B – volume: 22 start-page: 784 year: 2011 end-page: 792 ident: bib7 article-title: New opportunities for biocatalysis: Driving the synthesis of chiral chemicals publication-title: Curr. Opin. Biotechnol. – volume: 14 start-page: 154 year: 2010 end-page: 167 ident: bib1 article-title: Recent progress in stereoselective synthesis with aldolases publication-title: Curr. Opin. Chem. Biol. – volume: 30 start-page: 100476 year: 2021 end-page: 100485 ident: bib49 article-title: Recent trends in the stereoselective synthesis of (poly)-substituted 2-oxo acids by biocatalyzed aldol reaction publication-title: Curr. Opin. Green. Sustain. Chem. – volume: 60 start-page: 2256 year: 2004 end-page: 2268 ident: bib59 article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 294 start-page: 10490 year: 2019 end-page: 10502 ident: bib50 article-title: A flap motif in human serine hydroxymethyltransferase is important for structural stabilization, ligand binding, and control of product release publication-title: J. Biol. Chem. – volume: 361 start-page: 2649 year: 2019 end-page: 2658 ident: bib33 article-title: CH-π interactions promote the conversion of hydroxypyruvate in a class II pyruvate aldolase publication-title: Adv. Synth. Catal. – volume: 1996 start-page: 1112 year: 1996 end-page: 1114 ident: bib48 article-title: Carbonyl-ene approach to the asymmetric synthesis of 2-keto-3-deoxy-D-gluconic acid (KDG): A combinatorial sequence using sharpless epoxidation publication-title: Synlett – volume: 98 start-page: 10037 year: 2001 end-page: 10041 ident: bib61 article-title: Electrostatics of nanosystems: Application to microtubules and the ribosome publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 148 year: 1988 end-page: 156 ident: bib67 article-title: Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison publication-title: Proteins – volume: 23 start-page: 2947 year: 2007 end-page: 2948 ident: bib65 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics – volume: 67 start-page: 355 year: 2011 end-page: 367 ident: bib56 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 73 start-page: 148 year: 2017 end-page: 157 ident: bib63 article-title: Polder maps: Improving OMIT maps by excluding bulk solvent publication-title: Acta Crystallogr. D Struct. Biol. – volume: 286 start-page: 184 year: 2019 end-page: 204 ident: bib42 article-title: nanoDSF as screening tool for enzyme libraries and biotechnology development publication-title: FEBS J. – volume: 495 start-page: 111131 year: 2020 end-page: 111140 ident: bib47 article-title: New mechanistic insights into the reversible aldol reaction catalysed by rhamnulose- 1-phosphate aldolase from publication-title: Mol. Catal. – volume: 6 start-page: 4286 year: 2016 end-page: 4311 ident: bib10 article-title: Building bridges: Biocatalytic C-C-bond formation toward multifunctional products publication-title: ACS Catal. – volume: 44 start-page: 9447 year: 2005 end-page: 9455 ident: bib26 article-title: Purification and biochemical characterization of a pyruvate- specific class II aldolase, HpaI publication-title: Biochemistry – volume: 35 start-page: 2219 year: 1996 end-page: 2221 ident: bib34 article-title: The mechanism of class II, metal-dependent aldolases publication-title: Angew. Chem. Int. Ed. Engl. – volume: 60 start-page: 1355 year: 2004 end-page: 1363 ident: bib57 article-title: PRODRG: A tool for high-throughput crystallography of protein-ligand complexes publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 75 start-page: 1 year: 2018 end-page: 213 ident: bib17 article-title: Exploration of the sialic acid world publication-title: Adv. Carbohydr. Chem. Biochem. – volume: 4 start-page: 9955 year: 2008 end-page: 9965 ident: bib31 article-title: Crystal structure and functional assignment of YfaU, a metal ion dependent class II aldolase from publication-title: Biochemistry – volume: 1 start-page: 25 year: 2014 end-page: 33 ident: bib8 article-title: Engineering aldolases as biocatalysts publication-title: Curr. Opin. Chem. Biol. – volume: 102 start-page: 9959 year: 2018 end-page: 9971 ident: bib16 article-title: 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): Applications and modifications publication-title: Appl. Microbiol. Biotechnol. – start-page: 267 year: 2016 end-page: 306 ident: bib4 article-title: Recent advances in enzyme-catalyzed aldol addition reactions publication-title: Green Biocatalysis – volume: 293 start-page: 7737 year: 2018 end-page: 7753 ident: bib46 article-title: Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases publication-title: J. Biol. Chem. – volume: 1774 start-page: 1247 year: 2007 end-page: 1253 ident: bib44 article-title: Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 2538 year: 2020 end-page: 2543 ident: bib22 article-title: Pyruvate aldolases catalyze cross-aldol reactions between ketones: Highly selective access to multi-functionalized tertiary alcohols publication-title: ACS Catal. – start-page: 866 year: 2007 end-page: 876 ident: bib30 article-title: Structure and mechanism of HpcH: A metal ion dependent class II aldolase from the homoprotocatechuate degradation pathway of publication-title: J. Mol. Biol. – volume: 353 start-page: 2263 year: 2011 end-page: 2283 ident: bib14 article-title: Current trends in asymmetric synthesis with aldolases publication-title: Adv. Synth. Catal. – volume: 361 start-page: 1 year: 2019 end-page: 6 ident: bib21 article-title: Exploration of aldol reactions catalyzed by stereoselective pyruvate aldolases with 2-oxobutyric acid as nucleophile publication-title: Adv. Synth. Catal. – volume: 582 start-page: 3385 year: 2008 end-page: 3388 ident: bib27 article-title: The role of a conserved histidine residue in a pyruvate-specific class II aldolase publication-title: FEBS Lett. – volume: 134 start-page: 507 year: 2012 end-page: 513 ident: bib24 article-title: Rational design of stereoselectivity in the class II pyruvate aldolase BphI publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 283 year: 1993 end-page: 291 ident: bib58 article-title: PROCHECK: A program to check the stereochemical quality of protein structures publication-title: J. Appl. Crystallogr. – volume: 32 start-page: W665 year: 2004 end-page: W667 ident: bib68 article-title: PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations publication-title: Nucleic Acids Res. – start-page: 855 year: 2012 end-page: 917 ident: bib3 article-title: Aldol reactions publication-title: Enzyme Catalysis in Organic Synthesis – volume: 452 start-page: 108 year: 2017 end-page: 115 ident: bib18 article-title: Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases publication-title: Carbohydr. Res. – volume: 134 start-page: 353 year: 2016 end-page: 366 ident: bib41 article-title: Enzymes in the publication-title: J. Mol. Catal. B Enzym. – volume: 63 start-page: 55 year: 2017 end-page: 59 ident: bib15 article-title: An industrially applied biocatalyst: 2-deoxy-D-ribose- 5- phosphate aldolase publication-title: Process. Biochem. – volume: 52 start-page: 10983 year: 2013 end-page: 10991 ident: bib45 article-title: Zinc coordination spheres in protein structures publication-title: Inorg. Chem. – volume: 19 start-page: 1353 year: 2018 end-page: 1358 ident: bib5 article-title: Nucleophile promiscuity of natural and engineered aldolases publication-title: Chembiochem – volume: 20 start-page: 93 year: 1969 end-page: 115 ident: bib38 article-title: Kinetics and mechanism of reactions of main group metal ions with biological carriers publication-title: Pure Appl. Chem. – volume: 67 start-page: 235 year: 2011 end-page: 242 ident: bib54 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 6 start-page: 4 year: 2019 end-page: 24 ident: bib6 article-title: Current advances on structure-function relationships of pyridoxal 5'-phosphate-dependent enzymes publication-title: Front. Mol. Biosci. – start-page: 486 year: 2010 end-page: 501 ident: bib55 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 111 start-page: 3924 year: 1989 end-page: 3927 ident: bib19 article-title: Use of a recombinant bacterial fructose-1,6-diphosphate aldolase in aldol reactions: Preparative syntheses of 1-deoxynojirimycin, 1-deoxymannojirimycin, 1,4-dideoxy-1,4-imino-D- arabinitol, and fagomine publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 33 year: 2017 end-page: 38 ident: bib9 article-title: Aldolase-catalysed stereoselective synthesis of fluorinated small molecules publication-title: Curr. Opin. Chem. Biol. – volume: 287 start-page: 383 year: 1999 end-page: 394 ident: bib36 article-title: The crystal structure of publication-title: J. Mol. Biol. – volume: 19 start-page: 3849 year: 2000 end-page: 3856 ident: bib28 article-title: Crystal structures of the metal-dependent 2-dehydro-3-deoxy- galactarate aldolase suggest a novel reaction mechanism publication-title: EMBO J. – volume: 49 start-page: 3774 year: 2010 end-page: 3782 ident: bib23 article-title: Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: Substrate specificity, kinetic mechanism, and substrate channeling publication-title: Biochemistry – volume: 35 start-page: W522 year: 2007 end-page: W525 ident: bib60 article-title: PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations publication-title: Nucleic Acids Res. – volume: 58 start-page: 11841 year: 2019 end-page: 11845 ident: bib13 article-title: Chemoenzymatic platform for synthesis of chiral organofluorines based on type II aldolases publication-title: Angew. Chem. Int. Ed. Engl. – volume: 72 start-page: 774 year: 2007 end-page: 797 ident: bib62 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: bib52 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. – volume: 287 start-page: 36208 year: 2012 end-page: 36221 ident: bib39 article-title: Crystal structure of reaction intermediates in pyruvate class II aldolase: Substrate cleavage, enolate stabilization, and substrate specificity publication-title: J. Biol. Chem. – volume: 42 start-page: W320 year: 2014 end-page: W324 ident: bib66 article-title: Deciphering key features in protein structures with the new ENDscript server publication-title: Nucleic Acids Res. – volume: 100 start-page: 6992 year: 2003 end-page: 6997 ident: bib29 article-title: Crystal structure of a bifunctional aldolase- dehydrogenase: Sequestering a reactive and volatile intermediate publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 57 start-page: 3583 year: 2018 end-page: 3587 ident: bib25 article-title: Nucleophile promiscuity of engineered class II pyruvate aldolase YfaU from publication-title: Angew. Chem. Int. Ed. Engl. – volume: 37 start-page: 33 year: 2017 ident: 10.1016/j.jbc.2021.101280_bib9 article-title: Aldolase-catalysed stereoselective synthesis of fluorinated small molecules publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2016.12.029 – volume: 10 start-page: 2538 year: 2020 ident: 10.1016/j.jbc.2021.101280_bib22 article-title: Pyruvate aldolases catalyze cross-aldol reactions between ketones: Highly selective access to multi-functionalized tertiary alcohols publication-title: ACS Catal. doi: 10.1021/acscatal.9b05512 – volume: 276 start-page: 307 year: 1997 ident: 10.1016/j.jbc.2021.101280_bib52 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – volume: 111 start-page: 4346 year: 2011 ident: 10.1016/j.jbc.2021.101280_bib2 article-title: C-C bond-forming lyases in organic synthesis publication-title: Chem. Rev. doi: 10.1021/cr100299p – volume: 49 start-page: 3774 year: 2010 ident: 10.1016/j.jbc.2021.101280_bib23 article-title: Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: Substrate specificity, kinetic mechanism, and substrate channeling publication-title: Biochemistry doi: 10.1021/bi100251u – volume: 67 start-page: 355 year: 2011 ident: 10.1016/j.jbc.2021.101280_bib56 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444911001314 – volume: 452 start-page: 108 year: 2017 ident: 10.1016/j.jbc.2021.101280_bib18 article-title: Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2017.10.009 – volume: 47 start-page: 9955 year: 2008 ident: 10.1016/j.jbc.2021.101280_bib31 article-title: Crystal structure and functional assignment of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12 publication-title: Biochemistry doi: 10.1021/bi800943g – volume: 48 start-page: 3186 year: 2009 ident: 10.1016/j.jbc.2021.101280_bib37 article-title: Structural insights into the substrate binding and stereoselectivity of giardia fructose-1,6- bisphosphate aldolase publication-title: Biochemistry doi: 10.1021/bi9001166 – volume: 20 start-page: 93 year: 1969 ident: 10.1016/j.jbc.2021.101280_bib38 article-title: Kinetics and mechanism of reactions of main group metal ions with biological carriers publication-title: Pure Appl. Chem. doi: 10.1351/pac196920010093 – volume: 1774 start-page: 1247 year: 2007 ident: 10.1016/j.jbc.2021.101280_bib44 article-title: Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2007.07.010 – volume: 495 start-page: 111131 year: 2020 ident: 10.1016/j.jbc.2021.101280_bib47 article-title: New mechanistic insights into the reversible aldol reaction catalysed by rhamnulose- 1-phosphate aldolase from Escherichia coli publication-title: Mol. Catal. doi: 10.1016/j.mcat.2020.111131 – volume: 6 start-page: 4286 year: 2016 ident: 10.1016/j.jbc.2021.101280_bib10 article-title: Building bridges: Biocatalytic C-C-bond formation toward multifunctional products publication-title: ACS Catal. doi: 10.1021/acscatal.6b00758 – volume: 19 start-page: 1353 year: 2018 ident: 10.1016/j.jbc.2021.101280_bib5 article-title: Nucleophile promiscuity of natural and engineered aldolases publication-title: Chembiochem doi: 10.1002/cbic.201800135 – volume: 361 start-page: 2649 year: 2019 ident: 10.1016/j.jbc.2021.101280_bib33 article-title: CH-π interactions promote the conversion of hydroxypyruvate in a class II pyruvate aldolase publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201900205 – volume: 102 start-page: 3586 year: 1998 ident: 10.1016/j.jbc.2021.101280_bib69 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – volume: 582 start-page: 3385 year: 2008 ident: 10.1016/j.jbc.2021.101280_bib27 article-title: The role of a conserved histidine residue in a pyruvate-specific class II aldolase publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.08.032 – year: 2017 ident: 10.1016/j.jbc.2021.101280_bib51 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.jbc.2021.101280_bib55 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 – volume: 26 start-page: 283 year: 1993 ident: 10.1016/j.jbc.2021.101280_bib58 article-title: PROCHECK: A program to check the stereochemical quality of protein structures publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889892009944 – volume: 287 start-page: 383 year: 1999 ident: 10.1016/j.jbc.2021.101280_bib36 article-title: The crystal structure of Escherichia coli class II fructose-1,6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.2609 – volume: 67 start-page: 235 year: 2011 ident: 10.1016/j.jbc.2021.101280_bib54 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910045749 – volume: 50 start-page: 1968 year: 2021 ident: 10.1016/j.jbc.2021.101280_bib12 article-title: Biocatalytic routes to anti-viral agents and their synthetic intermediates publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00763C – volume: 19 start-page: 25 year: 2014 ident: 10.1016/j.jbc.2021.101280_bib8 article-title: Engineering aldolases as biocatalysts publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2013.12.010 – volume: 57 start-page: 3583 year: 2018 ident: 10.1016/j.jbc.2021.101280_bib25 article-title: Nucleophile promiscuity of engineered class II pyruvate aldolase YfaU from E. coli publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201711289 – volume: 73 start-page: 148 year: 2017 ident: 10.1016/j.jbc.2021.101280_bib63 article-title: Polder maps: Improving OMIT maps by excluding bulk solvent publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798316018210 – volume: 353 start-page: 2263 year: 2011 ident: 10.1016/j.jbc.2021.101280_bib14 article-title: Current trends in asymmetric synthesis with aldolases publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201100236 – volume: 30 start-page: 100476 year: 2021 ident: 10.1016/j.jbc.2021.101280_bib49 article-title: Recent trends in the stereoselective synthesis of (poly)-substituted 2-oxo acids by biocatalyzed aldol reaction publication-title: Curr. Opin. Green. Sustain. Chem. doi: 10.1016/j.cogsc.2021.100476 – volume: 111 start-page: 3924 year: 1989 ident: 10.1016/j.jbc.2021.101280_bib19 article-title: Use of a recombinant bacterial fructose-1,6-diphosphate aldolase in aldol reactions: Preparative syntheses of 1-deoxynojirimycin, 1-deoxymannojirimycin, 1,4-dideoxy-1,4-imino-D- arabinitol, and fagomine publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00193a025 – volume: 63 start-page: 55 year: 2017 ident: 10.1016/j.jbc.2021.101280_bib15 article-title: An industrially applied biocatalyst: 2-deoxy-D-ribose- 5- phosphate aldolase publication-title: Process. Biochem. doi: 10.1016/j.procbio.2017.08.001 – volume: 39 start-page: 1352 year: 2000 ident: 10.1016/j.jbc.2021.101280_bib35 article-title: The catalytic asymmetric aldol reaction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J – volume: 134 start-page: 353 year: 2016 ident: 10.1016/j.jbc.2021.101280_bib41 article-title: Enzymes in the p-hydroxyphenylacetate degradation pathway of Acinetobacter baumannii publication-title: J. Mol. Catal. B Enzym. doi: 10.1016/j.molcatb.2016.09.003 – volume: 40 start-page: 658 year: 2007 ident: 10.1016/j.jbc.2021.101280_bib53 article-title: Phaser crystallographic software publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889807021206 – volume: 11 start-page: 4660 year: 2021 ident: 10.1016/j.jbc.2021.101280_bib11 article-title: Synthesis of γ-hydroxy-α-amino acid derivatives by enzymatic tandem aldol addition-transamination reactions publication-title: ACS Catal. doi: 10.1021/acscatal.1c00210 – volume: 22 start-page: 784 year: 2011 ident: 10.1016/j.jbc.2021.101280_bib7 article-title: New opportunities for biocatalysis: Driving the synthesis of chiral chemicals publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.07.002 – volume: 287 start-page: 36208 year: 2012 ident: 10.1016/j.jbc.2021.101280_bib39 article-title: Crystal structure of reaction intermediates in pyruvate class II aldolase: Substrate cleavage, enolate stabilization, and substrate specificity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.400705 – volume: 7 start-page: 8130 year: 2017 ident: 10.1016/j.jbc.2021.101280_bib40 article-title: Catalytic roles of histidine and arginine in pyruvate class II aldolase: A perspective from QM/MM metadynamics publication-title: ACS Catal. doi: 10.1021/acscatal.7b03398 – volume: 361 start-page: 1 year: 2019 ident: 10.1016/j.jbc.2021.101280_bib21 article-title: Exploration of aldol reactions catalyzed by stereoselective pyruvate aldolases with 2-oxobutyric acid as nucleophile publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201900128 – volume: 35 start-page: W522 year: 2007 ident: 10.1016/j.jbc.2021.101280_bib60 article-title: PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm276 – volume: 4 start-page: 148 year: 1988 ident: 10.1016/j.jbc.2021.101280_bib67 article-title: Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison publication-title: Proteins doi: 10.1002/prot.340040208 – volume: 23 start-page: 2947 year: 2007 ident: 10.1016/j.jbc.2021.101280_bib65 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 9 start-page: 519 year: 2017 ident: 10.1016/j.jbc.2021.101280_bib20 article-title: Expanding the reaction space of aldolases using hydroxypyruvate as a nucleophilic substrate publication-title: Green Chem. doi: 10.1039/C6GC02652D – start-page: 855 year: 2012 ident: 10.1016/j.jbc.2021.101280_bib3 article-title: Aldol reactions – volume: 294 start-page: 10490 year: 2019 ident: 10.1016/j.jbc.2021.101280_bib50 article-title: A flap motif in human serine hydroxymethyltransferase is important for structural stabilization, ligand binding, and control of product release publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.007454 – volume: 102 start-page: 9959 year: 2018 ident: 10.1016/j.jbc.2021.101280_bib16 article-title: 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): Applications and modifications publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9392-8 – volume: 293 start-page: 7737 year: 2018 ident: 10.1016/j.jbc.2021.101280_bib46 article-title: Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.001098 – volume: 75 start-page: 1 year: 2018 ident: 10.1016/j.jbc.2021.101280_bib17 article-title: Exploration of the sialic acid world publication-title: Adv. Carbohydr. Chem. Biochem. doi: 10.1016/bs.accb.2018.09.001 – volume: 1996 start-page: 1112 year: 1996 ident: 10.1016/j.jbc.2021.101280_bib48 article-title: Carbonyl-ene approach to the asymmetric synthesis of 2-keto-3-deoxy-D-gluconic acid (KDG): A combinatorial sequence using sharpless epoxidation publication-title: Synlett doi: 10.1055/s-1996-5691 – volume: 286 start-page: 184 year: 2019 ident: 10.1016/j.jbc.2021.101280_bib42 article-title: nanoDSF as screening tool for enzyme libraries and biotechnology development publication-title: FEBS J. doi: 10.1111/febs.14696 – volume: 134 start-page: 507 year: 2012 ident: 10.1016/j.jbc.2021.101280_bib24 article-title: Rational design of stereoselectivity in the class II pyruvate aldolase BphI publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208754r – volume: 32 start-page: W665 year: 2004 ident: 10.1016/j.jbc.2021.101280_bib68 article-title: PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh381 – volume: 372 start-page: 774 year: 2007 ident: 10.1016/j.jbc.2021.101280_bib62 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 373 start-page: 866 year: 2007 ident: 10.1016/j.jbc.2021.101280_bib30 article-title: Structure and mechanism of HpcH: A metal ion dependent class II aldolase from the homoprotocatechuate degradation pathway of Escherichia coli publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.06.048 – volume: 35 start-page: 2219 year: 1996 ident: 10.1016/j.jbc.2021.101280_bib34 article-title: The mechanism of class II, metal-dependent aldolases publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.199622191 – volume: 4 start-page: 1303 year: 1996 ident: 10.1016/j.jbc.2021.101280_bib43 article-title: The crystal structure of a class II fructose-1,6- bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold publication-title: Structure doi: 10.1016/S0969-2126(96)00138-4 – volume: 60 start-page: 2256 year: 2004 ident: 10.1016/j.jbc.2021.101280_bib59 article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904026460 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.jbc.2021.101280_bib64 article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 60 start-page: 1355 year: 2004 ident: 10.1016/j.jbc.2021.101280_bib57 article-title: PRODRG: A tool for high-throughput crystallography of protein-ligand complexes publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904011679 – volume: 6 start-page: 4 year: 2019 ident: 10.1016/j.jbc.2021.101280_bib6 article-title: Current advances on structure-function relationships of pyridoxal 5'-phosphate-dependent enzymes publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2019.00004 – volume: 50 start-page: 3559 year: 2011 ident: 10.1016/j.jbc.2021.101280_bib32 article-title: Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI publication-title: Biochemistry doi: 10.1021/bi101947g – start-page: 267 year: 2016 ident: 10.1016/j.jbc.2021.101280_bib4 article-title: Recent advances in enzyme-catalyzed aldol addition reactions – volume: 19 start-page: 3849 year: 2000 ident: 10.1016/j.jbc.2021.101280_bib28 article-title: Crystal structures of the metal-dependent 2-dehydro-3-deoxy- galactarate aldolase suggest a novel reaction mechanism publication-title: EMBO J. doi: 10.1093/emboj/19.15.3849 – volume: 98 start-page: 10037 year: 2001 ident: 10.1016/j.jbc.2021.101280_bib61 article-title: Electrostatics of nanosystems: Application to microtubules and the ribosome publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.181342398 – volume: 100 start-page: 6992 year: 2003 ident: 10.1016/j.jbc.2021.101280_bib29 article-title: Crystal structure of a bifunctional aldolase- dehydrogenase: Sequestering a reactive and volatile intermediate publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1236794100 – volume: 14 start-page: 154 year: 2010 ident: 10.1016/j.jbc.2021.101280_bib1 article-title: Recent progress in stereoselective synthesis with aldolases publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2009.11.029 – volume: 52 start-page: 10983 year: 2013 ident: 10.1016/j.jbc.2021.101280_bib45 article-title: Zinc coordination spheres in protein structures publication-title: Inorg. Chem. doi: 10.1021/ic401072d – volume: 58 start-page: 11841 year: 2019 ident: 10.1016/j.jbc.2021.101280_bib13 article-title: Chemoenzymatic platform for synthesis of chiral organofluorines based on type II aldolases publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201906805 – volume: 44 start-page: 9447 year: 2005 ident: 10.1016/j.jbc.2021.101280_bib26 article-title: Purification and biochemical characterization of a pyruvate- specific class II aldolase, HpaI publication-title: Biochemistry doi: 10.1021/bi050607y – volume: 42 start-page: W320 year: 2014 ident: 10.1016/j.jbc.2021.101280_bib66 article-title: Deciphering key features in protein structures with the new ENDscript server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku316 |
SSID | ssj0000491 |
Score | 2.4031348 |
Snippet | Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101280 |
SubjectTerms | Acinetobacter baumannii - enzymology Bacterial Proteins Calcium - chemistry Catalysis Catalytic Domain crystal structure Crystallography, X-Ray enzyme catalysis Enzyme Stability Fructose-Bisphosphate Aldolase - chemistry metal-dependent enzyme p-hydroxyphenylacetate degradation pathway pyruvate-specific Class II metal aldolase solvent-tolerant enzyme stereoselectivity stereospecificity structure–function Substrate Specificity thermostable enzyme Zinc - chemistry |
Title | Catalytic and structural insights into a stereospecific and thermostable Class II aldolase HpaI from Acinetobacter baumannii |
URI | https://dx.doi.org/10.1016/j.jbc.2021.101280 https://www.ncbi.nlm.nih.gov/pubmed/34624314 https://www.proquest.com/docview/2580700832 https://pubmed.ncbi.nlm.nih.gov/PMC8560999 |
Volume | 297 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIkFfELRQwqVaJMQDUSrb61seQwRKCq2K1Ep5s9brteIocaLEURXE1_IlzOx6baeUCvoSRb7EVuZ4PDN75gwh7-NQeq6f-F0pWQIJSpx0Y4hau6EnRJJaqeWq0Qln5_7wyj0de-NW61eDtbQp4hPx49a-kvtYFbaBXbFL9j8sW_0obIDvYF_4BAvD5z_ZeIC1l62RXNVSsKWMxhqTbuRaQWzJO6iGIFEUXDHwDGtyNV9AbIitU2o0Zmc06vBZArnuWnaGSz7SvSd9XHrHxx5lnTsxx6p_nmXNqLbuL1ORrRZ20tIjZp5cXbgviglHCpPyMRcAQDHh27oskOUzLlWtp79GBlm155SvNtdcqySssmLNV9Wub_xa13HPIfPPm4UMxy47-iromRWqJl31U7aoblQzT8zQ4HJWZ9NfKraJo5XgT6T25xBhYrPCuOnwHc0ILpHt3foi0TWN6ck0Rp1Lx8Ytjp451QDWcq6QxVzfgUDMrd-pFdPx4mwQQlAJYfgD8tCBVAanbHz9XivaQ4ampzqWN29W3hUH8cbV98kjc6m_hVF_pkk32b6N8OnyKXlSooP2NYifkZbMD8hhP-fFYr6lH6hiIqu_-oA8HhhjHJKfFcYpGIbWGKcG4xQxTjndxbg6uolxqjBORyNqME4R4xQxTncwTiuMPydXXz5fDobdcmJIVzDft7oyDGMWyNR1hZfYwu3JhAWhLxjzUx4mNnNYYAWJH1oxZ0JYNgdnFAqUHUwtLnvsBdnLF7l8SWjKeqlt9xIegu9KPYdz7sVp4KVcxoH0rDaxjAEiUcrp41SXWWR4k9MIzBeh-SJtvjb5WJ2y1Foydx3sGqtGZTCsg9wIIHrXae8MAiKwFK7-8VwuNusIsAWvd3genDY50oio7sKgqk2CHaxUB6AI_e6ePJsoMfoS3a_ufeZrsl97gzdkD3Ak30KgX8THqkB2rJ6X383DCUk |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+and+structural+insights+into+a+stereospecific+and+thermostable+Class+II+aldolase+HpaI+from+Acinetobacter+baumannii&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Watthaisong%2C+Pratchaya&rft.au=Binlaeh%2C+Asweena&rft.au=Jaruwat%2C+Aritsara&rft.au=Lawan%2C+Narin&rft.date=2021-11-01&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=297&rft.issue=5&rft_id=info:doi/10.1016%2Fj.jbc.2021.101280&rft_id=info%3Apmid%2F34624314&rft.externalDocID=PMC8560999 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |