Catalytic and structural insights into a stereospecific and thermostable Class II aldolase HpaI from Acinetobacter baumannii

Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter bau...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 297; no. 5; p. 101280
Main Authors Watthaisong, Pratchaya, Binlaeh, Asweena, Jaruwat, Aritsara, Lawan, Narin, Tantipisit, Jirawat, Jaroensuk, Juthamas, Chuaboon, Litavadee, Phonbuppha, Jittima, Tinikul, Ruchanok, Chaiyen, Pimchai, Chitnumsub, Penchit, Maenpuen, Somchart
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2021
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.
AbstractList Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M ) cofactors, except Ca , for catalysis. We found that Zn yielded the highest enzyme complex thermostability (T of 87 °C) and solvent tolerance. All AbHpaI•M complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn displaying the highest R/S stereoselectivity ratio (sixfold higher than other M cofactors). For the aldol condensation reaction, AbHpaI•M only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn -bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.
Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p -hydroxyphenylacetate degradation pathway in Acinetobacter baumannii , 4-hydroxy-2-keto-heptane-1,7-dioate aldolase ( Ab HpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn 2+ by Ab HpaI as a native cofactor is distinct from other enzymes in this class. Ab HpaI can also use other metal ion (M 2+ ) cofactors, except Ca 2+ , for catalysis. We found that Zn 2+ yielded the highest enzyme complex thermostability ( T m of 87 °C) and solvent tolerance. All Ab HpaI•M 2+ complexes demonstrated preferential cleavage of (4 R )-2-keto-3-deoxy-D-galactonate ((4 R )-KDGal) over (4 S )-2-keto-3-deoxy-D-gluconate ((4 S )-KDGlu), with Ab HpaI•Zn 2+ displaying the highest R / S stereoselectivity ratio (sixfold higher than other M 2+ cofactors). For the aldol condensation reaction, Ab HpaI•M 2+ only specifically forms (4 R )-KDGal and not (4 S )-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of Ab HpaI complexed with M 2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M 2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn 2+ -bound form governs the stereoselectivity/stereospecificity of Ab HpaI. X-ray structures also show that Ca 2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that Ab HpaI•Zn 2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.
Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.
Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.
ArticleNumber 101280
Author Binlaeh, Asweena
Chuaboon, Litavadee
Phonbuppha, Jittima
Jaruwat, Aritsara
Maenpuen, Somchart
Chaiyen, Pimchai
Tinikul, Ruchanok
Tantipisit, Jirawat
Chitnumsub, Penchit
Lawan, Narin
Watthaisong, Pratchaya
Jaroensuk, Juthamas
Author_xml – sequence: 1
  givenname: Pratchaya
  surname: Watthaisong
  fullname: Watthaisong, Pratchaya
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 2
  givenname: Asweena
  surname: Binlaeh
  fullname: Binlaeh, Asweena
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 3
  givenname: Aritsara
  surname: Jaruwat
  fullname: Jaruwat, Aritsara
  organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
– sequence: 4
  givenname: Narin
  surname: Lawan
  fullname: Lawan, Narin
  organization: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
– sequence: 5
  givenname: Jirawat
  surname: Tantipisit
  fullname: Tantipisit, Jirawat
  organization: Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
– sequence: 6
  givenname: Juthamas
  surname: Jaroensuk
  fullname: Jaroensuk, Juthamas
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 7
  givenname: Litavadee
  surname: Chuaboon
  fullname: Chuaboon, Litavadee
  organization: School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
– sequence: 8
  givenname: Jittima
  surname: Phonbuppha
  fullname: Phonbuppha, Jittima
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 9
  givenname: Ruchanok
  surname: Tinikul
  fullname: Tinikul, Ruchanok
  organization: Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
– sequence: 10
  givenname: Pimchai
  orcidid: 0000-0002-8533-1604
  surname: Chaiyen
  fullname: Chaiyen, Pimchai
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 11
  givenname: Penchit
  orcidid: 0000-0001-5920-3708
  surname: Chitnumsub
  fullname: Chitnumsub, Penchit
  email: penchit@biotec.or.th
  organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
– sequence: 12
  givenname: Somchart
  orcidid: 0000-0001-7770-4178
  surname: Maenpuen
  fullname: Maenpuen, Somchart
  email: somchart@go.buu.ac.th
  organization: Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34624314$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1r3DAQFSWl2aT9Ab0UHXvZrWR5bZlCISxtsxDopYXexHg8zmqxpa0kBwL58ZXZTWh6iC4aMe8DvXfBzpx3xNh7KVZSyOrTfrVvcVWIQs7vQotXbCGFVku1lr_P2ELkzbIp1vqcXcS4F_mUjXzDzlVZFaWS5YI9bCDBcJ8scnAdjylMmKYAA7cu2ttdinlInkNeUSAfD4S2P6HTjsLoY4J2IL4ZIEa-3XIYOp9n4tcH2PI--JFfoXWUfAuYRXgL0wjOWfuWve5hiPTudF-yX9--_txcL29-fN9urm6WqKpKLEnrVtXUlyWuO4llQ52qdYVKVT3oTqpC1aLuKi1aUIhCQi9KjYUsi14ANeqSfTnqHqZ2pA7JpfxDcwh2hHBvPFjzfOPsztz6O6PXlWiaWeDjSSD4PxPFZEYbkYYBHPkpmhyxqEVOvsjQD_96PZk8Rp4B9RGAwccYqDdoEyTrZ2s7GCnMXK7Zm1yumcs1x3IzU_7HfBR_ifP5yKGc752lYCJackidDYTJdN6-wP4LeWO-gA
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2022_12_150
crossref_primary_10_1016_j_biotno_2023_02_003
crossref_primary_10_1002_cbic_202300170
crossref_primary_10_1016_j_abb_2023_109768
crossref_primary_10_1002_anie_202213338
crossref_primary_10_1002_ange_202213338
Cites_doi 10.1016/j.cbpa.2016.12.029
10.1021/acscatal.9b05512
10.1016/S0076-6879(97)76066-X
10.1021/cr100299p
10.1021/bi100251u
10.1107/S0907444911001314
10.1016/j.carres.2017.10.009
10.1021/bi800943g
10.1021/bi9001166
10.1351/pac196920010093
10.1016/j.bbapap.2007.07.010
10.1016/j.mcat.2020.111131
10.1021/acscatal.6b00758
10.1002/cbic.201800135
10.1002/adsc.201900205
10.1021/jp973084f
10.1016/j.febslet.2008.08.032
10.1107/S0907444910007493
10.1107/S0021889892009944
10.1006/jmbi.1999.2609
10.1107/S0907444910045749
10.1039/D0CS00763C
10.1016/j.cbpa.2013.12.010
10.1002/anie.201711289
10.1107/S2059798316018210
10.1002/adsc.201100236
10.1016/j.cogsc.2021.100476
10.1021/ja00193a025
10.1016/j.procbio.2017.08.001
10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J
10.1016/j.molcatb.2016.09.003
10.1107/S0021889807021206
10.1021/acscatal.1c00210
10.1016/j.copbio.2011.07.002
10.1074/jbc.M112.400705
10.1021/acscatal.7b03398
10.1002/adsc.201900128
10.1093/nar/gkm276
10.1002/prot.340040208
10.1093/bioinformatics/btm404
10.1039/C6GC02652D
10.1074/jbc.RA119.007454
10.1007/s00253-018-9392-8
10.1074/jbc.RA117.001098
10.1016/bs.accb.2018.09.001
10.1055/s-1996-5691
10.1111/febs.14696
10.1021/ja208754r
10.1093/nar/gkh381
10.1016/j.jmb.2007.05.022
10.1016/j.jmb.2007.06.048
10.1002/anie.199622191
10.1016/S0969-2126(96)00138-4
10.1107/S0907444904026460
10.1107/S0907444909052925
10.1107/S0907444904011679
10.3389/fmolb.2019.00004
10.1021/bi101947g
10.1093/emboj/19.15.3849
10.1073/pnas.181342398
10.1073/pnas.1236794100
10.1016/j.cbpa.2009.11.029
10.1021/ic401072d
10.1002/anie.201906805
10.1021/bi050607y
10.1093/nar/gku316
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jbc.2021.101280
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID PMC8560999
34624314
10_1016_j_jbc_2021_101280
S0021925821010838
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7X8
5PM
ID FETCH-LOGICAL-c3660-e88b37ef44c5d1c49ed3786c336fa8d1323707d680ba3cc01af048c2142f0ae93
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 14:02:30 EDT 2025
Fri Jul 11 08:29:20 EDT 2025
Wed Feb 19 02:27:47 EST 2025
Thu Apr 24 22:59:10 EDT 2025
Tue Jul 01 04:33:27 EDT 2025
Fri Feb 23 02:43:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords (4S)-KDGlu
MPD
PPA
AbHpaI
LC-ESI-QTOF-MS
DTT
M2
HBA
PDB
metal-dependent enzyme
solvent-tolerant enzyme
BSA
LDH
NADH
MD
HOPA
Tm
stereospecificity
HKHD
ICP-OES
(NH4)2SO4
FPLC
SSA
(4R)-KDGal
thermostable enzyme
PYR
enzyme catalysis
MW
QM/MM
HNO3
DHAP
EDTA
p-hydroxyphenylacetate degradation pathway
OAA
EGTA
SEC
stereoselectivity
PEI
PMSF
HEPES
crystal structure
NaCl
EcHpaI
pyruvate-specific Class II metal aldolase
structure–function
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3660-e88b37ef44c5d1c49ed3786c336fa8d1323707d680ba3cc01af048c2142f0ae93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-7770-4178
0000-0001-5920-3708
0000-0002-8533-1604
OpenAccessLink http://dx.doi.org/10.1016/j.jbc.2021.101280
PMID 34624314
PQID 2580700832
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8560999
proquest_miscellaneous_2580700832
pubmed_primary_34624314
crossref_citationtrail_10_1016_j_jbc_2021_101280
crossref_primary_10_1016_j_jbc_2021_101280
elsevier_sciencedirect_doi_10_1016_j_jbc_2021_101280
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2021
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Hernández, Szekrenyi, Clapés (bib5) 2018; 19
Liang, Han, Tan, Ding, Li (bib6) 2019; 6
Schüttelkopf, van Aalten (bib57) 2004; 60
Coincon, Wang, Sygusch, Seah (bib39) 2012; 287
Krissinel, Henrick (bib62) 2007; 72
Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam, Valentin, Wallace, Wilm, Lopez, Thompson, Gibson, Higgins (bib65) 2007; 23
Li, Cai, Chen, Wang, Wang, Nakanishi, Gao, Li (bib18) 2017; 452
Laitaoja, Valjakka, Jänis (bib45) 2013; 52
Laurent, Uzel, Hélaine, Nauton, Traïkia, Gefflaut, Salanoubat, de Berardinis, Lemaire, Guérard-Hélaine (bib21) 2019; 361
Patel, Kumar, Durani (bib44) 2007; 1774
Krissinel, Henrick (bib59) 2004; 60
Von der Osten, Sinskey, Barbas, Pederson, Wang, Wong (bib19) 1989; 111
Huang, Yu (bib40) 2017; 7
Cooper, Leonard, McSweeney, Thompson, Naismith, Qamar, Plater, Berry, Hunter (bib43) 1996; 4
Ubonprasert, Jaroensuk, Pornthanakasem, Kamonsutthipaijit, Wongpituk, Mee- Udorn, Rungrotmongkol, Ketchart, Chitnumsub, Leartsakulpanich, Chaiyen, Maenpuen (bib50) 2019; 294
Dolinsky, Nielsen, McCammon, Baker (bib68) 2004; 32
Wang, Baker, Seah (bib23) 2010; 49
Winn, Ballard, Cowtan, Dodson, Emsley, Evans, Keegan, Krissinel, Leslie, McCoy, McNicholas, Murshudov, Pannu, Potterton, Powell (bib54) 2011; 67
Schmidt, Eger, Kroutil (bib10) 2016; 6
Schauer, Kamerling (bib17) 2018; 75
Baker, Sept, Joseph, Holst, McCammon (bib61) 2001; 98
Murshudov, Skubák, Lebedev, Pannu, Steiner, Nicholls, Winn, Long, Vagin (bib56) 2011; 67
Laskowski, MacArthur, Moss, Thornton (bib58) 1993; 26
Galkin, Li, Li, Kulakova, Pal, Dunaway-Mariano, Herzberg (bib37) 2009; 48
McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib53) 2007; 40
Moreno, Hernández, Charnok, Gittings, Bolte, Joglar, Bujons, Parella, Clapés (bib11) 2021; 11
Laurent, Gourbeyre, Uzel, Hélaine, Nauton, Traïkia, de Berardinis, Salanoubat, Gefflaut, Lemaire, Guérard-Hélaine (bib22) 2020; 10
Fang, Hait, Head-Gordon, Chang (bib13) 2019; 58
Wang, Seah (bib27) 2008; 582
Brovetto, Gamenara, Méndez, Seoane (bib2) 2011; 111
Hall, Leonard, Reed, Watt, Berry, Hunter, W (bib36) 1999; 287
Clapés (bib4) 2016
Fei, Zheng, Liu, Li (bib15) 2017; 63
Emsley, Lohkamp, Scott, Cowtan (bib55) 2010
Slagman, Fessner (bib12) 2021; 50
Dolinsky, Czodrowski, Li, Nielsen, Jensen, Klebe, Baker (bib60) 2007; 35
(bib51) 2017
Otwinowski, Minor (bib52) 1997; 276
Rea, Fülöp, Bugg, Roper (bib30) 2007
Fessner (bib3) 2012
MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, Joseph-McCarthy, Kuchnir, Kuczera, Lau, Mattos (bib69) 1998; 102
Hernández, Joglar, Bujons, Parella, Clapés (bib25) 2018; 57
Liebschner, Afonine, Moriarty, Poon, Sobolev, Terwilliger, Adams (bib63) 2017; 73
Izard, Blackwell (bib28) 2000; 19
Haridas, Abdelraheem, Hanefeld (bib16) 2018; 102
Clapés, Garraboua (bib14) 2011; 353
Robert, Gouet (bib66) 2014; 42
Shimizu, Yoshida, Mikami (bib48) 1996; 1996
Pickl (bib49) 2021; 30
Brünger, Karplus (bib67) 1988; 4
Machajewski, Wong (bib35) 2000; 39
Jacques, Coinçon, Sygusch (bib46) 2018; 293
Clapés, Fessner, Sprenger, Samland (bib1) 2010; 14
de Berardinis, Guérard-Hélaine, Darii, Bastard, Hélaine, Mariage, Petit, Poupard, Sanchez-Moreno, Stam, Gefflaut, Salanoubat, Lemaire (bib20) 2017; 9
Baker, Seah (bib24) 2012; 134
Wang, Seah (bib26) 2005; 44
Fessner, Schneider, Held, Sinerius, Walter, Hixon, Schloss (bib34) 1996; 35
Diebler, Eigen, Ilgenfritz, Maass, Winkler (bib38) 1969; 20
Rea, Hovington, Rakus, Gerlt, Fülöp, Bugg, Roper (bib31) 2008; 4
Windle, Berry, Nelson (bib9) 2017; 37
Manjasetty, Powlowski, Vrielink (bib29) 2003; 100
Marsden, Mestrom, Bento, Hagedoorn, McMillan, Hanefeld (bib33) 2019; 361
Magnusson, Szekrenyi, Joosten, Finnigan, Charnock, Fessner (bib42) 2019; 286
Baker, Carere, Seah (bib32) 2011; 50
Rigual, Cantero, Risso, Rodríguez, Rodríguez, Paulino, Gamenara, Veig (bib47) 2020; 495
Windle, Müller, Nelson, Berry (bib8) 2014; 1
Zheng, Xu (bib7) 2011; 22
Thotsaporn, Tinikul, Maenpuen, Phonbuppha, Watthaisong, Chenprakhon, Chaiyen (bib41) 2016; 134
Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve, McCoy, Moriarty, Oeffner, Read, Richardson (bib64) 2010; 66
Larkin (10.1016/j.jbc.2021.101280_bib65) 2007; 23
Brovetto (10.1016/j.jbc.2021.101280_bib2) 2011; 111
Fessner (10.1016/j.jbc.2021.101280_bib3) 2012
MacKerell (10.1016/j.jbc.2021.101280_bib69) 1998; 102
Marsden (10.1016/j.jbc.2021.101280_bib33) 2019; 361
Ubonprasert (10.1016/j.jbc.2021.101280_bib50) 2019; 294
Patel (10.1016/j.jbc.2021.101280_bib44) 2007; 1774
Fang (10.1016/j.jbc.2021.101280_bib13) 2019; 58
Wang (10.1016/j.jbc.2021.101280_bib26) 2005; 44
Magnusson (10.1016/j.jbc.2021.101280_bib42) 2019; 286
Schüttelkopf (10.1016/j.jbc.2021.101280_bib57) 2004; 60
Zheng (10.1016/j.jbc.2021.101280_bib7) 2011; 22
Fessner (10.1016/j.jbc.2021.101280_bib34) 1996; 35
Huang (10.1016/j.jbc.2021.101280_bib40) 2017; 7
Emsley (10.1016/j.jbc.2021.101280_bib55) 2010; 66
Dolinsky (10.1016/j.jbc.2021.101280_bib60) 2007; 35
Laurent (10.1016/j.jbc.2021.101280_bib22) 2020; 10
Baker (10.1016/j.jbc.2021.101280_bib61) 2001; 98
McCoy (10.1016/j.jbc.2021.101280_bib53) 2007; 40
Dolinsky (10.1016/j.jbc.2021.101280_bib68) 2004; 32
Izard (10.1016/j.jbc.2021.101280_bib28) 2000; 19
Fei (10.1016/j.jbc.2021.101280_bib15) 2017; 63
Galkin (10.1016/j.jbc.2021.101280_bib37) 2009; 48
Pickl (10.1016/j.jbc.2021.101280_bib49) 2021; 30
Wang (10.1016/j.jbc.2021.101280_bib27) 2008; 582
Moreno (10.1016/j.jbc.2021.101280_bib11) 2021; 11
Cooper (10.1016/j.jbc.2021.101280_bib43) 1996; 4
Laitaoja (10.1016/j.jbc.2021.101280_bib45) 2013; 52
Rea (10.1016/j.jbc.2021.101280_bib30) 2007; 373
Hernández (10.1016/j.jbc.2021.101280_bib5) 2018; 19
Manjasetty (10.1016/j.jbc.2021.101280_bib29) 2003; 100
Murshudov (10.1016/j.jbc.2021.101280_bib56) 2011; 67
Li (10.1016/j.jbc.2021.101280_bib18) 2017; 452
(10.1016/j.jbc.2021.101280_bib51) 2017
Hall (10.1016/j.jbc.2021.101280_bib36) 1999; 287
Krissinel (10.1016/j.jbc.2021.101280_bib62) 2007; 372
Krissinel (10.1016/j.jbc.2021.101280_bib59) 2004; 60
Rigual (10.1016/j.jbc.2021.101280_bib47) 2020; 495
Laskowski (10.1016/j.jbc.2021.101280_bib58) 1993; 26
Slagman (10.1016/j.jbc.2021.101280_bib12) 2021; 50
Schauer (10.1016/j.jbc.2021.101280_bib17) 2018; 75
Schmidt (10.1016/j.jbc.2021.101280_bib10) 2016; 6
Windle (10.1016/j.jbc.2021.101280_bib8) 2014; 19
Clapés (10.1016/j.jbc.2021.101280_bib4) 2016
Windle (10.1016/j.jbc.2021.101280_bib9) 2017; 37
Brünger (10.1016/j.jbc.2021.101280_bib67) 1988; 4
Haridas (10.1016/j.jbc.2021.101280_bib16) 2018; 102
Robert (10.1016/j.jbc.2021.101280_bib66) 2014; 42
Laurent (10.1016/j.jbc.2021.101280_bib21) 2019; 361
Liebschner (10.1016/j.jbc.2021.101280_bib63) 2017; 73
Coincon (10.1016/j.jbc.2021.101280_bib39) 2012; 287
Adams (10.1016/j.jbc.2021.101280_bib64) 2010; 66
Baker (10.1016/j.jbc.2021.101280_bib32) 2011; 50
Von der Osten (10.1016/j.jbc.2021.101280_bib19) 1989; 111
Clapés (10.1016/j.jbc.2021.101280_bib14) 2011; 353
Diebler (10.1016/j.jbc.2021.101280_bib38) 1969; 20
Thotsaporn (10.1016/j.jbc.2021.101280_bib41) 2016; 134
Winn (10.1016/j.jbc.2021.101280_bib54) 2011; 67
Shimizu (10.1016/j.jbc.2021.101280_bib48) 1996; 1996
Clapés (10.1016/j.jbc.2021.101280_bib1) 2010; 14
Liang (10.1016/j.jbc.2021.101280_bib6) 2019; 6
Machajewski (10.1016/j.jbc.2021.101280_bib35) 2000; 39
Hernández (10.1016/j.jbc.2021.101280_bib25) 2018; 57
Jacques (10.1016/j.jbc.2021.101280_bib46) 2018; 293
Otwinowski (10.1016/j.jbc.2021.101280_bib52) 1997; 276
Rea (10.1016/j.jbc.2021.101280_bib31) 2008; 47
Baker (10.1016/j.jbc.2021.101280_bib24) 2012; 134
Wang (10.1016/j.jbc.2021.101280_bib23) 2010; 49
de Berardinis (10.1016/j.jbc.2021.101280_bib20) 2017; 9
References_xml – volume: 111
  start-page: 4346
  year: 2011
  end-page: 4403
  ident: bib2
  article-title: C-C bond-forming lyases in organic synthesis
  publication-title: Chem. Rev.
– volume: 11
  start-page: 4660
  year: 2021
  end-page: 4669
  ident: bib11
  article-title: Synthesis of γ-hydroxy-α-amino acid derivatives by enzymatic tandem aldol addition-transamination reactions
  publication-title: ACS Catal.
– volume: 48
  start-page: 3186
  year: 2009
  end-page: 3196
  ident: bib37
  article-title: Structural insights into the substrate binding and stereoselectivity of
  publication-title: Biochemistry
– volume: 4
  start-page: 1303
  year: 1996
  end-page: 1315
  ident: bib43
  article-title: The crystal structure of a class II fructose-1,6- bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold
  publication-title: Structure
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bib64
  article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– year: 2017
  ident: bib51
  publication-title: DOC-M86-EXX242 PROTEUM3 Software User Manual
– volume: 9
  start-page: 519
  year: 2017
  end-page: 526
  ident: bib20
  article-title: Expanding the reaction space of aldolases using hydroxypyruvate as a nucleophilic substrate
  publication-title: Green Chem.
– volume: 7
  start-page: 8130
  year: 2017
  end-page: 8133
  ident: bib40
  article-title: Catalytic roles of histidine and arginine in pyruvate class II aldolase: A perspective from QM/MM metadynamics
  publication-title: ACS Catal.
– volume: 39
  start-page: 1352
  year: 2000
  end-page: 1374
  ident: bib35
  article-title: The catalytic asymmetric aldol reaction
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 50
  start-page: 1968
  year: 2021
  end-page: 2009
  ident: bib12
  article-title: Biocatalytic routes to anti-viral agents and their synthetic intermediates
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: bib53
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Crystallogr.
– volume: 50
  start-page: 3559
  year: 2011
  end-page: 3569
  ident: bib32
  article-title: Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI
  publication-title: Biochemistry
– volume: 102
  start-page: 3586
  year: 1998
  end-page: 3616
  ident: bib69
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J. Phys. Chem. B
– volume: 22
  start-page: 784
  year: 2011
  end-page: 792
  ident: bib7
  article-title: New opportunities for biocatalysis: Driving the synthesis of chiral chemicals
  publication-title: Curr. Opin. Biotechnol.
– volume: 14
  start-page: 154
  year: 2010
  end-page: 167
  ident: bib1
  article-title: Recent progress in stereoselective synthesis with aldolases
  publication-title: Curr. Opin. Chem. Biol.
– volume: 30
  start-page: 100476
  year: 2021
  end-page: 100485
  ident: bib49
  article-title: Recent trends in the stereoselective synthesis of (poly)-substituted 2-oxo acids by biocatalyzed aldol reaction
  publication-title: Curr. Opin. Green. Sustain. Chem.
– volume: 60
  start-page: 2256
  year: 2004
  end-page: 2268
  ident: bib59
  article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 294
  start-page: 10490
  year: 2019
  end-page: 10502
  ident: bib50
  article-title: A flap motif in human serine hydroxymethyltransferase is important for structural stabilization, ligand binding, and control of product release
  publication-title: J. Biol. Chem.
– volume: 361
  start-page: 2649
  year: 2019
  end-page: 2658
  ident: bib33
  article-title: CH-π interactions promote the conversion of hydroxypyruvate in a class II pyruvate aldolase
  publication-title: Adv. Synth. Catal.
– volume: 1996
  start-page: 1112
  year: 1996
  end-page: 1114
  ident: bib48
  article-title: Carbonyl-ene approach to the asymmetric synthesis of 2-keto-3-deoxy-D-gluconic acid (KDG): A combinatorial sequence using sharpless epoxidation
  publication-title: Synlett
– volume: 98
  start-page: 10037
  year: 2001
  end-page: 10041
  ident: bib61
  article-title: Electrostatics of nanosystems: Application to microtubules and the ribosome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 148
  year: 1988
  end-page: 156
  ident: bib67
  article-title: Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison
  publication-title: Proteins
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  ident: bib65
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
– volume: 67
  start-page: 355
  year: 2011
  end-page: 367
  ident: bib56
  article-title: REFMAC5 for the refinement of macromolecular crystal structures
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 73
  start-page: 148
  year: 2017
  end-page: 157
  ident: bib63
  article-title: Polder maps: Improving OMIT maps by excluding bulk solvent
  publication-title: Acta Crystallogr. D Struct. Biol.
– volume: 286
  start-page: 184
  year: 2019
  end-page: 204
  ident: bib42
  article-title: nanoDSF as screening tool for enzyme libraries and biotechnology development
  publication-title: FEBS J.
– volume: 495
  start-page: 111131
  year: 2020
  end-page: 111140
  ident: bib47
  article-title: New mechanistic insights into the reversible aldol reaction catalysed by rhamnulose- 1-phosphate aldolase from
  publication-title: Mol. Catal.
– volume: 6
  start-page: 4286
  year: 2016
  end-page: 4311
  ident: bib10
  article-title: Building bridges: Biocatalytic C-C-bond formation toward multifunctional products
  publication-title: ACS Catal.
– volume: 44
  start-page: 9447
  year: 2005
  end-page: 9455
  ident: bib26
  article-title: Purification and biochemical characterization of a pyruvate- specific class II aldolase, HpaI
  publication-title: Biochemistry
– volume: 35
  start-page: 2219
  year: 1996
  end-page: 2221
  ident: bib34
  article-title: The mechanism of class II, metal-dependent aldolases
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 60
  start-page: 1355
  year: 2004
  end-page: 1363
  ident: bib57
  article-title: PRODRG: A tool for high-throughput crystallography of protein-ligand complexes
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 75
  start-page: 1
  year: 2018
  end-page: 213
  ident: bib17
  article-title: Exploration of the sialic acid world
  publication-title: Adv. Carbohydr. Chem. Biochem.
– volume: 4
  start-page: 9955
  year: 2008
  end-page: 9965
  ident: bib31
  article-title: Crystal structure and functional assignment of YfaU, a metal ion dependent class II aldolase from
  publication-title: Biochemistry
– volume: 1
  start-page: 25
  year: 2014
  end-page: 33
  ident: bib8
  article-title: Engineering aldolases as biocatalysts
  publication-title: Curr. Opin. Chem. Biol.
– volume: 102
  start-page: 9959
  year: 2018
  end-page: 9971
  ident: bib16
  article-title: 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): Applications and modifications
  publication-title: Appl. Microbiol. Biotechnol.
– start-page: 267
  year: 2016
  end-page: 306
  ident: bib4
  article-title: Recent advances in enzyme-catalyzed aldol addition reactions
  publication-title: Green Biocatalysis
– volume: 293
  start-page: 7737
  year: 2018
  end-page: 7753
  ident: bib46
  article-title: Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases
  publication-title: J. Biol. Chem.
– volume: 1774
  start-page: 1247
  year: 2007
  end-page: 1253
  ident: bib44
  article-title: Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures
  publication-title: Biochim. Biophys. Acta
– volume: 10
  start-page: 2538
  year: 2020
  end-page: 2543
  ident: bib22
  article-title: Pyruvate aldolases catalyze cross-aldol reactions between ketones: Highly selective access to multi-functionalized tertiary alcohols
  publication-title: ACS Catal.
– start-page: 866
  year: 2007
  end-page: 876
  ident: bib30
  article-title: Structure and mechanism of HpcH: A metal ion dependent class II aldolase from the homoprotocatechuate degradation pathway of
  publication-title: J. Mol. Biol.
– volume: 353
  start-page: 2263
  year: 2011
  end-page: 2283
  ident: bib14
  article-title: Current trends in asymmetric synthesis with aldolases
  publication-title: Adv. Synth. Catal.
– volume: 361
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib21
  article-title: Exploration of aldol reactions catalyzed by stereoselective pyruvate aldolases with 2-oxobutyric acid as nucleophile
  publication-title: Adv. Synth. Catal.
– volume: 582
  start-page: 3385
  year: 2008
  end-page: 3388
  ident: bib27
  article-title: The role of a conserved histidine residue in a pyruvate-specific class II aldolase
  publication-title: FEBS Lett.
– volume: 134
  start-page: 507
  year: 2012
  end-page: 513
  ident: bib24
  article-title: Rational design of stereoselectivity in the class II pyruvate aldolase BphI
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 283
  year: 1993
  end-page: 291
  ident: bib58
  article-title: PROCHECK: A program to check the stereochemical quality of protein structures
  publication-title: J. Appl. Crystallogr.
– volume: 32
  start-page: W665
  year: 2004
  end-page: W667
  ident: bib68
  article-title: PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Res.
– start-page: 855
  year: 2012
  end-page: 917
  ident: bib3
  article-title: Aldol reactions
  publication-title: Enzyme Catalysis in Organic Synthesis
– volume: 452
  start-page: 108
  year: 2017
  end-page: 115
  ident: bib18
  article-title: Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases
  publication-title: Carbohydr. Res.
– volume: 134
  start-page: 353
  year: 2016
  end-page: 366
  ident: bib41
  article-title: Enzymes in the
  publication-title: J. Mol. Catal. B Enzym.
– volume: 63
  start-page: 55
  year: 2017
  end-page: 59
  ident: bib15
  article-title: An industrially applied biocatalyst: 2-deoxy-D-ribose- 5- phosphate aldolase
  publication-title: Process. Biochem.
– volume: 52
  start-page: 10983
  year: 2013
  end-page: 10991
  ident: bib45
  article-title: Zinc coordination spheres in protein structures
  publication-title: Inorg. Chem.
– volume: 19
  start-page: 1353
  year: 2018
  end-page: 1358
  ident: bib5
  article-title: Nucleophile promiscuity of natural and engineered aldolases
  publication-title: Chembiochem
– volume: 20
  start-page: 93
  year: 1969
  end-page: 115
  ident: bib38
  article-title: Kinetics and mechanism of reactions of main group metal ions with biological carriers
  publication-title: Pure Appl. Chem.
– volume: 67
  start-page: 235
  year: 2011
  end-page: 242
  ident: bib54
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 6
  start-page: 4
  year: 2019
  end-page: 24
  ident: bib6
  article-title: Current advances on structure-function relationships of pyridoxal 5'-phosphate-dependent enzymes
  publication-title: Front. Mol. Biosci.
– start-page: 486
  year: 2010
  end-page: 501
  ident: bib55
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 111
  start-page: 3924
  year: 1989
  end-page: 3927
  ident: bib19
  article-title: Use of a recombinant bacterial fructose-1,6-diphosphate aldolase in aldol reactions: Preparative syntheses of 1-deoxynojirimycin, 1-deoxymannojirimycin, 1,4-dideoxy-1,4-imino-D- arabinitol, and fagomine
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 33
  year: 2017
  end-page: 38
  ident: bib9
  article-title: Aldolase-catalysed stereoselective synthesis of fluorinated small molecules
  publication-title: Curr. Opin. Chem. Biol.
– volume: 287
  start-page: 383
  year: 1999
  end-page: 394
  ident: bib36
  article-title: The crystal structure of
  publication-title: J. Mol. Biol.
– volume: 19
  start-page: 3849
  year: 2000
  end-page: 3856
  ident: bib28
  article-title: Crystal structures of the metal-dependent 2-dehydro-3-deoxy- galactarate aldolase suggest a novel reaction mechanism
  publication-title: EMBO J.
– volume: 49
  start-page: 3774
  year: 2010
  end-page: 3782
  ident: bib23
  article-title: Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: Substrate specificity, kinetic mechanism, and substrate channeling
  publication-title: Biochemistry
– volume: 35
  start-page: W522
  year: 2007
  end-page: W525
  ident: bib60
  article-title: PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations
  publication-title: Nucleic Acids Res.
– volume: 58
  start-page: 11841
  year: 2019
  end-page: 11845
  ident: bib13
  article-title: Chemoenzymatic platform for synthesis of chiral organofluorines based on type II aldolases
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 72
  start-page: 774
  year: 2007
  end-page: 797
  ident: bib62
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  ident: bib52
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
– volume: 287
  start-page: 36208
  year: 2012
  end-page: 36221
  ident: bib39
  article-title: Crystal structure of reaction intermediates in pyruvate class II aldolase: Substrate cleavage, enolate stabilization, and substrate specificity
  publication-title: J. Biol. Chem.
– volume: 42
  start-page: W320
  year: 2014
  end-page: W324
  ident: bib66
  article-title: Deciphering key features in protein structures with the new ENDscript server
  publication-title: Nucleic Acids Res.
– volume: 100
  start-page: 6992
  year: 2003
  end-page: 6997
  ident: bib29
  article-title: Crystal structure of a bifunctional aldolase- dehydrogenase: Sequestering a reactive and volatile intermediate
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 57
  start-page: 3583
  year: 2018
  end-page: 3587
  ident: bib25
  article-title: Nucleophile promiscuity of engineered class II pyruvate aldolase YfaU from
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 37
  start-page: 33
  year: 2017
  ident: 10.1016/j.jbc.2021.101280_bib9
  article-title: Aldolase-catalysed stereoselective synthesis of fluorinated small molecules
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2016.12.029
– volume: 10
  start-page: 2538
  year: 2020
  ident: 10.1016/j.jbc.2021.101280_bib22
  article-title: Pyruvate aldolases catalyze cross-aldol reactions between ketones: Highly selective access to multi-functionalized tertiary alcohols
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05512
– volume: 276
  start-page: 307
  year: 1997
  ident: 10.1016/j.jbc.2021.101280_bib52
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 111
  start-page: 4346
  year: 2011
  ident: 10.1016/j.jbc.2021.101280_bib2
  article-title: C-C bond-forming lyases in organic synthesis
  publication-title: Chem. Rev.
  doi: 10.1021/cr100299p
– volume: 49
  start-page: 3774
  year: 2010
  ident: 10.1016/j.jbc.2021.101280_bib23
  article-title: Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: Substrate specificity, kinetic mechanism, and substrate channeling
  publication-title: Biochemistry
  doi: 10.1021/bi100251u
– volume: 67
  start-page: 355
  year: 2011
  ident: 10.1016/j.jbc.2021.101280_bib56
  article-title: REFMAC5 for the refinement of macromolecular crystal structures
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444911001314
– volume: 452
  start-page: 108
  year: 2017
  ident: 10.1016/j.jbc.2021.101280_bib18
  article-title: Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2017.10.009
– volume: 47
  start-page: 9955
  year: 2008
  ident: 10.1016/j.jbc.2021.101280_bib31
  article-title: Crystal structure and functional assignment of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12
  publication-title: Biochemistry
  doi: 10.1021/bi800943g
– volume: 48
  start-page: 3186
  year: 2009
  ident: 10.1016/j.jbc.2021.101280_bib37
  article-title: Structural insights into the substrate binding and stereoselectivity of giardia fructose-1,6- bisphosphate aldolase
  publication-title: Biochemistry
  doi: 10.1021/bi9001166
– volume: 20
  start-page: 93
  year: 1969
  ident: 10.1016/j.jbc.2021.101280_bib38
  article-title: Kinetics and mechanism of reactions of main group metal ions with biological carriers
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac196920010093
– volume: 1774
  start-page: 1247
  year: 2007
  ident: 10.1016/j.jbc.2021.101280_bib44
  article-title: Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2007.07.010
– volume: 495
  start-page: 111131
  year: 2020
  ident: 10.1016/j.jbc.2021.101280_bib47
  article-title: New mechanistic insights into the reversible aldol reaction catalysed by rhamnulose- 1-phosphate aldolase from Escherichia coli
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2020.111131
– volume: 6
  start-page: 4286
  year: 2016
  ident: 10.1016/j.jbc.2021.101280_bib10
  article-title: Building bridges: Biocatalytic C-C-bond formation toward multifunctional products
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00758
– volume: 19
  start-page: 1353
  year: 2018
  ident: 10.1016/j.jbc.2021.101280_bib5
  article-title: Nucleophile promiscuity of natural and engineered aldolases
  publication-title: Chembiochem
  doi: 10.1002/cbic.201800135
– volume: 361
  start-page: 2649
  year: 2019
  ident: 10.1016/j.jbc.2021.101280_bib33
  article-title: CH-π interactions promote the conversion of hydroxypyruvate in a class II pyruvate aldolase
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201900205
– volume: 102
  start-page: 3586
  year: 1998
  ident: 10.1016/j.jbc.2021.101280_bib69
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp973084f
– volume: 582
  start-page: 3385
  year: 2008
  ident: 10.1016/j.jbc.2021.101280_bib27
  article-title: The role of a conserved histidine residue in a pyruvate-specific class II aldolase
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2008.08.032
– year: 2017
  ident: 10.1016/j.jbc.2021.101280_bib51
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1016/j.jbc.2021.101280_bib55
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
– volume: 26
  start-page: 283
  year: 1993
  ident: 10.1016/j.jbc.2021.101280_bib58
  article-title: PROCHECK: A program to check the stereochemical quality of protein structures
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889892009944
– volume: 287
  start-page: 383
  year: 1999
  ident: 10.1016/j.jbc.2021.101280_bib36
  article-title: The crystal structure of Escherichia coli class II fructose-1,6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.2609
– volume: 67
  start-page: 235
  year: 2011
  ident: 10.1016/j.jbc.2021.101280_bib54
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910045749
– volume: 50
  start-page: 1968
  year: 2021
  ident: 10.1016/j.jbc.2021.101280_bib12
  article-title: Biocatalytic routes to anti-viral agents and their synthetic intermediates
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00763C
– volume: 19
  start-page: 25
  year: 2014
  ident: 10.1016/j.jbc.2021.101280_bib8
  article-title: Engineering aldolases as biocatalysts
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2013.12.010
– volume: 57
  start-page: 3583
  year: 2018
  ident: 10.1016/j.jbc.2021.101280_bib25
  article-title: Nucleophile promiscuity of engineered class II pyruvate aldolase YfaU from E. coli
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201711289
– volume: 73
  start-page: 148
  year: 2017
  ident: 10.1016/j.jbc.2021.101280_bib63
  article-title: Polder maps: Improving OMIT maps by excluding bulk solvent
  publication-title: Acta Crystallogr. D Struct. Biol.
  doi: 10.1107/S2059798316018210
– volume: 353
  start-page: 2263
  year: 2011
  ident: 10.1016/j.jbc.2021.101280_bib14
  article-title: Current trends in asymmetric synthesis with aldolases
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201100236
– volume: 30
  start-page: 100476
  year: 2021
  ident: 10.1016/j.jbc.2021.101280_bib49
  article-title: Recent trends in the stereoselective synthesis of (poly)-substituted 2-oxo acids by biocatalyzed aldol reaction
  publication-title: Curr. Opin. Green. Sustain. Chem.
  doi: 10.1016/j.cogsc.2021.100476
– volume: 111
  start-page: 3924
  year: 1989
  ident: 10.1016/j.jbc.2021.101280_bib19
  article-title: Use of a recombinant bacterial fructose-1,6-diphosphate aldolase in aldol reactions: Preparative syntheses of 1-deoxynojirimycin, 1-deoxymannojirimycin, 1,4-dideoxy-1,4-imino-D- arabinitol, and fagomine
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00193a025
– volume: 63
  start-page: 55
  year: 2017
  ident: 10.1016/j.jbc.2021.101280_bib15
  article-title: An industrially applied biocatalyst: 2-deoxy-D-ribose- 5- phosphate aldolase
  publication-title: Process. Biochem.
  doi: 10.1016/j.procbio.2017.08.001
– volume: 39
  start-page: 1352
  year: 2000
  ident: 10.1016/j.jbc.2021.101280_bib35
  article-title: The catalytic asymmetric aldol reaction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J
– volume: 134
  start-page: 353
  year: 2016
  ident: 10.1016/j.jbc.2021.101280_bib41
  article-title: Enzymes in the p-hydroxyphenylacetate degradation pathway of Acinetobacter baumannii
  publication-title: J. Mol. Catal. B Enzym.
  doi: 10.1016/j.molcatb.2016.09.003
– volume: 40
  start-page: 658
  year: 2007
  ident: 10.1016/j.jbc.2021.101280_bib53
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889807021206
– volume: 11
  start-page: 4660
  year: 2021
  ident: 10.1016/j.jbc.2021.101280_bib11
  article-title: Synthesis of γ-hydroxy-α-amino acid derivatives by enzymatic tandem aldol addition-transamination reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c00210
– volume: 22
  start-page: 784
  year: 2011
  ident: 10.1016/j.jbc.2021.101280_bib7
  article-title: New opportunities for biocatalysis: Driving the synthesis of chiral chemicals
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.07.002
– volume: 287
  start-page: 36208
  year: 2012
  ident: 10.1016/j.jbc.2021.101280_bib39
  article-title: Crystal structure of reaction intermediates in pyruvate class II aldolase: Substrate cleavage, enolate stabilization, and substrate specificity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.400705
– volume: 7
  start-page: 8130
  year: 2017
  ident: 10.1016/j.jbc.2021.101280_bib40
  article-title: Catalytic roles of histidine and arginine in pyruvate class II aldolase: A perspective from QM/MM metadynamics
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03398
– volume: 361
  start-page: 1
  year: 2019
  ident: 10.1016/j.jbc.2021.101280_bib21
  article-title: Exploration of aldol reactions catalyzed by stereoselective pyruvate aldolases with 2-oxobutyric acid as nucleophile
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201900128
– volume: 35
  start-page: W522
  year: 2007
  ident: 10.1016/j.jbc.2021.101280_bib60
  article-title: PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm276
– volume: 4
  start-page: 148
  year: 1988
  ident: 10.1016/j.jbc.2021.101280_bib67
  article-title: Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison
  publication-title: Proteins
  doi: 10.1002/prot.340040208
– volume: 23
  start-page: 2947
  year: 2007
  ident: 10.1016/j.jbc.2021.101280_bib65
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 9
  start-page: 519
  year: 2017
  ident: 10.1016/j.jbc.2021.101280_bib20
  article-title: Expanding the reaction space of aldolases using hydroxypyruvate as a nucleophilic substrate
  publication-title: Green Chem.
  doi: 10.1039/C6GC02652D
– start-page: 855
  year: 2012
  ident: 10.1016/j.jbc.2021.101280_bib3
  article-title: Aldol reactions
– volume: 294
  start-page: 10490
  year: 2019
  ident: 10.1016/j.jbc.2021.101280_bib50
  article-title: A flap motif in human serine hydroxymethyltransferase is important for structural stabilization, ligand binding, and control of product release
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.007454
– volume: 102
  start-page: 9959
  year: 2018
  ident: 10.1016/j.jbc.2021.101280_bib16
  article-title: 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): Applications and modifications
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-9392-8
– volume: 293
  start-page: 7737
  year: 2018
  ident: 10.1016/j.jbc.2021.101280_bib46
  article-title: Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.001098
– volume: 75
  start-page: 1
  year: 2018
  ident: 10.1016/j.jbc.2021.101280_bib17
  article-title: Exploration of the sialic acid world
  publication-title: Adv. Carbohydr. Chem. Biochem.
  doi: 10.1016/bs.accb.2018.09.001
– volume: 1996
  start-page: 1112
  year: 1996
  ident: 10.1016/j.jbc.2021.101280_bib48
  article-title: Carbonyl-ene approach to the asymmetric synthesis of 2-keto-3-deoxy-D-gluconic acid (KDG): A combinatorial sequence using sharpless epoxidation
  publication-title: Synlett
  doi: 10.1055/s-1996-5691
– volume: 286
  start-page: 184
  year: 2019
  ident: 10.1016/j.jbc.2021.101280_bib42
  article-title: nanoDSF as screening tool for enzyme libraries and biotechnology development
  publication-title: FEBS J.
  doi: 10.1111/febs.14696
– volume: 134
  start-page: 507
  year: 2012
  ident: 10.1016/j.jbc.2021.101280_bib24
  article-title: Rational design of stereoselectivity in the class II pyruvate aldolase BphI
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208754r
– volume: 32
  start-page: W665
  year: 2004
  ident: 10.1016/j.jbc.2021.101280_bib68
  article-title: PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh381
– volume: 372
  start-page: 774
  year: 2007
  ident: 10.1016/j.jbc.2021.101280_bib62
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
– volume: 373
  start-page: 866
  year: 2007
  ident: 10.1016/j.jbc.2021.101280_bib30
  article-title: Structure and mechanism of HpcH: A metal ion dependent class II aldolase from the homoprotocatechuate degradation pathway of Escherichia coli
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.06.048
– volume: 35
  start-page: 2219
  year: 1996
  ident: 10.1016/j.jbc.2021.101280_bib34
  article-title: The mechanism of class II, metal-dependent aldolases
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.199622191
– volume: 4
  start-page: 1303
  year: 1996
  ident: 10.1016/j.jbc.2021.101280_bib43
  article-title: The crystal structure of a class II fructose-1,6- bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold
  publication-title: Structure
  doi: 10.1016/S0969-2126(96)00138-4
– volume: 60
  start-page: 2256
  year: 2004
  ident: 10.1016/j.jbc.2021.101280_bib59
  article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904026460
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.jbc.2021.101280_bib64
  article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909052925
– volume: 60
  start-page: 1355
  year: 2004
  ident: 10.1016/j.jbc.2021.101280_bib57
  article-title: PRODRG: A tool for high-throughput crystallography of protein-ligand complexes
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904011679
– volume: 6
  start-page: 4
  year: 2019
  ident: 10.1016/j.jbc.2021.101280_bib6
  article-title: Current advances on structure-function relationships of pyridoxal 5'-phosphate-dependent enzymes
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2019.00004
– volume: 50
  start-page: 3559
  year: 2011
  ident: 10.1016/j.jbc.2021.101280_bib32
  article-title: Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI
  publication-title: Biochemistry
  doi: 10.1021/bi101947g
– start-page: 267
  year: 2016
  ident: 10.1016/j.jbc.2021.101280_bib4
  article-title: Recent advances in enzyme-catalyzed aldol addition reactions
– volume: 19
  start-page: 3849
  year: 2000
  ident: 10.1016/j.jbc.2021.101280_bib28
  article-title: Crystal structures of the metal-dependent 2-dehydro-3-deoxy- galactarate aldolase suggest a novel reaction mechanism
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.15.3849
– volume: 98
  start-page: 10037
  year: 2001
  ident: 10.1016/j.jbc.2021.101280_bib61
  article-title: Electrostatics of nanosystems: Application to microtubules and the ribosome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.181342398
– volume: 100
  start-page: 6992
  year: 2003
  ident: 10.1016/j.jbc.2021.101280_bib29
  article-title: Crystal structure of a bifunctional aldolase- dehydrogenase: Sequestering a reactive and volatile intermediate
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1236794100
– volume: 14
  start-page: 154
  year: 2010
  ident: 10.1016/j.jbc.2021.101280_bib1
  article-title: Recent progress in stereoselective synthesis with aldolases
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2009.11.029
– volume: 52
  start-page: 10983
  year: 2013
  ident: 10.1016/j.jbc.2021.101280_bib45
  article-title: Zinc coordination spheres in protein structures
  publication-title: Inorg. Chem.
  doi: 10.1021/ic401072d
– volume: 58
  start-page: 11841
  year: 2019
  ident: 10.1016/j.jbc.2021.101280_bib13
  article-title: Chemoenzymatic platform for synthesis of chiral organofluorines based on type II aldolases
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201906805
– volume: 44
  start-page: 9447
  year: 2005
  ident: 10.1016/j.jbc.2021.101280_bib26
  article-title: Purification and biochemical characterization of a pyruvate- specific class II aldolase, HpaI
  publication-title: Biochemistry
  doi: 10.1021/bi050607y
– volume: 42
  start-page: W320
  year: 2014
  ident: 10.1016/j.jbc.2021.101280_bib66
  article-title: Deciphering key features in protein structures with the new ENDscript server
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku316
SSID ssj0000491
Score 2.4031348
Snippet Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101280
SubjectTerms Acinetobacter baumannii - enzymology
Bacterial Proteins
Calcium - chemistry
Catalysis
Catalytic Domain
crystal structure
Crystallography, X-Ray
enzyme catalysis
Enzyme Stability
Fructose-Bisphosphate Aldolase - chemistry
metal-dependent enzyme
p-hydroxyphenylacetate degradation pathway
pyruvate-specific Class II metal aldolase
solvent-tolerant enzyme
stereoselectivity
stereospecificity
structure–function
Substrate Specificity
thermostable enzyme
Zinc - chemistry
Title Catalytic and structural insights into a stereospecific and thermostable Class II aldolase HpaI from Acinetobacter baumannii
URI https://dx.doi.org/10.1016/j.jbc.2021.101280
https://www.ncbi.nlm.nih.gov/pubmed/34624314
https://www.proquest.com/docview/2580700832
https://pubmed.ncbi.nlm.nih.gov/PMC8560999
Volume 297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIkFfELRQwqVaJMQDUSrb61seQwRKCq2K1Ep5s9brteIocaLEURXE1_IlzOx6baeUCvoSRb7EVuZ4PDN75gwh7-NQeq6f-F0pWQIJSpx0Y4hau6EnRJJaqeWq0Qln5_7wyj0de-NW61eDtbQp4hPx49a-kvtYFbaBXbFL9j8sW_0obIDvYF_4BAvD5z_ZeIC1l62RXNVSsKWMxhqTbuRaQWzJO6iGIFEUXDHwDGtyNV9AbIitU2o0Zmc06vBZArnuWnaGSz7SvSd9XHrHxx5lnTsxx6p_nmXNqLbuL1ORrRZ20tIjZp5cXbgviglHCpPyMRcAQDHh27oskOUzLlWtp79GBlm155SvNtdcqySssmLNV9Wub_xa13HPIfPPm4UMxy47-iromRWqJl31U7aoblQzT8zQ4HJWZ9NfKraJo5XgT6T25xBhYrPCuOnwHc0ILpHt3foi0TWN6ck0Rp1Lx8Ytjp451QDWcq6QxVzfgUDMrd-pFdPx4mwQQlAJYfgD8tCBVAanbHz9XivaQ4ampzqWN29W3hUH8cbV98kjc6m_hVF_pkk32b6N8OnyKXlSooP2NYifkZbMD8hhP-fFYr6lH6hiIqu_-oA8HhhjHJKfFcYpGIbWGKcG4xQxTjndxbg6uolxqjBORyNqME4R4xQxTncwTiuMPydXXz5fDobdcmJIVzDft7oyDGMWyNR1hZfYwu3JhAWhLxjzUx4mNnNYYAWJH1oxZ0JYNgdnFAqUHUwtLnvsBdnLF7l8SWjKeqlt9xIegu9KPYdz7sVp4KVcxoH0rDaxjAEiUcrp41SXWWR4k9MIzBeh-SJtvjb5WJ2y1Foydx3sGqtGZTCsg9wIIHrXae8MAiKwFK7-8VwuNusIsAWvd3genDY50oio7sKgqk2CHaxUB6AI_e6ePJsoMfoS3a_ufeZrsl97gzdkD3Ak30KgX8THqkB2rJ6X383DCUk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+and+structural+insights+into+a+stereospecific+and+thermostable+Class+II+aldolase+HpaI+from+Acinetobacter+baumannii&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Watthaisong%2C+Pratchaya&rft.au=Binlaeh%2C+Asweena&rft.au=Jaruwat%2C+Aritsara&rft.au=Lawan%2C+Narin&rft.date=2021-11-01&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=297&rft.issue=5&rft_id=info:doi/10.1016%2Fj.jbc.2021.101280&rft_id=info%3Apmid%2F34624314&rft.externalDocID=PMC8560999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon